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BOUNDARY VALUE PROBLEMS VIA VECTOR FIELD

AN ALTERNATIVE APPROACH



Abstract. Consider the second order nonlinear scalar differential equa-
tions

x′′ ± f(t, x) = 0, 0 ≤ t ≤ 1, (0.1)

where f ∈ C([0, 1]× [0,∞), [0,∞)), associated to the boundary conditions
{

αx(0)± βx′(0) = 0,

γx(1)∓ δx′(1) = 0,
(0.2)

with α, β, γ, δ ≥ 0, or the more general nonlinear one

g(x(0), x′(0)) = 0 = h(x(1), x′(1)). (0.3)

Existence of positive solutions of above BVPs are given, under superlinear
and/or sublinear growth in f . The approach is based on an analysis of the
coresponding vector field on the (x, x′) phase plane and Kneser’s property
of solutions funnel.
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1. Introduction

In [7], Erbe and Tang noticed that, if the boundary value problem (BVP)

−∆u = F (|x| , u) in R < |x| < R̂ (1.1)

u = 0 on |x| = R, u = 0 on |x| = R̂ or

u = 0 on |x| = R,
∂u

∂ |x|
= 0 on |x| = R̂ or

∂u

∂ |x|
= 0 on |x| = R, u = 0 on |x| = R̂

(1.2)

is radially symmetric, then it can be transformed into a scalar Sturm–
Liouville one

x′′(t) = −f(t, x(t)), 0 ≤ t ≤ 1, (1.3)
{

αx(0)− βx′(0) = 0,

γx(1) + δx′(1) = 0,
(1.4)

where the constants α, β, γ, δ ≥ 0.

The literature for the last BVP is voluminous. Suggestively we refer [1],
[8], [9], [13], [14] and the references therein.

In [2], Bebernes and Wilhelmsen by using the shooting method, i.e.,
properties of the solutions funnel, studied a system of the form

x′ = g(t, x, y), y′ = h(t, x, y).

In [3], Bebernes and Fraker obtained the existence of
{

x′ = f(t, x, x′)

(0, x(0), x′(0)) ∈ S1 and (1, x(1), x′(1)) ∈ S2

for certain boundary sets S1 and S2. Also the requirement of nonlinear
boundary constraints has been given attention among others, in [11] by
Muldowney and Willett or in [9] by Jackson and Palamides. There are
common ingredients in the last papers: an (assumed) Nagumo–Bernstein
growth condition on the nonlinearity f or\and the presence of upper and
lower solutions.

In [6], Erbe and Wang by using Green’s function and Krasnoselskĭı’s fixed
point theorem in cones proved the existence of a positive solution of (1.3),
(1.4), under the following assumptions:

(A.1) f is continuous and positive, i.e., f ∈ C([0, 1]× [0,∞), [0,∞)),

(A.2∗)















f0 := lim
x→0+

max
0≤t≤1

f(t,x)
x

= 0

and

f∞ := lim
x→+∞

min
0≤t≤1

f(t,x)
x

= +∞,

i.e., f is supelinear at both end points x = 0 and x = ∞ or
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(A.2∗)















f0 := lim
x→0+

min
0≤t≤1

f(t,x)
x

= +∞

and

f∞ := lim
x→+∞

max
0≤t≤1

f(t,x)
x

= 0,

i.e., f is sublinear at both x = 0 and x = ∞, and
(A.3) ρ := βγ + αγ + αδ > 0.

Erbe and Tang in [7] and Davis, Erbe and Henderson in [5] established
criteria for the existence of multiple positive solutions of (1.1)–(1.2) under
certain growth rate assumptions on f.

Restricting our consideration on the linear case, notice as far as the au-
thor is aware, that only the conditions (1.4) have been studied, where the
constants α, β, γ, δ ≥ 0.

It is the aim of this work to prove the existence of positive solutions for
the boundary value problem (1.3), (1.5), where

{

αx(0)− βx′(0) = 0,

γx(1)− δx′(1) = 0,
(1.5)

and still α, β, γ, δ ≥ 0, but now under the condition
(A.3∗) ρ∗ := βγ + αγ − αδ < 0,

and similarly, we give existence results for the boundary value problems

x′′(t) = f(t, x(t)), 0 ≤ t ≤ 1, (1.6)
{

αx(0)± βx′(0) = 0,

γx(1)± δx′(1) = 0,
(1.7)

where the function f ∈ C([0, 1]× [0,∞), [0,∞)) is superlinear or sublinear
and the constants α, β, γ, δ ≥ 0 are chosen so that

ρ̂ := βγ − αγ − αδ < 0.

We furthermore investigate nonlinear boundary conditions of the form

g(x(0), x′(0)) = 0, h(x(1), x′(1)) = 0, (1.8)

where g and h have an “asymptotic behavior” similar to the above linear
functions appearing in (1.5) or (1.7). In these cases the above mentioned
Green’s function seems not to exists or at least it is not always nonnegative.
This possibly makes Erbe and Wang’s method not applicable to those cases.

Remark 1.1. We notice here that the differential equation (1.3) (or (1.6))
defines a vector field, the properties of which will be crucial for our study.

More specifically, let’s look at the (x, x′) phase semi-plane (x > 0). By the
sign condition on f (see assumption (A.1)) we immediately see that x′′ < 0.

Thus any trajectory (x(t), x′(t)), t ≥ 0, emanating from the semi-line

E0 := {(x, y) : αx − βy = 0, x > 0}
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“trends” in a natural way, initially (when x′(t) > 0) toward the positive
x−semi-axis and then (when x′(t) < 0) turns toward the semi-line

E1 := {(x, y) : γx− δy = 0, x > 0}.

Finally, by setting a certain growth rate on f (say superlinearity) we can
control the vector field, so that some trajectory reaches E1 at the time t = 1.

These properties will be referred as “The nature of the vector field”

throughout the rest of the paper.

So the technique presented here is different from that given in the above
mentioned papers [6], [5] or [7], but it is closely related with [2], [3] or [11].
Actually, we relay on the above “nature of the vector field” and the Kneser’s
property (continuum) of the cross-sections of the solutions funnel.

Finally, we cite for completeness the well-known Kneser’s theorem (see
for example the Copel’s text-book [4]).

Theorem 1.2. Consider a system (∗) x′ = f(t, x), (t, x) ∈ Ω := [α, β] ×
R

n, with f continuous. Let Ê0 be a continuum (compact and connected) in

Ω0 := {(t, x) ∈ Ω : t = α} and let X (Ê0) be the family of all solutions of

(∗) emanating from Ê0. If any solution x ∈ X (Ê0) is defined on the interval

[α, τ ], then the set (cross-section)

X (τ ; Ê0) :=
{

x(τ) : x ∈ X (Ê0)
}

is a continuum in R
n.

2. Main Results

For technical reasons and since readers are more familiar with boundary
conditions (1.4), we prefer to re-establish first some well-known existence
results for the problem (1.3)–(1.4) and then (see Theorems 2.3, 3.1 and 3.3)
we exhibit our main results.

Theorem 2.1. Assume (A.1) and (A.3) hold. Then the boundary value

problem (1.3), (1.4) has a positive solution provided that the function f is

sublinear (see (A.2∗)) or superlinear (see (A.2∗)). Furthermore there exists

0 < η0 < H such that

η0 ≤ x(t) ≤ H, 0 ≤ t ≤ 1,

for any such solution.

Proof. To begin with, let’s study first the

1) Superlinear case. Since f∞ = +∞, for any K > max
{

2α
β

, 2ρ
β(γ+2δ)

}

there exists H > 0 such that

min
0≤t≤1

f(t, x) > Kx, x ≥ H. (2.1)
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Consider an arbitrary point P := (x0, y0) ∈ E0 with x0 ≥ H and let
x ∈ X (P ) be any solution of the differential equation (1.3) starting at the
point P . By the assumption (A.1) (i.e., the nature of the vector field, see
Remark 1.1) it is obvious that x(t) ≥ x0 for all t in a sufficiently small
neighborhood of t = 0.

Let’s suppose that there is t∗ ∈ (0, 1] such that

x(t) ≥ x0, 0 ≤ t < t∗ and x(t∗) = x0.

Then since P ∈ E0, by the Taylor formula we get t̄ ∈ [0, t∗] such that

x(t∗) ≤ x0

[

1 +
α

β

]

−
1

2
f(t̄, x(t̄)), (2.2)

and thus

x0
2α

β
≥ f(t̄, x(t̄)).

But since x(t̄) ≥ x0 ≥ H , by (2.1) we have

f(t̄, x(t̄)) ≥ min
0≤t≤1

f(t̄, x(t̄)) ≥ Kx(t̄)) ≥ Kx0,

and so we obtain

x0
2α

β
≥ Kx0

contrary to the choice K > 2α
β

. Furthermore, by (2.2) we get the estimate

x0 ≤ x(t) < x0

[

1 +
α

β

]

, 0 ≤ t ≤ 1. (2.3)

Now by the Taylor formula, for some t̂, t∗ ∈ [0, 1] we have

x(1) = x0 + y0 −
1

2
f(t̂, x(t̂)),

x′(1) = y0 − f(t∗, x(t∗)),

and since P = (x0, y0) ∈ E0, we get
{

x(1) = x0[1 + α
β
]− 1

2f(t̂, x(t̂)) and

x′(1) = x0
α
β
− f(t∗, x(t∗)).

In order to verify that (x(1), x′(1)) ∈ E1, consider the function

G(P ) := γx(1) + δx′(1).

Then we have

G(P ) = x0

[ ρ

β
−

γ

2

f(t̂, x(t̂))

x0
− δ

f(t∗, x(t∗))

x0

]

, (2.4)
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where we recall that ρ := βγ + αγ + αδ > 0. By (2.3), we get H ≤ x0 ≤
min{x(t̂), x(t∗)} and thus in view of (2.1),

G(P ) ≤ x0

[ ρ

β
−

γ

2

Kx0

x0
− δ

Kx0

x0

]

= x0

[ ρ

β
−

(γ + 2δ)K

2

]

.

So by the choice of K > 2ρ
β(γ+2δ) , we conclude that

G(P1) < 0, P1 := (x1, y1) ∈ E0 with x1 ≥ H. (2.5)

Similarly, by the superlinearity of f(t, x) at x = 0, for any µ > 0 there is
an η > 0 such that

0 < x ≤ η implies max
0≤t≤1

f(t, x) < µx. (2.6)

Consider any positive number ε < β
α+β

and choose

µ < min
{ 2ερ

β(γ + 2δ)
, 2

[

1− ε
α + β

β

]}

. (2.7)

We will show that for any P = (x0, y0) ∈ E0 with x0 = εη we have

εη ≤ x(t) ≤ η, 0 ≤ t ≤ 1. (2.8)

Indeed, in view of (1.1) let’s assume that there exists t∗ ∈ (0, 1] such that

εη ≤ x(t) ≤ η, 0 ≤ t < t∗, and x(t∗) = η. (2.9)

Then by the Taylor formula, assumption (A.1), (2.6) and (2.9), we get
t̄ ∈ (0, t∗) such that

η = x(t∗) ≤ x0

[

1 +
α

β

]

−
1

2
f(t̄, x(t̄)) ≤

≤ εη
[

1 +
α

β

]

+
1

2
µx(t̄) ≤ εη

[

1 +
α

β

]

+
1

2
µη.

Consequently we obtain

µ ≥ 2
[

1− ε
α + β

β

]

contrary to the choice of µ in (2.7).
Consider now the function G(P ) defined in (2.4) and then by (2.6) and

(2.8) we get

G(P ) = x0

[ ρ

β
−

γ

2

f(t̂, x(t̂))

x0
− δ

f(t∗, x(t∗))

x0

]

≥

≥ εη
ρ

β
−

γ

2
µx(t̂)− δµx(t∗) ≥

≥ εη
ρ

β
−

γ

2
µη − δµη = εη

ρ

β
− µη

(γ + 2δ)

2
.
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Thus by (2.7) we conclude that there is a point P0 = (x0, y0) ∈ E0 (with
x0 = εη < β

α+β
η) such that

G(P0) > 0. (2.10)

Finally consider the segment

[P0, P1] := {(x, y) ∈ E0 : x0 ≤ x ≤ x1}

and furthermore the cross-section

X (1; [P0, P1]) := {(x(1), x′(1)) : x ∈ X (P ) with P ∈ [P0, P1]}

of the solutions funnel emanating from the segment [P0, P1]. By the defini-
tion of the function G, (2.5) and (2.10), it is clear that

E1 ∩ X (1; [P0, P1]) 6= ∅

and this means that there is a point P ∈ [P0, P1] such that G(P ) = 0 and so
a solution x ∈ X (P ) which satisfies our boundary value problem (1.3)–(1.4).

Moreover, by the nature of the vector field (1.1), there is tP ∈ (0, 1)
such that x is strictly increasing on [0, tp], strictly decreasing on [tp, 1] and
further is strictly positive on [0, 1]. So it is clear that

||x|| : max
0≤t≤1

x(t) = x(tP ) > εη.

Also it holds x(t) ≤ H, 0 ≤ t ≤ 1, i.e.,

εη ≤ ||x|| ≤ H.

Indeed, let’s assume that there exist t0, t1 ∈ (0, 1) such that

x(t) ≤ H, 0 ≤ t < t0, x(t0) = H and x(t) > H, t0 ≤ t ≤ t1.

Then by the nature of vector field, we have 0 < x′(t0) < α
β
x(t0) = α

β
H and

further for some t̄ ∈ (t0, t1)

H < x(t1) = x(t0) + (t1 − t0)x
′(t0)−

1

2
f(t̄, x(t̄)) ≤

≤ H
[

1 +
α

β

]

−
K

2
x(t̄) ≤ H

[

1 +
α

β

]

−
K

2
H.

Thus we get the final contradiction K < 2α
β

and this ends the proof for the
superlinear case. In the sequel we will study the

2) Sublinear case. We choose any ε > α+β
β

. Since f∞ = 0, for any

η < min
{ α

εβ
, 2

[

ε−
α + β

β

]

,
2ρ

εβ(γ + 2δ)

}

there exists H > 0 such that

max
0≤t≤1

f(t, x) < ηx, x ≥ H. (2.11)
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Let’s consider a point P := (x0, y0) ∈ E0 with x0 = H. We will prove
first that for any solution x ∈ X (P )

H ≤ x(t) ≤ εH, 0 ≤ t ≤ 1. (2.12)

Let’s suppose that’s not the case. Then by the nature of the vector field,
there is t∗ ∈ (0, 1) such that either

• H ≤ x(t) ≤ εH, 0 < t < t∗ and x(t∗) = εH,

and then by the Taylor formula we get t̄ ∈ [0, t∗] such that

εH = x(t∗) ≤ x0

[

1 +
α

β

]

−
1

2
f(t̄, x(t̄)) <

< H
[

1 +
α

β

]

+
1

2
ηx(t̄) ≤ H

[

1 +
α

β

]

+
1

2
ηεH

and hence the contradiction

η > 2
[

ε−
α + β

β

]

;

or
• H ≤ x(t), 0 < t < t∗ and x(t∗) = H.

We assert that x′(t) > 0, 0 ≤ t ≤ 1 and so it can not be true. The
last assertion holds, since by (2.11)–(2.12) we get

x′(t) = y0 − f(t̂, x(t̂)) ≥
α

β
x0 − ηx(t̂) ≥

≥
α

β
H − ηεH > 0, 0 ≤ t ≤ 1,

because η < α
εβ

.

Now by (2.11)–(2.12), we have

G(P ) = x0

[ ρ

β
−

γ

2

f(t̂, x(t̂))

x0
− δ

f(t∗, x(t∗))

x0

]

≥

≥ H
ρ

β
−

γ

2
ηx(t̂)− δηx(t∗) ≥

≥ H
ρ

β
− ηεH

[γ

2
+ δ

]

.

Consequently, since η < 2ρ
εβ(γ+2δ) , for every P1 = (x1, y1) ∈ E0 with x1 = H,

we obtain

G(P1) > 0. (2.13)

On the other hand, since f0 = +∞, for any K > max
{

2(α−β)
β

, ρ
β(γ+2δ)

}

there exists η > 0 such that

min
0≤t≤1

f(t, x) > Kx, 0 < x ≤ η. (2.14)
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As above, by the Taylor formula, (2.14) and the assumption K >
2(α−β)

β

we can prove that for P0 := (x0, y0) ∈ E0 with x0 = η
2 , we have

η

2
≤ x(t) ≤ η, 0 ≤ t ≤ 1. (2.15)

Further we get

G(P0) = x0

[ ρ

β
−

γ

2

Kx(t̂)

x0
− δ

Kx(t∗)

x0

]

≤

≤ η
[ ρ

2β
−

γ

2

K

2
− δ

K

2

]

(2.16)

and so by the choice K > ρ
β(γ+2δ) , we conclude that

G(P0) < 0, P0 := (x0, y0) ∈ E0 with x0 =
η

2
.

Consequently by this and (2.13), we obtain the desired solution.

Remark 2.2. By the above given proof of (2.5), this inequality is obvi-
ously independent of the sign of the quantity ρ = βγ + αγ + aδ (and so of
the assumption (A.3)).

A similar observation can be done for the inequality (2.16).

Theorem 2.3. Assume that (A.1) and (A.3∗) hold. Then the boundary

value problem (1.3), (1.5) has a positive solution provided that the function

f is sublinear or superlinear.

Proof. 1) Superlinear case. As in the proof of the previous Theorem 2.1 (see

Remark 2.2), we can see that for any K > max
{

2α
β

, 2ρ
β(γ+2δ)

}

there exists

H > 0 such that for all P := (x0, y0) ∈ E0 with x0 ≥ H > 0 and x ∈ X (P ),

x0 ≤ x(t) ≤ x0

[

1 +
α

β

]

, 0 ≤ t ≤ 1

and further

G(P ) = γx(1) + δx′(1) < 0.

Consequently −x′(1) > γ
δ
x(1) and then defining the function

G∗(P ) := γx(1)− δx′(1),

we immediately get

G∗(P ) > 2γx(1) > 0, P ∈ E0 with x0 ≥ H. (2.17)

Now, by the assumption f0 = 0, for an ε < β
α+β

and any small enough

µ (i.e., µ < min
{

− ερ∗

2βδ) , 2
[

1− εα+β
β

]}

, see (2.6)–(2.9)), there is an η > 0

such that for any P ∈ E0 with x0 = εη we have

0 < εη ≤ x(t) ≤ η, 0 ≤ t ≤ 1.
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Consequently, by (2.6) and assumption (A.1) we get

G∗(P ) = x0

[ρ∗

β
−

γ

2

f(t̂, x(t̂))

x0
+ δ

f(t∗, x(t∗))

x0

]

≤

≤ εη
ρ∗

β
+ δ f(t∗, x(t∗)) ≤

≤ εη
ρ∗

β
+ δµx(t∗) ≤ εη

ρ∗

β
+ δµη < 0,

given that

µ < −
ερ∗

βδ
.

Thus the existence follows once again, by (2.17) and Kneser’s property.
2) Sublinear case. Assume that f∞ = 0. Then in view of (2.11)–(2.12),

for an ε > α+β
β

, any η < min
{

α
εβ

, 2
[

ε− α+β
β

]

,− ρ∗

εβδ

}

, and x0 = H , we

easily get (see (2.13) and Remark 2.2) that

G∗(P ) = x0

[ρ∗

β
−

γ

2

f(t̂, x(t̂))

x0
+ δ

f(t∗, x(t∗))

x0

]

≤

≤ H
ρ∗

β
+ δηx(t∗) = H

ρ∗

β
+ δηεH < 0, (2.18)

given that η < − ρ∗

εβδ
.

On the other hand, by the assumption f0 = ∞ and previous results (see

(2.15)), for any K > max
{

2α
β

, 2ρ
β(γ+2δ)

}

there exists η > 0 such that for

the point P0 = (x0, y0) ∈ E0 with x0 = η
2 , we have

0 <
η

2
≤ x(t) ≤ η, 0 ≤ t ≤ 1,

and further G(P0) < 0. Hence, as in (2.17) we readily get

G∗(P0) > 0.

Thus the desired result follows from (2.18).

3. More Results

Consider now the boundary value problem

x′′(t) = f(t, x(t)), 0 ≤ t ≤ 1, (3.1)
{

αx(0) + βx′(0) = 0,

γx(1) + δx′(1) = 0,
(3.2)

where we still assume that the function f ∈ C([0, 1] × [0,∞), [0,∞)) is
superlinear or sublinear, the constants α, β, γ, δ ≥ 0 are such that

ρ̂ := βγ − αγ − αδ < 0. (3.3)
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Theorem 3.1. Assume (A.1), (A.2∗) (or (A.2∗)) and (3.3) hold. Then

the boundary value problem (3.1), (3.2) has a positive solution.

Proof. We will study only the superlinear case. So since f∞ = ∞, for any
K > − 4ρ̂

β(γ+2δ) there exists H > 0 such that for any

P0 := (x0, y0) ∈ E∗0 := {(x, y) : αx + βy = 0, x ≥ 0}

with x0 = 2H and any x ∈ X (P0),

H ≤ x(t) ≤ 2H, 0 ≤ t ≤ 1,

and further

G(P0) = x0

[ ρ̂

β
+

γ

2

f(t̂, x(t̂))

x0
+ δ

f(t∗, x(t∗))

x0

]

≥

≥ 2H
ρ̂

β
+

γ

2
KH + δKH > 0. (3.4)

On the other hand, since f0 = 0, we can easily prove that for any µ <

min
{

α+β
β

,− ρ̂
β(γ+2δ)

}

there exists η > 0 such that for all P1 := (x1, y1) ∈ E∗0

with x1 = η
2 and any x ∈ X (P1),

η

2
≤ x(t) ≤ η, 0 ≤ t ≤ 1,

and further

G(P1) = x0

[ ρ̂

β
+

γ

2

f(t̂, x(t̂))

x0
+ δ

f(t∗, x(t∗))

x0

]

≤

≤ η
ρ̂

2β
+

γ

2
µη + δµη < 0.

Hence the existence result follows, by (3.4).

Remark 3.2. In the same spirit, one can study the symmetric boundary
value problem (3.1)–(3.5), where

{

αx(0)− βx′(0) = 0,

γx(1)− δx′(1) = 0.
(3.5)

We end this work by establishing an existence result for the nonlinear
BVP

x′′(t) = −f(t, x(t)), 0 ≤ t ≤ 1, (3.6)

g(x(0), x′(0)) = 0, h(x(1), x′(1)) = 0. (3.7)

Actually, we only pattern the linear conditions (1.4), although we could
study more cases from those given above. So, for the functions g and h, we
assume that
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(C.1)



























the graph of g(x, y) = 0 is a (continuous) curve which can
be parametrized x = p0(γ) > 0, y = q0(γ) > 0, γ ∈ R,

where p, q are continuous and
lim

γ→−∞
p0(γ) = 0+, lim

γ→−∞
q0(γ) = 0+ and

lim
γ→+∞

p0(γ) = +∞, lim
γ→+∞

q0(γ) = +∞

and similarly

(C.2)



















the graph of h(x, y) = 0 is also a curve:
x = p1(γ) > 0, y = q1(γ) < 0, γ ∈ R, with
lim

γ→−∞
p1(γ) = 0+, lim

γ→−∞
q1(γ) = 0− and

lim
γ→+∞

p0(γ) = +∞, lim
γ→+∞

q0(γ) = −∞.

Then it is clear that the graphs

G(g) := {(x, y) : g(x, y) = 0, x > 0} . G(g) := {(x, y) : h(x, y) = 0, x > 0}

contain continua E0 and E1, respectively, such that

(0, 0) ∈ Ē0 ∩ Ē1 (3.8)

and for any Ki > 0 and Λi > 0, (i = 0, 1)

E0 ∩ {(x, y) : x > K0, y > Λ0} 6= ∅ and

E1 ∩ {(x, y) : x > K1, y < −Λ1} 6= ∅.
(3.9)

As in (2.4), define the function

Gh(P ) := h(x(1), y(1)), x ∈ X (P ) and P ∈ E0,

and then following the proof of Theorem 2.1, we can easily show that there
exist P0 and P1 ∈ E0 such that

Gh(P0)Gh(P1) < 0.

Since E1 is a continuum, by (3.8) and (3.9) we obtain a point P ∈ E0 such
that Gh(P ) = 0.

So we have arrived to the next general result

Theorem 3.3. Assume (A.1), (C.1), (C.2) and (A.2∗) (or (A.2∗)) hold.

Then the boundary value problem (3.6)–(3.7) has a positive solution.
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