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Let J = [a,b] be a finite interval; O C R™,G C R" be open sets and let the function
f:Jx0%x GY — R" satisfy the following conditions:

1) for a fixed t € J the function f(t,z1,...,%s,u1,...,u,) is continuous with respect
to (T1,...,%s,Ul,...,uy) € OF X G¥ and continuously differentiable with respect to
(z1,...,25) € OF,

2) for a fixed (x1,...,2s,u1,...,uy) € O° x G¥ the functions f, fz,, i =1,...,s,
are measurable with respect to ¢t. For arbitrary compacts K C O,V C G there exists a
function mg v () € L(J, Rar), RSL = [0, 00) such that

S
[ft 1, zs, U1, w)| +Z [fe; ()] < mg v (L),
i=1

V(t, T1y.. o Toy ULy .. up) € J X K X VY.

Let now 7(t), ¢ = 1,...,s, t € J, be absolutely continuous functions, satisfying
the conditions: 7;(¢t) < ¢, 7i(t) > 0; A be a space of piecewise continuous functions
¢ :J1 = [r,b] - N, 7 = min(ri(a),...,7s(a)), with a finite number of discontinuity

points of the first kind; The functions 6;(t), ¢t =1,...,v, t € R, satisfy commeasurability
condition i.e. there exists absolutely continuos function 6(t) < t, 6(t) > 0 such that
0;(t) = 0%i(t), where k, > ---k1 > 0 are natural numbers, 0%(¢) = 0(0*~1(t)), 0°(t) = ¢;
Q is the set of measurable functions u : J2 = [0,b] — U, 0 = min{61(a),...,0.(a)},
satisflying the conditions cl{u(t) : ¢ € Ja2} is compact lying in G, U C G is an arbitrary
set, Jo = [0,b],0 = 0,(a); ¢" : J2 x O? =R, i=0,...,l, are continuously differentiable
functions.
We consider the differential equation in R™

2(t) = f(tvx('rl(t)v ) x(TS(t))v u(el(t)v ) u(GU(t)))v (1)
t € [to, t1]CJ,

with the discontinuity condition
z(t) = p(t), te€lrto), z(to)=wo. (2)

Definition 1. The function z(t) = z(t;0) € O, o = (to,t1,0,p,u) € A=J x J x
O x A X, tg < t1, defined on the interval [, ¢1], is said to be a solution corresponding
to the element o € A, if on the interval [r,tg] it satisfies the condition (2), while on the
interval [to,t1] it is absolutely continuous and almost everywhere satisfies the equation

(1)
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Definition 2. The element o € A is said to be admissible if the corresponding solution
z(t) = z(t; o) satisfies the conditions

q'(to,t1,z(to), z(t1)) =0, i=0,...,1
The set of admissible elements will denoted by Ap.
Definition 3. The element & = (tp,t1, %0, P, %) € Ap is said to be optimal if for an
arbitrary element o € Ag the inequality
¢°(to, 1, (o), x(61)) < ¢°(to, tr, z(to), x(t1));  a(t) = x(t; 5)
holds.

The problem of optimal control consists in finding optimal element. In order to
formulate the main results, we will need the following notations:

g, =Ai(to—), i=1,...,s,7(t) is the function inverse to 7;(t); v = vi(f0);
WZ_ = (i:Oija ey i07 ¢(i:0_) ey @(EO_)a ¢(TP+1(£0_))7 ey 95(7-3({0_)))7
—_—— —
i-times (p- 1)-times
1=0,...,p;
wi = (1 (1)) - E(Tim1(313))s Z0s @(Tit1 (1 )5 - -+ P(Ts (Vi)

@; = (Vs 8L (0))s - s #(Tim1 (1)), BEo=)s BTt 1 (Vi) - - -, B(Ts (1)),
i=p+1,...,s.

. 4 + ot
Analogously is defined ", w;", w;

Theorem 1. Let & € Ao be optimal element, to € (a,b), t1 € (a,b] and the following
conditions are hold:

1. 1i(to) = to, i = 1,...,p; Ti(to) < to, Ti(t1) > to, i = p+1,...,s; there exists the
left semi-neighborhood Vtg of the point to such that

t<mt) < <), VeV (3)

next, Ypy1 < - < s
2. There exist the finite limits:

limif(w) =f7, w=(z1,...,75) € Rf_o x 0% i=0,...,p,
where f(w) = f(w, @(01(1)), -, @0 (1)),
lim ~ [f(w1) — flw2)] = fi s wi,w2 €Ry XO% i=p+1,...,s

(@1,w2)— (@] ;)

lim f(w) = f;+1,w € Rtjl X Osyws-&-l = ({1757(7-1 ({1))7 e 75(75({1)))7

w—ws 1

then there exists non-zero vector m = (o, ..., m), To < 0, and a solution ¥(t), t € [to,],
~v = max(y1(b), ...,7s(b)) of the equation

D) = =Y vl e i O1(t), € lio, ],
Tum =0 te@al

(4)
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such that the following conditions are fulfilled:

S i()

Z /¢(%‘(t))fxi[%(t)]%(z)@(t)dt2
=L o)

to
> Z / V(i) fa; [vi )0y () dt, Yop(-) € A, (5)

=P o)

ty 21
/w(t)f[t]dtZ/w(t)f(ti(Tl(t)%---75»‘(Ts(t))VU(91(t))7---VU(9u(t)))dt7 Vu(-) €,  (6)
{0 E()

WQJC() = _¢(t~0)=7(©951 = w({l)a (7)
p s
7Quo > —0(00) Y G =)+ D O @®)
i=0 i=p+1
WQtl > —¢(t~1)fs_+1- (9)

Here flf] = f(t,&(r1(t),...,8(rs(t), fa;lt] = fo; (6 FTD), .., 3(rs(®); 45 = 1,
;{/: :7:’ t=1,...,p, &p-{»l =0;

The tilde over Q = (qO, el ql)T means that the corresponding gradient is calculated
at the point (to,t1,z(to), z(t1))

Remark 1. If
rank(on,Qzl) =1+I,

then in theorem 1 4(t) # 0. If 3(fo—) = &o, then f; =--- = f, , f; =0,i=p+1,...,s,
the condition (8) has the form
ﬂ@to 2 ¢(t~0)fo_

If 4, <--- <4y <1, then the condition (3) is held.

Theorem 2. Let & € Ao be optimal element, to € [a,b), 1 € (a,b) and the following
conditions hold:

1. 7i(to) = to, i = 1,...,p; Ti(to) < to, Ti(t1) > to, i = p+1,...,s; there exists the
right semi-neighborhood VT (ig) of the point Ty such that

t<y1(t) <0 < (), VtEV{j; (10)

next, Ypy1 < - < s
2. There exist the finite limits:

yh,i=1,s,
lim+f(<.u):f;r7 w:(t,xl,...,xs)ER% x 0% i=0,...,p,

w—w
k3

lim N [f(wl) 7.)?((.02)] = f;r, w1, ws € RLZ_ xO0% i=p+1,...,s,
(w17w2)ﬂ(wi+#zi)

lim  flw) =fl,we R{+ x O%,
W—Ws 1 1
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then there exists a non-zero vector m = (wo,...,m), mo < 0, and a solution ¥ (t) of the
equation (4) such that the conditions (5)—(7) are fulfilled. Moreover,

p s
Qo < —%(f0) Y (i — AN+ D O (11)
i=0 i=p+1
Qi < —P(t)f 1 (12)
where 'Ayar =1, 'Ay;r = "y;L, i=1,...,p, Yp+1 = 0.
Remark 2. If g(fo+) = &o, then f = --- = ff, {7 = 0,4 =p+1,...,s, the condition

(11) has the form
mQuo < W(t0)fy -

If 1 <4 <. <4, then the condition (10) holds.

Theorem 3. Let & € Ag be optimal element, to, t1 € (a,b) and the assumptions of
theorems 1, 2 are hold. Let, besides

p p
D G = =Y Gl =D = fo,
=0 =0
frv =t =fi=p+1. s, fo = f = fern

then there exists non-zero vector m = (mwo,...,7), 7o < 0 and a solution Y(t) of the
equation (4) such that the condition (5)—(7) are fulfilled. Moreover,

Q1o = P(to)fo + Z Vv fi, ™Qty, = —¥(t1) fer. (13)

i=p+1

If
rank(@im@h s Qacoa Qacl) =141,

then in theorem 3 9(t) # 0. If $(to—) = @(fo+) = 20,, then f; =0,i=p+1,...,s. For
the case s = v = 2, 71(¢) = 01(t) =t the analogous theorems are given in [1].

Now we consider the case, when the functions 0;(¢), ¢ = 1,...,v, are absolutely
continuous and 0;(t) < t, 6;(t) > 0. Next, U C G is a convex set and the function
ft, z1,...,@s,u1,...,uy) satisfies the following conditions: for a fixed ¢ € J it is con-
tinuously differentiable with respect to (x1,...,Zs,u1,...,us) € O° X G¥; for a fixed
(@1, 2s,u1,. ., up) € O° X GY the functions f, fo,, i = 1,...,n, fu;, 5 =1,...,v
are measuarable with respect to t; for arbitrary compacts K C O, V C G there exists a
function mg v (-) € L(J, Rg) such that

S v
Ft@r,ems e w)| + Y e O+ 1O S miy (@),
i=1 i=1
V(t, T1y.. o Toy ULy .. up) € J X K¥ X VY.

Theorem 4. Let 5 € Ag be an optimal element, to € (a,b), t1 € (a,b] and the as-
sumptions of Theorem 1 be fulfilled. Then there exist a non-zero vector m = (wo,...,T]),
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w0 < 0 and a solution ¥(t) of the equation (4) such that the conditions (5), (7)—(9) are
fulfilled. Moreover,

Z / () fu )6 t>Z / () fuy [E1u(0; (£))dt (14)

=1z, =1z,
Vu(-) € Q,

where
fu; [ = fu; (EE(TL®)), - -, B(7s (1), WO1L(H)), - . @(Ou (1))

Theorem 5. Let 5 € Ag be an optimal element, to € [a,b), t1 € (a,b) and the as-
sumptions of Theorem 2 be fulfilled. Then there exist a non-zero vector m = (wo,...,T]),
w0 < 0 and a solution ¥(t) of the equation (4) such that the conditions (5), (7), (11),
(12) are fulfilled.

Theorem 6. Let & € Ag be an optimal element, to, t1 € (a,b) and the assumptions
of Theorem 3 be fulfilled. Then there exist a non-zero vector m = (wo,...,m), 70 < 0,
and a solution ¥(t) of the equation (4) such that the conditions (5), (7), (13), (14) hold.

The case, when tg is fixed is considered in [2].
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