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Abstract. The present investigation is stimulated by the works [1], [2]

and [3] in which the authors study oscillatory properties of half-linear ordi-

nary di�erential equations, of the so-called P -Laplacian. Here we consider

its two-dimensional version. Moreover, it turns out that the fundamentals

of the P -Laplacian theory can be successfully involved in a more general

scheme which we call the theory of connected pairs. We will see that it

contains, on the one hand, the notion of analyticity and, on the other hand,

it allows one to apply a very important transformation of the analysis, the

Legendre transformation to the investigation of the P -Laplacian.
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reziume. Cinamdebare gamokvlevas stimuli misces [1], [2], [3] da naS-

romebma, romlebSic SesCavlilia naxevradCrPivi hveulebrivi diPeran-

cialuri gantolebebis, e.C. P -laplasianis rxevadi Tvisebebi. aq ganx-

ilulia misi organzomilebiani varianti. uPro metic, aGmohnda, rom

P -laplasianis Teoriis saPuZvlebi CarmatebiT SeiZleba iqnas harTuli

uPro zogad sqemaSi, romelsac hven vuCodebT bmul CKvilTa Teorias.

naSromSi nahvenebia, rom es Teoria erTis mxriv moicavs analizuro-

bis cnebas, xolo meores mxriv saSualebas iZleva analizis erTerTi

umniSvnelovanesi gardaqmna { lejandris gardaqmna gamoKenebuli iqnas

P -laplasianis SesasCavlad.
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1. General Statements

Let G be a connected domain in R

n

. In what follows, we will consider

a pair (u; v) of twice di�erentiable real functions de�ned on G and also a

continuous and almost everywhere di�erentiable function T which maps R

n

into R

n

.

De�nition 1.1. A pair of functions (u; v) is said to be T -connected or,

simply, connected if in the domain G the condition

u

0

= T (v

0

) (1.1)

is ful�lled. The latter means that the diagram

-

�

�

��

R

n

R

n

G

u

0

v

0

T

@

@

@I

is commutative.

Sometimes we will say that the pair (u; v) is T -subordinate. For such a

pair the following relations are valid:

u

00

= T

0

(v

0

);

D

u

= J

T

(v

0

)D

v

;

(1.2)

where J

T

is the Jacobian of the mapping T , and D

u

and D

v

are the deter-

minants of the matrices u

00

and v

00

, respectively.

We will consider the T -connected pairs such that on the whole domainG

D

u

6= 0 (1.3)

and J

T

is de�ned everywhere. Then in the entire domain G we will have

J

T

6= 0; D

v

6= 0: (1.4)

Let now � = u

0

(x). Since D

u

6= 0 on G, by virtue of the well-known

theorem on the local isomorphism, on some neighborhood � of the point x

there exists an inverse to � = u

0

(x) mapping x = F (�). De�ne on the set

u

0

(�) the function

!(�) = (xj�)� u(x); (#)

where ( j ) is the inner product in R

n

. Since x = F (�), the function !(�) is,

in fact, is a function of � only. Further we have

@!(�)

@�

i

=

n

X

k=1

@x

k

@�

i

�

k

+ x

i

�

n

X

k=1

@u(x)

@x

k

@x

k

@�

i

:
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Since

@!(�)

@�

i

= �

k

, we obtain

@!(�)

@�

i

= x

i

, i.e., x = !

0

(�), and it follows from

(#) that u(x) + !(�) = (xj�).

Consequently, every point of the domain G has a neighborhood � such

that one can de�ne on u

0

(�) a real function ! such that

� = u

0

(x)

x = !

0

(�); (1.5)

u(x) + !(�) = (xj�)

for every x 2 � and � 2 u

0

(�). The triplet of relations (1.5) is called the

Legendre transformation.

According to (1.4), since D

v

6= 0 on G, just the same can be said about

the function v and its Legendre transformation

� = v

0

(x);

x = 	

0

(�); (1.6)

v(x) + 	(�) = (xj�)

for every x 2 � and � 2 v

0

(�). Determine now a new function w by

w = ! � T: (1.7)

Hence for every point � 2 v

0

(�) we have

w(�) = !(T (�)):

In this connection it is useful to comprehend the commutative diagrams

(1.8)

-

�

�

��

v

0

(�) u

0

(�)

�

u

0

v

0

T

@

@

@I

�

�

�

��

v

0

(�) u

0

(�)

�

!

0

	

0

T

�1

@

@

@I

According to (1.7), for the derivative of the function w we have w

0

=

!

0

(T )T

0

, on the one hand, and according to (1.1), (1.2) and (1.6) we get on

the other hand

� = T (�) (1.9)

for every

x = !

0

(�) = 	

0

(�) (1.10)

which �nally gives for the derivative of w a very signi�cant linear system:

for every point � 2 v

0

(�),

w

0

(�) = 	

0

(�)T

0

(�): (1.11)
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Let us throw the light on the meaning of the relation (1.11). On the left

there is a linear functional de�ned by the vector w

0

(�) and on the right the

composition of the operator T

0

(�) and the vector 	

0

(�). Write this equality

at an arbitrary point x as follows:

�

w

0

(�)jx

�

=

�

	

0

(�)jT

0

(�)x

�

=

�

T

0

�

(�)	

0

(�)jx

�

;

where T

0

�

is the operator conjugate to T

0

. Since the above equality is valid

at every point x, we obtain the linear equation

w

0

(�) = T

0

�

(�)	

0

(�):

This is the main idea of the local linearization of an equation.

All the above-said we formulate in the following

Proposition 1.1. Let for a T -connected pair (u; v) the condition (1:3) be

ful�lled on G. Then each point of G has a neighborhood � such that the

conditions (1:4), (1:5), (1:6), (1:9), (1:10) and (1:11) are ful�lled.

Now let us make sure that Proposition 1.1 is inversible. Namely, the

proposition below is valid.

Proposition 1.2. In the domain 
 of the space R

n

let the pair of functions

(w;	) satisfy the condition (1:11) and let there be given a mapping T of the

space R

n

into R

n

such that in the entire domain 
 we have J

T

6= 0 and

D

	

6= 0. Then every point of the domain 
 possesses a neighborhood � in

which the diagrams

(1.12)

�

�

T (�)

	

00

(�)

!

0

	

0

T

�1

�

�

�	

@

@

@R

-

�

�

��

�

T (�)

	

0

(�)

u

0

v

0

T

@

@

@I

are commutative.

The function ! appearing in one of the diagrams is de�ned on T (�) by

the formula

!(�) = w(T

�1

(�)) (1.13)

and the functions u and v being the Legendre transformation of the functions

! and 	, respectively, compose a T -connected pair in the domain 	

0

(�).

Proof. From (1:13) we have that w(�) = !(�) = !(T (�)) for � = T

�1

(�),

� = T (�), where respectively � 2 �, � 2 T (�). Di�erentiating the function

w, we obtain w

0

(�) = !

0

(T (�)) T

0

(�). Now from (1:11) it follows that

(	

0

(�) � !

0

(T (�))) T

0

(�) = 0. By the condition of the theorem, since

det J

T

6= 0 on G, for every � 2 � we have 	

0

(�) = !

0

(�). This means that
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for the pair (u; v), which is the Legendre transformation of the pair (!;	),

the relation u

0

= T (v

0

) is valid, i.e., the pair (u; v) is T -connected.

Remark 1.1. Thus, if the T -connectedness of the pair (u; v) is de�ned by

the nonlinear relation u

0

= T (v

0

), then the pair of its Legendre transfor-

mations (!; 	), or more exactly (w;	), is linearly connected and w

0

(�) =

	

0

(�)T

0

(�). This property of T -connected pairs in the case where D

u

6= 0,

is the most remarkable and basic property.

Remark 1.2. If in the �rst proposition the mapping u

0

is a homeomor-

phism, then the functions ! and 	 will be de�ned on the entire u

0

(�) and

v

0

(�), respectively. The same can be said about the second proposition: if

	 and T are homeomorphisms, then the Legendre transformations will be

de�ned on the entire domain.

In the sequel, we will be engaged with the special type of connectedness,

namely

T = OF; (1.14)

where F is a de�ned on R

n

twice continuously di�erentiable function with

values from R, and O is an orthogonal operator in R

n

.

2. Connected Pairs in R

2

Consider the case n = 2, T = OF

0

, where

O =

�

0 1

�1 0

�

: (2.1)

Consequently,

T =

�

F

�

�F

�

�

: (2.2)

In what follows, F

�

and F

�

will denote partial derivatives in the �rst and

second arguments, respectively. For the sake of convenience, these functions

will be often denoted by corresponding subscripts. To denote vectors from

R

2

, the use will be made of the conventional notation (x; y), (�; �), �; � and

so on.

Let (u; v) be a T -connected pair de�ned in the domain G. Taking into

account the above-said and the relations (2.1) and (2.2), the equation (1.1)

takes the form

u

x

= F

�

(v

x

; v

y

);

u

y

= �F

�

(v

x

; v

y

):

(2.3)

For the function v de�ned in the domain G the equivalent condition must

be the one which would satisfy the equation

@

@x

F

�

(v

x

; v

y

) +

@

@y

F

�

(v

x

; v

y

) = 0 (2.4)
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and be represented in the form of the curvilinear integral

u(x; y) =

(x;y)

Z

F

�

(v

x

; v

y

)dx� F

�

(v

x

; v

y

)dy +C: (2.5)

Let a de�ned in the domain G twice continuously di�erentiable function

v be continuous on the closure of the domain G, on its boundary � (G =

GU�) coincide with the preassigned continuous function f and minimize

the functional

I(v) =

Z

G

F (v

x

; v

y

)dxdy: (2.6)

Then it satis�es the equation (2.4) and hence together with the function u

de�ned by the formula (2.5) forms the T -connected pair (u; v). The equation

(2.4) is the well-known Euler equation for the functional (2.6).

The equation (2.4) can be expressed in the form

F

��

(v

x

; v

y

)v

xx

+ 2F

��

(v

x

; v

y

)v

xy

+ F

��

(v

x

; v

y

)v

yy

= 0; (2.7)

or more precisely

TrF

00

(v

0

)v

00

= 0: (2.8)

It represents the so-called quasi-linear partial di�erential equation.

Now, just as in Section 1, the function u is required to satisfy the condi-

tion (1.3) on the entire plane domain G. Then, as it has been shown, every

point from G has a neighborhood � such that the conditions (1.5) and (1.6)

are ful�lled. It is advantageous here to write them in conventional notation,

i.e., to express them in the form

� = u

x

(x; y); � = v

x

(x; y);

� = u

y

(x; y); � = v

y

(x; y); (2.9)

x = !

�

(�; �); x = 	

�

(�; �);

y = !

�

(�; �); y = 	

�

(�; �);

u(x; y) + !(�; �) = x� + y�; v(x; y) + 	(�; �) = x�+ y�

for every point (x; y) 2 �, (�; �) 2 u

0

(�) and (�; �) 2 v

0

(�). According to

(1.7), the function w must be of the form

w(�; �) = !

�

F

�

(�; �)� F

�

(�; �)

�

: (2.10)

Clearly, the diagrams (1.8) will have the same form and therefore we do not

draw them here. As for (1.9), in the just accepted notation we will have

� = F

�

(�; �); (2.11)

� = �F

�

(�; �)
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for every point (�; �) 2 v

0

(�). Similarly, for (1.10) we get

x = !

�

(�; �) = 	

�

(�; �);

y = !

�

(�; �) = 	

�

(�; �): (2.12)

Finally, the basic equation (1.11) will take the form

w

�

(�; �) = F

��

(�; �)	

�

(�; �)� F

��

(�; �)	

�

(�; �);

w

�

(�; �) = F

��

(�; �)	

�

(�; �) � F

��

(�; �)	

�

(�; �): (2.13)

Suppose �rst that the function F is thrice di�erentiable. Then from

(2.13) and due to the fact that w

��

= w

��

, we obtain that 	 satis�es the

linear second order di�erential equation:

F

��

(�; �)	

��

(�; �) � 2F

��

(�; �)	

��

(�; �) + F

��

(�; �)	

��

(�; �) = 0:(2.14)

The fact that the same equation can be obtained directly from (2.7) by ap-

plying the Legendre transformation is worth mentioning. Indeed, according

to (2.9), 	

0

(v

0

) = id which implies

	

00

(�; �)v

00

(x; y) = I;

or

v

00

(x; y) =

�

	

00

(�; �)

�

�1

:

Thus we obtain

v

xx

= [D

	

]

�1

	

��

; v

yy

= [D

	

]

�1

	

��

; v

xy

= �[D

	

]

�1

	

��

: (2.15)

If we take into consideration that by our assumption D

	

6= 0, then

applying to (2.7) the Legendre transformation, we obtain exactly (2.14)

which will be valid on the entire v

0

(�).

Before elucidating the meaning of linear equations (2.13) we brie
y recall

the following: let in some domain 
 � R

2

a positive de�nite matrix

A =

�

a b

b c

�

; (2.16)

D = ac� b

2

> 0 (2.17)

be given. The elements of the matrix are continuously di�erentiable in the

domain 
, and D > 0 in the same domain. The di�erential operator

a(�; �)

@

2

@�

2

+ 2b(�; �)

@

2

@�@�

+ c(�; �)

@

2

@�

2

(2.18)

de�ned in 
 is naturally connected with the quadratic form of the matrix A

aX

2

+ 2bXY + cY

2

: (2.19)
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The problem is to �nd a (w;	) transformation of the variable and to reduce

the operator (2.19) to the normal type

e

A =

�

a o

o a

�

:

The fact that for (2.19) we have D > 0 means its ellipticity. Moreover, it is

well-known that the problem of �nding an unknown pair of functions (w;	)

is reduced to the investigation of the so-called system of Beltrami equations

in the domain 
:

w

�

= D

�1

(�b	

�

� c	

�

);

w

�

= D

�1

(a	

�

+ b	

�

);

(2.20)

which in its turn is equivalent to the study of the second order equation

with respect to 	 in the domain 
:

@

@�

h

D

�1

(a	

�

+ b	

�

)

i

+

@

@�

h

D

�1

(b	

�

+ c	

�

)

i

: (2.21)

Take now as A the matrix of the type

A =

1

p

D

F

�

F

��

�F

��

�F

��

F

��

�

: (2.22)

Obviously, for every point (�; �) 2 


D

F

= F

��

(�; �)F

��

(�; �)� F

2

��

(�; �) > 0 (2.23)

and the corresponding Beltrami's system has the form (2.13), while the

equivalent second order equation takes the form (2.14).

Consequently, with the twice continuously di�erentiable function F from

R

2

in R are associated: on the one hand, the functional I(v) from (2.6)

de�ned in the domain G, and on the other hand, the matrix A from (2.22)

de�ned in the domain 
 and satisfying (2.23). The investigation of the

former is reduced directly to that of the T -connected pair (u; v) with T =

OF

0

, while to study the latter we use the pair of functions (!;	) which

is obtained by the Legendre transformation of the pair (u; v). If in the

�rst case we deal with a second order elliptic quasi-linear equation (2.7), in

the second case we are concerned with a second order elliptic quasi-linear

partial di�erential equation (equation (2.14)). Thus the investigation of the

functional I(v) is reduced to that of the matrix A, and vice versa. The

basic problem in both cases consists in �nding a function v (respectively 	)

de�ned in G (respectively in 
) such that v

0

and 	

0

realize homeomorphic

embeddings of the domains G and 
, respectively.
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3. The P -Laplacian

Again, we will deal with the T -connected pair (u; v) with T = OF

0

de�ned in the two-dimensional domain G. Consider the function of the

type

F (�; �) = (p + 1)

�1

(�

2

+ �

2

)

(p+1)=2

; (3.1)

(�; �) 2 R

2

, and the parameter p > 0. We have

F

�

(�; �) = (�

2

+ �

2

)

(p�1)=2

�;

F

�

(�; �) = (�

2

+ �

2

)

(p�1)=2

�; (3.2)

F

��

(�; �) = (p � 1)(�

2

+ �

2

)

(p�3)=2

��;

F

��

(�; �) = (�

2

+ �

2

)

(p�3)=2

(p�

2

+ �

2

);

F

��

(�; �) = (�

2

+ �

2

)

(p�3)=2

(�

2

+ p�

2

);

D

F

= p(�

2

+ �

2

)

(p�1)

:

The matrix (2.2) considered in the previous section has the form

A

p

=

�

p

1=2

(�

2

+ �

2

)

�

�1

�

�

2

+ p�

2

(1� p)��

(1� p)�� �

2

+ p�

2

�

: (3.3)

Since p > 0, F is continuous everywhere in R

2

, and the mapping F

0

=

(F

�

; F

�

) from Rnf0g into R

2

for p > 0 can be continuously extended to the

entire domain, and F

00

(except at zero) is in�nitely di�erentiable. D

F

is

just the same. Moreover, according to (3.2), since D

F

> 0, the considered

in Section 2 equations in R

2

nf0g belong to the elliptic type. Introduce the

notation

!

x = (x; y),

!

� = (�; �),

~

� = (�; �), (x

2

+ y

2

)

0;5

= j

!

xj and F

0

= 	

p

.

Thus for every

~

� 2 R

2

we have

F (

~

�) = (p+ 1)

�1

j

~

�j

(p+1)

; (3.4)

F

0

(

~

�) = 	

p

(

~

�) = j

~

�j

(p�1)

~

�: (3.5)

Proposition 3.1. For the mapping 	

p

: R

2

! R

2

the following is valid:

for every p > 0, q > 0,

	

p

	

q

= 	

pq

; (3.6)

the mapping 	

p

is a homeomorphism and its inverse is given by the formula

	

�1

p

(

~

�) = 	

1=p

(

~

�) = �

0

(�); (3.7)

where

�(

~

�) =

p

p+ 1

j

~

�j

p+1

p

: (3.8)
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The mapping 	

p

is permutable with any orthogonal operator O,

O	

p

= 	

p

O: (3.9)

Proof. We have

	

p

	

q

(

~

�)=	

p

(	

q

(

~

�))= j	

q

(

~

�)j

(p�1)

	

q

(

~

�)=k

~

�k

(q�1)

j

~

�j

(q�1)

j

~

�j

(p�1)

~

�=

= j

~

�j

(q�1)(p�1)

j

~

�j

(p�1)

j

~

�j

(q�1)

~

�=j

~

�j

(pq�1)

~

�=	

pq

(

~

�):

It is clear that 	

i

= id. Therefore 	

�1

p

= 	

1=p

. Since 	

1=p

(

~

�) = j

~

�j

(1�p)=p

~

�

and p > 0, the mapping 	

�1

p

= 	

1=p

, just as 	

p

, can be continuously

extended to the entire R

2

, and hence 	

p

is the homeomorphism, and its

inverse is 	

1=p

.

Consider now the function �(

~

�) = p(p + 1)

�1

j

~

�j

(p+1)=p

. We can easily

see that �

0

(

~

�) = 	

1=p

(

~

�). Finally we prove that 	

p

is permutable with any

orthogonal operator. Indeed,

	

p

O(

~

�) = 	

p

(O

~

�) = jO

~

�j

(p�1)

O

~

� = j

~

�j

(p�1)

O

~

� =

= Oj

~

�j

(p�1)

~

� = O	

p

(

~

�): �

Consequently we have that if the functions F and � are de�ned as

F (

~

�) = (p + 1)

�1

j

~

�j

(p+1)

and �(

~

�) = p(p+ 1)

�1

j

~

�j

(p+1)=p

; (3.10)

then the mappings

F

0

(

~

�)=	

p

(

~

�)= j

~

�j

(p�1)

~

� and �

0

(

~

�)=	

1=p

(

~

�)= j

~

�j

(p�1)=p

~

� (3.11)

are inverse to each other homeomorphisms. It should be noted that p

0

= p+1

and q

0

= (p+ 1)=p are the conjugate parameters

1=p

0

+ 1=q

0

= 1: (3.12)

Owing to certain reasons, for the pair (u; v) instead of speaking about

their T = OF

0

connectedness, connectedness or subordination, we will speak

about their P -connectedness, connectedness and subordination. Hence, in

accordance with Sections 1 and 2, the pair of functions (u; v) is called P -

connected if for every point (x; y) 2 G there take place the equalities

u

x

= (v

2

x

+ v

2

y

)

(p�1)=2

v

y

;

u

y

= �(v

2

x

+ v

2

y

)

(p�1)=2

v

x

;

(3.13)

the functional (2.6) has the form

I(v) = (p+ 1)

�1

Z

G

(v

2

x

+ v

2

y

)

(p+1)=2

dxdy (3.14)
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and the corresponding second order quasi-linear equation (2.7) is written as

(v

2

x

+ v

2

y

)

(p�3)=2

�

(v

2

x

+ pv

2

x

)v

xx

+

+2(p� 1)v

x

v

y

v

xy

+ (v

2

x

+ pv

2

y

)v

yy

�

= 0: (3.15)

Let us now consider such P -connected pairs (u; v) for which in the entire

domain G we have D

u

6= 0. For such a pair (u; v), in the corresponding

domain � under the corresponding Legendre transformations of (!;	) and

hence of (w;	) the basic equations (2.13) and (2.14) will take the form

w

�

(�; �)=(�

2

+�

2

)

(p�3)=2

�

(p�1)��	

�

(�; �)�(�

2

+p�

2

)	

�

(�; �)

�

;

w

�

(�; �)=(�

2

+�

2

)

(p�3)=2

�

(�

2

+p�

2

)	

�

(�; �)�(p�1)��	

�

(�; �)

�

(3.16)

and

(�

2

+ �

2

)

(p�3)=2

�

(�

2

+ p�

2

)	

��

�

�2(p� 1)��	

��

+ (�

2

+ p�

2

)	

��

�

= 0; (3.17)

and the corresponding matrix A, as is noted above, is of the form (3.3).

It is notable that I-connectedness of the pair (u; v) means that

u

x

= v

y

;

u

y

= �v

y

;

i.e., the pair (u; v) in the domain G is analytic. In other words, I-connec-

tedness is equivalent to the Cauchy-Riemann conditions, and the functional

I(v) for P = 1 coincides with the well-known Dirichlet integral

I(v) = 1=2

Z

G

(v

2

x

+ v

2

y

)dxdy;

while the above-given quasi-linear partial di�erential equation of the second

order is none other than the Laplace equation

�v = v

xx

+ v

yy

= 0:

For the case p = 1, the same can be said about the formulas (3.16) and

(3.17); the former coincides again with the Cauchy-Riemann conditions and

the latter with the Laplace equation. As for the matrix A

p

for p = 1, it is

easy to see that it is unique.

Get again back to the quasi-linear di�erential equation written in the

form (2.4):

@

@x

h

�

v

2

x

+ v

2

y

�

(p�1)=2

v

x

i

+

@

@y

h

�

v

2

x

+ v

2

y

�

(p�1)=2

v

y

i

= 0 (3.18)

or, what comes to the same thing

Tr

�

jv

0

j

(p�1)

v

0

�

0

= 0 (3.19)
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and moreover,

�

p

v = div

�

j gradvj

(p�1)

gradv

�

= 0: (3.20)

This equation is known as the P -Laplace equation and the corresponding

operator �

p

is called the P -Laplacian.

Proposition 3.2. Let (u; v) be a P -connected pair in the domain G. Then

the pair (u; v) is 1=p-connected. Hence along with �

p

v = 0 we have also

�

1=p

u= 0.

Proof. Since the pair (u; v) is P -subordinated, we have u

0

= O	

p

(v

0

). By

Proposition 3.1, 	

1=p

(u

0

) = 	

1=p

(O	

p

(v

0

)) = O	

1=p

(	

p

(v

0

)) = O	

1

(v

0

) =

Ov

0

, i.e., v

0

= O

�1

	

1=p

(u

0

). This yields

v

x

= �(u

2

x

+ u

2

y

)

(1�p)=p

u

y

;

v

y

= �(u

2

x

+ u

2

y

)

(1�p)=p

u

x

:

(3.21)

This in its turn means that the pair (�v; u) is already 1=p-subordinated, the

corresponding functional and the di�erential equation will have the form

I(u) = p(p + 1)

�1

Z

G

(u

2

x

+ u

2

y

)

(p+1)=2

dxdy; (3.22)

(u

2

x

+ u

2

y

)

(p�1)=2

�

(u

2

y

+ 1=pu

2

x

)u

xx

+

+2(1� p)p

�1

u

x

u

y

u

xy

+ (u

2

x

+ 1=pu

2

y

)

�

= 0 (3.23)

and this in fact means that �

1=p

u = 0.

It is not di�cult to note that when considering the P -connected pair

(u; v) and the 1=p-connected pair (�v; u), there appear by Proposition 3.2

the following functions:

F (�; �) = (p+1)

�1

(�

2

+�

2

)

(p+1)=2

; �(�; �) = p(p+1)

�1

(�

2

+�

2

)

(p+1)=2p

with the corresponding functionals I(u) and I(v)

I(u) = p(p+ 1)

�1

Z

G

ju

0

j

(p+1)=2p

dxdy; I(v) = (p + 1)

Z

G

jv

0

j

(p+1)=2p

dxdy;

where the parameters p

0

= p+1 and q

0

= q+1 are conjugate: 1=p

0

+1=q

0

= 1,

F and � are the Legendre transformations of each other. Indeed, since

F

0

= 	

p

, �

0

=  

1=p

and 	

p

	

1=p

= id, it remains only to show that

F (

!

x) + �(

~

�) = (

!

x j

~

�) (3.24)

or that

(p+ 1)

�1

j

!

x j

(p+1)

+ p(p+ 1)

�1

j

~

�j

(p+1)=p

= (

!

x j

~

�):

But since

~

� = F

0

(

!

x) = j

!

x j

(p�1)

!

x , this yields

(p+ 1)

�1

j

!

x j

(p+1)

+ p(p+ 1)

�1

j

!

x j

(p�1)(p+1)=p

j

!

x j

(p+1)=p

= (

!

x j

!

x)j

!

xj

(p�1)

;
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i.e., j

!

x j

(p+1)

= j

!

x j

(p+1)

.

Turn now to the matrix A

p

de�ned by the formula (3.3). The relation

(3.6) points to the fact that for such matrices the multiplicative law

A

p

A

q

= A

pq

(3.25)

should be ful�lled. Indeed,

p

�1=2

(x

2

+ y

2

)

�

x

2

+ py

2

(1 � p)xy

(1� p)xy y

2

+ px

2

�

q

�1=2

(x

2

+ y

2

)

�1

�

�

�

x

2

+qy

2

(1�q)xy

(1�q)xy y

2

+qx

2

�

=(pq)

�1=2

(x

2

+y

2

)

�1

�

x

2

+pqy

2

(1�pq)xy

(1�pq)xy y

2

+pqx

2

�

which proves (3.25).
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