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In [13,14] on the basis of methods of oscillation theory for ordinary differential equa-
tions (see [1–12,15–19]) and references quoted therein) oscillatory properties of solutions
to higher order linear hyperbolic equations are studied. In the present paper, which is
sequel to [13,14], in the half strip D = R+ × [0, b] the hyperbolic equation

∂m+nu

∂xm∂yn
= p0(x, y)u+ p(x)

∂nu

∂yn
(1)

is considered, for which the problem on existence of oscillatory solutions satisfying the
boundary conditions

∂ku(x, y)

∂yk

∣

∣

∣

y=ib

= 0 (k = 0, . . . , ni − 1; i = 0, 1) (2)

is studied. Here m ≥ 2 and n ≥ 2, n0 ∈
{

1, . . . ,
[

n/2
]}

, n1 = n− n0,

p0 ∈ L
2
loc(D), p ∈ L2

loc(R+).

The following notation will be used in the sequel.
R is the set of real numbers, R+ = [0,+∞).
[z] is the integral part of z ∈ R.
Hk([0, b]) is the space of functions z ∈ L2([0, T ]) having the generalized derivatives

z(i) ∈ L2([0, T ]) (i = 1, . . . , k).
L2

loc
(D) is the space of locally square integrable measurable functions z : D→ R.

Hk,l

loc
(D) is the space of functions z ∈ L2

loc
(D), having the generalized derivatives

∂i+jz

∂xi∂yj ∈ L
2
loc

(D) (i = 0, . . . ,m; j = 0, . . . , n).

By a solution of equation (1) we understand a function u ∈ Hm,n

loc
(D) satisfying

equation (1) almost everywhere in D.
A solution u ∈ Hm,n

loc
(D) of equation (1) satisfying conditions (2) will be called a

solution of problem (1), (2).

Definition 1. A function u ∈ Hm,0
loc

(Db) will be called a generalized solution of equa-

tion (1) if it satisfies the integral equality

(−1)n

+∞
∫

0

b
∫

0

∂mu(s, t)

∂sm

∂nv(s, t)

∂tn
ds dt

=

+∞
∫

0

b
∫

0

(

p0(s, t)u(s, t)v(s, t) + (−1)np2(s)u(s, t)
∂nv(s, t)

∂tn

)

ds dt
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for every smooth compactly supported in (0,+∞)× (0, b) function v.

A generalized solution u ∈ Hm,n1

loc
(D) of equation (1) satisfying conditions (2) will be

called a generalized solution of problem (1), (2).

Definition 2. A nontrivial solution u of problem (1),(2) is said to be oscillatory if
for every x0 > 0 it changes its sign in the half strip (x0,+∞) × (0, ω). Otherwise, u is
said to be nonoscillatory.

Definition 3. Problem (1),(2) has property A if every nontrivial generalized solution
of this problem for m even is oscillatory and for m odd is either oscillatory or satisfies
the condition

lim
x→+∞

∂ju(x, y)

∂xj
= 0 for 0 < y < b (j = 0, . . . ,m− 1). (3)

Definition 4. Problem (1),(2) has property B if every nonoscillatory generalized so-
lution of this problem for m even satisfies either (3) or the condition

lim
x→+∞

∣

∣

∣

∂ju(x, y)

∂xj

∣

∣

∣
= +∞ for 0 < y < b (j = 0, . . . ,m− 1), (4)

and for m odd satisfies (4).

Lemma 1. Let x0 ∈ R+, n∗ ∈ {1, . . . , n}, ϕj ∈ Hn∗([0, b]) (j = 0, . . . , m − 1), and

let for every j ∈ {0, . . . ,m− 1} the equalities

ϕ
(k)
j

(0) = 0 (k = 0, . . . , n0 − 1), ϕ
(k)
j

(b) = 0 (k = 0, . . . , n1 − 1) (5)

hold. Then problem (1), (2) has a unique generalized solution u ∈ Hm,n∗

loc
(D) satisfying

the initial conditions

∂ju(x, y)

∂xj

∣

∣

∣

x=x0

= ϕj(y) for 0 ≤ y ≤ b (j = 0, . . . ,m− 1). (6)

Proof. Let u be a generalized solution of problem (1),(2). Then almost for every x ∈ R+

and for every y ∈ [0, b] the equality

∂mu(x, y)

∂xm
= p(x)u(x, y) +

b
∫

0

g(y, t)p0(x, t)u(x, t) dt (7)

holds, where g is a Green’s function of the boundary value problem

z(n) = 0; z(k)(0) = 0 (k = 0, . . . , n0 − 1), z(k)(b) = 0 (k = 0, . . . , n1 − 1).

By conditions (6), we have

u(x, y) =

m−1
∑

j=0

cj(x, x0)ϕj(y) +

x
∫

x0

b
∫

0

cm−1(x, s)g(y, t)p0(s, t)u(s, t) ds dt, (8)

where for every s ∈ [0,+∞) the function cj(·, s) is a solution of the Cauchy problem for
the ordinary differential equation

dmz

dxm
= p(x)z; z(j)(s) = δij (j = 0, . . . ,m− 1)

and δij is Kronecker’s symbol.
In view of (5) it is clear that a continuous solution u : D → R of equation (8) belongs

to Hm,n∗

loc
(D) and is a generalized solution of problem (1),(2),(6). Consequently integral



149

equation (8) is equivalent to problem (1),(2),(6). On the other hand the unique solvability
of equation (8) can be easily proved applying the method of successive approximations.

As it was noted above an arbitrary generalized solution of problem (1),(2) is a solution
of integro–differential equation (7). Therefore Lemmas 2.5 and 2.9 from [13] imply

Lemma 2. Let

(−1)m+n1p0(x, y) ≥ 0, (−1)mp(x) ≥ 0 for (x, y) ∈ D,

and u be a nonoscillatory generalized solution of problem (1), (2) satisfying condition

(3). Then

(−1)j ∂
ju(x, y)

∂xj
u(x, y) ≥ 0 for (x, y) ∈ D (j = 0, . . . ,m). (9)

Theorem 1. Let

(−1)n1p0(x, y) ≤ 0, p(x) ≥ 0 for (x, y) ∈ D

and problem (1), (2) have property A. Then this problem has an infinite dimensional set

of oscillatory solutions.

Proof. Let x0 ∈ R and ϕj ∈ Hn([0, b]) (j = 0, . . . ,m− 1) be arbitrary functions for every
j ∈ {0, . . . ,m− 1} satisfying conditions (5). Moreover, let

max

{

m−1
∑

k=0

|ϕk(y)| : 0 ≤ y ≤ b

}

> 0, (10)

if m is even, and

(−1)j0ϕj0 (y0)ϕ(y0) < 0 (11)

for some y0 ∈ (0, b) and j0 ∈ {1, . . . ,m− 1} if m is odd.

By Lemma 1 problem (1),(2) has a unique solution u satisfying initial conditions (6).
If m is even, then according to Definition 3 and condition (10) u is oscillatory. In view
of arbitrariness of ϕj (j = 0, . . . ,m − 1), to complete the proof of the theorem it is
sufficient to show that u is oscillatory for m odd as well. Assume the contrary that u is
a nonoscillatory solution. Then by Definition 3 u satisfies condition (3). On the other
hand, by Lemma 2, u satisfies inequalities (9). But this is impossible, since by (6) and
(11)

(−1)j0
∂j0u(x, y0)

∂xj0
u(x, y0)

∣

∣

∣

x=x0

< 0.

The obtained contradiction proves the theorem .

Corollary 1. Let

(−1)n1p0(x, y) ≤ q(x), p(x) ≤ 0 for (x, y) ∈ D, (12)

where q : R+ → (−∞, 0] is a locally summable function such that

lim inf
x→+∞

(

x

+∞
∫

x

sm−2(p(s) + q(s)) ds+ x−1

x
∫

0

sm(p(s) + q(s)) ds

)

= −∞. (13)

Then problem (1), (2) has an infinite dimensional set of oscillatory solutions.



150

Proof. By Corollary 1.1 from [13], conditions (12) and (13) guarantee that problem
(1),(2) has property A. Hence by Theorem 1, it follows that problem (1),(2) has an
infinite dimensional set of oscillatory solutions.

Remark 1. Condition (13) holds if

+∞
∫

0

sm−1−ε
(

p(s) + q(s)
)

ds = −∞

for some ε ∈ (0,+∞) (see [12], Proof of Corollary 1.8).

Theorem 2. Let n = 2n0, m ≥ 5, m0 be the integral part of m/2, m−m0 be odd,

(−1)n0p0(x, y) ≥ 0, p(x) ≥ 0 for (x, y) ∈ D, (14)

y2
∫

y1

+∞
∫

0

s2m−2|p0(s, t)| ds dt = +∞ for every 0 < y1 < y2 < b, (15)

and let problem (1), (2) have property B. Then this problem has an infinite dimensional

set of oscillatory generalized solutions. Moreover, if p0 ∈ H
0,n
loc

(D) and

(−1)n0+k ∂
2kp0(x, y)

∂y2k
≥ 0 for (x, y) ∈ D (k = 0, . . . , n0), (16)

then problem (1), (2) an infinite dimensional set of oscillatory solutions.

Proof. Let ψj ∈ Hn([0, b]) (j = 0, . . . ,m0 − 1) be arbitrary functions such that

ψ
(k)
j

(0) = 0 (k = 0, . . . , n0 − 1), ψ
(k)
j

(b) = 0 (k = 0, . . . , n0 − 1), j = (0, . . . ,m0 − 1),

max

{

m0−1
∑

k=0

|ψk(y)| : 0 ≤ y ≤ b

}

> 0.

Moreover, if m is even let

(−1)j0ψj0 (y0)ψ(y0) < 0 (17)

for some y0 ∈ (0, b) and j0 ∈ {1, . . . ,m0 − 1}.
From (14) it is clear that

(−1)m−m0+n−n0−1p0(x, y) ≥ 0, (−1)m−m0−1p(x) ≥ 0 for (x, y) ∈ D,

since n = 2n0 and m −m0 is an odd number. However, by Theorem 1.1 from [14], this
inequality and parity of n guarantee the existence of a unique generalized solution u of
problem (1),(2) satisfying the conditions

∂ju(x, y)

∂xj

∣

∣

∣

x=0

= ψj(y) for 0 ≤ y ≤ b (j = 0, . . . ,m0 − 1), (18)

b
∫

0

+∞
∫

0

(
∣

∣

∣

∂m0+n0u(s, t)

∂sm0∂tn0

∣

∣

∣

2

+ |p0(s, t)|u
2(s, t)

)

ds dt < +∞. (19)

Moreover, if (16) holds, then u ∈ Hm,n
loc

(D) and

b
∫

0

+∞
∫

0

∣

∣

∣

∂m0+nu(s, t)

∂sm0∂tn

∣

∣

∣

2

ds dt < +∞.
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In view of arbitrariness of ψj (j = 0, . . . ,m0 − 1), to prove the theorem it is sufficient
to show that u is oscillatory.

Assume the contrary that u is a nonoscillatory solution. Then by Definition 4 either
u satisfies condition (4), or m is even and u satisfies condition (3).

Assume first that u satisfies conditions (4). Let y0 ∈ (0, b) be an arbitrary fixed

number. Then without loss of generality we may assume that

u(x, y) ≥ 0 for x ≥ x0, y ≥ y0, (20)

∂ju(x, y0)

∂xj

∣

∣

∣

x=x0

> j! (j = 0, . . . ,m− 1). (21)

Set

ϕj(y) =
∂ju(x, y)

∂xj

∣

∣

∣

x=x0

= 0 (j = 0, . . . ,m− 1).

Then in view of continuity of ϕj (j = 0, . . . ,m − 1) and inequalities (21) there exist
y1 ∈ (0, y0) and y2 ∈ (y0, b) such that

ϕj(y) > j! for y1 ≤ y ≤ y2 (j = 0, . . . ,m− 1). (22)

As it was mentioned above u admits representation (8). On the other hand, it is well
known that

(−1)n0g(y, t) > 0 for 0 < y, t < b (23)

(see, e.g., [5], Theorem 9.4).
By virtue of (14),(19),(21) and (22) from (8) we find that

u(x, y) > (x− x0)
m−1 for x ≥ x0, y1 ≤ y ≤ y2.

This estimate together with (18) yields

y2
∫

y1

+∞
∫

0

(s− x0)
2m−2 |p0(s, t)| ds dt < +∞.

But this contradicts to condition (15). Consequently, u does not satisfy conditions (4).
Assume now that m is even and u satisfies conditions (3). Then by Lemma 2 inequality

(9) holds. But this contradicts to inequalities (17) and (18). The obtained contradiction
proves the theorem.

Corollary 2. Let n = 2n0, m ≥ 5, m0 be the integral part of m/2, m −m0 be odd

and

(−1)n0p0(x, y) ≥ q(x), p(x) ≥ 0 for (x, y) ∈ D,

where q : R+ → R+ is a locally summable function. Moreover, let either

lim sup
x→+∞

(

x

+∞
∫

x

sm−1q(s) ds+ x−1

x
∫

0

smq(s) ds

)

= +∞,

or
+∞
∫

0

sm−1q(s) ds = +∞

and

limsup
x→+∞

(

x

+∞
∫

x

sm−1p(s) ds+ x−1

x
∫

0

smp(s) ds

)

= +∞.
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Then problem (1), (2) has an infinite dimensional set of oscillatory solutions.

Proof. By virtue of Corollary 1.2 from [14], the conditions of Corollary 2 guarantee
the existence of property B to problem (1),(2). Consequently, if all the conditions of
Corollary 2 hold, then all the conditions of Theorem 2 hold also.
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