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Abstract. In the paper effective sufficient conditions are obtained for
unique solvability and correctness of the mixed problem and of the Dirichlet
problem for second order linear singular functional differential equations.
Some of these conditions are nonimprovable and some of them generalize
results which are well known for ardinary differential equations.
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MaIN NOTATION

R =]—-o0o,+oo[, RT=]0,+oc0[.
Let o € R.
[«] is the integral part of the number «,

_ lelte _lel=a

I

C(]a, b)) is the space of continuous and bounded functions w :]a, b[— R
with the norm

[|u||c =sup{|u(t)]:a <t <b}.
éloc(]a, b[) is the set of the functions u :]a, f[— IR absolutely continuous
on each subsegment of ]a, b].

é{oc(]a, b[) is the set of the functions u :]a, b[ — R absolutely continuous
on each subsegment of Ja, b[ along with their first order derivatives.

L([a,b]) is the space of summable functions u : [a, ] — R with the norm

Julle = [ futs)lds.

Leo(]a, b]) is the space of essentially bounded functions u :]a, [ — R with
the norm

[|u|] = esssup|u(t)].
t€[a,b]

Lioc(la, b)) (Lioc(]a, b])) is the set of the measurable functions u : ]a, [ — R
(u :]a,b] — R), summable on each subsegment of ]a, b[ (Ja, b]).

Let 2,y :]a,b[ —]0, +o0[ be continuous functions.

Cy(]a, b]) is the space of functions u € C(]a, b[) such that

u(t
fulles = sup {01 0t <t} < o

Ly ([a,b]) is the space of the functions v € L(]a, b[) such that

b

lulle = [ oo lute)lds <+

a

L(Cy; Ly) is the set of the linear operators h : Cy(]a, b[) — Ly([a, b]) such
that

sup {[n(w)()] : |Julle,e < 1} € Ly([a,b]).
o Lioe(]a, b)) — éloc(]a, b[) is the operator defined by

a(p)(t) = exp ( / p(S)dS) for a<t<b,

at
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where p € Lioc(]a, b]).
If o(p) € L([a,b]), then we define the operators o1 and oy by
¢ b
1
) = o [ oo / (p)(s)ds.

o(p)

a
1

aa(p)(t) = m/a(p)(s)ds for a <t <b.

a

Let f, g € C(Ja,b]) and ¢ € [a,b]. Then we write
Ft) = 0(@g(t) (f(1) =0"(g(1))) as t—c,
if

lim sup M < 400 (0 < liminf £l and limsup |7(0)]

i—e 4 (D] i—e g(t)] t—e T g(t)]

Let A and B be normed spaces and let U: A — B be a linear operator.
Then we denote the norm of the operator U as follows:

U] -

< —1—00).



INTRODUCTION

During the last two decades the boundary value problems for functional
differential equations attract the attention of many mathematicians and are
intensively studied. At present the foundations of the general theory of
such kind of problems are already laid and many of them are investigated
in detail (see [1], [2], [19]-[23], [44] and references therein). Despite this fact,
there remains a wide class of boundary value problems on the solvability of
which not much is known. Among them are the two-point boundary value
problems for linear singular functional differential equations of second order,
and we devote our work to the investigation of these problems.

It should be noted that the present monograph is tightly connection with
the works of I. T. Kiguradze [17], L. B. Shekhter [23] and A. G. Lomtatidze
[27] in which for singular ordinary differential equations we developed the
method of upper and lower Nagumo’s functions in the case of boundary value
problems and found the conditions under which Fredholm’s alternative 1s
valid in the case of linear equations. We introduced and described the set
Vo, (see Definition 1.1.2).

In the present work we consider the equation

u”(t) = po(t)u(t) + pr(t)u'(t) + g(u)(t) + p2(t) (0.0.1)

under the boundary conditions
u(a) =e1, u(b) =cq (0.0.29)
u(a) = ¢y, u'(b—)=co, (0.0.22)

and separately for the case of homogeneous conditions
uw(a) =0, u(b)=0,
u(a) =0, u'(b—)=0,
where ¢1, ¢3 € R, p; € Lioe(la, b]) (j =0,1,2) and ¢ : C(]a, b)) — Lioc(]a, b))

is a continuous linear operator. In studying these problems the use is made
of the auxiliary equation

u(t) = po(t)u(t) + pr(t)u'(t) — h(u)(®),

where h : C(]a, b]) — Lioc(]a, b]) is the nonnegative linear operator.

The question of the unique solvability of problems (0.0.1), (0.0.2;) is
studied in Chapter I. We introduced sets of two-dimensional vector functions
(po,p1) HJa,b[— R% V; 5(]a,b[; k), 3 € [0,1] (see Definitions 1.1.3 and 1.1.4),
which were found to be useful for our investigation. In Section 1.1, in terms
of the sets V; g(]a, b[; h) we established theorems for the unique solvability
of problems (0.0.1), (0.0.23;). The question on the unique solvability of
problems (0.0.1), (0.0.2;5) in the space with weight Cy(]a,b[) is studied
separately. In the same chapter we can find corollaries of basic theorems



and and also the effective sufficient conditions for the unique solvability
of the above-mentioned problems. Among them there occur unimprovable
conditions and those which generalize the well-known results for ordinary
differential equations.

In Chapter II we consider the question dealing with the correctness of
problems (0.0.1), (0.0.2;) under the assumption that (pg, p1) € V; g(la, b[; h).
The effective sufficient conditions guaranteeing the correctness of the above-
mentioned problems are presented.

Everywhere in our work, special attention is given to the case, when the
operator ¢ in equation (0.0.1) is defined by the equality

g(u)(t) = Y gr(yu(m (1)),

where g € Lioe(Ja,b]), 7 : [a,b] — [a,b] (k = 1,...,n) are measurable
functions.



CHAPTER 1

UNIQUE SOLVABILITY OF TWO-POINT BOUNDARY
VALUE PROBLEMS FOR LINEAR SINGULAR
FUNCTIONAL DIFFERENTIAL EQUATIONS

8 1.1. STATEMENT OF THE PROBLEM AND FORMULATION OF Basic
REsuLTSs

In this chapter we consider the linear equation

u”(t) = po(t)u(t) + pr(t)u'(t) + g(u)(t) + p2(t) (L1.1)

under the boundary conditions
u(a) =e1, u(b) =cq (1.1.29)
u(a) = ¢y, u'(b—)=co, (1.1.22)

where po, pj € Lioe(Ja, b)), ¢; € R (j = 1,2) and ¢ : C(la, b]) — Licc(]a, b))
1s a continuous linear operator.

The equation (1.1.1) will also be studied separately in the weighted space
Cr5(Ja, b)) under the homogeneous boundary conditions

u(a) =0, u(b)=0 (1.1.210)
u(a) =0, u'(b—)=0, (1.1.240)
where 8 €]0, 1] and

t b

x@ﬁi/dmx@®</dmx®%)%ibragtgb

When considering the problems (1.1.1), (1.1.27) and (1.1.1), (1.1.219), it
will always be assumed that
by S Lloc(]aab[) (.7 = Oa 1a2)a
U(pl) € L([a’b])’ Po € LU1(p1)([a’b])’

and when considering the problems (1.1.1), (1.1.25) and (1.1.1), (1.1.240)
we will assume that

(1.1.31)

pj € Lioe(Ja,b]) (j =0,1,2),
o(p1) € L([a, b)), po € Loy(p)([a, b])-

Introduce the following definitions.

(1.1.35)



Definition 1.1.1. Let i € {1,2}. We will say that w € C(]a, b[) is the lower
(upper) function of the problem (1.1.1), (1.1.2;) if:

(a) w' is of the form w'(t) = wo(t) + wi(t), where wy :]a,b[— R is
absolutely continuous on each segment from Ja, b[, the function wy :]a, b[ —
R is nondecreasing (nonincreasing) and its derivative is almost everywhere
equal to zero;

(b) almost everywhere on ]a, b[ the inequality

w//(t)
"

(w”(t)

> po
<po

1s satisfied:
(¢) there exists the limit w'(b—) and

w(a) < ey, w(i_l)(b—) < e (w(a) > e, w(i_l)(b—) > cz).

Definition 1.1.2. Let ¢ € {1,2}. We will say that a two-dimensional vector
function (pg, p1) :]a, b — R? belongs to the set V; o(]a, b[) if the conditions
(1.1.3;) are fulfilled, the solution of the problem

u” (t) = po(t)u(t) + p1(H)u' (1), (1.1.4)

_ im u(h) -
u(a) =0, lim a(p)(t) :

has no zeros in the interval Ja, b[ and «=D(b=) > 0.

Note that this definition is in a full agreement with that of the set
Vio(Ja, b)) given in [23] as the set of three-dimensional vector functions
(po, P11, p12) :]a,b[— R3if p11(t) = p1a(t) = p1(t) almost everywhere on
Ja, b.

Definition 1.1.3. Let ¢ € {1,2} and & : C(Ja, b[) — Lioc(Ja, b[) be a con-
tinuous linear operator. We will say that a two-dimensional vector function
(po,p1) :]a, b[ — R?belongs to the set V; o(]a, b ; h) if the conditions (1.1.3;)
are satisfied and the problem

u’(t) = po(t)u(t) + pr()u'(t) — h(u)(t)
u(a) =0, wC~Db=)=0
has a positive upper function w on the segment [a, b].

Definition 1.1.4. Let ¢ € {1,2}, 5 €]0,1] and h : C(]a, b)) — Lioc(]a, b])
be a continuous linear operator. We will say that a two-dimensional vector
function (po,p1) :]a, b[ — R? belongs to the set V; g(]a,b[;h) if

(po,p1) € Vi0(]a, b)),



there exists a measurable function ¢s :]a, [ — [0, +oo[ such that

/ 1G(t, 5)ls(s) ds = O (2 (1))

ast —a,t—bifi =1, and as t — b if ¢ = 2, where G is Green’s function

of the problem (1.1.4), (1.1.2;5) and

o(t) = / 1)) / (1)) d) for a<i<h,

a 13

and the problem

u”(t) = po(t)u(t) + pr(t)u'(t) — h(u)(t) — q5(t),
u(a) =0, wC~Db=)=0

on the interval Ja, b[ has a positive upper function w such that
w(t) = 0" («”(1))

ast—a,t—bifi=1andast —aif¢=2.

1.1.1. Theorems on the Unique Solvability of the Problems (1.1.1), (1.1.2;)
(t =1,2).

Theorem 1.1.1;. Let i € {1,2},

P2 € Loy(p([a, b]) (1.1.5)

and let the constants «, 8 € [0, 1] connected by the inequalily

a+ 5 <1 (1.1.6)
be such that
(po,p1) € Vi p(la, b[; h), (L1.7;)
where
he E(Cxﬂ;L#i)) NL(C; Do) (1.1.8;)

15 a nonnegative operator and

t

x(t):/U(pl)(s)dé;(/bU(pl)(s)ds)z_i for a<t<b. (1.1.9;)

a
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Let, moreover, a continuous linear operator g:C(Ja, b[)—Ls,;p,)([a,b]) be
such that for any function v € C(la,b]) almost everywhere in the interval
Ja, b[ the inequality

lg(u)(0)] < A(lu))(?) (1.1.10)

is satisfied. Then the problem (1.1.1), (1.1.2;) has one and only one solu-
tion.

Theorem 1.1.1;0. Let i € {1,2} and let the constants o« € [0, 1], 8 €]0, 1]
connected by the inequality (1.1.6) be such that
p2 € L -5 ([a,b]) (1.1.11)

a(p1)
and the functions po, p1 :]a, b[ — R satisfy the inclusion (1.1.7;), where
heL(CppyL_es ) (1.1.12)

a(p1)

is a nonnegative operator and the function x :]a,b[—R¥ is defined by the
equality (1.1.9;). Let, moreover, a continuous linear operator ¢:Cys(la, b[) —
L _eo ) ([a,b]) be such that for any function u € Cyps(]a, b[) almost everywhere
in the interval Ja,b[ the inequality (1.1.10) is satisfied. Then the problem
(1.1.1), (1.1.240) has one and only one solution in the space Cys(]a,b[).

Remark 1.1.1;. Let ¢ € {1,2} and all the requirements of Theorem 1.1.1;
be satisfied. Then for any function vy € C(Ja,b]) there exists a unique
sequence vy, : [a,b] — R, n € N, such that for every n € N, v,, is a solution
of the problem

V'(t) = po()vi(t) + pr(t)v' (1) + g(vn-1)(t) + p2(1),

oa) = e, viml(b—) = e, (1.1.13))

and uniformly on ]a, b]
lim (v, (¢) — u(t)) =0, lim o;(p1)(@) (v, (t) — ' (¢)) = 0, (1.1.14)
where w is a solution of the problem (1.1.1), (1.1.2;).

Remark 1.1.1;9. Let i € {1,2} and all the requirements of Theorem 1.1.1;¢
be satisfied. Then for any function vy € Cps(]a,b[) there exists a unique
sequence vy, : [a,b] — R, n € N, such that for every n € N, v,, is a solution
of the problem

v'(t) = po(t)o(t) +P1(t)vf5t1) +9(vn-1)(1) + pa(1), (11.13:0)
v(a) =0, v~ (b—) =0,
and uniformly on ]a, b]
fim 0= o 2O gy — @y =0, (1.1.15)

N0 w2 (D)
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where w is a solution of the problem (1.1.1), (1.1.2;0).

We can easily give examples of the operator A and the function p; such
that h € L(Cys; LHZ;_J) and h & L(C; Lo,(p,))-

Example 1.1.1. Let ¢ > 0, p1(t) = 0, h(u)(t) = [(b — t)(t — a)]72~¢ for
a <t <bandlet 7:[a,b] — {a,b} be a measurable function.

Example 1.1.2. Let a = -1, b =1, o« = g = %, p1(t) = 0 and h(u)(t) =

(1 =) 3u(r(t)), 7(t) = /1= (1 —2)10 for —1 < ¢ < 1. Then it is clear

that
op)(t) =1, z@t)=1—1> 2°(r(t))=(1—-1*)? for —1<t<1
and
+8< !
o 5
In such a case if uy € C’x% ([-1,1]) it follows from the inequality

luy (T(1))| < 621/5(7 (1)) for —1<t<1,

where )
i
6_sup{‘ 1/57'(15))" —1<t<1},
that
1 1
/l‘ ds<6/( 5)_4/5d5<—|—oo,
21 1

i.e., the condition (1.1.11;) is satisfied.
Let now us(t) = 1. Then uy € C(]—1,1[) and

1 1
/l‘ ds_/(l—sz)_2 ds,
5 5

i.e., owing to the fact that the last integral does not exist, the condition
(1.1.81) is violated.

Consider the case where pg(t) = 0, p1(t) = 0, i.e., when the equation
(1.1.1) has the form

u(t) = g(u)(t) + p2(t). (1.1.16)
Then the following theorem is valid.

Theorem 1.1.24. Let v € [0, 1],
p2 € La([a, b)) (1.1.17)

and

g€ L(C; Lyw) (1.1.18)
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be a nonnegative operator, where
)=t —a)(t—=0b) for a<t<hb. (1.1.199)

Let, moreover, there exist constants «, 3 € [0, %] such that

0<B<1l—7, (1.1.20)
a+ﬁ§% (1.1.21)
and
/ 16 /b 2(a+p)
/xa(s)g(l‘ﬁ)(s) ds < 27— ( - a) . (1.1.22)

a

Then the problem (1.1.16), (1.1.21) has one and only one solution.

Remark 1.1.2. Theorem 1.2.2; will remain valid if we replace the condi-
tions (1.1.20) and (1.1.22) respectively by

0<B<1—7, (1.1.23)

and

b

/xa(s)g(xﬁ)(s) ds < Qﬁb

a

16 (b— a)2(a+ﬁ).

: (1.1.24)

—a

Theorem 1.1.25. Let v € [0, 1] and let a funclion ps and a nonnegalive
operator g satisfy respectively the inclusions (1.1.17) and (1.1.18), where

zt)y=t—a for a<t<hbh. (1.1.192)
Let, moreover, there exist constants o, 3 € [0,1] such that the conditions

2
(1.1.20), (1.1.21) are fulfilled and

b
8 b—a\ots
o 8
/x (s)g(x)(s) ds < b_a( _ ) . (1.1.24,)
Then the problem (1.1.16), (1.1.22) has one and only one solution.
Theorem 1.1.2;0. Leti € {1,2}, v € [0,1[, 6 €]0,1 — 7],
p2 € Ly ([a,b]) (1.1.25)

and let

g € L(Cye; Lov) (1.1.26)
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be a nonnegative operator, where the function x is defined by the equality
(1.1.19;). Let, moreover, there exist constants o € [0,1], B €]0,1], such
that

§<fB<l—vy (1.1.27)

and the conditions (1.1.21), (1.1.24;) are satisfied. Then the problem
(1.1.16), (1.1.240) has in the space Cys(]a, b)) one and only one solution.

Remark 1.1.3. The condition (1.1.22) is unimprovable in the sense that
it cannot be replaced by the condition

+e o (1.1.28)

/x“(S)g(l‘ﬁ)(S) ds < Qﬁb 16 (b ; a)2(a+ﬁ)

—a

with no matter how small ¢ > 0.
Indeed, let

4
— 2 2 2y— 2 1 1
go(t) = 64p>(16p°> — (1 —46)>)"F for te]z—,\’1+,\[ ,
1 1 1 1 1 1
0 for [=g—g=Aul-gex g Ui g
1 1
= =- —o<t< =
p2(t) =0, 7(t) 6 signt for 5 <t < 5
and
g(u)(t) = go(t)u(r(1)).
Then the problem (1.1.16), (1.1.215) can be rewritten as
u”(t) = go(t)u(r (1)), (1.1.29)
1 1
u(_i) =0, u(i) =0. (1.1.30)

Note that for the operator g defined in such a way the condition (1.1.18) is
satisfied for vy = 0 and

1

g(1)(s)ds = /go(s) ds =16 + ¢,

|
[T \MI»—‘

S5
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i.e., instead of (1.1.22) the condition (1.1.28) is satisfied. In spite of this
fact we can check directly that the function

[//go )sign(—n)dyds — (14 )(t—l—;)]

1 _1
272

is for any ¢ € R a solution of the problem (1.1.29), (1.1.30), i.e., the unique
solvability is violated.

1.1.2. Effective Sufficient Conditions for the Unique Solvability of the Prob-
lem (1.1.1), (1.1.2;) (i = 1,2).

Corollary 1.1.1;. Let the function x be defined by (1.1.91), the constants
a, B € [0,1] be connected by (1.1.6), the functions p; :]a,b[—R (j =0,1,2)
satisfy (1.1.31), (1.1.51),

[po]- € L _e=_([a, b]) (1.1.31)

a(p1)

and for every function u € C(Ja, b[) almost everywhere on interval la, b[ the
inequality (1.1.10) s satisfied, where a nonnegative operator h satisfies the
inclusion (1.1.81). Let, moreover,

K/ba ) /([PO( o (;1)):;)]1(36[3)(5)) (/sa(Pl)(U)dn)ads+
(/a )/b ))S)h(x@)(S)) (/bo_(pl)(n)dn)“ds] )

o(p1)(Mdn . 2(ats)
< ) for a<t<b (1.1.32)

2

e
TN
8 o

Then the problem (1.1.1), (1.1.21) has one and only one solution.

Corollary 1.1.1;. Let the function x be defined by (1.1.92), the constants
a, B € [0,1] be connected by (1.1.6), the functions p; :]a,b[—R (j =0,1,2)
satisfy (1.1.32), (1.1.52), (1.1.31) and for every function u € C(]a, b]) almost
everywhere in the interval |a, b[ the inequality (1.1.10) be satisfied, where a
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nonnegative operator h satisfies (1.1.82). Let, moreover,

t

[ st ey / otpr )i s+

) o(p1)(s ]
+( / a<p1><n>dn)“ / Ws”‘iiii g)h(xﬁ)(s» ds <
< (/ba(pl)(n)dn) e for a<t<b. (1.1.325)

Then the problem (1.1.1), (1.1.25) has one and only one solution.

Corollary 1.1.1;0. Let i € {1,2}, the function x be defined by (1.1.9;),
the constants o € [0,1[, B €]0,1] be connected by (1.1.6), the functions
p; Ja,b[— R (j = 0,1,2) satisfy (1.1.3;), (1.1.11), (1.1.31) end for any
function u € Cys(la, b)) almost everywhere in the intervalla, b the inequality
(1.1.10) be satisfied, where the nonnegative operator h satisfies the inclusion
(1.1.12). Let, moreover, (1.1.32;) be satisfied. Then the problem (1.1.1),
(1.1.259) has in the space Cyps(]a, b]) one and only one solution.

Remark 1.1.4. Corollary 1.1.1; remains valid if we replace the conditions
(1.1.8;) and (1.1.32;) respectively by the conditions

he [,(C;Lal(pl)), (1.1.33)

and

< (1.1.341)

for i = 1 or by

b b

(o)) () +2 (D)), ([, atp-1
/ a(p1)(s) d <</ (Pl)(n)dn) sty

a a

for ¢ = 2, where the function z is defined by (1.1.9;).

Remark 1.1.49. Corollary 1.1.1; remains valid if we replace (1.1.32;) by
(1.1.34;) and reject the condition (1.1.12) at all.
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Consider the case where the equation (1.1.1) has the form

u”(t) = po(t)u(t) + pi(t) +ng )+ pa(t). (1.1.35)

Corollary 1.1.24. Let the function x be defined by (1.1.91), the constants
a, f€1[0,1] be defined by the inequality (1.1.6), the functions p; :]a, b[— R
(_] = 0,1,2) satisfy the conditions (1.1.31), (1.1.51), (1.1.31), 7 : [a,b] —
[a, 5] (

=1,...,n) be measurable functions and

0127 (1) € L g ([a,8]), gr € Loy pyy([a.b]) (k=1,...,m). (1.1.36,)

o(p1)

Let, moreover,

 (Ipo()]=27(s) + 3 lae(s)|e? (74(5))

(/ o) | ZrE -

a

< / o)) ds + / op)min)

a a

1 (Ipo(s)]=2”(s) + > lae(s)la? (7e(s)) ,

</ e ([ o) s <

13 s

a(p1)(n)dn

2(a+p)
< 5 ) for a<t<b. (1.1.37))

e
TN
Q%@

Then the problem (1.1.35), (1.1.21) has one and only one solution.

Corollary 1.1.2;. Let the function x be defined by (1.1.92), the constants
a, B € [0,1] be connected by (1.1.6), the functions p; :]a,b[— R (j =
0,1,2) satisfy (1.132), (1.1.52), (1.1.31), 7 : [a,b] = [a,b] (k=1,...,n) be

measurable functions and

g1’ (1) € L= ([0,8]), gk € Loypy([a,b]) (k=1,...,n). (1.1.36,)

a(p1)

Let, moreover,

t [po(s)]-2"(s) + Zn: lgr()|z? (71(s)) , = X
0(1121:)1(5) (/U(Pl)(n)dn) ds +

a

o
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+<a/ta(p1)(77)dn)at/b G :(;?)I(Lg)k(S)W(Tk(S)) ds <
< (/ba(pl)(n)dn) e for a<t<b. (1.1.375)

Then the problem (1.1.35), (1.1.22) has one and only one solution.

Corollary 1.1.2;0. Let i € {1,2}, the function x be defined by (1.1.9;),
the constants o € [0, 1], 5 €]0,1] be connected by the inequality (1.1.6), the
functions p; :]a,b[— R (j = 0,1,2) satisfy the conditions (1.1.3;), (1.1.11),
(1.1.31), 7 : [a,b] — [a,b] (k= 1,...,n) be measurable functions and

gp2?(1h) € Lo ([a,0]) (k=1,...,n). (1.1.38)

a(p1)
Let, moreover, the conditions (1.1.37;) be satisfied. Then the problem
(1.1.35), (1.1.240) has in the space Cyps(]a,b]) one and only one solution.

Remark 1.1.5. Corollary 1.1.2; remains valid if we replace the conditions
(1.1.36;) and (1.1.37;) respectively by the conditions

0k € Lo, b)) (k=1,...,n) (1.1.39)
and
b () (5) + 2 3 (o)l (7 (s)
a/ ) e
b 2(a+p)
A Jo(p1)(m)dn
< a (1.1.40;)
b 2
[ ()
for i = 1 or by
b (e (s) + 2(5) 3 Lol (7 (5)
a/ ()0s) e
b at+p-1
< ([ atwnan) (1.1.40,)

a

for ¢ = 2, where the function z is defined by (1.1.9;).
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Remark 1.1.59. Corollary 1.1.2;5 remains valid if we replace (1.1.37;) by
(1.1.40;) and reject the condition (1.1.38) at all.

Corollary 1.1.3;. Let the function x be defined by (1.1.91), the constants
a, B €[0,1] be connected by (1.1.6), the functions gi, p; :]a,b[— R (k =
1,...,n; 5 =0,1,2) satisfy (1.1.31), (1.1.51), (1.1.361), where 73, : [a,b] —

[a,b] (k=1,...,n) are measurable functions and
po(t) >0 for a<t<b. (1.1.41)
Let, moreover, for any m € {1,... ,n} the condition
n () 7x(s)

5 [ 2L ([ st [ stion)

k=1

Tr(8) b

o [ ([ e | )

T (1) a 75 (s)

B
|
—

be valid. Then the problem (1.1.35), (1.1.21) has one and only one solution.

Corollary 1.1.32. Let the function x be defined by the equality (1.1.92),
the constants «, § € [0,1] be connected by (1.1.6), the functions gy, p; :
la,b|— R (k=1,...,n; j =0,1,2) satisfy the conditions (1.1.32), (1.1.55),
(1.1.362), (1.1.41), where 73, : [a,b] — [a,b] (k = 1,...,n) are measurable

Junctions. Lel, moreover, for any m € {1,... n} the condition
n () Tk (s) g, o
S [ YL otiman) ([ o) as+
2 ) e\ J

T (5) Tm (1)

8 J T ) o ] )

a a
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b

< (/O'(pl)(n)dn) a+ﬁ—1’ a<t<b, (1.1.425)

a

be valid. Then the problem (1.1.35), (1.1.23) has one and only one solution.

Corollary 1.1.3;0. Let i € {1,2}, the function x be defined by (1.1.9;),
the constants o € [0, 1], B €]0,1] be connected by (1.1.6), the functions gy,
p; Ja,b[—R (k=1,...,n; j =01,2) satisfy (1.1.3;), (1.1.11), (1.1.38),
(1.1.41), where 1, : [a,b] — [a,b] (k = 1,...,n) are measurable functions.
Let, moreover, for anym € {1,...,n} the condition (1.1.42;) be valid. Then
the problem (1.1.35), (1.1.240) has in the space Cps(]a, b)) one and only one
solution.

Remark 1.1.6. The condition (1.1.42;) consisting of n separate inequali-
ties can be replaced by one inequality

Tr(s)

5 L ([ cmsona | i)
=l 7 5)

Tr(8) b

oS [ ([ et | )

a Tr(s)

< / otomin) ds( / otp)dn) < ———— x

a a(p1)(n)dn

Y.

2(a+)

Q%@

a(p1)(n)dn

x| for t€®, . (1.1.43;)

ifz=1and
Tr(8) s

Z/ bl (] stpman) ([ otvman) s+

a a

Tr(8) ¢

+Z/ SO ([ atwoan) as( [ atinan)” <

a a
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b

< (/U(pl)(n))aﬂi 1 for t€ 0O, -, (1.1.435)

if ¢ = 2, where

Orr = U {mlt)] a<t <o},
For clearness we will give one corollary for the equation
u”(t) = go()u(r(t)) + pa(t). (1.1.44)

Corollary 1.1.4;. Let i € {1,2}, the constants o, 8 € [0,1] be connecled
by the inequality (1.1.6), 7 : [a,b] — [a,b] be a measurable function and

P2, 90 € Lo([a, b)), (1.1.45)

where
z(t)=(a—t)(b—1)>"" for a<t<b. (1.1.46)
Let, moreover,

b

/ l9()I[(7(5) = a)(b = ()71 [(5 — a)(b — 5)*77] "ds <

a

2(1-a—B) 2
< (2) (b—a)7letd—L, (1.1.47,)

i
Then the problem (1.1.44), (1.1.2;) has one and only one solution.

Corollary 1.1.4;0. Let i € {1,2}, the constanis « € [0,1], B €]0,1] be
connected by (1.1.6), 7 : [a,b] — [a,b] a be measurable function,

p2 € Lpi-5([a, b]), (1.1.48)

where the function x is defined by (1.1.46). Let, moreover, the condition
(1.1.47;) be satisfied. Then the problem (1.1.44), (1.1.2;0) has one and only
one solution in the space Cyps(]a, b]).

Remark 1.1.7. In the case of the equation

u’(t) = go(t)u(t) + pa(t) (1.1.49)
the conditions (1.321), (1.1.34;), (1.1.40,), (1.1.421), (1.1.471) will take for

a = =0 the form
fiionos< 2
a
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As is known, this condition is unimprovable in the sense that no matter how
small € > 0 is, the inequality

b
4
/|90(5)|d5 < p—at¢

does not guarantee the unique solvability of the problem (1.1.49), (1.1.24).
This implies that the corollaries corresponding to the above conditions are
unimprovable in the above-mentioned sense.

Corollary 1.1.51. Let the function x be defined by (1.1.91), the constants
a, § € 1[0,1] be connected by the inequality (1.1.6), the functions p; :Ja, b[— R
(j =0,1,2) satisfy the conditions (1.1.31), (1.1.51) and for any function u €
C(Ja,b]) almost everywhere in the interval Ja,b[ (1.1.10) be satisfied, where
the nonnegative operator h satisfies the inclusion (1.1.81). Let, moreover,
m case 3 < 1,

z(t) (h(l‘ﬁ)(t)
o(p)O) N 27(t)

and i case B =1,

—Po(t))SQBZ for a<t<b, (1.1.50,)

ess sup

te]a,b] [UZ(Pl)(t)

be satisfied. Then the problem (1.1.1),
tion.

z(t) (h(l‘)(t)
z(t)
(

1.1.21) has one and only one solu-

—Po(t))] <2 (1.1.51y)

Remark 1.1.8. The condition (1.1.51) is unimprovable in the sense that
the validity of Corollary 1.1.51 is violated if we replace it by the condition

o(t)  (h()()
ettt Lz(pl)(t)( 2(1)

Indeed, let A(u) =0, py =0, po = 0. Then
opr)t)=1 and 2(t)=(b—t)(t —a) for a <t <h

- po(t))] <287, (1.1.52)

and the condition (1.1.52) will take the form

etses]s%) ( U (e a)po(t)) < 2. (1.1.53)

If 5
) e —
pO() (b—t)(t—a)’
then the condition (1.1.53) is satisfied in the form of the equality, and at
the same time, for any ¢ € R the function ¢(b —t)(t — a) is a solution of the
equation

u(t) = — u(t), (1.1.54)

(b—1t)(t—a)
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that is, the uniqueness of solution of the problem (1.1.54), (1.1.2;0) is vio-
lated although the condition (1.1.52) along with the other requirements of
Corollary 1.1.5; is satisfied.

Corollary 1.1.52. Let the function x be defined by (1.1.92), the constants
a, B € [0,1] be connected by (1.1.6), the functions p; :]a,b[— R (j =
0,1,2) satisfy (1.1.32), (1.1.52) and for any function v € C(]a,b[) almost
everywhere in the interval |a, b[ the inequality (1.1.10) be satisfied, where a
nonnegative operator h satisfies the inclusion (1.1.82). Let, moreover,

[l,z-w](t) (hg&()t) —po(t))] <B(1—pB), (1.1.50.)

el LoD
z?=h
W[PO]— € Loo([a,b]) (1.1.55)
if0< <1 and
0 <po(t) = H(1)(t) for a<t<b (1.1.51)

if B =0 be satisfied. Then the problem (1.1.1), (1.1.22) has one and only

one solution.

Remark 1.1.9. In the case 8 = 1, the condition (1.1.55) follows automat-
ically from the condition (1.1.502).

Corollary 1.1.510. Let the function x be defined by (1.1.9;), the constants
a €[0,1], B €]0,1] be connected by (1.1.6), the functions p; :a,b[—R (j =
0,1,2) satisfy (1.1.31), (1.1.11) and for any function u € Cyps(]a,b]) almost
everywhere on the interval Ja, b the inequality (1.1.10) be satisfied, where
the nonnegative operator h satisfies the inclusion (1.1.12). Let, moreover,
in case 0 < 3 < 1 the condition (1.1.501) and in case 8 = 1 the condition
(1.1.511) be satisfied. Then the problem (1.1.1), (1.1.21¢) has in the space
Crs(]a, b)) one and only one solution.

Corollary 1.1.520. Let the function x be defined by (1.1.92), the constants
a €[0,1], B €]0,1] be connected by (1.1.6), the functions p; :a,b[—R (j =
0,1,2) satisfy (1.1.32), (1.1.11) and for any function u € Cyps(]a,b]) almost
everywhere on the interval Ja, b the inequality (1.1.10) be satisfied, where
the nonnegative operator h satisfies the inclusion (1.1.12). Let, moreover,
the conditions (1.1.505) and (1.1.55) be satisfied. Then the problem (1.1.1),
(1.1.290) has one and only one solution in the space Cyps(]a,b]).

Corollary 1.1.61. Let the functions 13, : [a,b] — [a,b] (k = 1,...,n) be
measurable and the functions p;, pr € Lioc(Ja,b]) (k=1,...,n;j=0,1,2)
as well as the constants A, €]0,+00[, Bm € [0,1] (I, m = 1,2), ¢ €la, b] be
such that the conditions (1.1.31), (1.1.51) are satisfied,

9k ELUl(Pl)([aab]) (11561)
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and

+oo
/ ds S (c—a)t=P
A1+ Aras + 52 1-p 7
0 (1.1.57,)
+ oo
/ ds N (b—c)t=F=
A21 + Aoas + 57 L= B
0
Let, moreover,
(t = @) [po(t) = 3 lgs(®)l] > =1,
k=1
b1 1
(t =)™ [pi(t) + 7= - 2 lae(l(r(0) - DR
for a<t<ec,
i (1.1.581)
(b= 1% [po(t) = 3 lon(®)l] = A,
k=1
85 Ba -
(=1 [0 = 12 = S Dlt) ~ )] < o
k=1
for ¢ <t <b.
Then the problem (1.1.35), (1.1.21) has one and only one solution.
Corollary 1.1.62. Let the functions 13, : [a,b] — [a,b] (k = 1,...,n) be

measurable and the functions p1, p;, g € Lioc(Ja,b]) (k = 1,...,n;j
0,1,2) as well as the constants A\, €]0,400f, (I,m = 1,2), 5, € [0,1]
(r=1,2,3), c €] max(a,b—1);b], ¢ > 0 and the dependent on them constant
a € [0, 1] be such that the conditions

a(p1) € L([a,b]), pjoa(p1) € L([a,8]) (5 =0,2)

N 1.1.56
groa(p1) € L([a, b)) (k=1,...,n) ( 2)
and
+ oo
/ ds S (c—a)l_ﬁl
A1+ Aas+ 82 1-6
(1.1.573)

ds S (b— c)l_ﬁ2
A21 + Agas + 52 1-75

o\_é_ ™
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are satisfied. Let, moreover,

(t =) [po(t) = 3 lou®)l] = =,

=Y ln 0l = )] = A

for a<t<ec,

(t =)™ [5i(0) +

(1.1.58y)

n

(b= 1727 [po(t) = 3 I ()] > —adar,

_A\B2 | 63 — - —
(b=t [i(t) + 7= Zy%awma>tﬂ2Am
for ¢ <t <b.
Then for any function p1 € Lioc(]a, b]) such that

pi(t) > pi(t) for a<t<b, (1.1.59)

the problem (1.1.35), (1.1.22) has one and only one solution.
Consider now corollaries of Theorems 1.1.2; and 1.1.2; for the equation

ng ) + p2(t). (1.1.60)

Corollary 1.1.74. Let v € [0, 1], the function ps :]a,b[— R salisfy the
inclusion (1.1.17),

g € Lov([a,b]) (k=1,...,n) (1.1.61)

and
() >0 (k=1,...,n) for a<t<b, (1.1.62)

where
() =(b—1)(t—a) a<t<b. (1.1.63,)

Let, moreover, there exist constants «, 3 € [0, %] such that

1
D<f<l—y atf<y (1.1.64)

and

/gk (b— (s ))ﬁ(rk(s) — a)ﬁ(b —8)%(s—a)ds <

k=1

16 (b— a)2(a+ﬁ).

< 2P
b—a 4

(1.1.65)
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Then the problem (1.1.60), (1.1.21) has one and only one solution.

Remark 1.1.10. Corollary 1.1.7; remains valid if for g €]0,1 — v[ we re-
place the condition (1.1.65) by the following one:

> / g1 (5)(b = 7:(5))" (7 (5) = @) (b — 5)*(s — @) ds <

b1_6a (b;a)2(a+ﬁ).

Corollary 1.1.72. Let v € [0, 1], the functions pa, pi :Ja,b[— R (k =
,n) satisfy the conditions (1.1.17), (1.1.61), and (1.1.62), where

< 2° (1.1.661)

1

zt)y=t—a for a<t<hbh. (1.1.632)
Let, moreover, there exist constants o, 3 € [0,1] such that the conditions

2
(1.1.64) and

8 (b—a

atp
_ ) (1.1.66)

—a

S [arlolmts) s 0)ds <

are satisfied. Then the problem (1.1.60), (1.1.22) has one and only one
solution.

Corollary 1.1.7;0. Let i € {1,2}, v €[0,1[, 6 €]0,1 — 4],
p2 € Lov([a,0]), grx®(h) € Lon([a,8]) (k=1,... n),

and the condition (1.1.62) be satisfied, where the function x is defined by
(1.1.63;). Let, moreover, there exist constants o € [0, %], 3 €]0, %] such that
the conditions

1
6<P<l-7, a+B<y

and (1.1.66;) are satisfied. Then the problem (1.1.60), (1.1.2,5) has in the
space Cps(]a,b) one and only one solution.
§ 1.2. AUXILIARY PROPOSITIONS

1.2.1. Statement of Auxiliary Problems and Some of Their Properties. Let
us consider the linear equations

V() = po(t)u(t) + pr(t)v(t) — h(v)(t) + p2(2), (1.2.1)
v"'(t) = po(t)v(t) + p1(t)v'(t) — h(v)(¥) (1.2.1¢)
under the boundary conditions

u(a) =c1, u(b) = ca, (1.2.29)
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or
u(a) = ¢y, u'(b—)=co, (1.2.25)
as well as under the conditions

v(a) =0, v(b) =0, (1.2.210)
v(a) =0, V'(b—)=0, (1.2.240)

where ¢1, ca € R and h : C(]a,b[) — Lioc(]a,b]) is a continuous linear
operator and

pj € Lioc(Ja, b)) (7 = 0,1,2), a(pr)€ L([a,8]), po€ Loypyy([a,b])  (1.2.31)

or

pj ELIOC(]aa b]) (.7 =0,1, 2)’ U(pl)EL([aa b])a pOELUz(}M)([a’ b]) (1232)

For this purpose we will need the homogeneous equation

V(1) = po(t)v(t) + p1(H)v' (1) (1.2.4)

under the initial conditions

= im v _
v(a) =0, tl_m =PERTOR 1, (1.2.5)
= im v
o) =0, fim e = -1, (1.2.51)
v(b)=1, '(b—)=0. (1.2.52)

The facts mentioned in the remarks below or their analogues have been
proved in [23], pp. 110-158.

Remark 1.2.1. Let measurable functions po, p1 :]a,b[— R satisfy the
conditions (1.2.31) and the functions v; and vy be respectively solutions
of the problems (1.2.4), (1.2.5) and (1.2.4), (1.2.51). Then any linearly
independent with v;, (j = 1,2) solution ¥ of the equation (1.2.4) satisfies
the condition

va)#0 for j=1
and

v(b) #0 for j=2.
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Remark 1.2.2. Let i € {1,2} and

(po,p1) € Vi0(]a, b]). (1.2.6;)
Then the problem (1.2.4), (1.2.2;5) has only the trivial solution and the
unique Green’s function GG can be represented as:

va(t)vi(s)

_ 2 for a<s<t<b,
Gt,s) = 4 v2(@7p)(s) (1.2.7)
’ va(s)uit)
————2 for a<t<s<hbh,
va(a)o(p1)(s)
where vy and vy are respectively the solutions of the problems (1.2.4), (1.2.5)
and (1.2.4), (1.2.5;), and
G(t,s) <0 for (t,s)€la,b]x]a,b[, (1.2.8)
G(a,s) =0, Gb,s)=i—1 for a<s<bh (1.2.9;)
Remark 1.2.3. Let ¢ € {1,2} and the inclusion (1.2.6;) be satisfied. Then
there exist constants c,, d. € RT such that the estimates

d. < % <en, do<— va(t) <o (12.10)
{U(Pl)(s) ds (}f o(p1)(s) ds)2—i
for a<t<b,
[ ()] /
s = / [po(s)|o2(p1)(s) ds,
: / : ami (1.2.11)
|va(1)] . M i i
(D) = 2—i+ c*/ T (s/ (p1)(n) dn) d
for a<t<b

are valid, where vy and vy are respectively the solutions of the problems

(1.2.4), (1.2.5) and (1.2.4), (1.2.5;), and
Gt 5)
5

gi(p)(s) .
<ep——— (j = 1,2) for (t,s) €Ela, bl x]a,b] (t#£s). (1.2.12;

<o = 1) for (19) €latlxJat] (£ 9 (1212)
Remark 1.2.4. Let ¢ € {1,2}, the conditions (1.2.3;) be satisfied and the

problem (1.2.4), (1.2.2;) have lower w; and upper wy functions such that

wi(t) < wsq(t) for a <t <b.
Then the problem (1.2.4), (1.2.2;) has at least one solution v such that
wi(t) < o(t) <ws(t) for a<t<b.
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Remark 1.2.5. Let ¢ € {1,2} and the inclusion (1.2.6;) be satisfied. Then
every upper function w of the problem (1.2.4), (1.2.2,5) is nonnegative in
the interval ]a, b[; moreover, if

w(@) + w=D(b-) £0,
then w is positive on the interval Ja, b[.

Remark 1.2.6. Let ¢ € {1,2}, the functions pg, p1 :]a, b[ — R satisly the
conditions (1.2.3;) and

po(t) >0 for a<t<b.
Then the inclusion (1.2.6;) is valid.
Lemma 1.2.1. Let i € {1,2} and
h € L(C; Lyiipy)) (1.2.13)
where h 1s a nonnegative operator. Then
Vio(la, b; R) C V; o(]a, b]).
Proof. Let (po,p1) € Vio(la,b[;h). Then the problem (1.2.1p), (1.2.24)

has a positive upper function w which because of the nonnegativeness of
the operator h will at the same time be an upper function of the problem
(1.2.4), (1.2.249).

Consider first the case ¢ = 1. For the equation (1.2.4) we pose the
problem

v(a) =0, v(b) = w(b), (1.2.14)

for which 5(¢) = 0 and w are respectively lower and upper functions. Then
by virtue of Remark 1.2.4, the problem (1.2.4), (1.2.14) has a solution vg
such that

0 <w(t) <w(t) for a<t<b.

If we assume that vg(tg) = 0 for some ¢y €]a,b[, then we will get the
contradiction with the unique solvability of the Cauchy problem, i.e.,

vo(t) >0 for a<t<b. (1.2.15)

As is seen from Remark 1.2.1 and the conditions (1.2.14) that v; a solution
of the problem (1.2.4), (1.2.5;), and vy are linearly dependent, hence by
virtue of (1.2.15),

vi(t) >0 for a<t<b,

i.e., as is seen from Definition 1.1.2, (po, p1) € V1,0(]a, b]).
Let now ¢ = 2, and for the equation (1.2.4) we pose the initial problem

v(b) =0, '(b—)=-1
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which, with regard for the conditions (1.2.35), has a unique solution ¥ de-
fined on the whole interval [a,b]. Then we choose ¢ > 0 such that the
inequality

go(t) <w(t) for a<t<b (1.2.16)

is satisfied; this is possible because the function w 1s positive. It is clear
from (1.2.16) that

wi(t) = w(t) —ev(t)
is an upper function of the problem (1.2.4), (1.2.24¢) and
wi(b—) >0, wi(t)>0 for a<t<b.
We consider now for the equation (1.2.4) the problem
v(a) =0, V' (b—) = wi(b-), (1.2.17)

for which 3(¢) = 0 and w; are respectively lower and upper functions. Hence
by virtue of Remark 1.2.4, the problem (1.2.4), (1.2.17) has a solution vg
such that

0<w(t) <wi(t) for a<t<b
and
vo(a) =0, wo(b) >0, wvi(b—) > 0.
Reasoning in the same way as for ¢ = 1, we see that (po, p1) € Vo o(Je,b]). O
Along with Lemma 1.2.1 we have proved the following

Lemma 1.2.2. Let i € {1,2}, the funclions py, p1 :]a,b[— R salisfy the
conditions (1.2.3;) and, moreover, let the problem (1.2.4), (1.2.2;0) have «
positive upper function. Then the inclusion (1.2.6;) is satisfied.

Lemma 1.2.3. Let i € {1,2}, the functions py, p1 :]a,b[— R satisfy
the inclusion (1.2.6;) and the nonnegative operator h satisfy the inclusion
(1.2.13;). Let, moreover, py € C(Ja,b]) such that

po(t) >0 for a<t<b (1.2.18)

and

1 b
sup{po—(t)a/|G(t,5)|h(p0)(5)d5: a<t<bp<l,  (1219)

where G is Green’s function of the problem (1.2.4), (1.2.240). Then there
exisls a continuous function p:[a,b] — RT such that

b

1
max{m/|G(t,5)|h(p)(s)ds: a<t<bp<l (1220

a
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Proof. First of all we note that the existence of Green’s function G of the
problem (1.2.4), (1.2.2;p) follows from Remark 1.2.2; and the boundedness
of the integrals in the inequalities (1.2.19) and (1.2.20) for any continuous
function p follows from the estimates (1.2.12;) and the inclusion (1.2.13;).
Consider now separately the case ¢ = 2. By virtue of the equalities
(1.2.95), the inequality (1.2.19) can be satisfied only under the conditions
po(a) >0, po(b) > 0. (1.2.21)

Then (1.2.19) can be rewritten as

/ |G(,5)[h(po)(s)ds < po(t) for a <t <b. (1.2.22)

As is seen from the equalities (1.2.92), there exist positive constants vy and
6 such that

b
/|G(t, $)h(D(s)ds —1 <0 for a<t<a+é (1.2.23)

and
b
/ |G(t, s)|h(1)(s)ds —1 < ry for a<t<b. (1.2.24)

On the other hand, from (1.2.22) it follows the existence of a constant 73 > 0
such that

re < po(t) — / |G(t, s)|h(po)(s)ds for a+86<t<b (1.2.25)

Then from (1.2.22)—(1.2.25) we obtain

%</|G(t,s)|h(1)(s) ds — 1) Spo(t)—/|G(ta5)|h(P0)(5) ds for a<t<b,

which implies the validity of the inequality (1.2.20) for the function p(t) =
€+ po(t), where e = 2.

To complete the proof of the lemma we note that for ¢ = 1, unlike the
case i = 2, the inequality (1.2.19) by virtue of (1.2.9;) can be satisfied also
for

and for

as well.
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In these cases the above lemma can be proved similarly to the case of the
conditions (1.2.21) with the only difference that the inequality (1.2.22) will
be valid for ¢ € [a, b] or ¢ €]a, b], the inequality (1.2.23) for ¢t € [b — §,b] or
t € [a+6; b—¥¢], and the inequality (1.2.25) will be considered for ¢ € [a, b—6[
ort€la+é,b—46. O

Lemma 1.2.4. Let i € {1,2},

(po,p1) € Vio(la, b[; R), (1.2.26;)

where the nonnegative operator h satisfies the inclusion (1.2.13;). Then
there exisls a continuous funclion p : [a,b] — Rt such that the inequalily

(1.2.20) holds, where G is Green’s function of the problem (1.2.4), (1.2.240).

Proof. As is seen from the definition of the set V; o(]a, b[; h), the problem
(1.2.1g), (1.2.240) has on the interval [a, b] a positive upper function w. Then
we introduce a continuous operator x : C(]a, b[) — C(]a, b[) by the equality

X)) = 5 [Jy@)] — lw(t) = v+ w(n)] for a<i<p (227
which for any v € C(Ja, b]) satisfies
0 < x(v)(t) < w(t) for a<t<b, (1.2.28)
and consider the problem
V(1) = po(t)e(t) + pr(0)Y () = h(x())(2), (1.2.29)
v(a) = wla), v (=) = wD(b-). (1.2.30,)

Note that from Lemma 1.2.1 and Remark 1.2.2 it follows the existence of
Green’s function of the problem (1.2.4), (1.2.2;). Introduce the operator
H : C(]a, b)) — C(Ja, b]) by the equality

H(g)(t) = volt) + / 1G(t, )| A(xc(9))(s) ds,

where vy is a solution of the problem (1.2.4), (1.2.30;), and consider the
equation
v(t) = H(v)(?) (1.2.31)
which is equivalent to the problem (1.2.29), (1.2.30;). Let us show that the
operator H is compact. Let ¢, be a constant mentioned in Remark 1.2.3,
b

r=c /Ui(pl)(s)h(w)(s)ds,

a

B = {z € C(a,b)): ||z —vollc <r},
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and (£,)52, be any sequence from .. Then from the estimate (1.2.12;) for
the sequence y,(t) = H(x,)(t), n € N, we have

lvo = ynllc <7, n el (1.2.32)

Consider separately the case ¢ = 1. By virtue of (1.2.91), (1.2.28) and the
fact that the function vg is continuous, for any constant ¢ > 0 there exist
ay, by €]a, b, a1 < by such that

max {|vo(t1) —vo(t2)]: a <t1 <to <ag, by <tg <tp < b} <

W o

and

ool ™

e = max{ /b G(t, s)|h(x(zn))(s)ds : a<t<aj, b <t< b} <

Then for any n € N the estimate

€ €
i) = st < 2 < 5
for a<t; <ty <ar, by <t <ita<b

bl

1s valid.
In the same way, by virtue of the estimates (1.2.12;), there exists a con-
stant §, 0 < § < min(a; — a, b — b1), such that for any n € N

|yn(t1) - yn(t2)| <

< (A +rymax {|vp)| + o7 (p)#): a1 —6<t<b+8ta—1] <
for |t1—t2|§6, al—égtj§b1+(s (_]21,2)

N ™

It follows from the last two estimates that if ¢; € [a,b] (j = 1,2) and

[t — 2] <6,

then
lyn(t1) — yn(t2)| < e, neN.

From this and from the inequality (1.2.32) we obtain that the sequence
(Yn)S2; is uniformly bounded and equicontinuous. In case ¢ = 2, the same
follows from the possibility to choose for any ¢ > 0, owing to (1.1.92),
(1.2.28), a1 €]a,b[and 0 < § < a3 — a such that
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and
lyn(t1) — yn(ta)] <
< (L4 r)ymax {[oy(t)] + o3 (p)(t) 1 a1 =6 <t <Yty —t2] <
for |t1—t2|§6, Cll—(sgt]' Sb (_]21,2)

N | ™

Then according to the Arzella—Ascoli lemma, the operator H which 1s, as it
is not difficult to show, continuous, transforms the ball . into its compact
subset. In this case the equation (1.2.31), i.e., the problem (1.2.29), (1.2.30;)
has at least one solution, say v. Show that

0<wu(t) <w(t) for a<t<bh.
Let

v1(t) = w(t) — v(t).

Then from the nonnegativeness of the operator h and also from the inequal-
ity (1.2.28) we have

V(1) < po(t)or(t) + pr()vy(t) — h(w — x(v))(t) < po(t)vr(t) + pr(t)vi (1)
and '
v1(a) =0, vgl_l)(b—) =0.
Hence vy is an upper function of the problem (1.2.4), (1.2.2;5), and due to

Remark 1.2.5,
vi(t) >0 for a<t<b,

le.
v(t) > w(t) for a<t<b. (1.2.33)

On the other hand, taking into account the inequality (1.2.28) and the fact
that the operator h is nonnegative, from (1.2.29) and (1.2.30;) we conclude
that v is an upper function of the problem (1.2.4), (1.2.2;0), i.e., by virtue
of Remark 1.2.5,

v(t) >0 for a<t<b. (1.2.34)
It follows from (1.2.33) and (1.2.34) that the inequality 0 < v(t) < w(?) is

valid and hence
x(0)(t) = v(t) for a<t<bh,
i.e., v as a solution of the equation (1.2.31) has the form
b
v(t) = vo(t) + / |G(t, s)|h(v)(s)ds for a <t <b, (1.2.35)

where by Remark 1.2.5,
vo(t) >0 for a<t<b. (1.2.36)
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If we introduce the notation p(¢) = v(¢) and take into consideration (1.2.36),

then in view of (1.2.35) we can see that our lemmais valid. O

Lemma 1.2.5. Let i € {1,2}, the constants « € [0,1] and 3 €]0,1] be
connected by the inequality

a+ [ <1, (1.2.37)
(po,p1) S Viﬁ(]a, b[, h), (12382)

where
he E(Cxﬂ;L#i)) (1.2.39;)

15 a nonnegative operator and

x(t) :/U(pl)(s) ds(/ba(pl)(s) ds)z_i for a<t<b. (1.2.40;)

a

Then there exists a positive function p € C(la,b]) such that the inequality
(1.2.20) is satisfied, where G is Green’s function of the problem (1.2.4),
(1.2.2;) and

p(t) = O* (= (1)) (1.2.41)
ast—a,t—bifi=1, and ast — a 1f i = 2.
Proof. As is seen from the definition of the set V; s(]a, b[; k), the functions
po, 1 e, b[ — R satisfy the inclusion (1.2.6;) from which by virtue of Re-
mark 1.2.2 it follows the existence of Green’s function of the problem (1.2.4),

(1.2.2;), and there exists a measurable function ¢g :]a, 5[ — [0, +oo[ such
that the problem

V(8) = poltolt) + (O () — h()() — gs(0),  (1.2.42)
v(a) =0, 0 HD(b=)=0 (1.2.43))
has in the interval ]a, b[ a positive upper function w, where

w(t) = O*(2”(t)) and / |G(t, 5)|qs(s) ds = O* (=P (1)) (1.2.44)

a

ast—a,t—bifi=1 andast —aif i = 2.
Introduce the operator y as in the previous proof and let

b

T = [160:9)]a5() + h(xw)(5) s

a
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As we can see from the conditions (1.2.39;), (1.2.44), the operator x trans-
forms the space C(]a, b[) into Cys(]a, b[). Consider now the equations

V() = po(t)v(t) + pr (V' (1) — h(x(v))(t) —qs(t),  (1.2.45)
o(t) = Hv)(1) (1.2.46)

and note that the problem (1.2.45), (1.2.43;) is equivalent to the equation
(1.2.46).

From the equality (1.2.7) by means of which Green’s function is ex-
pressed, as well as from the estimates (1.2.10;) and the conditions (1.2.44),
for any y € C(Ja, b) we have

10 < =) [ 25y ds +

a
b

—I—/ |G(t, s)|gs(s)ds < 400 for a <t <b, (1.2.47)

where ,
_ o w(t)
o = d—*sup{gjﬁ—(t) : Cl<t<b}
It follows from (1.2.37), (1.2.44) that the operator H transforms the space
C(Ja, b)) into Cps(Ja, b)). Noticing that the right-hand side of the estimate

(1.2.47) is independent of the function y, we make sure that a constant r
exists such that for any y € C(]a, b))

1HW)llcor <7
It is clear that this estimate is the more so valid if y belongs to the ball
B = {z € Cpa(la, b)) : |lzllces <7}

Repeating now the reasoning of the previous proof, we can see that the
operator H : Cps(]a, b)) — Cps(]a, b]) is compact and hence there exists a
solution v of the equation (1.2.46) such that

v € Cps(la, b)), (1.2.48)
x(0)(t) = v(t) for a<t<bh,
and
v(t) >0 for a<t<b. (1.2.49)

Then the following representation is valid:

b

v(t) = / |G(t, s)|(R(v)(s) + q5(s)) ds, (1.2.50)

a
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whence with regard for (1.2.49) we obtain the inequality

b
v(t) > / |G(t, s)|gs(s)ds for a<t<b

a

which together with the conditions (1.2.44) and (1.2.48) implies that
v(t) = O (2P (1)) (1.2.51)

fort — a,t — b,if ¢ = 1, and for ¢t — a if i = 2. If we now take into
consideration that owing to the conditions (1.2.44) and (1.2.51) we have

inf{% / |G(t, 9)|gp(s)ds : a<t< b} > 0,

then from (1.2.50) we obtain

sup{%/K}(t,sﬂh(v)(s) ds: a<t<bf<l  (1252)

Introducing the notation p(t) = v(t), from (1.2.49), (1.2.51) and (1.2.52) we
see that our lemma is vahid. O

Lemma 1.2.6. Let ¢ € {1,2}, the function x be defined by (1.2.40;), the
constants o € [0, 1], B €]0, 1] be connected by (1.2.37) and the functions py,
p1 :a, b[— R satisfy (1.2.38;), where

he [,(Cxﬂ; L%) n E(C; Lal(pl)) (1.2.53;)

T(P1

1s @ nonnegative operator. Then there exists a continuous function p :
[a,b] — RY such that the inequality (1.2.20) is satisfied, where G is Green’s
function of the problem (1.2.4), (1.2.2;0).

Proof. By Lemma 1.2.5, from the fact that h € £(Cys; L%) it follows
the existence of the function py € C(Ja, b[) such that

po(t) >0 for a<t<b

and

Po

sup {% / |G(t,s)|h(po)(s)ds : a<t< b} < 1.

Then, taking into account that the operator h also belongs to L(C; L,,(p,)),
we can see by Lemma 1.2.3 that our lemma is valid. O
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Lemma 1.2.7. Let i € {1,2}, the funclion x :Ja,b[— R be defined by
(1.2.40;) and the functions pg, p1 :]a,b[— R satisfy the inclusion (1.2.6;).
Then for any B €]0, 1] we have

/ G(t, 5)|% ds = 0" (2" (s)) (1.2.54)

ast —a,t—bifi =1, and ast — a if 1 = 2, where G is Green’s function

of the problem (1.2.4), (1.2.2;0).

Proof. By Remark 1.2.2 and the inclusion (1.2.6;) there exists Green’s func-
tion G of the problem (1.2.4), (1.2.2;9) which is expressed by the equality
(1.2.7).

Consider the case ¢ = 1 separately and note that
b b
a+b
o(p1)(s)ds > o(p1)(s)ds for a<t< — (1.2.55)
a+b

t +

2

Then, taking into consideration (1.2.7), (1.2.10;) and (1.2.55), for any g €
10, 1[ we obtain for ¢ € [a, %] the estimates

/ oo)s) & ()
|G(t, s)] =h (s ds < la ; +
/ x ﬁ( ) ( )[ﬁa{b U(pl)(s)ds
(f oon)(s) ds) (f olin)(s) ds)'~*
+ — +—m x%)] <
(=L o@)ds) ™ 5 T o(pa)(s)ds)*™?
< sy (5 (ot s) ([ etmeaan) )0
and
/|G(t,5)|”:(f1)(55)) ds > vj(i) (/U(pl)(s) ds)ﬁ<a4 a(p1)(s) ds)l_[j X
x/ o(p1)(s)ds >
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o(p1)(s)ds) ™"

(

= ﬁdz< ) -
T (o))

t

o

xﬁ(t).

The last two estimates imply the validity of (1.2.54) as ¢ — a. Reasoning
analogously for ¢ € [a‘zi'b, b], we can see that this equality is also valid as
t — b. Consider the case § = 1. With regard for the equalities (1.2.7) and

the estimates (1.2.10;) we obtain

d? / C?
- §/|G(t,5)|02(p1)(5) dsaz™ (1) < == for a <t <b. (1.2.56)

2C 2d.

It follows from (1.2.56) that our lemma is valid in the case 8 = 1 as well.
Reasoning similarly, we can prove the lemma for : = 2. O

1.2.2. Auxiliary Propositions to Theorems (1.1.2;), (1.1.2;0) (z = 1, 2).
Consider in the interval Ja, b[ the equation

V(1) = g(v)(1), (1.2.57)

where g : C(Ja,b[) — Lioc(]a, b]) is a continuous linear operator. We will
also need the equation

() =0 for a<t<b. (1.2.58)

Note that Green’s function of the problem (1.2.58), (1.2.2;0) has the form

—(s—a)(g:z)z_l for a<s<t<b,
G(t,s) = b g 2—i (1.2.59;)
—(t—a)(b_a) for a<t<s<b.
Lemma 1.2.8;. Let v € [0,1[, A € [0;1 — [ and
9 € L(Cyr; Lun) (1.2.60)
be a nonnegative operator, where
et)=(0b-t)(t—a) for a<t<hb. (1.2.611)
Let, moreover, there exist constants o, 8 € [0, 1] such that
A<B<1—n, (1.2.62)

1
atf<s, (1.2.63)
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and
b

/xa(s)g(xﬁ)(s) ds < Qﬁb

a

16 (b— a)2(a+ﬁ).

7 (1.2.64)

—a

Then the problem (1.2.57), (1.2.219) has only the zero solution in the space
Cyr(Ja, b]).

Proof. Suppose to the contrary that the problem (1.2.57), (1.2.2;5) has a
nonzero solution vy € Cya(la, b]).

If vy is a function of constant signs, then from the nonnegativeness of the
operator ¢ we obtain

vy () signvg(t) > 0 for a <t <b,

which together with the conditions (1.2.2;0) contradicts the assumption
vo(to)Z 0, i.e., vg is a function of constant signs.

Using Green’s function of the problem (1.2.58), (1.2.2;0), vo can be rep-
resented as follows:

vot) = b—a

(0= / (s — a)gvo)(s) ds + (¢ — a) / (0= S)atun)(e) ds

a

for a<t<b
and hence for any (§ the estimate

vo () <

[(b—8)(t — )]

[0t —a)-o+o)

< o [0 5)(s - gt dlolleo

a

for a <t <b

1s valid.
In the above estimate, taking into account the condition (1.2.60), if 2
satisfies the inequality (1.2.62), we get

T 1O B

: vo(t) _
SRR '

t—b [(b—1)(t — a)]®

These equalities imply the existence of points ¢1, t5 €]a, b such that

vo(t1) B vo(t) .
(b—t1)P(t1 —a)? S“p{m Pa<it< b},
wlts) wi)
(b—12)P(ty —a)? mf{m Ca<t< b}.
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Without loss of generality we assume #; < t3 and notice that by (1.2.61;)
which defines the function x, we have

lvo(t2)]
—g(2”)( )(b—tz)ﬁ(tz — <

< g(vo)(t) < g(xﬁ)(t)(b — t'f;;fz;)'_ 7 for a<t<b (12:65)

Recall also one simple numerical inequality

(A + B)?

A B< ,
=T

(1.2.66)

where A > 0 and B > 0.
Suppose ¢ €]t1, 2] and vg(c) = 0. Then the following representations are
valid:

wft) = =2 [ g ds+ 222 [ = sg(-)(s) ds
and
jalez)] = 52 s = ehgten)s) ds + 222 [ (0= s)gteo)5) s

These representations with regard for the inequality (1.2.65), for any «, 3
satisfying the conditions of the lemma, result in

[(c = t)(ta — )=

7 [ 26 ds o) < 4oc

) S a0 e~
and

. (b= ta)ts =" [ N
o(t2) < sl [t (ga)(5) ds - foft)] < +ox.

c

Multiplying the above inequalities, by means of (1.2.66) we obtain

/\/xa(s)g(l‘ﬁ)(s) ds > 1, (1.2.67)

where

A= # (b= t2)(t2 = e)e— t)(t = =HP[(t — e)(e 1))’

2 (b—c)e—a)(b—t1)P(t2 — a)?
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Then by (1.2.66) we get the estimate

)< 1¢[(b —c)(e —a)l=2atB)(ty — ¢1)2F

S\ TR — 1)ty — @)

whence using once more the inequality (1.2.66) and taking into consideration
the fact that

(ty —11)% < [(b—t1)(t2 — a)]?, (1.2.68)

we arrive at

b—a( 4 )2(a+ﬁ). (1.2.69)

A< — 2 (=
~16-20\b—a
Substituting the last inequality in (1.2.67), we obtain the contradiction with

the condition (1.2.64;), i.e., our assumption is invalid and vo(¢) = 0. O

Lemma 1.2.82. Let v € [0, 1], A € [0, 1 —~[ and the nonnegatlive operator
g satisfy the inclusion (1.2.60), where
zt)y=t—a for a<t<hbh. (1.2.613)

Let, moreover, there exist constants o, 3 € [0, 2] such that the conditions

2
(1.2.62), (1.2.63) are satisfied and

/xa(s)g(xﬁ)(s) ds < P (1.2.642)

Then the problem (1.2.57), (1.2.249) has only the zero solution in the space
Cer(Ja, b]).

Proof. Suppose to the contrary that the problem (1.2.57), (1.2.24¢) has a
nonzero solution vy € Cyr(Ja, b). Similarly to the previous lemma we make
sure that vg is of constant signs and the equality

lim 00 _
t—a (t — a)ﬁ

is valid for any g € [A,1 —~4[. On the other hand, in any sufficiently small
neighborhood of the point b, since vy(b—) = 0, the equality

sign ((tvi(i))ﬁ )/ = —signvg(?)

1s satisfied. It follows from the last two equalities that the function (;Afaz)%

attains neither its minimum nor its maximum at the points @ and . Let

Uo(t) . _ Uo(tl)
maX{(t—a)ﬁ : agtgb}_m
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and

i i
min{ vo(t) : a<t<b}:M.
(t—a)y’ = 7 (t2 —a)”
Then from the above-said it is clear that ¢, t» €]a,b[. Without loss of
generality we assume t; < {5 and let the point ¢ €]i1,%5] be such that
vg(e) = 0. Then from the inequality

2 <o)t < ala o) for a o<

and from the equalities

—g(=7)(t)

t1

[ = @) ds + L= / (c = s)g(—vo)(s) ds,

a ty

c—11 ty—a

Uo(tl) =

c—a

t2

|UO(t2)|=/(5—C)g( 0)(s)ds + (1 2—C/bg

c

we obtaln

i) < ST [ =) ds -t

a

loo(ta)] < 279 © tz —¢) /x s)ds - vo(tr).

/\/xa(s)g(l‘a)(s) ds > 1, (1.2.70)

where

A= W (12— a)(c = )] =+ (1 — )= (c = 1)+
2 (c—a)(ty — a)? ‘

Then by (1.2.66) and {3 — a > t5 — ¢ we have

A< 1¢(c — )72 4Bty — )= 2HetD)[(c — 1)) (ty — ¢)]*+F
9 A1—(a+6) ‘

Applying once more (1.2.66), we can see that

(ty — a)l=2(+B) (1) — 41)2+F
A< 9. 41—(a+ph) ’

(1.2.71)
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Notice that from the conditions t1, to €]a, b as well as from the fact that
for none of «, 3 € [0, %] the expressions oo + 3 and 1 — 2(« + /) vanish
simultaneously, we obtain the estimate
(ty — a) = 2P (1 —1)HF < (b — a)'—(+P)
with regard for which in (1.2.71) we get
b—a 4 Notp
A< ( 8 ) (b — a) ’

Substituting the latter inequality in (1.2.70), we obtain the contradiction
with the condition (1.2.645), i.e., our assumption is invalid and ve(¢¥) = 0. O

Remark 1.2.7. Lemma 1.2.8; remains valid if for 7 # 0 we replace the
condition (1.2.641) by

\ p_16 (b_a)zww). (1.2.72)

/xa(s)g(xﬁ)(s) ds <2 A 1

a

Proof. If B # 0, then the inequality (1.2.68) will be strictly satisfied and
hence the estimate (1.2.69) will take the form

—a

- (atp)
<wawl)

Taking into consideration the last inequality in (1.2.67), we obtain the con-
tradiction with the condition (1.2.72) which indicates the possibility to re-
place in case 3 # 0 the condition (1.2.641) by (1.2.72). O

§ 1.3. ProoF oF PROPOSITIONS ON EXISTENCE AND UNIQUENESS

1.3.1. Proof of Basic Theorems on Existence and Uniqueness of Solution of
Two-Point Problems.

Proof of Theorem 1.1.1;. From the inclusions (1.1.7;) and (1.1.8;) and also
from the fact that the operator h is nonnegative, for 5 = 0 by virtue of
Lemma 1.2.4 and for § > 0 by virtue of Lemma 1.2.6 it follows that there
exists a function p € C(]a, b]) such that

p(t) >0 for a<t<b (1.3.1)

and

. b
sup {m a/ |G(t,s)|h(p)(s)ds: a<t< b} <1, (1.3.2)

where GG is Green’s function of the problem (1.2.4), (1.2.2;5). Note that for
any function y € C,(]a, b[) the inequality

ly(®)| < p)|lyllc,, for a<t<b (1.3.3)
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is valid and, owing to the estimates (1.2.10;), the representation (1.2.7) of
Green’s function and the conditions (1.1.5)—(1.1.8;) and (1.1.10), we have

b b

‘/G(t,s)pz(s) ds| < 400, ‘/G(t,s)g(y)(s) ds

a a

< +o0,

< 400.

‘/G(t, s)h(y)(s) ds

Introduce the continuous operators Uy, U: C,y(]a, b[) — C,(]a, b]) by the
equalities

¢ , (1.3.4)
U(g)(#) = uo(t) + Uo(y)(?) +/G(t,5)P2(5) ds,
where ug is a solution of the problem (1.2.4), (1.2.2;). Clearly every solution
of the problem (1.1.1), (1.1.2;) is a solution of the equation
u(t) = U(u)(t) (1.3.5)

and vice versa.
From the definition of the norm of the operator it follows that

Uollc,—~c, =

r€Cyllath, lolle, = 1]

C,p

— aup {H / G(t, $)g(y)() ds

which with regard for (1.1.10), (1.3.1)—(1.3.3) implies
1Uolle, ~c, <1, (1.3.6)

i.e., the operator U contracts the space C,(]a,b]) into itself for any p, €
Lo,py)([a,b]) and any operator g satisfying (1.1.10). Then by virtue of the
theorem on contracting map the equation (1.3.5) has in the space C,(]a, b])
and hence in C(Ja,b[) a unique solution because, by (1.3.1), any function
from C(]a, b[) belongs to the space C,(Ja, b[) as well. It remains to notice
that the unique solvability of the problem (1.1.1), (1.1.2;) follows from the
equivalence of that problem and the equation (1.3.5). O

Proof of Theorem 1.1.1;0. The inclusions (1.1.7;), (1.1.8;) and the nonneg-
ativeness of the operator i imply by virtue of Lemma 1.2.5 the existence of



45

a positive function p € C(]a, b[) such that

plt) = O* (2" (1)) (13.7)

ast —a,t — b, ift = 1, and ast — a if i = 2. Moreover, the condi-
tion (1.3.2) is satisfied, where (G is Green’s function of the problem (1.2.4),
(1.2.2;0). It is also clear that for any y € C,(]a, b[) the inequality (1.3.3) is
satisfied, and due to the estimates (1.2.10;) and the representation (1.2.7)
of Green’s functions we have

b

[ G i) < net=o [ w6 ds e
“b , ¢ (1.3.8)
1P (s
‘/G(t,s)pz(s) ds| < rlxﬁ(t)/a(pli)((s)) lp2(s)| ds for a <t <b,
where ,
= vz(*a)’

and the existence of integrals follows from the conditions (1.1.6), (1.1.11),
(1.1.12). From (1.3.8) and (1.1.6), (1.1.10), (1.3.7) we also have that the

operators
b

o(y)(t) = / G(t, 5)a(y)(s) ds

a

and
U0 = D)) + [ Gt 9pa(s) ds

transform continuously the space C,(]a,b[) into itself. Repeating word by
word the previous proof, we can see that the problem (1.1.1) (1.1.2;0) has a
unique solution u in the space C,(]a, b). But as is seen from (1.3.7), u will
be a unique solution in the space C,s(]a, b[) as well. O

Proof of Remark 1.1.1;. Under the conditions of Theorem 1.1.1;, as is seen
from its proof, the operator U contracts the space C,([a, b]) into itself. Then
from the theorem on contracting map it follows that for any function vy €
Cy(]a, b[) the sequence v, : [a,b] — R, where v, is the unique solution of
the equation

un(t) = U(vp-1)(2) (1.3.9)
tends to the unique solution u of the equation (1.3.5) with respect to the
norm || - ||c,,. We introduce the notation

Uelle,~c, = p and |lu—wifle, =w,
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and notice that by virtue of (1.3.6), we have y < 1. Then, as is known, the
estimate

||u—vn||c,ps«ul“_ﬂ, n €N, (1.3.10)

is valid and for any n € N with regard for (1.3.3) we obtain

n

I
—u
Differentiating the difference of the equations (1.3.5) and (1.3.9) and tak-

ing into account the inequalities (1.1.10), (1.3.11) and the estimates (1.2.12;)
of Green’s function, we obtain

[u(t) — va ()] < w 1 lplle for a <t <b. (1.3.11)

sup {0 (p1 ) ()]0 (1) — u'(£)] : a<t<b}gw’1“ , neN, (1.3.12)
—p

where
b

o =welidle [ s ds
The inequalities (1.3.11), (1.3.12) imply the validity of the estimates
(1.1.14), and after differentiating twice the equality (1.3.9) we see that v,
is a solution of the problem (1.1.13;). O

Proof of Remark 1.1.1;5. Let p be the function appearing in the proof
of Theorem 1.1.1;5. Introduce the constants p and w and the functions
vy o [a,b] — R, n € N, as in the previous proof. Reasoning as above, we
make sure that the estimate (1.3.10) is valid, and by virtue of the condition
(1.3.7) for any n € N we have

|u(t) — vn(1)]
zA(t)

On the other hand, differentiating the difference of the equations (1.3.5)
and (1.3.9), with regard for the equality (1.2.7) and the estimates (1.2.10;),
(1.2.11;), for any n € N we obtain

<w 1ﬂ_nﬂ sup{;ﬁ(—z;) : a<t<b}. (1.3.13)

l‘a(t) / —U/ Pl — v, |l o a
s OOl <rllu—vnlle, for a<t<b,(13.14)
where
"= c*zbml‘s o s sbL(S) ) (s)ds
o a/%n)(s) A a/cf(pl)(s) M) s

The inequalities (1.3.10), (1.3.13) and (1.3.14) imply the validity of the
estimates (1.1.15), and having differentiated twice the equality (1.3.9) we
see that vg is a solution of the problem (1.1.13,5). O
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Proof of Theorem 1.1.2;. Let G be Green’s function of the problem (1.2.58),
(1.2.24p). Introduce the operator Uy and the function ¢ by the equalities

Uo(y)(t) = / G(t,8)g(y)(s) ds, q(t) = / G(t, $)pa(s)ds. (1.3.15)

From the representation (1.2.59;) of Green’s function and from the con-
ditions (1.1.17), (1.1.18) it follows that the operator Uy transforms contin-
uously the space C(]a, b]) into itself and ¢ € C(]a, b]).

Consider now the equation

u(t) = Up(u)(t) + uo(t) + ¢(1), (1.3.16)

where up(t) is a solution of the problem (1.2.58), (1.1.2;). Every its solution
is a solution of the problem (1.1.16), (1.1.2;), and vice versa.

Let » > 0, B, = {y € C(la, b)) = Nylle < r} and choose any sequence
(2n)5%2, from B.. Let, moreover, y,(t) =Ug(z,)(t), n € N. Then

lyalle < v, n €N, (1.3.17)

where
b

= r/ (Z : Z)z_i(s —a)g(1)(s) ds.

a

Consider the case ¢ = 1 separately. From the definition of Green’s func-
tion G, for any £ > 0 it follows the existence of ay, by €]a,b[, where a; < by,
such that

Wl o

b
max{/|G<t,s>|g<1><s>ds: i<t<ar blgtgb}s

which implies the validity of the estimate
2
[9a(t1) = ga(t2)l < 5, n €N, for a<iy<ts<ay, by <t <ty <.

Tt is also clear that there exists a constant 6, 0 < § < min(a; —a,b— by) for
which the following inequality is valid:

|yn(t1) — yn(t2)] <
1
01—6§t§b1+6}|t1—t2|§

-0t —a)

for |t1—t2|§6, al—égt]§b1+6(j21,2)

€
<7r max{ —
- 2

From the last two estimates we obtain that if ¢; € [¢,b] (j = 1,2) and

[t — 2] <6,
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then

|yn(t1)_yn(t2)| Sea nEN
This and the inequality (1.3.17) imply that the sequence (y,)S%; is uni-
formly bounded and equicontinuous. In case ¢ = 2 the same follows from

the possibility of choosing for any € > 0, a1 €]a,b[ and 0 < § < a3 — a such
that

bl

W | ™

max{/b|G(t,5)|g(1)(5) ds: a<t< al} <

[y (t2) = g (t2)] < ramax {1+ - a1 =6 <U<bhlh—ta] <5
—a

for |t1—t2|§6, Cll—(sgt]' Sb (_]21,2)

Then by the Arzella—Ascoli lemma we obtain that Uy is a compact operator.
Consequently, taking into account Fredholm’s alternatives, the equation
(1.3.16) is uniquely solvable if the homogeneous equation

u(t) = Uglu)(t) (1.3.160)

has only the trivial solution in the space C(]a, b[).

It remains to note that by virtue of the conditions (1.1.18)—(1.1.21)
and (1.1.22) if ¢ = 1 and (1.1.245) if ¢ = 2, all the requirement of Lem-
ma 1.2.8; are satisfied for A = 0, whence it follows that the problem (1.2.57),
(1.2.249), i.e., the equation (1.3.16¢) has only the trivial solution in the space
C(la,b)). O

Proof of Remark 1.1.2 follows directly from Remark 1.2.7.

Proof of Theorem 1.1.2,5. Let x be a function defined by (1.1.19;) and let
(i be Green’s function of the problem (1.1.58), (1.1.2;9) which is expressed
by (1.2.59;). Introduce the operator Uy and the function ¢ by the equality
(1.3.15). Then for any y € Cya(Ja, b[) the estimates

O,

G =ay7 [ 2@t dsllle..

a
b

lg(t)] < xl_w(t)/x7(5)|p2(5)| ds for a<t<b
are valid, from which by the conditions A €]0,1— 4[] and (1.1.25), (1.1.26)
it follows that Uy transforms continuously the space Cy»(]a, b[) into itself
and ¢ € Cyr(Ja, b]).

Consider now the equation

u(t) = Ug(u)(t) + ¢(t) (1.3.18)

[Wo(y)(®)] <
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which is equivalent to the problem (1.1.16), (1.1.2;0), and the corresponding
homogeneous equation (1.3.16¢).

As is seen from Lemma 1.2.8; and Remark 1.2.7, by virtue of the con-
ditions A €]0,1 —~[, (1.1.21), (1.1.24;) and (1.1.25)—(1.1.27) the problem
(1.2.57), (1.1.249), i.e., the equation (1.3.16p), has in the space Cya(]a, b])
only the trivial solution. Then according to Fredholm’s alternatives, to
prove the validity of our theorem it remains to show that the operator Uy
is compact. Let r > 0,

By = {2 € Cpa(la, b))+ l2llowr <7}
(2n)22, be a sequence from B, and y,(¢) = Ug(zy,)(t) for n € N.

Then as is seen from the definition of G, for any n € NN the estimate

01 < 7 s [0 (=01 (13.19)

for a<t<b
is valid, which by virtue of the condition A €]0, 1 — 5[ yields
lya@lleer <1, (1.3.20)

where

r= W/xw(s)g(l)‘)(s) ds max{xl_(k'l'w)(t) D a<t<b}

Consider now the case i = 1 separately. From (1.3.19;) for j = 0 and for
any ¢ > 0 follows the existence of ay, by €]a,b[, where a; < by, such that

(I < 7, nEN, for a<t<a, bi<t<D,
which implies the estimate
€
|yn(t1) - yn(t2)| S 5; ne Na
for a <ty <ty <ay, b1§t1<t2§b.

Moreover, from (1.3.19;) for j = 1 it follows the existence of a constant é
such that
2
[Yn (t1) — yn(t2)| < r2fts —t2| < 50 M €N,
for a; —6<t;<b+6 (1=1,2),

where

ry = r/gﬂ(s)g(g&)(s) ds max {z™7(1) : ar—6 <1< by +6}.
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It is clear from the last two estimates that if ¢; € [a,b] ({ = 1,2) and
|t — 12| <6,

then for any n € N

yn(t1) —yn(t2)| < e
This and the estimate (1.3.20) imply that the sequence (y, )22, is uniformly
bounded and equicontinuous. In case i = 2, by virtue of the estimates
(1.3.193) the same follows from the possibility of choosing, for any ¢ > 0, of
aj €la,bland 0 < § < a3 — a such that

() <=, nel for a<t<b,
and
[ (12) = pa(t2)] < ralts =12 < =, mET,
for a1 —6<t; <b (j=1,2),
where

o= [ S E) ds max [0 @y -5 <1 <)

Then by the Arzella-Ascoli lemma we have that Uy is a compact opera-
tor. [

1.3.2. Proof of Effective Sufficient Conditions for Solvability of the Prob-
lems (1.1.1), (1.1.2;) and (1.1.1), (1.1.2;0) (2 = 1, 2). Before we pro-
ceed to proving the corollaries, we note that Green’s function of the problem

VI(E) = prlt) (1), (13.21)
v(a) =0, v"D(b-)=0 (1.3.22;)
has the form
Go(t, 5) =
) 5 1 b 2-4
=gy | o)) dn| 5[ a(p1)(n)dn
@ﬁ()/ <f0@ﬁWMn/) )
for a<s<t<b,
- ) , (1.3.23;)
] 1 24
=y [ o) dn| 5 a(p1)(n) dn
() / <{0(p1)(77)d77 : )
for a<t<s<b.
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Proof of Corollary 1.1.1;. 1t is clear that all the requirements of Theo-
rem 1.1.1y, except (1.1.71), follow directly from the conditions of our corol-
lary. Tt remains only to show that the conditions (1.1.31), (1.1.32;) imply
the inclusion (1.1.71) as well.

Indeed, let 8 > 0 and

am=|( / ot )odn)

PR o) o

a
b

+ /0(p1)(77)d77) ) / QAN LMD (o) s

o(p1)(s)ds) 2

92-2(a+p)

Then, as is seen from the conditions (1.1.31), (1.1.32;), we can choose A > 0
such that

(

Y-

X

(1.3.24)

()<l for a<t<bh (1.3.25)

be satisfied.
Introduce also the notation

q@(t):% _5/|G0ts|q@

w(t) = / |Go(t, $)[([po(s)]- (A + 27 () + h(")(5)) ds + we (1),

a

where ¢ € RT, Gy is Green’s function of the problem (1.3.21), (1.3.22;)
which is defined by the equality (1.3.23;), and by Lemma 1.2.7,

w.(t) = O*(xP(t)) as t —a, t—b (1.3.26)

for any € > 0. From the conditions (1.3.25), (1.3.26) we have the possibility
of choosing the constant ¢ > 0 such that

(1
z(t) + sup{l:ﬁgt; a<t< b} <1 for a<t<b. (1.3.27)

By virtue of (1.3.23;) we easily get the estimate
0 < w(t) <za(t)e ()—i—wg(t) for a<t<b
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which with regard for (1.3.27) results in
0<w(t)<af(t) for a<t<b. (1.3.28)
The last inequality together with (1.3.26) means that
w(t) = 0" (2" (1)) as t—a, t—b. (1.3.29)
On the other hand, it is clear that
w(t) = —=[po(t)]- (A + 27 (1)) + pr()w'(t) — h(x?)(s) — ¢5(t).

Taking into account the inequality (1.3.28) and the fact that the operator
h and the constant A are nonnegative, the above equality results in

w(t)" < po(t)w(t) + p1(t)w'(t) — h(w)(t) — qs(t). (1.3.30)
If we introduce the notation w(t) = A + w(t), then
@' (t) < po(t)w(t) + p1 ()W (1), (1.3.31)
where
w(t) >0 for a<t<b. (1.3.32)

From the inequalities (1.3.31) and (1.3.32), by Lemma 1.2.2 we obtain the
inclusion

(po,p1) € Vi o(la, b]). (1.3.331)

Then, as is seen from Remark 1.2.2, the problem (1.2.4), (1.2.2;5) has
Green’s function G which is expressed by the equality (1.2.7). Using now
the inequalities (1.2.101), we arrive at

b
2

d 2
=< Ewg_l(t)/ |G(t, s)]|gp(s) ds < ccl_* for a<t<b
Cx *

which with regard for the equality (1.3.26) yields
b
/ |G(t, s)|ga(s)ds = O*(z%(s)) as t—a, t—b. (1.3.34)

It remains to note that the conditions (1.2.28), (1.3.29), (1.3.331), (1.3.34)
and the inequality (1.3.30), owing to Definition 1.1.4, ensure the inclusion
(1.2.77) for g > 0.

Assume now that 7 = 0 and

w) = [1Go(t, ([l + ) ds+e0l0), (13.35)
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where v is a solution of the equation (1.3.21) under the boundary conditions

v(a) =1, v(b) =1,

and
a = / op)min) / el L0 ( / otp)nkdn) ds +
+ / op)min) /b e AN ( /b otp)nidn) ds|
(] olp)(s) sy

X

Ao
Then, as is seen from the condition (1.1.32;),
zo(t) <1 for a<t<b,
and hence we can choose € > 0 small enough for the inequality
zo(t) +ev(t) < 1 (1.3.36)

to be fulfilled for a <t < b. Notice that by virtue of the equalities (1.3.23;),
we obtain the estimate

0<w(t) <z(t)+ev(t) for a<t<b
which with regard for (1.3.36) implies
O0<w(t)<1l for a<t<b. (1.3.37)
On the other hand,
w’(t) = =[po(t)] + pr(t)w'(t) — h(1)(1),

whence, taking into account (1.3.37) and the fact that the operator h is
nonnegative, we obtain

w"(t) < po(t)w(t) + pr()w'(t) — h(w)(?).

Consequently, owing to Definition 1.1.3, the inclusion (po, p1)€V1 o(]a, b[; h)
is valid. O

Proof of Corollary 1.1.15. 1t is clear that all the requirements of Theo-
rem 1.1.19, except (1.1.73) follow directly from the conditions of our corol-
lary. Tt remains to show that the conditions (1.1.31), (1.1.321) imply the
inclusion (1.1.73) as well.
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To this end, we introduce for § > 0 the functions z), and w by the
equalities

t

a(t) = [/ R J;(i()??)Jrh(xﬁ)(s)) (ja(pl)(n)dn)ads+

a a
1

+( [ otiman)” / EORESSUETL I

a 13

X (/btf(pl)(n)dn)l_(aw

and
w(t) = / |Go(t, 5)|([po(s)]- (A + 27 (5)) + h(27)(5)) ds + we (1),

where (g is Green’s function of the problem (1.3.21), (1.3.22,), and w, is
defined just as in the previous proof. Then reasoning in the same manner
as when proving Corollary 1.1.1;, we make sure that the inclusion (1.1.72)
is valid for 8 > 0.

In the case 3 = 0, we consider the function z for A = 0 and the function
w defined by (1.3.35), where v is a solution of the equation (1.3.21) under
the boundary conditions

Then reasoning just in the same way as in proving Corollary 1.1.1; for 5 = 0,
we can see that the inclusion (po, p1) € Vao(la, b[; k) is valid. O

Proof of Corollary 1.1.1;5. Coincides completely with that of Corolla-
ry 1.1.1; for g > 0. O

Proof of Remark 1.1.4. Denote the left-hand side of (1.1.32;) by w. Then it
is obvious that

[ Ioo(8)] 278 (5) + 2% (8)h(2")(5)
w(t) < a/ D)) ds for a<t<b,

i.e., it follows from (1.1.34;) that the condition (1.1.32;) is valid. On the
other hand, (1.1.34;) implies the inclusion

hEE(Cxﬂ;L%)

T(P1

which together with (1.1.33) means that (1.1.8;) is satisfied. O
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Proof of Remark 1.1.4y. As is seen from the proof of Remark 1.1.4, the
conditions (1.1.32;) and (1.1.12) follow simultaneously from (1.1.34;). O

Proof of Corollary 1.1.2;. Tntroduce the notation
g(u)(t) = égk(t)um(t)) (1.3.38)

and
h(u)(t) = é |9 () w(7i(1)). (1.3.39)

Then for any u € C(]a,b]) almost everywhere on the interval ]a, b the
inequality (1.1.10) is satisfied, and as is seen from (1.1.36;), the inclusion
(1.1.8;) is valid. Tt is also clear that the condition (1.1.37;) in our notation
can be rewritten as (1.1.32;). Hence all the requirements of Corollary 1.1.1;
are fulfilled and our corollary is valid. [J

Proof of Corollary 1.1.2;5. Define the operators ¢ and i by the equalities
(1.3.38) and (1.3.39) and note that from the condition (1.3.38) it follows the
inclusion (1.1.12). Reasoning similarly as when proving the above corollary,
we can see that our corollary is valid. [J

Proof of Remark 1.1.5. Denote the left-hand side of (1.1.37;) by w. Then it

1s evident that

b [po(s)]- 2+ (s) + 2% (s) é |9 (5)]2? (72 (s))
w(t) < / AT ds for a<t<b,

a

i.e., (1.1.40;) implies the validity of the condition (1.1.37;). On the other
hand, (1.1.40;) implies the inclusion

gra’ (1e) € L_o_([a, b])

a(p1)

which together with (1.1.39) means that (1.1.36;) is satisfied. O

Proof of Remark 1.1.53. As is seen from the proof of Remark 1.1.5, the
conditions (1.1.37;) and (1.1.38) follow simultaneously from (1.1.40;). O

Proof of Corollary 1.1.31. 1t is clear that all the requirements of Theo-
rem 1.1.1;, except (1.1.7;), follow directly from the conditions of our corol-
lary. Tt remains to show that the conditions (1.1.41), (1.1.42;) imply the

inclusion (1.1.71) as well, where h(u)(t) = kzz lgx(D)|u(r(2)).
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Indeed, let 8 > 0 and

b

(t) = [Zn: tMg;ﬁ(Tk(s))(ja(pl)(n)dn)acw(t/a(pl)(n)dn)aJr

k=17 o(p1)(s
+§/b%lﬁ(m(s))(/ba(pl)(n)dn)ack(/ta(pl)(n)dn)a] %

(}U(Pl)(n)dn)l_z(aw

x 22=2(ath)

Then as is seen from (1.1.42), for every m € {1,...,n}
z2(tm(?)) <1 for a <t <b. (1.3.40)

Moreover, let

wt) = 3 [ 1Go(t, lau(s)2 (ris)) ds + we(t),

k=1

where the function w, 1s defined in the same way as in proving Corolla-
ry 1.1.1y, € > 0, G is Green’s function of the problem (1.3.21), (1.3.22;)
defined by the equality (1.3.23;) and by Lemma 1.2.7,

w. (1) = O0*(xP(t)) as t—a, t—b, (1.3.41)
for any € > 0. From the conditions (1.3.40), (1.3.41) it follows that we can
choose a constant € > 0 such that for every m € {1,... n}

z(rm(t))—i—sup{%: a<t<b}<1 for a<t<b. (1.3.42)

Using the equality (1.3.231) we can easily obtain the estimate
0 <w(t) < z()zP () +w.(t) for a<t<b, (1.3.43)
whence by virtue of (1.3.42) for every m € {1,...,n} the inequality
0 < w(rm(t)) < 2P(r(t)) for a<t<b (1.3.44)
is valid. Analogously, from (1.3.41) and (1.3.43) it follows the estimate
0 < w(t) <reaf(t) for a<t<b, (1.3.45)
where

ro = sup {Z(t) + ;U;Eg Ca<t< b} < 400,

and according to (1.3.41) we get
w(t) = 0" (2" (1)) as t—a, t—b. (1.3.46)
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On the other hand, it is clear that
w(t) = pr(®)w' (1) = D lgr ()2 (7(2)) — 45(8),
k=1

which with regard for the conditions (1.1.41) and (1.3.44) results in

w”(t) < po(t)w(t) + pr(Ow'(t) = D lgr(t)w(m(t) — s(t), (1.3.47)

where, as is seen from Remark 1.2.6,

(po,p1) € Vi o(]a, B). (1.3.48)

Then, as we have shown in proving Corollary 1.1.14,
b
/ |G(t, s)|gs(s) ds = O*(x°(t)) as t —a, t —b, (1.3.49)

where (' is Green’s function of the problem (1.2.4), (1.2.2;0). It remains
to notice that the conditions (1.3.45), (1.3.46), (1.3.48), (1.3.49) and the
inequality (1.3.47) by virtue of Definition 1.1.4 imply the inclusion (1.1.7;)
for 3 > 1.

Suppose now that 7 = 0 and

w(t) = Z/|G0(t,5)||gk(5)|ds—l—ev(t), (1.3.50)

where v is a solution of the equation (1.3.21) under the boundary conditions
v(a)=1 and o(b) =1
Then, as is seen from the condition (1.1.42;), for every m € {1,...,n}
2(tm(?)) <1 for a<t<hbh

and hence for every m € {1,...,n} we can choose ¢ > 0 small enough for
the inequality

2(Tm (1)) + cv(mm (?)) <1 for a <t <b. (1.3.51)

to be fulfilled. Note that from the positiveness of v and also from (1.3.23;)
we have the estimate

0<w(t) <z@t)+ev(t) for a<t<b
which by virtue of (1.3.51) for every m € {1,...,n} yields

0<w(m() <1 for a<t<b. (1.3.52)
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On the other hand,

w’ (t) = p1(t)w'(t) — Z lgx(t)

which with regard for (1.1.41) and (1.3.52) gives

w"(t) < po(tyw(t) + pi(t) Zlgk (B w(r(t))-

Hence, owing to Deﬁnition 1.1.3, the inclusion (po,p1) € V1,0(]a,b[;h), is
valid, where h(u)(t) = Z lgx(D)|u(m(2)). O

Proof of Corollary 1.1.35. 1t is clear that all the requirements of Theo-
rem 1.1.1q, except (1.1.72), follow directly from the conditions of our corol-
lary. Tt remains to show that the inclusion (1.1.73) follows from the condition
(1.1.41), (1.1.42;) as well.

To this end, we introduce for 8 > 0 the functions z and w by the equalities

[Z/ ng (5))</U(P1)(77)dn)ads+
£y jigggfigjxﬁ<fk<s>>ds(L/&<p1xn>dn)cq (L/L<p1xU>dn)l_(“+ﬁ)

a

:Z/mmﬂm@WW@m+mm

where Gy is Green’s function of the problem (1.3.21), (1.3.225) and w; is
defined in the same way as in proving Corollary 1.1.1;. Reasoning just as
in proving Corollary 1.1.31, we make sure that the inclusion (1.1.75) is valid
for 3 > 0.

In the case f = 0 we consider the function w defined by the equality
(1.3.50), where v is a solution of the equation (1.3.21) for the boundary
conditions

v(a) =1, v'(b—) = 1.
Then, reasoning analogously as in proving Corollary 1.1.3; for § = 0, we
can see that the inclusion (pg, p1) € Vao(Ja, b[; k) is valid. O

Proof of Corollary 1.1.3;5. Coincides completely with that of Corolla-
ry 1.1.3; for g >0. O

Proof of Remark 1.1.6. If the inequality (1.1.43;) is satisfied fort € 6., ;. ,
then it will especially be satisfied on each of the sets 8, , where m €
{1,...,n}, i.e., each of the n inequalities of (1.1.42;) will be satisfied. O
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Proof of Corollary 1.1.4; (1.1.440). Tt is sufficient to substitute py = 0,
p1 =0, k=1 in Remark 1.1.5; (1.1.555). O

Proof of Corollary 1.1.51. 1t is clear that all the requirements of Theo-
rem 1.1.1y, except (1.1.71), follow directly from the conditions of our corol-
lary. It remains to show that the inclusion (1.1.7;) follows from the condi-
tions (1.1.501) for 0 < 8 < 1 and (1.1.51;) for 3 =1 as well.

Consider first the case 0 < f < 1. Let « be a function defined by the
equality (1.1.9;). Then

(P (1)) = pr ()P (1)) — 287 (;1(5)7;)((;))

301 - ) T (( [ atuionan)” + ( [otwinan)”). 1359

a

From the condition (1.1.501) and the fact that the operator h is nonnegative
it follows that

_%po(t) < 23? (a/a(pl)(n)dn) e for a <t <b.
Moreover,
0 < Mpn(t) + 000 = g)min{ [ otp)man) +
-I-(/U(pl)(n)dn)z s a<s< b}iz(fi;)((:))’ (1.3.54)
where

b
- ~2(1-p)
=2 ([ewoman)
s b

<anin{ ([ owmin) + ([ aiman)’ s a<s <ol

a 5

Let w(t) = °(t) + A, and rewrite the identity (1.3.53) as

W' (2) = po0ye(t) + pr(w' (D) = (pol0)a? (1) + 22 T2

[+ 0-5)(( / wtpnin) + / 0(1)1)(77)6177)2) "(—@( .

a
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Then, taking into account the fact that the operator & is nonnegative, from
the condition (1.1.50;) and the inequality (1.3.54) we obtain

w" (t) < po(t)w(t) + p1(t)w' (1), (1.3.55)
i.e., owing to Lemma 1.2.2 the inclusion
(po,pl) EVlyo(]a,bD (1.3.56)

is satisfied. Then, as is seen from Remark 1.2.2, there exists Green’s function
G of the problem (1.2.4), (1.2.24), and by Lemma 1.2.6,

/ |G(t,5)|qs(s)ds = O*(zP(t)) for t —a, t—b,  (1.3.57)

a

where

Let now

—|—(/0’(p1)(7])d7])2 Da<t< b} (1.3.58)

and rewrite (1.3.53) in the form

(7 (1))" = po(t)z” () + pr () (27 (1)) = h(x”)(t) = eqa(t) —

~(potor2? -t yo+25° LD [0 ( / ctnin) +
+</ba(p1)(77)d77)2) _E]U:Z‘(fi;)((ti)' (1.3.59)

Taking into account (1.1.501) and (1.3.58), we obtain
(27 (1)) < po(t)2? (1) + pr (1) (2° (1)) — h(2”)(t) — eq(t)  (1.3.60)
for a<t<b.

From (1.3.56), (1.3.57), and (1.3.60), by virtue of Definition 1.1.4 we con-
clude that the inclusion (1.1.7;) is satisfied for 0 < 3 < 1.
Assume now that 3 = 0. Then the condition (1.1.50,) takes the form

0<po(t) —h(1)() for a<t<b,
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from which we can see that the function w(t) = 1 satisfies the inequality

w”(t) < po(H)w(t) + pr(t)w'(t) = h(w)(1),
i.e., owing to Definition 1.1.3 we can conclude that the inclusion (1.1.7;) is
satisfied for = 0.
Finally we consider the case 8 = 1 and note that
2"(t) = pr(t)' (t) — 202 (p1)(2). (1.3.61)
It follows from (1.1.51;) that there exist constants £, u €10, 1[ such that

o (o ) <2t ()

and

PP (i sy i) <2== aao

Taking into account the fact that the operator h is nonnegative, from the
condition (1.3.62) we get

p2H ’ 2(1—p)
_Wl)(z)m(t) < 2N2</U(P1)(77)d77) for a<t<b.

Reasoning in the same way as for 0 < 8 < 1, from the last inequality as
well as from (1.3.62) we can see that the function w(t) = «#(¢) + A, where

A= %(/ba(pl)(n)dn)_z(l_u) x

a

5

x min{( [ otwneman) +( / opu)ndn) : a<s < b},

a 5

satisfies (1.3.55), i.e., the inclusion (1.3.56) is satisfied and there exists
Green’s function G of the problem (1.2.4), (1.2.2;0). As is seen from Lem-
ma 1.2.7,if ¢1(¢) = o%(p1)(¢), then

/ |G(t,s)|q1(s)ds = O™ (x(s)) as t —a, t—b. (1.3.64)

We rewrite now the identity (1.3.61) as follows:
2"(t) = po(t)x(t) + pr(t)a’(t) — h(x)(t) — equ(t) +
+ (h(z)(t) = po()a(t) — (2 = €)o? (p1)(1)).
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The latter with regard for (1.3.63) yields
2" (t) < po(®)x(t) + pr(H)2' () — h(z)(t) —eq1(t) for a <t <b. (1.3.65)

From (1.3.56), (1.3.64), and (1.3.65), according to Definition 1.1.4 we con-
clude that the inclusion (1.1.71) is satisfied for g =1. O

Proof of Corollary 1.1.55. 1t is clear that all the requirements of Theo-
rem 1.1.1q, except (1.1.72), follow directly from the conditions of our corol-
lary. It remains to show that the inclusion (1.1.72) follows from the condi-
tions (1.1.505), (1.1.56) for 0 < 8 < 1 and from (1.1.514) for 3 = 1.

First we consider the case 0 < § < 1. Let  be the function defined by
(1.1.93). Then

@ () = pi () (@)Y — A1 ﬁ)%. (13.66)

From (1.1.502) it follows the existence of a constant € > 0 such that

22 2P
[02@?))@) (h;@&()t) ()] <80 =p) = (1367)

and likewise from the inclusion (1.1.55) it follows the existence of a constant
A such that

ess sup
t€ Ja,b[

N0
Ao

Let w(t) = z°(t) + A, and rewrite the identity (1.3.66) in the form

po(t) <e for a<t<b. (1.3.68)

(O =pa(0yle) + (0000~ (pu(0)2”(0) + o) + 301 — ) LI,

whence with regard for (1.3.67), (1.3.68) and the fact that the operator h is
nonnegative we can see that the inequality (1.3.55) is valid, i.e., by virtue
of Lemma 1.2.2 the inclusion

(Po, p1) € Vao(la, b)) (1.3.69)

is satisfied. Then, as is seen from Remark 1.2.2, there exists Green’s function
G of the problem (1.2.4), (1.2.240), and by Lemma 1.2.7,

/ |G(t, s)|gs(s) ds = O*(z°(s)) as t —a, (1.3.70)
where 2(p0)(1)
150 = "5

Rewrite now (1.3.66) as

(7 ()" = po(t)a” () + pr () (27 (1)) = h(2”) — eqa(t) +
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o? [
+ (M0 = (0" 0) = (50 - 5) - ) T,

This equality by virtue of the condition (1.3.67) enables us to see that
(1.3.60) is satisfied. From the conditions (1.3.60), (1.3.69), (1.3.70) and
according to Definition 1.1.4, we can conclude that the inclusion (1.1.72) is
satisfied for 0 < 7 < 1.

Assume now that # = 1. From the condition (1.1.505) for 8 = 1 it follows
the existence of a constant ¢ > 0 such that

o o gy )] <= s

Then it is clear from the negativeness of the operator h that

po(t) >0 for a<t<b,

i.e., by virtue of Remark 1.2.6, the inclusion (1.3.69) is satisfied and hence
there exists Green’s function G of the problem (1.2.4), (1.2.255). As is seen
from lemma 1.2.7, if ¢1(¢) = o?(p1)(t), then

/|G(t, $)qi(s)ds = O™ (x(t)) as t— a. (1.3.72)

a

Note that

() = po(O)x(t) + pr()a’ (1) — h()(t) — eqa(t) +
+ (h(@)(t) = po(t)x(t) + 0™ (p1)(1)),

whence with regard for (1.3.71) we see that (1.3.65) is satisfied.

From the conditions (1.3.65), (1.3.69), (1.3.72), owing to Definition 1.1.4
we conclude that the inclusion (1.1.72) is satisfied for 5 =1 as well.

The proof of the given and of the previous corollary is identical for the
case 3=0. O
Proof of Corollary 1.1.5;5. Coincides completely with that of Corolla-
ry L.15;for0< g <1. O

Proof of Corollary 1.1.61. Let

R(w)(t) = D lg(0)Ju(re(1)). (1.3.73)

Then we can see from (1.1.56;) that the inclusion (1.1.8;) is satisfied for
G = 0. It 1s also clear that all the requirements of Theorem 1.1.1; for o = 1,
3 =0, except (1.1.71), follow directly from the conditions of our corollary. Tt
remains to show that the conditions (1.1.57;), (1.1.581) imply the inclusion
(1.1.71) as well.
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Without restriction of generality we assume that ¢ €]a,b[.

(1.1.571) there exist ¥, 9m (m = 1,2) such that

0<¥m < < 400 (m=1,2)

and
1
ds (- a)l_ﬁl
A1+ Aas+s2 0 1-p5
Y1
n2
ds B (b—c)l_ﬁ2
Aot + Agas +52 1 —
Y2

Introduce the functions ¢ and s by

h ds (t— a)l_ﬁl
= it <t <
/ A1+ Apas + 52 1-5 o A=t
w1(t)
and
n2
ds (b—t)l_ﬁ2

= it <t <b.
Aa1 + Agas + 82 1-052 o e=ts
wa(t)

From (1.3.74) we have

Then by

(1.3.74)

1< pr(t)y<m for a <t<ec, v2<at) <my for e<t<b and

emlc) =m (m=12).
Introduce also the function w by

t

w(t) = exp (/(5 — ) Pryy(s) ds) for a<t<c,

Then

w'(t)>0 for a<t<e, w(t)<0 for ¢<t<b,
w(t) >0 for a<t<b,

w € Cloc(Ja, ) N Cloc(Jesbl), w(e=) > w(et),

(1.3.75)

(1.3.76)
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and the equalities

A1 A1n B
1" t - _ - t _ / t
W) =~ gz W [(t—a)@l—i—t—a]w()
for a<t<e, (13.77)
Aoy Aan B2 '
1" t - _ e t . Ttes / t
Wit =~z 0+ [(b—t)/32 e
for e<t<b
are vahd.
From the above equalities, by virtue of (1.3.75) it follows that
w’(t) <0 for a<t<b. (1.3.78)

On the other hand, taking into account the conditions (1.1.58;) in the equal-
ities (1.3.77), we obtain

w'(t) < (polt) Zm ) ewlt) + pa(tyu' (1) -
Z|gk (t)—1) for a<t<b (1.3.79)

Analogously, from (1.3.78) it follows

7 (1)
w'(s)ds < w'(t)(rk(t) —t) (k=1,...,n) for a<t<hb.

t

Taking this inequality into consideration, from (1.3.79) we can see that

w(t) < po(t)w(t) 4 pa(t) Z|gk Nw(mr(t)) for a <t <b.

The latter inequality together with (1.3.75), (1.3.76) and by virtue of Defi-
nition 1.1.3 shows that the inclusion (po, p1) € V1 0(]a, b[; k) is satisfied. O

Proof of Corollary 1.1.62. We define the operator h by the equality (1.3.73).
Note also that if p1 € Lisc(]a,b]), then from the conditions (1.1.56) and
(1.1.59) we obtain

a(p1) € L([a,b]), pjoa(p1) € L([a,b]) (5 =0,2),
gxo2(p1) € L([a,b]) (k=1,...,n),
i.e., the conditions (1.1.35), (1.1.52), and (1.1.85), are satisfied where 8 =0,

« = 1. Then just as in the previous proof it remains to show that from the

conditions (1.1.575)—(1.1.59) it follows the inclusion (1.1.75) for 2 = 0.
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Without restriction of generality we assume that ¢ €]a, b[. Then by virtue

of (1.1.575) there exist constants v, 7, (m = 1,2) such that
e<y <m <400, 0<y <nr <40

and (1.3.74) is satisfied. Introduce the functions ¢; and ¢3 by

/ ds (t— a)l_ﬁl
= i <t
/ A1+ Aas + 82 1-53 orastse
w1(t)
wa(t)
ds b=0  e<i<b
= or ¢ )
Aa1 + Agas + 82 1-052 -~
Y2

From (1.3.74) we have

T <er(t)<m for a<t<e, v2<at)<m for c<t<bh,

e1(c) =71 w2(c) = 2.

Introduce likewise the function w by the equalities

w(t) = exp (/(5 — ) Pryy(s) ds) for a<t<c,

w(t) = exp (a /(b — 5) P29 (s) ds) for ¢<t<b,

where 0 < o < min (1; ;—;(b —c) P (e — a)_ﬁl), le.,
a €]0,1[.
Then
w'(t) > 0 for ¢ €]a,c[U]e,b], w(t) >0 for a <t < b,
w € Cloe(Ja, ) N Cloc(Jes b)), w(e=) > w(et), w'(b=) >0,

and the equalities

Y A1 A1z B /
for a<t<e
and
" aday Agg Jis /
W) =~ e = [ g0 -

—all —a(b—t)ﬁ”ﬁa](b—t)ﬁa_ﬁQw(t)gog(t), for e<t<b

(1.3.80)

(1.3.81)
(1.3.82)

(1.3.83)

(1.3.84)
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are valid. Note also that the condition ¢ € [max(a,b — 1);b] and (1.3.80)
imply

1—alb—1)2*P: >0 for ¢<t<b.
Taking this into account in the equality (1.3.84), we obtain

A21 AZZ 63

") < —— 202 ) — |22

R Ty e el i Y
for a<t<b.

From (1.3.83) and (1.3.85), according to the condition (1.3.81), it is clear
that the inequality (1.3.78) is satisfied.

On the other hand, taking into account in (1.3.83) and (1.3.85) the con-
ditions (1.1.585), we get

w'(t).  (1.3.85)

(1) < (po(t) = 3 lga ()] w(t) + 1 (D' () -

—w'(t) > _|gr()] (7x(t) = 1) for a<t<b,

which with regard for (1.3.81) and (1.1.59) imply that (1.3.79) is satisfied.
Reasoning in the same way as in the previous proof, we see that the inclusion

(po,p1) € Vao(la,b[; h) is valid. O

Proof of Corollary 1.1.71. Tt is not difficult to notice that if we introduce
the notation

g(w)(t) =Y gr(tu(n(t)),

then the inequality (1.1.22) will be satisfied, and from (1.1.61), (1.1.62)
it follows that the conditions (1.1.17) and (1.1.18) are valid. That is, all
the requirements of Theorem 1.1.2; are fulfilled and this implies that our
corollary 1s valid. O

Proof of Remark 1.1.10. Follows directly from that of Remark 1.1.2. O
Corollaries 1.1.75 and 1.1.7;; are proved analogously to Corollary 1.1.7;.



68

CHAPTER II

CORRECTNESS OF TWO-POINT PROBLEMS FOR LINEAR
SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS
OF SECOND ORDER

§ 2.1. STATEMENT OF THE PROBLEM AND FORMULATION OF MAIN
REsuLTSs

2.1.1. Statement of the Problem.
Let us Consider the functional differential equations

u’(t) = po(t)u(t) + pr()u'(t) + g(u)(t) + pa(t), (2.1.1)
u(t) = por(D)u(t) + pre(t)u'(t) + g (w)(t) + par(t), k €N, (2.1.1y)

under one of the following the boundary conditions

u(a) =0, u(=b)=0, (2.1.210)
u(a) =0, wu'(b—)=0; (2.1.290)
u(a) = c1, u(b) = co, (2.1.2)
u(a) = e, W/(b—) = ey (2.1.2)
u(a) = c1p, u(b) = car, (2.1.21%)
u(a) = c1p, w'(b—) = cor, (2.1.291)

where ¢, ¢;, € R, (I =1,2;k € N), g, g5 : C(Ja, b]) = Lisc(]a, b]), k € N, are
continuous operators,
plapj S Lloc(]aab[) O'(Pl) S L([aab])a
Pi € Loypy)([a,b]) (7=0,2)
ifi=1,
p1,P; € Lioc(la, b]) o(p1) € L([a,0]),
Pi € Loypy(la,b]) (5 =0,2)

iti =2, and pjr :]a,b[—R (j = 0,1,2; k € N) are measurable functions.
The correctness of the problem (2.1.1), (2.1.2;) will be studied under the
assumption that the inclusion

(Po,p1) € Vio(]a, b[;h)

is satisfied. (Effective sufficient conditions for the above inclusion to be
fulfilled are given in §1.1, where

lg(2)(0)] < h(l2])(?)

almost everywhere in the interval ]a, b[ for every x € C'(]a, b[).)
Consider also the following linear equation

u”(t) = por(t)u(t) + pra(t)w’ (t) + pai(t). (2.1.45)

(2.1.35)
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Let Gy be Green’s function of the problem (2.1.43), (2.1.2;0) and r € RT.
Then we denote the set

{o0: w0 =am+ [Gueom@e s areon. fale<rf

by B, if U} is a solution of the problem (2.1.43), (2.1.240), and by B, , if
¥ is a solution of the problem (2.1.43), (2.1.2;1).
Throughout this chapter the use will also be made of the notation

L)1) = /x(s) ds(/bx(s) ds)z_i for a<t<b,

a

where z € L([a, b]).
2.1.2. Formulation of Main Results.

Theorem 2.1.1;. Let i € {1,2}, the conlinuous linear operators g, gi, h :
C(la,b]) — Lisc(Ja, b)) (k € N), the measurable functions p;, pjx Ja, b[— R
(j =0,1,2; k € N) and the constants o € [a,b], v €]1,4+o0[, A, € R be
such that

0§6<“<;:i’ (2.1.5)
e pa ), | JEEL e e ds <400 (1=0,2)
N (2.1.6)
7]1(1)(5) Higo s)ds 00
/U(p1)(5) Iz ( (pl))( )d < +o0,

a

where h is a non-negative operator and uniformly on the segment [a, b]

t
klingo/ lp1(s) — p1x(s)|ds = 0,

¢ (2.1.7)
1m ZM B2 s)ds — -
) ety (T e =0 =02
im ( su 99)(5) = 9 (¥() 15, s
i (o {] [ 2SI 2 oo

agtghyEBM}>:o (2.1.8)
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Moreover, let

(po,p1) € Vio(la,b[, h), (2.1.9)

where for every € C(]a,b]) almost everywhere in the interval Ja,b[ the
mequality

lg(2)(0)] < h(l2])(?) (2.1.10)

1s satisfied. Then there exists a number ko such that if k > ko, then the
problem (2.1.13), (2.1.2;0) has a unique solution uy and uniformly in the
interval a, b[

Tim 147 (0 T (p))(O(u(t) — ui(t)) = 0, (2.1.11)
1 (o (p)) (1)

dim = o O w®) =0, (2.1.12)

where u is the solution of the problem (2.1.1), (2.1.2;0).

Theorem 2.1.2;. Let i € {1,2}, the conlinuous linear operators g, gi, h :
C(la, b)) — Lioc(la, b)) (k € N), the measurable functions p;, p;x - (Ja, b)) —
R (j=0,1,2; k € N) and the constans o € [a,b], v €]1, 40|, ¢, e, 5,
pw R (I =1,2; k € N) be such that conditions (2.1.5)-(2.1.7), (2.1.9),
(2.1.10) and also

lim (Sup {‘ a/ g(y)(j)(—gk()y(S)) 18 (6 (p))(s) ds|

p1)(s
a<t<b, erB%’lk}) =0 (2.1.13)
and
klingo ar=¢ (1=1,2) (2.1.14)

are satisfied. Then there exists a number kg such that if k > ko, the problem

(2.1.13), (2.1.2;0) has a unique solution uy, and uniformly on the interval
la, b[ the equalities (2.1.12) and

lim (u(t) — ug(t)) =0 (2.1.15)

k—o0

are satisfied, where u is the solution of the problem (2.1.1), (2.1.240).

2.1.3. Corollaries of Theorems (2.1.1;) (2.1.2;) (: = 1, 2).

Corollary 2.1.1;. Let i € {1,2}, the continuous linear operators g, g, h :
C(la,b]) — Lioc(Ja, b) (k € N), the measurable functions 0, p;, pjx :Ja, b[—
R (j =0,1,2; k € N) and the constants o € [0,1], v €]1,+c0[, B, p € R
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be such that the conditions (2.1.5)-(2.1.7), (2.1.9), (2.1.10) are satisfied and
for every y € C(]a, b]) almost everywhere on the interval Ja, b[

|96 (w)(t) — g() ()] < n(®)llyllc  (k €T) (2.1.16)

and uniformly on the segment [a,b]

t

o [ W) —g6) a
k‘l—>oo J O'(Pl)(s) IZ ( (pl))( )d 0, (2117)
where
/ 1(s) B (g &) ds -
/70@1)(5) L (a%(p1))(s) ds < +oo. (2.1.18)

a

Then there exists a number ko, such that for k > ko the problem (2.1.13),
(2.1.259) has a unique solution up, and uniformly on the interval Ja, b the
equalities (2.1.11), (2.1.12) are satisfied, where u is the solution of the prob-
lem (2.1.1), (2.1.2;0).

Corollary 2.1.2;. Let i € {1,2}, the continuous linear operalors g, gy, h :
C(la,b]) — Lioc(Ja, b) (k € N), the measurable functions 0, p;, pjx :Ja, b[—
R, (j = 0,1,2; k € N) and constants o € [0,1], v €]1,+o0[, B, p € RT
be such that the conditions (2.1.5)-(2.1.7), (2.1.9), (2.1.10), (2.1.14), and
(2.1.16)—(2.1.18) are satisfied. Then there exists a number ko such that
for k > ko the problem (2.1.13), (2.1.2;3) has a unique solution uy, and
uniformly on the interval |a, b the equalities (2.1.12), (2.1.15) are satisfied,
where u is the solution of the problem (2.1.1), (2.1.2;).

Consider now the case where the equations (2.1.1) and (2.1.13) are of the
form

u”(t) = po(t)u(t) + pr(t)u'(t) + Z gom(t)u(Tom (1)) + p2(t)  (2.1.19)
and
w(t) = por(t)u(t) + p1e(t) ngm w(Tim (1)) + pax(t), (2.1.19)
where gom, gim ], b[— B and tom, Tem ¢ [a,8] — [a,b] (m = 1,...,n,

k € N) are measurable functions.

Corollary 2.1.3;. Let i € {1,2}, the measurable functions 1, gom, Gtm,
Pis ik 2 ]a, [ — R, Tom, Tem (@, 0] — [a,b0], (m=1,...,n;j=0,1,2;k €
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N) and the constants o € [0,1], v €]1,+00[, 4, p € R be such that condi-
tions (2.1.5), (2.1.7), (2.1.18) as well as

a’(p1) € L([a,b]),

el S (e ()0 BPURRNCEEY)
a/ 60+ 32 loom ] #- 7 B  ds < o0 (5= 0.2),
‘ Z (gom (1) —gkm(t))‘ <n(t) (k€N) (2.1.21)
are salisfied, and uniformly on the segment [a, b
i S| [ 20 =90 ) o a6y =
kl_mmZ::l / o)(5) I7(c*(p1))(s)ds| =0,  (2.1.22)
Trm (1)
esssu F=h (g Y 70(1)1)(5) sl:a —
p {177 o0 3| [ st ) carho
as k — +oo. (2.1.23)

Let also the condition (2.1.9) be satisfied, where
h(@)(t) =Y |gom ()2 (rom(?))-
m=1

Then there exists a number ko such that for k > ko the problem (2.1.19;),
(2.1.259) has a unique solution up, and uniformly on the interval Ja, b the
equalities (2.1.11), (2.1.12) are satisfied, where u is the solution of the prob-
lem (2.1.19), (2.1.20).

Corollary 2.1.4;. Let i € {1,2}, the measurable functions 1, gom, Gtm,
Pis ik 2 ]a, [ — R, Tom, Tem (@, 0] — [a,b0], (m=1,...,n;j=0,1,2;k €
N) and the constants o € [0,1], y €]1,+o0[, 1, e, B, peR (I =1,2, k €
N) be such that the conditions (2.1.5), (2.1.7), (2.1.9), (2.1.14), (2.1.18),
(2.1.20)<(2.1.23) are satisfied, where h(z)(t) = S _1 |gom()|x(Tom(1)).
Then there exists a number ko such that for k > ko the problem (2.1.19;),
(2.1.2;1) has a unique solution uy, and uniformly on the interval Ja, b the
equalities (2.1.12), (2.1.15) are satisfied, where u is the solution of the prob-
lem (2.1.19), (2.1.2).

Corollary 2.1.5;. Let i € {1,2}, the measurable functions 1, gom, Gtm,
Pis ik 2 ]a, [ — R, Tom, Tem (@, 0] — [a,b0], (m=1,...,n;j=0,1,2;k €
N) and the constants o € [0,1], v €]1,400[, B, u € R be such that the
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conditions (2.1.5), (2.1.7), (2.1.18), (2.1.22) as well as

o (p1) € L([a, b]), /%Iﬂa“(m))(s) ds < 400 (j =0,2), (2.1.24)

a
n

S Ugem O]+ lgom(®]) < n(t) (FEN) for a<t<b (2.125)

m=1

and
esssup{ Z [Tom(t) — Tem ()] a <t < b} — 0 for k— 400 (2.1.26)
m=1

are satisfied. Let also the condition (2.1.9) be satisfied, where h(x)(t) =
37 lgom )|z (Tom(t)). Then there exists a number ko such that for k > ko
m=1

the problem (2.1.19;), (2.1.240) has a unique solution uy, and uniformly on
the interval Ja, b the equalities (2.1.11), (2.1.12) are satisfied, where u is the
solution of the problem (2.1.19), (2.1.240).

Corollary 2.1.6;. Let i€ {1,2}, the measurable functions 1, gom, Gtm,
Pis Pim 10, 0[ = R Ty, Tom:[a,b] — [a,b], (m=1,...,n;j=0,1,2; keN)
and the constants a € [0,1], y€]1,+oo[, ¢, ci, B, p €R (I =1,2; kEN) be
such that the conditions (2.1.5), (2.1.7), (2.1.9), (2.1.14), (2.1.18), (2.1.22)
and (2.1.24)~(2.1.26) are satisfied, where h(z)(t) = > |gom(t)|x(Tom(?)).

1

Then there exists a number ko such that for k > ko the problem (2.1.19;),
(2.1.2;1) has a unique solution uy, and uniformly on the interval Ja, b the
equalities (2.1.12), (2.1.15) are satisfied, where u is the solution of the prob-
lem (2.1.19), (2.1.20).

For more clearness, let us consider the equations

u”(t) = go()u(ro(t)) + pa(2), (2.1.27)
u'(t) = gorx (D)u(m (1)) + par(t), (2.1.27%)

where go, gok, P2, Par; Ja,b[— R, and 79, mo1; [a,b] — [a,b] (k € N) are
measurable functions.

Corollary 2.1.7;. Let i € {1,2}, the measurable functions n, go, gox, p2,
par t]a, b[— R, 1o, 7 : [a,b] — [a,b], (k € N) and the constants 5, p € R
be such that the conditions

B<p<l, (2.1.28)
90D + lgor(®)] < n(t) Jor a<t<b, (2.1.29)
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/ lpa(s)|(s — a)* (b — )"~ ds < 400,

¢ , (2.1.30)

/77(5)(5 — a)ﬁ(b — s)ﬁ(z_i) ds < +o0

a
are salisfied, and uniformly on the segment [a, b

lim [ (pa(s) = pae(9)) (s — ) (b = )" ds = 0,
¢ (2.1.31)

t

klingo (go(s) — gOk(s)) (s — a)ﬁ(b — s)ﬁ(z_i) ds =10

and
esssup {|70(t) — 7 (t)]: a<t<b} —0 as k— +oo. (2.1.32)
Let, moreover, the inclusion
(0,0) € V; o(Ja, b[; h) (2.1.33)

be satisfied, where h(z)(t) = |go(t)|x(70(t)). Then there exists a number ko,
such that for k > ko, the problem (2.1.274), (2.1.2,0) has a unique solution
ug, and uniformly on the interval la, b the conditions (2.1.11), (2.1.12) are
satisfied, where u is a solution of the problem (2.1.27), (2.1.2;0).

Corollary 2.1.8;. Let i € {1,2}, the measurable funclions 1, gom, 9ok,
pa2, Pak 1], b[— R, 7, 7 : [a,b] — [a,b], (k € N) and the constants ¢,
ar, B, 0 €R (I = 1,2, k € N) be such that the conditions (2.1.14) and
(2.1.28)—(2.1.33) are satisfied, where h(x)(t) = |go(t)|x(m0(2)). Then there
exists a number ko such that for k > ko the problem (2.1.273), (2.1.2;1)
has a unique solution ug, and uniformly on the interval la,b[ the equali-
ties (2.1.12), (2.1.15) are satisfied, where u is the solution of the problem
(2.1.27), (2.1.2;).

§ 2.2. AUXILIARY PROPOSITIONS

2.2.1. Correctness of the Initial Problem for Linear Second Order Ordinary
Differential Equations. Consider on the interval Ja, b the equations

V() = po(t)v(t) + p1(H)u'(t) (2.2.1)

and

v (t) = por(t)v(t) + pre(t)v'(t), k€N, (2.2.13)
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where

po, 1 € Lioe(la, b]), o(p1) € L([a,b]), po € Lasy(py),([a,b])  (2.2.21)
Pok, P1k € Lloc(]a, b[), ke N, (2231)

or

Po, 1 € LIOC(]a’b])’ U(pl) € L( [a’b )

D 1€ Lo (8, (2:2.2:)
Pok, P1k € Lioc(]a, b]

), ke, (2.2.32)

and the following initial conditions:

““):O’EE%agSL):l’ (2.2.4)
v(a) = 0, }ggaéifiw =1, (2.2.4;)
“MIO’EER%%ﬁz_L (2.2.5)
“mzo’pﬂgégﬁj:_L (2.2.515)

v(b) =1, '(b) = 0. (2.2.5,)

Remark 2.2.1. Tt has been shown in [23] that for the conditions (2.2.2;)
the problems (2.2.1), (2.2.4) and (2.2.1), (2.2.5;) are uniquely solvable.
Analogously, if

pok, ik € Lioc(]a, b)), o(pix) € L([a,b]), por € Lo, (pui)([a, b]),

then the problems (2.2.13), (2.2.43) and (2.2.13), (2.2.51) are uniquely
solvable, and if

pok, ik € Lioc(]a, b)), o(pix) € L([a,b]), por € Lo,(pu)([a, b]),

then the problems (2.2.13), (2.2.43) and (2.2.13), (2.2.52) are uniquely solv-
able as well.

For brevity we introduce the notation

Apjr(t) = pi(t) —pjr(t) (7 =0,1,2; k €N) for a <t <b.

Lemma 2.2.11. Let the measurable functions p;, pjr :]a,b[— R (j =
0,1; k € N) and the constants o € [0,1], v €]1,4+o0[, 5, p € R such that

0§6<ﬂ§;:i, (2.2.6)
e ot)h, [ L0l o ds < 4o 227
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and uniformly on the segment [a,b] the conditions

lim tLO’“(S)
k—co / o(p1)(s)

a

1P (0%(p1))(s) ds = 0, klin;o/|Ap1k(s)|d5: 0 (2.2.8))

be satisfied. Then there exists a number ko such that for k > ko the prob-
lem (2.2.13), (2.2.411) has a unique solution viy and the problem (2.2.1y),
(2.2.511) has a unique solution vor, and uniformly on the interval Ja, b[

k—o0

lim (vig(t) — vi () (/U(pl)(s) ds)_1 =0, (2.2.911)

k—o0

lim (vor(t) — v2(2)) (/b o(p1)(s) ds) - =0 (2.2.912)

and

lim J() — 01 ) (/Ua(pl)(s) ds)u =0, (2.2.1017)

vh(t) — V(1) (/a“(pl)(s) ds)“ —0, (2.2.1045)

where v1 and va are the solutions of the problems (2.2.1), (2.2.41) and
(2.2.1), (2.2.51), respectively.

Proof. 1t is clear from the definition of the constants «, 3, v, p that

1-— 1-—
aﬁ< aﬂg’y
1-p 1—pu

B-p<0, 0< (2.2.11)

Hence

l—o

—ap l—op
o%(p1), 0 TF (p1), o=+ (p1) € L([a,b]). (2.2.12)
Using the Holder inequality, we obtain

ta ta

/ o(p1)(s)ds < ( / o= (p1)(s) d) x

t1 t1
ta

< | (o)) ds " for a<ti<tr<b, (2.2.13)
(J o)

t1




77

< (a/all‘-i” (p1)(s) ds)l_u</ . Ua(pl)(S)dn)g ds)u -

(J o)) dn)”
< (ﬂf—ﬁ)“(/ba (p1)(s) ds)l_u</baa(p1)(5) ds)u_ﬁ, (2.2.15)

where the existence of the integrals follows from (2.2.12). By means of
(2.2.14), (2.2.15) we easily get

[Ty oy (45

S (oo (p))(5) w5
X (/ba (p1)(s) ds)l_u</baa(p1)(5) ds)u_ﬁ < oo (22.16)

It is also evident that for every § € [0, 1]

b

_otp)(s) oL
/If(aa(pl))(s)d < Fo0. (2.2.17)

a

By virtue of condition (2.2.8;), for every ¢ > 1 there exists a number kg
such that for & > kg

el < o(Apig)(t) <e for a<t<b. (2.2.18)

We now proceed to the proof of the lemma. Taking into account the condi-
tions (2.2.71), (2.2.12) and the inequality (2.2.13), the inequality

[ m@leitmias < [ L1t i) ds
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X (/ai‘——"f(pl)(s) ds)z(l ; < +o0 (2.2.19)

a

is valid, i.e. the conditions (2.2.21) are satisfied. In this case, owing to
Remark 2.2.1, the problems (2.2.1), (2.2.4) and (2.2.1), (2.2.51) are uniquely
solvable. Integrating by parts and using (2.2.18), we arrive at

<

\ / POk(8) i (y,))(5) ds

plk

b
APOk(S)

< ‘ )0 I (o™ (pix))(s) ds

bM Mg SV ds
+a/0(p1k)(5) I{ (0% (p1x))(s) ds <

< [ ‘(a@plk)(s)w)' ds +

17 (0% (p1)(s)

+53/ po(s)] I(o®(p))(s)ds for k > ko, (2.2.20)

where

‘S“P{\/Apo“ Hie* e ds|: a<n<n<i),

5

In view of (2.2.8;)
lim 4 =0, (2.2.21)

and by virtue of (2.2.18) the estimate

o BV s
(a0 G Y | < it ()0 +

. b i a(p1)(t)
Hot 912 [ 0ot B

is valid. Substituting the latter in (2.2.20) and taking into account (2.2.7;),
(2.2.81), (2.2.17) and (2.2.21), we can see that a constant ro € RT exist,
such that

for a<t<b

b M (g s)ds - ,
sup{a/a(plk)(s) I (0% (p1r))(s) ds : k>k0}< 0. (2.2.22)
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In the same way we get
Pok € Loy (pua)([a,b]) for k> ko,
where in view of (2.2.18)
o(pir) € L([a,b]) for k > ko,

which together with the conditions (2.2.3;) and Remark 2.2.1 imply that
the problems (2.2.13), (2.2.4;) and (2.2.13), (2.2.51;) are uniquely solvable
for k > k.

Note that the function w;r(t) = v;(t) — v;s(t) (j = 1,2; k > ko) is a
solution of the equation

v"(t) = por()v(t) + prr()v'(t) +

+Apok(t)v; () + Ap1y(t)vj(t) (j = 1,2) (2.2.23)
and
wix(a) = 0, Jim % = o(Api)(a) — 1, (2.2.244)
wa(b) = 0, lim O_E;/?l’;(;()t) —l—o(Ap)(b), (22245
where in view of (2.2.8;),
Jim 1= o(Apu) . = 0. (2.2.25)

Consider first the case j = 1. From (2.2.23), (2.2.24;) we have

ey = A0 =1+ f Ameto) TS b+

t

po(s)wik(s) + Apir(s)vi(s)
_|_/ =PI ds for a<t<b, (2.2.26)

a

where the existence of integrals follows from the estimate (1.2.104), (1.2.114)
and the conditions (2.2.71), (2.2.8;1). From (2.2.26), integration by parts
results in

|w1k t / — wip(s) /
1-— O' A —|— ‘ — A S
o(pix)( | Pe)( | Iﬁ o (p1))(s) (Ap1s)( ))

A /
/ [po(s)wir(s) + Apik(s)vy(s)] ds for a<t<b, (2.2.27)
a(p1r)(s)
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where in view of (2.2.18),

/ vl(s)—wlk(s)UA (s !
g/) (et “ere)
[t ()] + [0(5)

=% e e

ds <

+ (lwir(s)] + |vi(s)]) hu(s) ds
with

|AP1k 1)(15)
hy(t) = = Pl +6/ (p)( 1+@ o= (o)D) for a <t <b.

Substituting the latter inequality in (2.2.27), with regard for (2.2.18) we get

W@ o [ Jwls)]
» SEAk/WdS'i'

o*(p1)

+e? [”1 - U(APM)HC + / Tr(8)|wik(s)| + qr(s) ds] , o (2.2.28)

where

fett) = 22 4 ),
o(p1)(t)

a{t) = a(vz/;)(z's) (CCES (o (p:

)+ A Ol )
for a<t<b.

From (2.2.28), using Gronwall-Bellman’s lemma, it follows that

m%ﬁﬂémdmﬂﬂ@l—dAme+

—|—/fk(5)|w1k(5)| + qi(s) ds) for a<t<b, (2.2.29)

where
b

rp = e [1—|—exp (ezAka/%ds)] for k> ko

and by virtue of (2.2.16), (2.2.21),
sup{ry : k> ko} < +oo. (2.2.30)
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Let us now introduce the notation

= |w1k(t)|(/a(p1)(s) ds)_l for a<t<b.

a

¢
Integrating (2.2.29) from a to ¢, dividing by [ o(p1)(s)ds and using inte-
gration by parts, by virtue of the inequalities (2.2.13) and

we obtaln
1) < r/fk(s)ff (c%(p1))(s)zx(s)ds + 7 for a <t < b,

where

r=sup {r : k>k0}</bal = (p1)(s) )2(1 M)(/bapl ) 1,

(f o= () () ds)

=l f o) (s) ds / / )i

a

+|1 +U(Ap1k)||c]~

Applying Gronwall-Bellman’s lemma, from the latter inequality we get

21 () < Fpexp (r/fk(s)ff(aa(pl))(s) ds) for a <t<b. (2.2.31)

By virtue of (2.2.18) we note that the estimate

b

[ st e s < [ 0L g ) ds+

a
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—I—Ak[(/baa(pl)(s) ds)z(u_ﬁ)/bmmk(sﬂds—i—

a

+4 /b 0% (p1)(s) ds /b Illw‘fziif(s)))(s) ds] for k> kg

(P1

is valid, which with regard for the conditions (2.2.81), (2.2.17) with § =
1+ 5 — p and the condition (2.2.22) results in

sup { /bfk(s)ff(aa(pl))(s) ds: k> ko} <400, (2.2.32)

Just in the same way, taking into account the estimates (1.2.101), (1.2.114)
and the inequality (2.2.13), we obtain

§/|Ap1k(5)|+Ak %ds[(/boa(m)@ ds)u—i—

a

|p0 (0 (p1))(s) s / A e i) ]

+c*Ak</all—"u”(p1 d) [ﬁ/ (p1)( /wazii?((;)))(s) ds+

a

b

—I—(/U“(m)(s) dg)z(“—ﬁ)/|Ap1k(5)|ds] for k > ko,

a a

By virtue of the inequalities (2.2.16), (2.2.17) with § = 1 + 8 — p and the
conditions (2.2.71), (2.2.81) and (2.2.21)

k—o0
a s

lim b%(s)(/baa(pl)(n) dn)uds =0 (2.2.33)

which together with (2.2.25) implies

lim % = 0. (2.2.34)
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Substituting (2.2.32) and (2.2.34) in (2.2.31) we get
klim [|lze]lc = 0, (2.2.35)

i.e., the condition (2.2.91;) is satisfied.
Applying (2.2.13), we see from (2.2.29) that

"f;’ziiil(/ i) <

b

1‘“[sz”0 [ e e ds +

IN
2
TN
Q\@
S
an
é‘g
s
3
=
s
—~~
s
IS,
N

b
1
+?||1 — U(Aplk)HC (/U“(pl)(s)ds) for a <t <b,

a

where 7 = sup{ry : k > ko}. The above inequality with regard for (2.2.25),
(2.2.32), (2.2.33) and (2.2.35) implies that the condition (2.2.10;;) is valid.

Consider now the case j = 2. Let k& > kg. Then for wsyy, 1.e., for a
solution of the problem (2.2.23), (2.2.245) the representation

_wy(d) Y (1) — (s va(s) — wor(s) .
O = o(Ap)() 1+/Apo () 2t 4

Do (s)wsn(5) + Apyvd(s)
* / o (p10)(5)

ds for a<t<b

t

is valid. Repeating the arguments presented for ;7 = 1, where fi, hy are

defined as before,

op)®) y lu(t)] )
(e (p)(t >) o T AhEOl0)

(1) = (18p(0)] + A —
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and
(fo B o)™ 1 M
Fom | qk(g)(/o'a(pl)(n)dn) ds +
[ o%(p1)(s)ds a a

+|1 +U(Ap1k)||c]a

we see that the conditions (2.2.915), (2.2.1012) are valid. O

Lemma 2.2.15. Let the measurable functions p;, pj :]a,b[—R (7 =0,1;
k € N) and the constants o € [0,1], v €]1,4+o0[, B, 1 € R be such that the
conditions (2.2.6) are satisfied,

o (p1) € L([a, b)), /%Ig(ﬂa(m))(s) ds < 400 (2.2.74)

and uniformly on the segment [a,b] the conditions
[ Apoi(s)
. Poks B _a
lim —= (o s)ds =0,
b oo U(pl)(S) 2( (pl))( )
¢ (2.2.85)

t
klim /|Ap1k(5)|d5:0

are satisfied. Then there exists a number ko such that for k > ko the problem
(2.2.13), (2.2.43) has a unique solution vy and the problem (2.2.13), (2.2.52)
has a unique solution vog, and uniformly on the interval ]a,b|

k—o0

lim (v15(t) — vi(t)) (/a(pl)(s) ds) - =0, (2.2.991)

a

Jim (v (1) = v2(1)) = 0 (2.2.955)
and
V() —vi(t) _
e T e(p) 0, (2.2.1021)

t

lim M(/U“(m)(s) ds)u =0, (2.2.1092)

a

where vy and vy are the solutions of the problems (2.2.1), (2.2.4) and (2.2.1),
(2.2.53), respectively.
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Proof. Repeating word by word the previous proof for the case j = 1 and re-
placing everywhere I; by I», we can see that the problems (2.2.13), (2.2.43)
and (2.2.13), (2.2.55) are uniquely solvable, the condition (2.2.921) is satis-
fied and for the function wx(t) = v1(t) — v15(t) the representation

|1(”1k§2' <r <||zk||c/fk / (p)(n)dn)" ds +

—|—/qk(5) ds+ (|1 — O'(Aplk)Hc) for a<t<b (2.2.36)

a

is valid, where the functions f;, ¢ and z; are defined in the previous proof.
Using the same technique as when proving the relations (2.2.25), (2.2.32),
(2.2.33), we obtain

sup{/fk o (p))(s)ds : k> ko} < 400,

khm qk(s) ds =0, klim 11 = o(Apig)|lc =0

and

lim ||z||c = 0,
k—o0

from which it follows with regard for (2.2.36) that the condition (2.2.1041)
1s valid.
Note that the function waep(t) = va(t) — var(t) satisfies the conditions

wor(b) = 0, why(b) =0,
1.e., the representation

t
T

[ pol)wnn(s) + Ap(s)h(s)
/ c(re)(s) ds f <t<b

is valid. Repeating the arguments taking place in the proof of Lemma 2.2.1
for j = 2, we come to the conclusion that the conditions (2.2.912) and
(2.2.1042) are valid. But owing to the condition p; € Li.(]a, b]), it follows
from (2.2.912) that (2.2.945) is valid. O
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Lemma 2.2.2. Let ¢ € {1,2}, the measurable functions p;, pjr :]a,b[—
R and the constants o € [0,1], v €]1,+o0[, B, p € R be such that the
conditions (2.2.6), (2.2.7;), (2.2.8;) and

(po, p1) € Vi0(la, b)) (2.2.37;)
are satisfied. Then there exists a number ko such that for k > kg
(pox, 1) € Vio(la, b]). (2.2.38;)

Proof. Let ¢ = 1 and vy, va, v1, var be solutions of the problems (2.2.1),
(2.2.4), (2.2.1),(2.2.51), (2.2.13),(2.2.4%), (2.2.13),(2.2.51;) respectively,
whose existence and uniqueness follow from Remark 2.2.1.

As is seen from Definition 1.1.2 of the set V1 g(]a, b[) and Remark 1.2.1,
v1(b) > 0 and vy(a) > 0. Then by virtue of Remark 1.2.5 and the inclusion
(2.2.37;),

vi(t) +va(t) >0 for a <t <bh,

hence if
c= min{vl(t) +ua(t): a<t< b},
then
¢>0. (2.2.39)

On the other hand, by Lemma 2.2.1;, there exists a number kg such that
for any k > kg

—%<WA0—W@)U:1j)mragt§b (2.2.40)

Thus for the solution v of the equation (2.2.1;), where
vg(t) = vig(t) + var(t),
the estimate
vk (t) = (v1e(t) —vi(1)) + (var(t) — va2(t)) + (va(t) + va(1))
is valid from which with regard for (2.2.39) and (2.2.40) we obtain
v(t) >0 for a<t<b.

This inequality by virtue of Lemma 1.2.2 means that the inclusion (2.2.38;)
is true. O

Consider now the boundary conditions
w(a) =0, u(b)=0 (2.2.411)
and
u(a) =0, u'(b—)=0. (2.2.415)

The following Lemma is valid.
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Lemma 2.2.3. Let i € {1,2}, the measurable functions f, p;, pjr :]a, b[—
R and the constants « € [0,1], v €]1,+oo[, B, u € R satisfy the conditions
(2.2.6), (2.2.7), (2.2.8), (2.2.37;) and

/o(pl)(s) I (% (p1))(5) ds < +o0. (2.2.42)

a

Then there exists a number ko such that for k > ko the problem (2.2.13),
(2.2.41;) has a unique Green’s function Gy, and uniformly in the interval

Ja, b

b

Jim 17N )0 [ 1609 - Gue ol ds =0, (2249
o)1) [19(GH, ) = Galt.s)) B
Jim =N /‘ = 1f(s)|ds =0,  (2.2.44)

a

where G is Green’s function of the problem (2.2.1), (2.2.41;).

Proof. By Lemma 2.2.2;, for k > kg the inclusion (2.2.38;) is satisfied. Then
as is seen from Remark 1.2.2; the inclusions (2.2.37;) and (2.2.38;) imply
the existence of the functions GG and G, respectively, where G is defined by
the equality (1.2.7), and

Y for a<s<t<b,
Gi(t,s) = vak (@) (p1x)(s) (2.2.45)
for a <t < s<b,

where vy is the solution of the problem (2.2.13), (2.2.44) and vey is that
of the problem (2.2.13), (2.2.51;) for ¢ = 1 and of the problem (2.2.13),
(2.2.55) for i = 2.

From the estimates (1.2.10;), (1.2.11;) and the equalities (2.2.9;1),
(2.2.952), (2.2.10;1), (2.2.1042) it follows the existence of constants d; and
ds, such that on the interval ]a, b] the estimates

vlk(t)</a(p1)(5) ds)_1 < dy, vzk(t)</ba(p1)(s) ds)i_2 <d

for k > ko, (2.2.46)
t

vl(t)</0'(p1)(5) ds)_1 < dy, vz(t)</ba(p1)(s) ds)i_2 <d

a



and
o) (/ (p1)()d )W <, PO ooy as) <a
for k> ko, (2.2.47)
Ul(v;l(;le)( /Ua(pl)(s) ds)“@ Z)Sdl’ O_'(“ﬁf%( a/ga(pl)(s) ds)ugdl,
as well as
var(a) 2 dz for k> ko, va(a) 2 da (2.2.48)
are valid.

Introduce now the notation wl(])( 1) = vgj)(t) — v%)(t) (1=1,2,=0,1;
k € N) and

Then as is seen from Lemma 2.2.1;,

lim wjp =0, klirr;ow}k =0 (j=1,2). (2.2.49)

k—o0

It is also clear that the equality

(Ua(p)( /‘315] Gr(t,s) —
_ (et 1>><>)/ omes) o on (Sl\'ﬂs)'d“

(s)|ds =

o(p1)(t) ) Tozr(@)o(pie)(s)  va(a)o(pi)(s)
o o9
tvor(s (t)va(s) .
+/ vap(a)o(p1r)( (a)o(p1)(s) |f(s)]ds (j=0,1) (2.2.50)

for a<t<b
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1s valid.
Let j = 0. With regard for the inequalities (2.2.18) and (2.2.46) we
obtain the estimate

/

a

var(Dvie(s)  wa(t)va(s) )
vap(a)o(Apig)(s)  vala)o(Apip)(s) |f(s)|ds <

i
Uzk

+|vz<t>|(/ta'( S (o) ds +'w2“;' Lo >|d5)]+

11— o(aplle IO
ot 2“)/0@1)(5)' (s)]ds <

< rkIZ»l_ (0’ = (p))(@) for a<t<hb,

(s)|ds +

do

a

X b |7(5)] g s)ds
a/ S 1o () (s)

and in view of the conditions (2.2.8;), (2.2.42), and (2.2.49),

b
d d d
T = Ed—; |:W1k +w2k(1+ —1/‘7(171)(5) ds) + ?1 It = o(Api)|

klim ry = 0. (2.2.51)
Having analogously estimated the second integral in (2.2.50) for j = 0,
we obtain for any k > ko

1

e 1(01u (r1)) /|Gt5 Gr(t,9)||f(s)|ds < 2rp for a<t<b

which in view of (2.2.51) implies the validity of the condition (2.2.43).
Similarly, from the equality (2.2.50) for j = 1, with regard for (2.2.18),
(2.2.46) and (2.2.47), for any k > ko we get

I (0% (p))(®) / 26(0)  Gu(t5)
o)1) T

|f(s)|ds <7 for a<t<b,

a
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where

=2t ( / o (po)(e) s / L 2o ) ds

a a

d d
X [wllk +why, + wig + wa (1-1- d—;/U(Pl)(S) dS) + ?1||1 —o(Apip)|le]-

a

By the conditions (2.2.8;), (2.2.42), and (2.2.49),

lim 7, =0
k—o0

which guarantees the validity of the condition (2.2.44). O

Lemma 2.2.4. Let i € {1,2}, the measurable functions f, p;, pjr :]a, b[—
R (j =0,1; k € N) and the constants o € [0,1], v €]1,+o0[, B,p € R
satisfy conditions (2.2.6), (2.2.7;), (2.2.8;), (2.2.37;) and

Ol 45 1161 ds < 400
/0(191)(5) L7 (0% (p1))(s) ds < +o0. (2.2.52)

a

Then there exist a constant r1 € Rt and a number ko such that for k > kg
the problem (2.2.13), (2.2.42;) has a unique Green’s function Gy, and

‘/ka(t,s)f(s) ds

<r max{‘ /% I (0®(p))(s)ds : a<t< b}x

K IFH(o T (p)(t) for a<t<b (2.2.53)
and

1 (0" (p))(1) ‘ / 0G(1,5)
o0 T

f(s)ds

<

1
HON }
< rq max ‘/712 c(p1))(s)ds: a<t<b 2.2.54
wmax{ | [ IO 2wy (2254)
for a<t<b.
Proof. In the proof of the previous lemma it has been shown that under

the conditions of that lemma the problem (2.2.13), (2.2.42;) has a unique
Green’s function Gy which is represented by the equality (2.2.45).
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Consider separately the case i = 1. First we note that in view of (2.2.12)
and (2.2.17) the inequality

t2 t2

/%dé (/fr%’f(m)(s) d) x

o I
X(/Mds) < 4o for a<t; <ty <bh (2.2.55)
I )

7 (o(p1))(s

is valid. Integrating by parts and applying (2.2.48), we get

b
0
. a
< dz max{‘/ QS) If(aa(pl))(s) ds|: a<t< b} X
[ (]) |/ vl;ﬁ ds-l—
O-Oé

Uzk
Iﬁ U“

—|—|v(]) |/

Using now the estimates (2.2.46), (2.2.55), we obtain

)(><)5 s < Edl( / o= (1) (s) d) x

ds (j=0,1) for a<t<b. (2.2.56)

o

b

—l—a/baa(pl)(s) dsa/ I§+ﬁfziil)(s)))(s) ds] <

(P1

< PRI T (p))(1) for a<t <D, (2.2.57)
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where

e[ [Ty

d <(a/ff<oap<p1>><>d) '
(/ s

[t | D)

Analogously we have

2(u—p)
"~ sup{/|Ap1k )| ds : k>k0}—|—

Uzk Apuc

v ds <
o |/ Iﬁ o (p1)) ‘ -
<HINTH e T (p)(t) for a <t <b, (2.2.58)
U1k Apuc
L@@ |y o) / (2) ‘ds <
IV (c%(p1))
<7 for a<t<b (2.2.59)
and
Uzk
D fut o) / Iﬁ o s <
<7 for a<t<b, (2.2.60)
where

b

Y = ed%[/ ‘”(pil)(s)s)dﬁ (a/boll_——a:(pl)(S) dS)l_u X

J 1o ()

X (SUP{/|Ap1k|d5 k> ko}(/aa(m)(s) ds) 2(u—F) N

b b
o o (p1)(s)
—1—/0 (pl)(s)ds/ — ds)|.
2 S LT () () )
Let us now introduce the notation

4
ds

r = max(71; 7).
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Substituting the estimates (2.2.57), (2.2.58) in (2.2.56) for j = 0, we see that
the condition (2.2.53) is valid. Taking then into account (2.2.59), (2.2.60)
in (2.2.56) for j = 1, we are convinced of the validity of (2.2.54).

For i = 2 the lemma is proved analogously. O

Lemma 2.2.5. Let ¢ € {1,2}, the measurable functions p;, pjr :]a, bj[— R
(j = 0,1; k € N) and the constants « € [0,1], v €]l,4[, S, p € R
satisfy the conditions (2.2.6), (2.2.7;), (2.2.8;), (2.2.37;). Then there exists
a number ko such that for k > ko the problem (2.2.13), (2.2.413) has «
unique Green’s function Gy for which the estimate

</ O'i(Pl)(S)' (j=0,1) for a<t,s<b, t+#s, (2.2.61)

= me) @)

is valid, where ¢’ is a constant.

‘ dek(t, 5)
dti

Proof. The existence of Green’s function under the given conditions has
been shown in Lemma 2.2.3. Similarly, by virtue of the estimate (1.2.12;)
from Remark 1.2.3,

* 702'(171/%)(5) | = or a 5 5
c ) (OF (j=0,1) f <t,s<b, t+#s,

whence with regard for the inequalities (2.2.18) and (2.2.48) follows the
validity of our lemma. [

‘ dek(t, 5)
dti

Consider now the equations

0" (1) = po(t)v(t) + pr(1)V' (L) + pa(t), (2.2.62)
0" (t) = por(t)v(t) + pir(t)v'(t) + par(t), (2.2.62)

where pa, par € Lioe(]a, b[) (k € N) and the boundary conditions

u(a) = e, ud) = e (2.2.63,)
or
u(a) = e, u'(b=) = ¢z, (2.2.63,)
and
u(a) = 1, u(b) = eop (2.2.631%)
or
u(a) = cir, u'(b=) = car, (2.2.632)

where ¢1, eip € R (I =1,2; k € N). Then the following lemma is valid.
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Lemma 2.2.6. Let ¢ € {1,2}, the measurable functions p;, pjr :]a, bj[— R
(j =0,1,2; k € N) and the constants o € [0,1], v €]1,40[, B, 4 € R
satisfy the conditions (2.2.6), (2.2.7;), (2.2.8;), (2.2.37,),

b

M I o s)ds o
/0(191)(5) L (o (p1))(s) ds < + (2.2.64)

and uniformly on the segment [a,b]

a

t

m piz(s) — p2x(s) Bl s)ds =
kl_wo J o)) I7(6%(p1))(s)d 0. (2.2.65)

Then there exists a number ko such that for k > kg:
(a) the problem (2.2.62y), (2.2.41;) has a unique solution vy, and uni-
formly on the interval ]a, b]

Tim 147 (0 T (p) (O (5(0) = () = 0, (2.2.66)

T =T e o
Jim s ) (@) =0, (2.2.67)

where U is a solution of the problem (2.2.61), (2.2.41;);
(b) the problem (2.2.62;), (2.2.63;;) has a unique solution vy, and if

thl Clp = C] (l = 1,2), (2268)
then uniformly on the interval ]a,b[ the conditions (2.2.67) and
[lim (¥(t) — (1)) = 0 (2.2.69)

are satisfied, where ¥ is a solution of the problem (2.2.62), (2.2.63;);
(c) the sequence (V)72 ,, where Uy is a solution of the problem (2.2.62y),
(2.2.41;), ((2.2.621), (2.2.63,1)), is uniformly bounded and equicontinuous.

Proof. First we prove the validity of proposition (a). It has been mentioned
in the proof of Lemma 2.2.3 that under the above-mentioned conditions the
problems (2.2.1), (2.2.41;), and (2.2.13), (2.2.41;) for k > ko have a unique
Green’s function GG and G, respectively.

Let

(1) :/G(t,s)pz(s) ds and U;(1) :/Gk(t,s)pzk(s) ds.
Then

(1) — 390 :/3]%%5?’5) (p2(5) — par(s)) ds +

a
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b
N / O AG(t, )

ot pa(s)ds (j=0,1) for a<t<b.

Taking into account the equalities (2.2.43), (2.2.44) of Lemma 2.2.3 and
the equalities (2.2.53), (2.2.54) of Lemma 2.2.4, by means of the conditions
(2.2.64), (2.2.65) we make sure that the equalities (2.2.66) and (2.2.67) are
valid.

Now we proceed to proving proposition (b). Let vy and wvg be solutions
of the problems (2.2.1), (2.2.63;) and (2.2.13), (2.2.63;1), respectively. Then

v(t) = wo(t) + / G(t, s)pa(s)ds () = vor(t) + /G(t, $)pan(s)ds
and
W00 - 50 = 0 o0+ [ LD () o) ds +

b
) A 1
+/agfé(’8)pz(s)ds (j=0,1) for a<t <,

where

Uo(t) — Uok(t) =
Uz(t) Uzk(t) Ul(t) Ulk(t)

- — — it <t<b
c1 Clg va(a) + ¢ o2(b) Cok ora(b) or a<t<

and v;, vjp (j =1,2; k > ko) are the solutions mentioned in Lemma 2.2.1;.
It follows from the given representation, Lemma 2.2.1; and the condition
(2.2.68) that uniformly in the interval ]a, b[

kILH;o (vo(t) — Uok(t)) =0

and

O =) e

Next, reasoning analogously as in proving proposition (a), we can see
that the conditions (2.2.67), (2.2.69) are valid.
The validity of proposition (¢) follows immediately from (2.2.66)
((2.2.69)) and also from
|5k(t1) - 5k(t2)| < |5k(t1) - 5(t1)| + |5k(t2) - 5(t2)| + |5(t1) - 5(t2)| <
< 2Tk = vlle + [7(t) — v(t2)],
where {1, {5 € [a,b]. O
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Remark 2.2.2. Tt is not difficult to notice that if the condition (2.1.8) is
satisfied, then for any fixed r € R the equality

i ((sup | / L) S 1o ) ) ]

k—o0 o(p1

a<t<b, z€B; }) =0 (2.2.70)
1s valid. The same is true for the set }B;,k

Lemma 2.2.7. Let ¢ € {1,2}, the measurable functions p;, pjr :]a, bj[— R
(j=0,1,2; k € N) and the constants o € [0,1], v €]1,+0[, 8, u € R sat-
isfy the conditions (2.2.6), (2.2.7;), (2.2.8;), (2.2.37;), (2.2.64) and (2.2.65).
Moreover, let continuwous linear operators g, gr : C(Ja, b)) — Lise(Ja, b)), be
such that the condition (2.1.8) is satisfied. Then for every fized r € R the
sequence (21)72,

Zk(t _akvk /thsgk l‘k()d

1s uniformly bounded and equicontinuous, where vy, is a solution of the prob-
lem (2.2.621), (2.2.41;), G}, is the Green’s function of that problem, and for
every ay € [0,7], xx €B, (k € N).

Proof. Introduce the notation

/thsgkxk() /Gts z)(s) ds

where (G is Green’s function of the problem (2.2.62), (2.2.41;).
Similarly to the proof of Lemma 1.2.4 we see that

sup {||wk||c ke N} < 400
and for any £ > 0 there exists a constant § > 0 such that for every k € IN
|wi(ty) — we(te)| < e for [ty —ts] < 6. (2.2.71)
On the other hand, from the inequality
b

50 - (0] < | [ (64009 = Gt aten) 01

a
b

+ ‘ / Gr(t,s)(gr(zr)(s) — g(zr)(s)) ds

a

_|_
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by virtue of Lemmas 2.2.3-2.2.4 and Remark 2.2.2 with all conditions sat-
isfied, we obtain

which, owing to the inequality

|2 (1) — Zr(t2)| < |Zr(t1) — wrte)| + |Zr(t2) — w(t2)| +
Flw(tz) —wi(t1)] < 2[|Zk — welle + wi(t2) — wi(ty)]
with regard for (2.2.71) and (2.2.72), implies the uniform boundedness and

equicontinuity of the sequence (23)$2,. This together with proposition (c)
of Lemma 2.2.5 proves our lemma. [

Remark 2.2.3. Lemma 2.2.7 remains valid if v is a solution of the prob-

lem (2.2.62), (2.2.63;1), xy € ]B;“,k (k €N) and

thl Clp = C] (l = 1,2).

Lemma 2.2.8. Let functions Vi € Lo (Ja, b]) and Hy € L([a,b]) (k € IV)
be such that uniformly on [a,b]
¢
lim [ Hp(s)ds =0, (2.2.73)

k—o0
a

ess sup {|Vk(t) —V@): a<t< b} —0 as k— 400, (2.2.74)

and let there exist a function n € L([a,b]) such that everywhere on the
interval a, b[

(O] < n(t) (k €1V). (2.2.75)

Then uniformly on the segment [a, b

t

klim Hi(s)Vi(s)ds = 0.

This lemma is a particular case of Lemma 2.1 from [19].

§ 2.3. PRoOF OF MAIN RESULTS
2.3.1. Proof of Theorems 2.1.1;, 2.1.2; (i = 1, 2).

Proof of Theorem 2.1.1;. From the inclusion (2.1.9), by Lemma 1.2.1 we ob-
tain (po,p1) € Vi o(la, b]), which, owing to Lemma 2.2.2 for k& > ko, implies
(pox, 1x) € Vio(la,b). From Remark 1.2.2 follows the unique solvability
of the problems (2.2.61), (2.1.2;0) and (2.2.613), (2.1.255). Denote by @, vy
and G, G}, respectively, solutions and Green’s functions of these problems.
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Then the problems (2.1.1), (2.1.2;0) and (2.1.13), (2.1.249) are equivalent,
respectively, to the equations

u(t) = Ug(u)(t) + () (2.3.1)
and
w(t) = Up(u)(t) + vx(?), (2.3.13)

where the continuous linear operators Uy, Uy @ C(Ja, b)) — C(Ja,b]) are
defined by the equalities

Ug(z)(t) = /G(t,s)g(l‘)(s) ds and Ug(x)(t) = /Gk(t,s)gk(l‘)(s) ds.

If p : [a, 8] — RT is the function mentioned in the proof of Theorem 1.1.1;,
then as is seen from that proof, there exists a constant Ag € [0, 1] such that
Uollc, —~c, < Ao- (2.3.2)

Suppose that the equation
w(t) = Up(u)(?) (2.3.101)

has a non-zero solution ugg. Not restricting the generality, we assume that

[luogllc,p =1 for k > ko, (2.3.3)
in which case ||ugz|lc < ||plle, i-e., if we introduce the notation r» = ||pl|c,
then

ugr € B for k > kg. (2.3.4)

Also, from (2.3.1gz), (2.3.3), by Lemma 2.2.7 it follows that the sequence
(uor)3>; is uniformly bounded and equicontinuous. Hence by the Arzella—
Ascoli lemma, not restricting the generality we can assume that there exists
a function ug € C(]a, b[) such that uniformly on the segment [a, b]

klim uor(t) = ug(t). (2.3.5)
It is clear from the equations (2.3.3), (2.3.5) that
lluolle,p = 1. (2.3.6)
Let us now introduce the notation

Apjr(t) = pi(t) —pjr(t) (1 =0,1,2), AG(E, s) = G(t,s) — Gil(t, s),
Agi(x)(t) = g(2)(t) — gu(z)(t) (k € ).
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For ugg, when k > kg, the representation
b
wor(t) = Ugluor)(t) + / AG(E, 8)g(uor)(s) ds +

—I—/Gk(t, $)Agr(upp)(s)ds (k€N) for a<t<b (2.3.7)

is valid. Taking into account (2.3.4), (2.3.5), Remark 2.2.2, equality the
(2.2.43) of Lemma 2.2.3 and also the equality (2.2.53) of Lemma 2.2.4 with
all conditions satisfied, and then passing in (2.3.7) to limit as k¥ — +o00, we
get

uo(t) = Uo(uo)(t)
which, with regard for (2.3.2), (2.3.6), results in the estimate

[luolle,p < 1.

But this contradicts (2.3.6). Hence our assumption is invalid and the equa-
tion (2.3.1gz) has only the zero solution, and because of its Fredholm prop-
erty the equation (2.3.1;) is uniquely solvable. The unique solvability of the
equation (2.3.1) follows from Theorem 1.1.1;.

Let w and up be respectively solutions of the equations (2.3.1) and

(2.3.13),

wr(t) = u(t) —up(t) for k> ko,

luklle, for [lukllc, > 1,

Ap = (2.3.8)
1 for ||uglle, <1,
() = Ap g (t)
and
B B b b
v(l) —vg(t - ~
pe(t) = ()/\71616() + /AGk(t, s)g(ug)(s)ds + / Gr(t, s)Agr () (s) ds.
Then for w;, the representation
wr(t) = Ug(wr)(t) + Arpr(t) for a <t <b (2.3.9)

is valid, and if » = [|p||¢, then

Uy, E}Br,lw (2310)
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In such a case, taking into account proposition (a) of Lemma 1.2.6, Remark
2.2.2, the equation (2.2.43) of Lemma 2.2.3 and also the equation (2.2.53)
of Lemma 2.2.4, we obtain

lim [lpellc = 0. (2.3.11)

On the other hand, from (2.3.9), with regard for (2.3.2), we get the

estimate

lwille,p < ardr for k> ko, (2.3.12)
where
_ llerlle.,
1= Ay
and by virtue of (2.3.11),
klim ap = 0. (2.3.13)

Suppose now that we can extract from the sequence (A;)72, a sequence
(Mg, )2_q such that A;, > 1 for m € N and

lim A, = +oo, (2.3.14)

m—00

and note that by our definition of the function wy, the inequality

Akm - ||u||C,p < ||wkm||C,p (2315)

is valid. Substituting now the inequality (2.3.12) in (2.3.15) and taking
into account (2.3.13), we can see that this contradicts (2.3.14), i.e., our
assumption is invalid, and there exists a constant A € RT such that

A <A for k> kg (2.3.16)
which, with regard for (2.3.12), yields

lim Jlwxe., = 0. (2.3.17)

Now we notice that (2.3.9) and (2.3.16) imply

. & .
lwld ()] < 77 Uo(wi)(t) + A (G=0,1) for a<t<b (23.18))
Applying the estimates (2.2.46)—(2.2.48) and the inequalities (2.2.13),
(2.2.10), we arrive at

l—ap

[Un(ee)(0)] < v lleelle (0 FH (p))(#) for a<t<b,  (23.19)

(e (p))(0) | d ,
W ‘EUO(wk)(t) < 7||wglle, for a<t<b,  (2.3.20)
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where

)
= dza/a(pl)(s) I ())(e) .

By definition of the function %y, in view of the inequality (2.1.10) and the
equalities (2.2.43), (2.2.44) of Lemma 2.2.3, we make sure that uniformly
on the interval Ja, b[

kliralofu 1(011_ﬂ (p1)) ‘/AGk (t,8)g(ur)(s)ds| =0 (2.3.21)
and
M) | [ dAG(Ls) - _
klingo PR ‘/ o g(ur)(s)ds| = 0. (2.3.22)

Just in the same way, taking into account the inclusion (2.3.10) and the
equalities (2.2.53), (2.2.54) of Lemma 2.2.4, we can see that

<

‘/ka(t, $)Agr(Ug)(s) ds

< rasup {| [ 222D 1o )y 5 s

a<t<hb, l‘EBT,k}X

o(p1)(s)

LT ()0 for a <t <D, (2.3.23)
M bi s up)(s)ds

o(p1)(t) ‘ o7 Gt 5) Agi (i) (5) ds| <

a

<r sup{‘/%[f(aa(m))(s) ds| :

a

a<t<hb, l‘E]Bryk} for a<t<b. (2.3.24)

It is clear from the equalities (2.3.21)—(2.3.24), proposition (a) of Lemma
2.2.5 and also from the condition (2.1.8) and Remark 2.2.2 that uniformly
on the interval Ja, b[

lim I~ (Ua(pl))(t)pk(t) =0 (2.3.25)

k— oo

and

PE) o B
ke I (o (p1))() = 0. (2.3.26)
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Multiplying (2.3.18g) by If_l(aa(pl))(t) and taking into consideration
(2.3.17), (2.3.19) and (2.3.25) we see that the condition (2.1.11) is valid.
Analogously, multiplying (2.3.181) by o= (p1)(¢) I/ 0 (p1)(t) and taking into
account (2.3.17), (2.3.20) and (2.3.26), we make sure that the condition
(2.1.12) is valid. O

Proof of Theorem 2.1.2;. Reasoning in the same way as in the previous proof
for the function wy(t) = u(t) — ux(t), where uy is a solution of the problem
(2.1.13), (2.1.241), using Remark 2.2.3 and proposition (b) of Lemma 2.2.6,
we get the equality (2.3.17) which is the same as the condition (2.1.15).
The proof of the condition (2.1.12) coincides completely with its proof in
Theorem 2.1.1;. O

2.3.2. Proof of Corollaries.

Proof of Corollary 2.1.1;. Tt is sufficient to show that (2.1.8) follows from
(2.1.16)—(2.1.18). Suppose to the contrary that the condition (2.1.18) is
violated. Then there exist € > 0, a sequence of positive numbers (ky,)2_,
and a sequence of functions

Ym € By, (2.3.27)

such that

5)

From (2.3.27) it follows

max{‘/t%[f(aa(pl))(s) ds| . a<t< b} > e (2.3.28)

Um () = a1y, (1) + / Gr,, (t,8)gr,, (xm)(s)ds (m eN), (2.3.29)

where z,, € C(Ja,b[) (m € N) and

0<aim <1 (meN), (2.3.30)
lzmllc <1 (meN). (2.3.31)

Introduce the notation

n(® = [ Gu (6900, (an)(s)ds (me 1)

a
and rewrite z, as follows:

b b

zm(t) = /ka(t,s)Agkm(l‘m)(s) d5+/ka(t,5)g(xm)(5) ds.

a a
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Then according to (2.1.10), (2.1.16), and (2.1.31) the inequality

EOTE / 2 MG 1.9 (1(5) + h(1)(5)) s +

/‘%Gts

is valid. By the conditions (2.1.6) and (2.1.18),

b

/Mwaa(m))(s) ds < 400

a(p1)(s)

n(s) + h(1)(s)) ds (j =0,1) (2.3.32)

a

owing to which from (2.3.32¢), in view of the equality (2.2.43) of Lemma
2.2.3 and by Lemma 2.2.5 we obtain the existence of a constant A; such
that

lmlle < Ar (m € ). (2.3.33)

Consider now the case ¢ = 1 separately. From (2.3.32;) (j = 0,1), by
Lemmas 2.2.3 and 2.2.5 and the fact that

Gla,s)=G(b,s) =0 for a<s<b
we can choose for any ¢y > 0 constants myg, a1, b1, 6, where
a<ap <b <b, é&<min(ay —a,b—1by),
such that

2 ()] < 2

1 m>mgy for a<t<a;, b <t<b,

le.,
|zm(t1)—zm(t2)|§%0, m>mg, for a<ti,ts<ai, by <t1,t2<b, (2.3.34)
and Aé < 2, where
A=sup{|7,,(t)]: a1 =6 <t<bi+6 m>mg} < +oo,
le.
2

|zm(t1)—zm(t2)|§A|t1—t2|<50, m > my (23.35)

for a3 — & <iy,ls <by+6, |t —is] <é.

The uniform boundedness and equicontinuity of the sequence (z,)oo_; fol-
lows from (2.3.33)—(2.3.35). Then by the Arzella-Ascoli lemma, not re-

stricting the generality, we assume that uniformly on the segment [a, b]

mh_r»r;o zm(t) = 2(1). (2.3.36)
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Notice now that however close may be a; from a and b1 from b, the inequality
(2.3.35) remains valid if we choose § sufficiently small. Therefore, passing in
(2.3.35) to limit, we can see that z is absolutely continuous on any segment
contained in Ja, b[, i.e.,

2 € Croe(Ja, b)) N C([a, B]). (2.3.37)

On the other hand, in view of (2.3.30), not restricting the generality, we
can assume that

lim a1, = ag,
m— 00

which together with proposition (a) of Lemma 2.2.6 implies
lim a1, (1) = agv(t) uniformly on [a,b], (2.3.38)

m—00

where ¥ is a solution of the problem (2.2.62), (2.1.2;0).
Further, taking into account (2.3.36)—(2.3.38) in (2.3.29), we conclude
that uniformly on the segment [a, ]

lim ym (1) = y(t), (2.3.39)
where
y € Cioe(Ja, b[) N C([a, b]). (2.3.40)
The same takes place in the case ¢ = 2 owing to the fact that the relations
G(a,s) =0 and %G(t,s)t:bzl for a<s<d

follow from the inequalities

|2 (t1) = 2 (t2)| < 2

5 m>mgy for a<ty,tz<a

and
€
|Zm(t1) — Zm(t2)| S A1|t1 — t2| S EO, m > My
for a1 —6< t1,t2 < b, |t1 —t2| <6
with
Ay =sup {|2,(0)] 1 a1 —§<t<b, m>mp} < oo,
and from the condition (2.3.38).
Finally, the conditions (2.1.16)—(2.1.18) and (2.3.39) imply

max{‘ /t %Iﬁ(aa(m))(s) ds|: a<t< b} <
B B §
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+max{\/ G VICT BRI

n(s) B (5 s)ds _
S/TM” (1))(5) ds || — wllc +

-I-max{‘/ ))5 18 (0% (p1))(5) ds| - a§t§b}—>0

as m — +oo.
But this contradicts (2.3.28) and proves the validity of our corollary. O

Proof of Corollary 2.1.2;. Coincides completely with that of the previous
corollary with the only difference that the functions ¥ and ¥ in (2.3.38) are
solutions of the problems (2.2.62;), (2.2.2;;) and (2.2.62), (2.1.2;), respec-
tively, where the validity of the equality (2.3.38) follows from proposition
(b) of Lemma 2.2.6. O

Proof of Corollary 2.1.3;. 1t can be easily verified that under the notation

Z gOm 7'Om t))
Z Tem (D)2 (Tim (1))

all the requirements of Theorem 2.1.1;, except for (2.1.8), are satisfied.
First we show the existence of a constant A; such that

!
sup {‘
o

To this end we choose arbitrarily k1 > ko and y; € By, . Then there exist
ay < 1, 21 € C(Ja, b)), ||z1]]c < 1 such that

b

y1(t) = a1 v, (¢) + / G, (t,8)gn, (x1)(s) ds,

a

(2.3.41)

)i@WMML:yeﬁm,k>m}§Ay (2.3.42)

where ¥y, is a solution of the problem (2.2.62), (2.1.2;p). Next,

9G, (¢, s)
()] < 174 |+/\ 2

/‘3(?155

n(s)ds +

)(s)ds for a<t<b.
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By virtue of the equality (2.2.67) of Lemma 2.2.6, there exists a constant
As such that for any k& > kg

~

ol
17 As. 2.3.43
i e e, < 2 (2.3.43)

Taking into account (2.3.43), the representation (2.2.45) of Green’s func-
tion the estimates (2.2.46)-(2.2.48), the inequality (2.2.13) and the condi-
tions (2.1.18), (2.2.20) and (2.2.21), we make sure that the estimate (2.3.42)
is valid, where

b

/\1_/\2—1—32(/011_&:(1)1 ) (/b" i )1“( (p1))(s )ds).

a

We now notice that if

i (s {32 / 8= 950D 120 )t (51

agtgb,yeﬁm}):o (2.3.44)
and
Tom (8)
Jm (SUP{ Z ‘/ e 2 17 (0% (p1))(s) / y'(n) dyds| :
Tkm (5)
agtgb,yeﬁm}):m (2.3.45)

then the condition (2.1.8) is satisfied.
Reasoning analogously to the proof of Corollary 2.1.1;, we obtain that
(2.3.44) is satisfied if for any y € Cioe(Ja, b)) N C([a, b])

nm(z | / Ponl ) 90 1)) 5o () s

k—o0

):0. (2.3.46)
On the other hand, from (2.1.23) it follows that
esssup{2|7’0m —Tkmt)|1 a§t§b}—>0 as k — +oo,
and hence for every y € Ci,.(la, b]) N C([a, b))

esssup{2|y (Tem (¢ —yTOm(t))|:a§t§b}—>0

as k — +oo. (2.3.47)
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Then (2.1.21), (2.1.22), and (2.3.47) and lemma 2.2.8 imply the validity of
the equality (2.3.46).

The validity of the equality (2.3.45) follows from the estimate (2.3.42),
the condition (2.1.23) and the inequalities

Tom (5)
‘ / o () F@ @) [ ) dyds| <
Thm (5)
[ lgon(3)] s e
< oty H
Tom (1) ;
xesssup{fiﬁ_“(a“(pl))(t)‘ / % : agtgb}x

Tkm(t)

XH i If(aa(pl))HC (m=1,...,n; keN) for a<t<b 0O

Proof of Corollary 2.1.4;. Coincides with the previous proof with the only
difference that in the inequality (2.3.42) we will assume that y € B}, , i.e.,
the validity of (2.3.43) with ¥ as a solution of the problem (2.1.4), (2.1. QZk)
will be shown by means of proposition (b) of Lemma 2.2.6. O

Proof of Corollary 2.1.5;. It 1s not difficult to notice that the conditions
(2.1.18), (2.1.25) yield

b |g0m(5)| s s)as (o.¢] m = n
o) F ) )ds < +oe (m=1n) (23.48)

whence, owing to the fact that 8 < p, together with (2.1.24), we obtain the
validity of the conditions (2.1.20), (2.1.21). That is, as it has been shown in
the proof of Lemma 2.1.3;, all the requirements of Theorem 2.1.1;, except
for (2.1.8), are satisfied.

On the other hand, the condition (2.1.8) under the notation (2.3.41)
follows from the conditions (2.3.44), (2.3.45). Repeating now word by word
the proof of Corollary 2.1.3;, by the condition (2.1.26) we can see that
(2.3.42) and (2.3.44) are valid.

Choosing p1 > p so as to satisfy

1—ap
L=

<8,

/’L1<1a
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analogously to the inequalities (2.2.15),(2.2.16) we obtain

b

it < Creren(50) ) >

a

x (/ba (p1)(s) ds)l_m (/baa(pl)(s) ds)m_u < 40.

From this and also from the condition (2.1.26), owing to the absolute
continuity of the Lebesgue integral it follows that

Tom (1)

esssup{;‘m;/(t) %ds : a§t§b}—>0 (2.3.49)

for k — +oo.

Then the validity of the equality (2.3.45) follows from the conditions (2.3.48),
(2.3.49) and also from the estimate (2.3.42) and the inequality

Tom ()

‘/MIQ(U“(PO)(S) / Y (n) dyds

<

a(p)(s) *

Tem (8)

7|g0m(5) Ca s)ds x
<| [ Bl o )y

Tom (1)

a(p1)(s) ,
Xesssup{‘mm/(t)mds : agtgb}x
XHO_E;) fﬁ(aa(pl))HC (m=1,...,n; keN). 0O

Proof of Corollary 2.1.6;. Coincides with the previous proof with the only
difference that in the inequality (2.3.42) it will be assumed that y € B, , i.e.,
the validity of the inequality (2.3.43) with ¥} as a solution of the problem
(2.1.41), (2.1.24) will be shown by means of proposition (b) of Lemma
2.2.6. O

Proof of Corollary 2.1.7; (2.1.8;). Tt is easily seen that for any « € [0, 1] and
v > 1, by conditions (2.1.28)—(2.1.32) ((2.1.28)—(2.1.32), (2.1.14)), all the
requirements of Corollary (2.1.5;) ((2.1.6;)) are satisfied for p; =0, pjr =0
(j=0,1; k € N), n = 1, whence it follows that our corollary is valid. O
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