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Abstract. For one class of symmetric hyperbolic systems of first order
we study some boundary value problems in a dihedral angle none of whose
faces meets an exterior cone of rays. To this class of systems belong Maxwell
and Dirac equations, equations of crystal optics and also some other systems
of equations of the mathematical physics.
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1. INTRODUCTION

For hyperbolic systems of first order with two independent variables the
boundary value problems, analogous to the Goursat problem, have been
investigated in [1]-[4]. As is known, the Goursat problem or the character-
istic problem for a hyperbolic equation of second order admits when passing
from two-dimensional to multi-dimensional case different statements. For
example, the characteristic problem for a multi-dimensional wave equation
can be formulated both in a conic domain, whose boundary is a character-
istic conoid, and in a dihedral angle, whose faces are characteristic planes
[5]-[10]. The situation is similar for the Darboux problems [11]-[14]. Things
become more complicated for a correct statement of the characteristic prob-
lem, when in a multi-dimensional case we pass from one equation to a system
of equations of hyperbolic type. For example, despite the fact that for a
hyperbolic system of second order, split in the principal part, the Goursat
problem with the Dirichlet boundary condition on the characteristic conoid
is posed correctly [15], in [16] we can find an example of a hyperbolic system
of second order which is non-split in the principal part and for which the
corresponding characteristic problem has an infinite set of linearly indepen-
dent solutions. The complexity is that even for a non-split in the principal
part strictly hyperbolic system whose cone of normals consists of infinitely
smooth sheets, the cones of rays corresponding to these sheets may have
strong singularities [17, p. 586]. Therefore difficulties arise already upon
formulating the characteristic problem when we have to point out a car-
rier of boundary data. In this direction the works [18] and [19] are worth
mentioning.

In our previous paper [20] we suggested an approach allowing one to
formulate for one class of symmetric hyperbolic systems of first order the
correct characteristic problems in dihedral angles. For these problems we
proved the theorem on the uniqueness of a solution. As regards the question
of the solvability of the problems, it was solved only in the case in which
the faces, being the carriers of the data, meet the exterior cone of rays of
the system of equations under consideration. This class of systems involves,
for example, the well-known in the mathematical physics systems of differ-
ential equations of Maxwell, Dirac and crystal optics. At the end of the
above-mentioned paper [20], for each of these systems we presented correct
statements of characteristic problems in dihedral angles.

In the present work, for the same class of symmetric hyperbolic systems
of first order as in [20], along with the uniqueness of the solution we have
proved the existence of the solution of the boundary value problem in the
case, in which the faces do not meet the exterior cone of rays of the system.

Note also that the Cauchy problem and mixed problems for symmetric
hyperbolic systems of first order have been studied in [21]-[24].
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2. STATEMENT OF THE BOUNDARY VALUE PROBLEM. A PRIORI

ESTIMATE
In a space R™t! of variables z1,...,x, and t we consider a system of
differential equations of first order of the type
n
Lu = FEu, —i—ZAiuxi + Bu=F, (1)
i=1

where A; and B are the given real (m x m)-matrices, F is the unit (m x m)-
matrix, F' is the given and u is the unknown m-dimensional real vectors,
n>1m>1.

Below, matrices A; are assumed to be symmetric and constant. In this
case system (1) is hyperbolic [17, p. 587].

Denote by D = {(:Cl,...,l‘n,t) € R apt+ 370 aday < 0,0 = 1,2}

a dihedral angle bounded by hyperplanes §1 Cajt + Z?zl OL}IL']' =0 and

Sy a2t + Yo adx; = 0, where o' = (af,...,al,af) is the unit vector

of the outer normal to 0D at a point of the side S; = S; N oD, j =1,2,
1 2

o #a”.

For the sake of simplicity we assume that o < 0, i = 1,2.
Let us consider the boundary value problem formulated as follows: find
in the domain D a solution u of system (1) by the boundary conditions

Fiu Si :fia i=1,2 (2)
where I'? are the given real constants of the (35 x m)-matrix, and f! =
(f1,..y f1..) are the given s;-dimensional real vectors, i = 1, 2.

Remark 1. Depending on the geometric orientation of the dihedral angle
D, below we will indicate the method of constructing the matrices I'?, i =
1,2, for which boundary value problem (1), (2) is posed correctly.

Since the matrix Q(¢') = — Y1, 4:&, & = (&1,..., &) € R™ is symmet-
ric, its characteristic roots are real. We arrange them in decreasing order:

Xl(f’) > Xg(ﬁ') > - An(¢). Multiplicities kq,...,ks of these roots are
assumed to be constant, i.e. independent of £’, and we put

AME)=ME) = =X (€) > A2 (€) =N 11(E) = - = Ay s (E) > -+

cee > )\5(5/) - mekSJrl(gl) == Xm(gl)afl € Rn\{(oa B O)} (3)

Note that by (3) and due to continuous dependence of the polynomial
on its coefficients, A1 (£'), ..., As(§') are continuous homogeneous functions
of degree 1 [25].

Since the matrix Q(£') is symmetric, there exists an orthogonal matrix
T =T(¢') such that

(T7'QT)(E) = diag(Mi(€), ..., M(€), - As(€), . A(€). (4)

k1 ks
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According to (3) and (4), the cone of normals

K ={¢=(&,..-,&. %) € R"" : det(E& — Q()) = 0}

of system (1) consists of separate sheets

K, ={(=(,&) e R & - N(E) =0}, i=1,...,s.
Because of the fact that

N(E) = —Asii (=€), 0<5< |

s;rl}’ (5)

the cones K; and K, 1—; are centrally symmetric with respect to the point
(0,...,0), where [a] is an integral part of number a.

s+1:|

Remark 2. In case s is an odd number, we have j = s+1—j for j = [ 5

s+1

2
the point (0,...,0). In this case, to simplify our exposition for s = 2s¢ + 1
we assume that

Therefore the cone K; for j = [ } is centrally symmetric with respect to

s+ 1

Asor1() =0, {

i.e. Kg,41 is the hyperplane mg : {§o = 0.

}:SOH, (6)

Note that condition (6) is fulfilled for some systems of equations of first
order appearing in the mathematical physics, for example, for systems of
equations of Maxwell and crystal optics.

Remark 3. Below it will be assumed that mo N K, = {(0,...,0)} for even
s = 2sg. According to (3) and (5), this means that the cones K1, ..., Ky,
are placed on one side from 7y : {o = 0, and Ks,41,..., Kas, on the other
side, i.e.,
)‘1(5) > > )‘80 (fl) >0> )‘So+1(§l) > > )‘280 (51), (7)
& erR™M{(0,...,0)}.
If s = 259 + 1 is odd, then by (3), (5) and (6) we automatically have
mo N Ks, = {(0,...,0)} and, consequently,
A(E) > > A (€1) > Ao 1(€) = 0> Aggq2(§) > -+ > Aagp11(€), (8)
¢ € RV{(0,...,0)}.
In this case Ki,...,Ks, are placed on one side from my = Ks,4+1, and

Ksy+2, ..., Kasy+1 on the other side. It follows from (5)-(8) that for multi-
plicities k£; of roots \; the equalities

s—l—l}

kj:ks-i-l—ja ]:1a7|: 2

are valid.
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Taking into account (7) and (8), we consider in the half-space £y < 0 the
following sets:

Go ={¢ = (€. &) € R™\{(0,...,00} : 34, (§) < & < 0},
. 7s+1
ZO*[ 2 }J“l’

G ={€ = (€,60) € RN (0,00} hig1a(€) < €0 < Nigria ()],

i=1,...,8 — 1,
Guy ={§ = (€.60) € R0, 0)} : 60 < M(€) }-

It is easy to see that

aG():WoUKiO, aGi:KiOJriUKiOJri,l, t=1,...,80— 1, aGSO:KS,
{(ﬁl,io)ER"H:§0<0}U{(0,...,0)}:(EOGi)U( V] Kj). 9)

J=%o
In case, when problem (1),(2) is characteristic, i.e. both faces S; and Sy
are the characteristic planes of system (1), by virtue of (7), (8) and by our
assumption above that o < 0, i = 1,2, there exist natural numbers s; and
s9 such that

s+1
2

If problem (1), (2) is non-characteristic, i.e. the faces S; and S are non-
characteristic planes of system (1), then since af < 0, i = 1,2 reasoning
analogously and taking into account (7)-(9), we conclude that instead of
(10) there exist non-negative integers p; and po such that

sizioz[ }+1, i=1,2; o eK,, i=12. (10)

0<pi<so, @ €Gp, i=12. (11)

The case, when one of the faces S or Sy in problem (1), (2) is charac-
teristic and the other face is non-characteristic, is treated similarly,

Below we will restrict ourselves to the consideration of case (11), i.e.
when both faces S; and Sy are non-characteristic planes of system (1).

By Qo(&) = E¢o+ > A& = E& — Q(&') we denote the characteristic
matrix of system (1) and consider the question on the reduction of the
quadratic form (Qo(§)n,n) to the canonical form, when { € G),, where
n € R™, and (-, -) denotes the scalar product in the Euclidean space R™.

By virtue of (4), for n = T'¢ we have

(Qo(&)n,n) = (T7'QT)(£)¢,¢) = (B& — (T1QT)(E))¢,¢) =
=(Co—MENG+ -+ (& —M(E)EG, + (Co— M(E))Ch 1+
o (G0 = A2(E)Chgry T F G0 = Ak
o (& — As(€))ER (12)
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By the definition of the sets G; and by inequalities (3), (7) and (8), for
&= (¢, &) € Gp, we have

[§O*>‘j(§/)]|Gp%<Oa J=1..io+tp — 1
S0 = X (e, >0, j=io+pi...s.

If we denote by %;r and »; the positive and negative indices of inertia of
the quadratic form (Qo(§)n,m)|¢ecq,,, then according to (12) and (13) the
equalities

(13)

to+pi—1 s

Z ki, s = Z ki, » 4+ =m (14)
Jj=1 J=to+pi
are valid.

If now ¢ = C%(&)n is an arbitrary non-degenerated linear transformation
which reduces the quadratic form (Qo(£)n,7n)|¢ec,, to the canonical form,
then by (14) and due to the invariance of the indices of inertia of the qua-
dratic form with respect to the non-degenerated linear transformations, we

have
+

Qo€ Dleca,, = S MG A5 (& ). (15)
j=1 =1
Here
m m
1] fa Z cs p npa ] Z ¢ (¢, +])p npv (16)
p=1 p=1

C' = CH(E) = () ers E€ Gy

In accordance with (11) and (16), in boundary conditions (2) we take I'*
as the matrix of order (3¢;x m), where »; = , i=1,2, whose I'; | elements
are given by the equalities

Iy, =cpla"), i=12 j=1,. ;o p=1,...,m. (17)
Along with problem (1), (2), in the domain D we consider the boundary
value problem

L*v=—Ev — Y Ay, +Bv=G, (18)
=1

i=1,2, (19)

where TI' is the matrix of order (5" x m) whose T elements are given by

o *Jp
the equalities

I, = zz;ﬂ,)p(ai), i=1,2; j=1,...5; p=1,...,m, (20)

and B’ denotes transposition of the matrix B.

Obviously, _
o I
Ci(af) = (F) i=1,2.
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Remark 4. Tt can be easily verified that problem (1), (2) in assump-
tion (17) and problem (18), (19) in assumption (20) are self-conjugate.

For example, if u,v € C'(D), diamsuppu < +o0, diamsuppv < +oco and
Iuls, =Tivls, =0, i = 1,2, then (Lu,v),(py = (u, L*0) (D)

Remark 5. If by virtue of (4) we take as the matrix C? the orthogonal
matrix 77! =T, then taking into account (11) and (13), equality (12) for

E=a'=(al,...,al,al) can be rewritten in the form
Qo)) == 32+ > 86 =
Jj=1 j=s; +1

=200, + S B O, =

i= j=1
o om > m 2
=2 O tum] + 3 | O  Term] 0D
Jj=1 p=1 j=1 p=1

where T' = (T, ki) =1, and T' denotes transposition of the matrix T, Ty, =
Tu(€') = T(al), o = (ad,...,ak). Here 3;(€)|¢—qi are positive, of the
kind |ay — Agj(al)]. In this case, by virtue of (15)-(17) and (21), in the
boundary conditions (2) as elements F;-p of the matrix I'* we have to take

I, =Tyek), i=1,2; j=1,....5; p=1...,m (22)

K2

Below we assume that the elements of the matrix B in system (1) are
the bounded measurable functions in D, i.e. B € Lo (D). Let us introduce
in our consideration the following weighted spaces:

W3 (D) ={u € La1oc(D) : uexp(—At) € W5 (D)},
lullwy , 0y = lluwexp(=At)[lw; (D),
Ly z(D) ={F € L2 1oc(D) : Fexp(—\t) € Ly(D)},
1 E| L,y 50y = 1 F exp(=At)[|L,(D)s
LQ’)\(Si) :{f S LQ’]OC(SZ') : fexp(f)\t) S LQ(SZ)}, 1=1,2,
I fllzoncsi) = IIf exp(=At) || L,(s0)s
where ) is the real parameter, and La joc(D), W3 (D), L2 10c(S:), i = 1,2,
are the well-known functional spaces (see [26, p. 384]).

Let Amax(P) be the largest characteristic number of the non-negatively
defined symmetric matrix BB’ at the point P € D. Then because of the

fact that B € Lo (D), we have

A2 = sup Apax(P) < +00. (23)
PeD
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Lemma 1. In assumption (17), for any solution u € Wy (D) of problem
(1), (2) for A > Ao the a priori estimate

2
1 = i 1
”u”sz(D) < m ZZ Hfj||L2,/\(Si) + N AOHF”LZX(D)’ (24)

i=1 j=1

where »; = »; , 1 = 1,2 is valid.

i
Proof. Let us introduce into the consideration a new unknown function
w(z,t) = u(x,t) exp(—At), A = const > 0. Then for w(xz,t) we obtain the
following system of equations:

n
L,\wEEwt—l—ZAiwxi—i—B)\w:F,\, (25)
i=1
where By = B+ AE, F\ = Fexp(—At). Note that if u € WQ{)\(D), then
F € Ly (D) and w € W3 (D), F\ € Ly(D) and boundary conditions (2)
take the form
Mwlg, = fi, i=12, (26)
where fi = flexp(—At), i = 1,2, and owing to the theory of a function
trace, fi € La(S;) holds (see [26, p. 253]).
Taking into account system (25), the integration by parts results in

2 [ (awwad = [ (@feyow)is + [ 2By w)dD -

2
= Z/ (Qo(a)w,w)ds +/ (2B w,w)dD, (27)
i=1 31 D
where Qo(a) = Fag + 2?21 Ajaj, oo = (a1,...,0n,qp) is the unit vector

of the outer normal to 0D.
By (11), (14)-(17) and (26) we have

+ e

@l s, — (img(ai,wn?) o (Emserwr)| -
- (:[A;;(ai,w)]Q) B (; [é(%p(al)wpr) s 2

In view of (23), we find that in the domain D
(2B xw, w)r,(p)y = 2A(w, w) ,(py + 2(Bw,w) >

1 1
> 2M(w, w) 1, (p) — 2(Bw, Bw)}, ) (W, )}y =

1 1
= 2\(w, w) (D) — 2(B’Bw,w)z2(D)(w,w)i2(D) > 2\ (w, w) L, (p)—
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W=

—2/\0(w,w)L (D)( )zz(p) =2(A = Xo)(w, W) L, (D) (29)
Next, according to (25), for A — Ao > 0 we have

2 [ (Lww)dD = 2B w)1.() < 21 0] 120) <
D

1 2
T + (=200l p)- (30)

It follows from (28)—(30) that

2 ) 1
A= 20)lwlZ,p) < DD Il Zacs,) + m|‘FA|‘%2(D)a

i=1 j=1
whence, with regard for the fact that
lwllooy =lullosns 15 1Las0) =155 Loncssys 1 FM Loy =1F Ly n(p)
we immediately get the required inequality (24). O
Remark 6. From (11), (14) and (17) follows completely definite depen-
dence of the structure and the number of boundary conditions in (2) on the

geometric orientation of the dihedral angle D. Estimate (24) implies that
the solution of problem (1), (2) of the class W217>\(D) is unique for A > Ag.

Analogously, word for word we can prove that the following lemma is
valid.

Lemma 2. In assumption (20), for any solution v € WQ{)\(D) of problem
(18), (19) for A > X{ the a pm’om’ estimate

[0z 0 < MZZH%HLM)U 16l (3D

i=1 j=1

is valid; here »; = %Jr, i = 1,2, and the number \§ is defined analogously
to (23) by means of the symmetric matrix BB’ (note that in reality A\ = Ao
27, p. 291]).

It can be easily verified that for any u,w € W; , (D) such that T'uls, =
Iw|s, =0, i = 1,2, the equality
(e_)‘tLu7 e_”\tw)L2(D) = (e_”\tu7 L*A‘e_’\tw)Lz(D), (32)
where L} = —E& — Y1 Aiz2- + B, By = B’ + AE is valid.
We can rewrite estimate (31) in the form

_ i 1 .
le™ vl L,p) < E E le™gi M Lasy) + ~—5 1 L3e 0l LoDy,
Noerd N & Y

from which it follows that for any vector function w € VV21 1 (D) satisfying
the homogeneous, corresponding to (19), boundary conditions, i.e.

i=1,2, (33)
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the a priori estimate
1
A\ -
le™wl|Lypy < o ILe ‘wll Loy (34)
0

is valid.

Remark 7. In accordance with equality (32), we can introduce the notion
of a weak generalized solution u of problem (1), (2) of the class Lo » with
the homogeneous boundary conditions, i.e.

Tuls, =0, i=1,2, (35)

as follows. Let F' € La »(D). The vector function u € Ly (D) is said to be
a weak generalized solution of problem (1), (35) of the class Lg y, if for any
w € W21 (D) satisfying homogeneous boundary conditions (33) the equality

(e*Atu,Lie*Atw)LﬂD) = (e*AtF,e*)‘tw)h(D) (36)
is valid.

It can be easily verified that if  is a solution of problem (1), (35) from
the space ng A (D), then it will also be a weak generalized solution of that
problem of the class L ».

The existence of a weak generalized solution of problem (1), (35) of the
class Loy for A > A follows from the following considerations. By virtue
of inequality (34), for the right-hand side of equality (36) the estimate

(e MF, e Mw) )| < e ™M Fll Loy lle™Mwll Loy =

= 1l za ) lle™ @l o) < 1F sy I L3 MWl ) (37)

1
A=A
is valid.

Expressions (36) and (37) show that the functional (e ~*u, Lye™w) 1, (p)
with respect to Lie~*w can be extended to the entire space La(D) in con-
tinuity. Thus, according to the Riesz theorem on the representation of a
functional over the space Lo(D), there exists the vector function w € La(D)
such that for any w € W21 \(D) satisfying the homogeneous boundary con-

ditions (33), the equality
(w,Lﬁ\e"\tw)Lz(D) = (e_)‘tF,e_’\tw)L2(D)

is valid. This equality by virtue of (36) implies that the vector function
u = eMw € Ly (D) is the weak generalized solution of problem (1), (35) of
the class Lo ».

Remark 8. Along with the weak generalized solution of problem (1),
(35) of the class Lo » we can introduce the notion of a strong generalized
solution of that problem of the class Ly . The vector function u € Lg (D)
is said to be a strong generalized solution of problem (1), (35) if there exists
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a sequence of vector functions u, € VV21 A (D) satisfying the homogeneous
boundary conditions (35) and

g, llup = wllza o) =0, ling 1Ly = Fllz, o) =0

It is easy to verify that the solution of problem (1), (35) from the space
W3 \(D) is the strong generalized solution of problem (1), (35) of the class
L3 », and the strong generalized solution is the weak generalized solution of
that problem of the class L ».

The notion of a strong generalized solution of inhomogeneous problem
(1), (2) is introduced analogously. Let f' € Ly ,(S;), i = 1,2, in the
boundary condition (2), and the right-hand side F of equation (1) belong to
the space Lo (D). The vector function u € Lo x(D) is said to be a strong
generalized solution of inhomogeneous problem (1), (2) of the class Lo y if
there exists a sequence of vector functions u, € W21 1(D) such that

T [Culs, = s =0, 0= 1,2,
plggo HU;D - u||L2,>\(D) =0, plirgo HLU;D - F||L2,,\(D) =0.
Note that the uniqueness of the strong generalized solution of inhomo-

geneous problem (1), (2) of the class Lo y follows directly from the a priori
estimate (24).

3. THE SOLVABILITY OF INHOMOGENEOUS BOUNDARY VALUE
PROBLEM (1), (2)

Below, for the sake of simplicity and without restriction of generality we
assume that

S;:t+ (=1) oy =0, t>0; 0<o;=const<+4oo, i=12 (38)

In this case

. . . . (71)1.710'1' ; -1 .
o' =(aj,0,...,0,0), 0] = ———, = ——, i=1,2. (39
( 1 O) 1 m 0 m ( )
n
Qa') = =) Ajal = —ajAy,
= (40)

n
Qo(a') = Eaj + Z Ajaz» =alE+atA;, i=1,2.
j=1
If p1; are the characteristic numbers of the symmetric matrix A; which
are enumerated with regard for the multiplicity in increasing order, then by
(3), (4) and by inequalities —ai < 0, —a? > 0 we have

(T7'Q(aMTy) = —ad diag(pun, -« oy i1y - oo sy - -+ fhs); (41)

—— ——

kl kS
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(T, Q(a®)Ty) = —a? diag(fhs, -« - s fhay -y fi1s -+ -5 J11), (42)
N——— S——~—
ks k1
TflAlTl :diag(ula'-'aula"'ausa"'7”5)7 (43)
—— ——
k1 ks
Ty P ATy = diag (s, - - -y flsy - ooy fl1y- - -5 f01),s (44)
S——— S——~—
ks k1
N(od, ... an)=—atpj, N(ad,...,a2)=—a3us_jr1, j=1,...,s  (45)
p1 < pg < oo < fh, (46)

where T7 and T3 are the constant orthogonal matrices, and the columns of
the matrix T5 are obtained by replacing the columns of the matrix 77, i.e.,
Lok = Tik(m—141), ks L =1,...,m.
Since —a} < 0, —a? > 0 by virtue of (7), (8) and (43)-(46), in case
s = 2sq is even, we have the inequalities
1 < < sy <0< puggr1 < < s (47)

while if s = 2s¢ + 1 is odd, then

P <o < gy < Hogt1 =0 < plggqa < 00 < M2go1- (48)

By (11), (38), (45)-(48) and owing to the definition of the sets G, the
condition a! € Gy, is equivalent to

-1
o1 > U, s =2s
Mi,l-i-la 0, for = 0’
01> fg 19 §=2s0+ 1,
-1 -1
: <o < s =2s
Mijl—i_l—Hn ! Méio;rpl’ 0 for 1 § D1 < 89 — ]_,
Hsot24pr < T1 < Hsotitpr s =280+ 1,

01 < ,u;l for p; = sp.

For the sake of simplicity, we restrict ourselves to the case s = 2sy,
1<p; <s9g—1. Then
Holitip <01 < By, =250, 1<m<so—1  (49)
Analogously, the condition o?
equivalent to

€ Gp, for s =255, 1 < pp < 50— 11is

—,us_ol_m <oy < —u;ol_pﬁl, s =2s9, 1<py<sy—1. (50)

To prove the existence of the strong generalized solution of inhomoge-
neous problem (1), (2) of the class Lo » we first introduce the functional

[e]
space @’; (57) and then prove that the problem under consideration is solv-
able in that space.
Suppose D; = {(z1,...,2n,t) € D : t < 7}, 7 > 0 and denote by Dy,
the set of points at which the domain D, and the two-dimensional plane
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of variables 1 and ¢ intersect. Let S;; = 0D, NS;, i = 1,2. By (38) it is
obvious that
Dy ={(x1,...,xn,t) € R"T . —ot <y <oy't, 0<t<7T}
Do, = {(z1,t) € R*: —o5 't < a1 <oy't, 0<t<T}

Denote by &)’é_(ﬁT), k > 1, a > 0, the space of functions u(x1,...,2n,t)
of the class C*(D,) for which

8;113?u(0,x2,...,xn,0) =0, —oco<z;<—+oo, i=2,...,n,
. on ) o2
: ; it _ iz _
Osivtiashk 0=y 00 =5m
and also partial Fourier transformations @(z1,82,...,&n,t) of which with
respect to the variables xs, . . ., 2, are continuous functions in G, = {(x1, &2,

cyén,t) € RV (2q,t) € Doy, E: (é2,...,&,) € R"1} together with
their partial derivatives with respect to the variables 1 and ¢ up to the k-th
order inclusive, and satisfy the following estimates: for any natural N there
exist positive, independent of«gz (&2,...,&,), numbers Cy =Cy (21,t) and
Ky = Ky(z1,t) such that for (z1,t) € Do, and [€]2 = |&]2 + - 4 &0 ]2 >
IN(JQV the inequalities

1001 02Ti(1, €, )] < CntF o112 exp(=NIE]), 0<iy+is<k, (51)
hold, and for (z1,t) € Do, \{(0,0)}

C(z1,t) = sup Cn(F1,1) < 00,
(%1,t)€Dos

K (z1,t) = sup Kn(T1,1) < +oc.
(%1,t)€Dor

Analogously we introduce spaces ®%(S;,), i = 1,2. Note that the trace

uls,, of the function u from the space ®* (D) belongs to the space ®* (S;,).
We denote the space of Fourier transformations u(x1,&s, ..., &,,t) with re-
spect to the variables xs, ..., x, of the functions u(x1, xs, ..., z,,t) belong-

ing to the class ®* (D, ) by ®* (Dy,) and take into account that the variable

&= (&,...,&,) is regarded as a parameter.

Remark 9. Below we will consider the boundary value problem for system
(1) in the domain D., i.e. instead of (2) we will consider the boundary
conditions

FjU"Sjr = fj7 J=12, (52>
note that while studying problem (1), (52) in the space ®* (D, ) it will be
required of the coefficient B and the functions F, f* that F € ®*(D,),

i e CIO>Z(SZ-T), j =1,2; B € C*(D,). Moreover, we will assume that the
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elements of the matrix B depend only on the variables x; and ¢ and are the
bounded functions.

If u is the solution of problem (1), (52) from the space ®% (D), then
after the Fourier transformation with respect to the variables xo, ..., z, the
system of equations (1) and the boundary conditions (52) take the form

n

Bty + Ay, +¢<2Ajgj)a+3a: F, (53)
j=2

Fjﬂhjr = .]?ja j=12, (54)

where u, F , fj are the Fourier transformations respectively of the functions
u, F, f7 with respect to the variables xs, . .., xp, and v;; : t+(—1)7 021 = 0,
0<t<T,75=1,2, are the sides of the triangular domain Dy, in the plane
of variables x1, t introduced by us above. In these equalities here i = /—1.

Remark 10. Thus, after the Fourier transformation with respect to the
variables xs,...,x, the spatial problem (1), (52) is reduced to the plane
problem (53), (54) with the parameters &s,...,&, in the domain Dy, =
{(z1,t) € R? : =o't <21 < o;'t, 0 <t <7} of the plane of variables

x1, t. Tt is easy to see that in a class ®F (D) of vector functions defined by

inequalities (51) the above-mentioned reduction is equivalent.

As a result of substitution @ = Tyv, by virtue of (40), (41), instead of
system (53) and boundary conditions (54), with respect to the new unknown
vector function v we have

EthrszlJri(Z/ijj)erEvﬁ, (55)
=2

DTl = f7, j=1,2 (56)

Here _

A=dlag(ul,...,,ul,...,,us,...,,us),
N——— S——
k1 ks (57)
A, =T7'A; Ty, j=2,...,n, B=T,' BT,
and F = Tlﬁ.

Let Lj(x%,t°) : z1 = z; (=%, to;t) = x‘f—ujto—i—,ujﬁ t = ¢ be the parametric
writing of the characteristic of the j-th family of system (55), coming out of
the point (29,t°) € D,-, 1< j < s, towards decreasing values of the variable
t,i.e. t < t°. Denote by wj(z1,t) the ordinate of the point at which the
characteristic L;(x1,t), P(z1,t) € Dy, and the curve 71, or s, intersect,
depending on the index j of the characteristic L; and on the location of the
point P(z,t) in Dy,; the latter curve we denote by Yi(p)r- Owing to the
above-said, it becomes obvious that

0 <wj(z1,t) <t, (21,t) € Doy, j=1,...,s. (58)



16 S. Kharibegashuvili

It is not difficult to verify that

t, jzl,...,SO—i-pl,
wj|’y17': -
7;t, j=So+p1+1,...,5s,

- Tjt, j=1,...780—p2,
w]'|’YzT* " -
) J—So—p2+1a-~-75-

Here
_ e+ oo =17 ley =150~ pa,
(15 — Voa(oopj + 1) toyt,  j=so+pi+1,...,s,

and by (47), (49), (50) and the fact that v1, and 72, are not characteristics
of system (55), we have

O<7 <1, j=1,...,80—Dp2, So+p+1,...,s (60)

Remark 11. The functions v, 15, fj, j = 1,2, with the exclusion of
independent variables x; and ¢, depend also on the parameters &5, . .., &,. To
simplify our writing, these parameters will be omitted below. For example,
instead of v(x1, &, ..., &, t) we will write v(x1,t).

Integrating the (g; + I)-th equation of system (55), where ¢1 = 0, ¢; =
ki +...,+kj—1,1=1,...,k; along the j-th characteristic L;(z1,t), coming
out of the point P(x1,t) € Dy, towards decreasing values of the variable ¢
from the point P(z1,t) to the point where L;(x1,t) and the curve 7, or
71+ intersect depending on the index j of the characteristic L; and on the
location of the point P in Dy,, we get

quJrl(xlat) - UQj+l(7j(P)T(wj(x17t))awj(xlvt))+

t m
+/ |:Z Ajlpvp] (Zj (xla t; )7 t)dt + Fjllv (61)
wj(z1,t)

j p=1
1<5<s 1=1,... kK,
where Ajj, are the completely definite linear scalar functions with respect
to the parameters &9, . .., &,, and Fjll are the completely definite scalar func-
tions. Here 7;(p), () is the function which describes equation of the curve
Vj(Pyrs 1€ Vi(pyr t T1 = Vj(py (1), 0 <t < T
Suppose
(qu'-i-l(t):vqg'-i-ll’hr :Uq1+l(0;1t7t)a J=1,... s0+p1i; =1, k;,
Da;-+1(1) = Vg, 1o, =g, +1(—03 1, 1),
j=so—p2+1,....8 I=1,...,k;.

(62)

Taking into account (62), we can rewrite the system of equations (61) in
the form of one equation

st
v(zy,t) = x(z1,t) + Z/ A;v(zj(:cl,t;tN)dtNJr FY (63)
J=1T )

wj(azl,t
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where Ajl is the matrix of order m x m. Its elements are linear functions
with respect to the parameters &,...,&,, j = 1,...,s, and x(z1,t) =
{(CPQjJrl(wj(xlat))v Jj=1,...,8 +pi; = 1,..., kj)a (qu'Jrl(wj(xl;t))a Jj=
so—p2+1,...,8 1 =1,...,k;)}. It can be easily verified that a num-
ber of components ¢, +; of the vector x is equal to s, and a number of
components g, 4 is equal to .

Substituting expression (63) for the vector function v into boundary con-
ditions (56) and taking into account equalities (59), we obtain

Ghet)+ Y. Glu(mt) + M)t =f', 0<t<,
Jj=so+p1+1
S0 —P2

GRul) + Y. Glolnt) + [BOIW) = 2, 0<t<r,

where

cp(t) - ((pleJrl(t)a J=1,...,80 +p1; [ = 1,.. '7kj) = (wl(t)a' . wcpﬂl(t))a
w(t):(’(/)qj+l(t),j250—p2+1,...,S;l:L...7kj):(wm_%2+1(t),...,wm(t)).

Here G; and G? are the completely definite constant matrices, and 7} and
T, by virtue of (59) and (60) are linear integral operators of Volterra type
whose kernels depend on the parameters &, ..., &,.

Denote by T 11 the matrix of order m x 2r; which consists of the first s«
columns of the orthogonal matrix Ty appearing in (56) and by T2 the matrix
of order m X 5 consisting of the last s columns of the matrix T7. Then
by virtue of (56) and (59) we can easily check that G}, j = 1,2, appearing
in system (64) are square matrices of order s; x s, and

G =TI xT!, j=1,2, (65)

where the elements of the matrix I'V are defined from equalities (17).
In the assumption that

det(I7 x TY) #0, j=1,2, (66)
we solve equations (64) with respect to ¢ and ¢ by means of (65) and find
that

o) - S S Gupelnmt) = TI0 + 1), 0<t<r, (67)
j=1 p=so+pi1+1
WO - S Y Copblrmt) = M@0 + 740, 0<t<r (68)

j=1 p=so+p1+1

where Gy;p, [ = 1,2, are the completely definite constant square matrices of
order » X », and T3 and T} are linear integral operators of Volterra type
whose kernels depend linearly on the parameters &, ..., &,.
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Remark 12. As is seen from our reasoning, when conditions (66) are ful-

filled, problem (1), (52) in the class ®¥ (D) is equivalent to the problem of
finding a system of functions v, ¢ and 1 from the system of integral func-

tional equations (63), (67) and (68), where v € %’g(ﬁm); 0, P € %Z([O,T]),

[e] [e]
Fl € ®5(Dy,); f3, f* € ®5([0,7]). The system of type (63), (67), (68)
in the spaces under consideration has been studied in [28]. According to
the results obtained in this paper, there exists the real number py depend-
ing only on the elements of the constant matrices G1;, and G5;;, appearing

in (67) and (68) such that when k + a > po, for any F' € &% (Do, ); f>,
f* € ®%([0,7]) there exists the unique solution v, ¢, 1 of the system of
equations (63), (67), (68) respectively from the spaces ®* (D), ®* ([0, 7]),
®F ([0, 7]) for which the following estimates for €] > K are valid:
0230701, &, 1)) < MTEHTOT i exp M. (1 + [€])] exp(~NIE]),  (69)
02 (t, €)] < MR 2 exp[ M. (1 + |€])] exp(—NI€]),
O (1, )] < MO exp[M.(1 + [E])] exp(~NE]),
(21,t) € Dor, 0<it4is <k, |P=+- -+,
where the values K = K (x1,t, N), M* = M*(xq,t, N, f3, f* F1) and M, =
M*(A},Gljp,ngp) are independent of & € R" 2. Moreover, if for some
To € (077—)
F1|5OTO =0, f]|[0,7'0] =0, j=3,4,
then
UlﬁoTO = Oa (p|[0,7’0] = 07 1/)|[O,To] =0

as well.

Remark 13. According to Plancherel’s equality, in considering the question
on the solvability of problem (1), (52) in the spaces Lg x(D-) and W3 ,(D-)
the use will be made of the following equivalent norms:

Hu||%m(DT) = / [u(z1, ... ,:cn,t)|2e_2)‘tdg:dt —
D,
= / e*”‘td:cldt/ lu(zy, ..., Tn, t)|?d2s ... d2, =
DUT Rn—1

= /A |ﬂ($1,€2, s agnat)|2672)\tdx1d€2 oo dfndt = ||a||i2/\(f)ﬂ_)a (70)

-

[l oy = [ TP P o+ ) e =

-

:[ (14 €)% + |, |2 + [G2le”PMdardes . . . déndt, (71)

-
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where ﬁT = Dy, X Rgfl, §~= (£2,...,&n), u = fzﬁg“ are partial Fourier
transformation of the function u with respect to the variables (za, ..., z,) =
Z. It is evident that for a finite 7 the weighted spaces Lo A(D;) and
W3 \(D7) with the parameter A coincide with ordinary spaces Ly (D) and
WiD,).

Analogously, by means of the Fourier transformation and by Plancherel’s
equality we introduce an equivalent norm in the space Lo (Sjr):

Jul2, s, = /S (1, .. ., 8) Pe=2NdS, =

it

= / 6_2)\td’}/j7—/ |a(x1,§2,...,§n,t)|2d§2...d§n =
v n—1

iT

= \/5« |a(x1;€27 L) 7£n7t)|2€_2)\tdsj7' = ||a||L27>\(§j7)7 j = 1723 (72)
3T

where §jT = Yjr X Rg_l.

Let F € Loa(D) and f/ € L2x(Sj), j = 1,2, in problem (1), (2).
Obviously, F, = F|p. € Lo (D), f’ = fj|sﬁ € Ly ,\(S]T) j =12
Therefore by (70) and (72) we have F s L2 A(DT) and fj € Ly A(S\] ),

j =1,2. Since the spaces C5°(D,) and C§° (SJT) Jj = 1,2, of finite finitely
differentiable functions in ﬁT and SJT are dense respectively in Lo ,\(ﬁ )
and Ly ,\(S )s J = 1,2, there exist sequences of functions ﬁw e Cy° (13 )
and f e Cye (S]T) j=1,2;p=1,2,..., such that

. _ N _ . I _/\] N _ .
Jim (1Frp=Frllp, b,y =00 M 5=, s, =0 5=1,2 (73)

Because of the fact that ﬁw € C3°(D,) and ﬁTp € Cgo(ng), j=12
we have Fﬂ’lf)ro =0, f¥p|§jr0 = 0 for sufficiently small 79, 0 < 79 < 7, and
by (51) we find that

Frp=F;! (Frp) € 95(Dy), fi,=F'(Fl,) € Ok (Sir)
for any k and o, p = 1,2,..., where ‘7::_1@ are ordinary Fourier transfor-
mation with respect to the variables &, ..., &,. Therefore according to
Remark 12, problem (1), (52) has the solution u,, € (I> k(D,) for F = F,,,
and f7 = fl, = (fl;p - %Tp) k>1,a>0.

By (71) it is evident that @’;(DT) C W3 ,(D-). Consequently, ur, €
W3\ (D). Noticing that Qo(@)|op, njt=r} = F as alop, afi=r} =(0,...,0,1),

where Qo(a) = Eagp+ 23;1 Ajoj, and a = (aq,. .., an, o) is the unit vec-
tor of the outer normal to 0D,, we have

/ (Qo(a)w,w)ds = / |w|?ds > .
oD -N{t=7} OD-N{t=7}
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Therefore for the solution u € W217)\(DT) of problem (1), (52) in the domain
D, we repeat word for word the same reasoning as in proving Lemma 1 and
see that for A > A\g the estimate

1
lelasco,) < mZZufHLM o+ Pl (74)

i=1 j=1

is valid.
Inequality (74) implies that

||u7'l - qu|‘L2,>\(DT) <

- 1
1500 = FirpllLansin) + 5= 1Frt = Frpllna (o),
m;; J jrpllLa x(Sir) X — o pllLa A (D7)
whence, owing to (70), (72) and (73), it follows that the sequence {u,p} is
fundamental in Ly z(D;). Therefore taking into account the fact that the
space Lo A(D;) is complete, there exists the vector functlon Uy € L2 A(D7)
such that urp — ur, Lurp = Frp — Frin Ly A (D) — fi
in Ly (Sir) as p — oo. The latter with regard for (74) means that problem
(1), (52) has the unique strong generalized solution w, of the class Lg »,
A > Ao, for any F, € Ly x(D,) and fI € L2 x(Sjr), j = 1,2, for which the
estimate

HPARPRE- J—ZZHLTHLMHU S IE a0y (75)

i=1 j=1
is valid.
Note that if we take into account that F, = F|p  and f! = fi|s,.,
i = 1,2, and hence Fy,|p, = Fr,|p,, and f!|s,, = fils,, for m >,

then by virtue of (75) we can conclude that u, |p, = un|p, for 7 > 7.

Thus the vector function is defined correctly in the whole domain D. Its
narrowing on D, is the strong generalized solution u, = u|p, of the class
Ly of problem (1), (52) for F; = F|p, € Lax(D;) and fi = filg, €
LQ,)\(SJ'T); j = 172

In fact, we can show that u is the strong generalized solution of problem
(1), (2) of the class Loy in D for sufficiently large A. Indeed, we can
construct the above-considered vector function u in somewhat different way.
Since F € Lo £(D) and e Ly A(85), J = 1,2, there exist sequences of the

functions ﬁpe Cs°(D) and fp e Cg° (S) j=1,2;p=1,2,... such that
Tim (1B, ~ Fl,, 5 =0 lim |f3 —f]i\wg,) —0, j=12 (T0)

Analogously, for F = fN (A) and fJ = (f]) problem (1), (52)
can be reduced to the same system of mtegral functlonal equations (63),
(67) and (68) for v with the domain of definition D and for ¢ and ¢ with
the domain of definition [0, 400), respectively, instead of D, and [0, 7] in the
case of problem (1), (52). Since under that reduction the right-hand sides of
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system (63), (67), (68) satisfy by virtue of }/7;} € C°(D) and fg e Cg° (§])

the conditions F!' = F} € ®k(Dq,), fI = fi € ®E[0,7], j = 3,4, for
arbitrary ¥ > 1, « > 0 and 7 > 0, according Remark 12 there exists
the unique solution v, @,, ¥, of the system of equations (63), (67), (68)
with the domain of definition D for v, and [0, +00) for ¢, and ,, where

vy € ®F(Dor); ¢p, Yp € ®E([0,7]) for any 7 > 0. Moreover, estimate (69)
in which the value M, does not depend on 7, is valid. Taking into account
(70)—(72), this implies that for the solution u = u, = fg_lﬁ(vp) of problem
(1), (2) for F = F, = fgii(ﬁp) and f7 = fl = fgii(fg) the inclusion

up € Wi (D), A> i,

holds, where Xl is a real number depending only on coefficients of system
(1) and on elements of matrices I'Y, i = 1,2, in the boundary conditions
(2). Therefore, according to (24), for A > \} = max(Xg, A1) we have the
inequality

1 & . 1

=gl o) € i gg 1= Fipll e st 5= I Fi=Fpllia o)
from which, owing to (70), (72) and (76), it follows that the sequence {u,}
is fundamental in Ly (D) and hence there exists the vector function u €
Lo A(D) such that u, — u, Lu, = F, — F in Ly x(D) and Tupls, = f; —
fiin Ly A(S;) as p — oo. This means that the strong generalized solution of
inhomogeneous problem (1), (2) of the class Lo » exists and its uniqueness
follows directly from the a priori estimate (24).

Theorem 1. Let conditions (66) be fulfilled. Then for any F' € La(D,)
and f' € Ly(Sir), i = 1,2, 0 < 7 = const < +o0, there exists the unique
strong solution u of problem (1), (52) of the class L x for which the estimate

2
1 Lo 1
lullsn(pr) < NEow S g + - )\OHFHLQ,X(DT)

i=1 j=1
is valid for A > Xg.

Note that for a finite positive 7 the spaces Lo A(D;) and Lg (S;;) coin-
cide respectively with the spaces La(D.) and Lo (S;;) for any A € (—oo, +00).

Theorem 2. Let conditions (66) be fulfilled. Then for X > A} for any
F € Ly (D) and f* € Lo x(S:), i = 1,2, there exists the unique strong
solution u of problem (1), (2) of the class Lo x for which estimate (24) is
valid.

Remark 14. Taking now into account (21) and (22), we give some examples
of matrices I'* under the boundary conditions (2) for which conditions (66),
appearing in Theorems 1 and 2, are automatically fulfilled. By (17), as
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matrices I'? we take the matrix of order (> x m) consisting of the first s;
rows of the matrix C?(a?) which, according to equality (15), reduces the
quadratic form (Qo(a’)n,n) to the canonical one, i.e. for ¢ = C'(a’)n we
have

(Qo(a")n,m) = — Z G+ Z Ci;ﬂ"
o

As is known such a matrix C*(a?), and hence I'?, are defined non-uniquely.
By equalities (4), (41)-(44), as matrices C*(a*) we can take the orthogonal
matrix 7, ', i = 1,2, where T and T are defined in (43) and (44). In this
case, by the definition of matrices 77, i = 1,2, from (65), (43) and (44) we
can easily get that T x T = E,, , i = 1,2, where E,,, is the unit matrix of
order s, and E‘m = (epq) is the square matrix of order s, where

1 for p+q=s+1,
e =
ba 0 for p+q# s+ 1.

Thus under such a choice of matrices I'* in (2) conditions (66) will be ful-
filled.

Remark 15. For the sake of simplicity, we restricted ourselves above to the
case in which s = 259, 1 < p; < 59 — 1, 4 = 1,2, and thus inequalities (49)
and (50) have been fulfilled. Minor modifications on our reasoning allow
one to prove the validity of Theorems 1 and 2 in case s = 2sy and p; = 0 or
pi = So, ¢ = 1,2, and also in case s =250+ 1,0 < p; < 59,7 =1,2.

4. SMOOTHNESS OF A SOLUTION OF BOUNDARY PROBLEM (1), (2)

By Theorem 2, if F € Ly (D) and f* € L2 x(Si), i = 1,2, A > A},
then the strong solution u of problem (1), (2) belongs to the space Lo A(D).
Below it will be shown that under additional smoothness of data of problem
Flp,, € WQ{A(DTO) and f'|s,, € WQI’/\(S”O), i =1,2, 79 > 0, the above-
indicated solution u of problem (1), (2) in the domain D, ; would belong
to the space VVQ{A(DTO,T)7 where D, - = Dy, \D,, 0 < T < 75. Moreover, in

case —051 <oc< Ufl, the planes S9 : ot —x; = 0 will be non-characteristic
planes of system (1). To simplify our writing, we retain the same notation for
the narrowing of the vector function to a subset of domain of its definition.
It is also assumed that the norm [|F'[|y. (p,), being the function of the
variable 7, decreases as 7 — +0 not as s]owly as the power function, i.e.

IFllwe (D, = O(7!), where [ is a positive constant. The similar conditions

are imposed on vector functions f?, i = 1,2. For simplicity we assume that
F|p. = 0 and fils,, = 0, i = 1,2, where ¢ is a fixed sufficiently small
positive number. Then according to our reasoning in the proof of Theorem
2, we have
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Under transformation of variables y; = =L, y; = 2,0 =2,...,n, ypp1 =1
the domain D, ; turns by virtue of (38) into the domain Q,, ., = {y =
(Y1, Yni1) € RPTL —051 <y < 0;1, —00 < Y; < 400, 1 =2,...,n,
T < Ynt1 < To} and system (1) with new variables y1,...,yn+1 takes the
form

n
-~ ~ 1 _ _ -~
Lu = Fuy,,, + y—(A1 — 1 E)uy, + Z Auy, + Bu=F, (78)
ntl i=2

where U(y) = u(z, t), F(y) = F(z,t), B(y) = B(x,t).
By (2), for the vector function @ we have

S :f"v’ia 1:1723 (79)

/L'»-v
M SirgsT

where §iTO7T ={y e Rt .y = (—1)i_10;1, —00 < y; < 400, j =
2,00, T < Ynt1 < To}s f"(y) = fi(x,t), i = 1,2. It is clear that ,’S'vmﬁ =
aQTU,T N {yl = (71)1.710—1'_1}; i=1,2.

Obviously, the condition u€ Wy (D, ) is equivalent to &€ Wy , (Qry 7).
In the same manner as in getting (25), for the new unknown function
(0)(y) = u(y) exp(—AYn+1) we obtain by means of (78) the following system
of equations:

- 1 U

LW = By, ,, + —— (A1 — nE)dy, + Y Ailly, + Ba@o = Fx, (80
Ynt1 i=2

where By = B + \E, Fy = ﬁexp(—)\yn+1). Note that if u € WQI,/\(QTO’T)7

then F € Ly x(Qry.r) and @ € WE(Qry 7)), Fx € La(Qy,.+) and conditions
(79) take the form

wa@mrzﬁ,isz (81)

where ﬁ = :fviexp(f/\ynﬂ) € L2(§¢TO,T), 1=1,2.
Taking into account (80), the integration by parts yields

2 /Q (Eit, @)y — /6 (Qola)@, @)ds+

oo Qry s
1 . o~ ~
+/ (w,w)dy + / (2B \w, w)dy, (82)
Qrg,r Yn+1 Qrgor
where Qvo(a) = Ea0+2?:1 Zjaj, Avj = Aj fOI‘j 75 1, Avl = yn1+1 (Al —ylE)7
a = (a1,...,0n,ap) is the unit vector of the outer normal to 9Q, ..
Since

|§m-0,7- = ((_1)1-*1,07 .. .,O), 1 =1,2; O[|69T0,Tm{y"+1:7_} = (O7 ..., 0, _1>7

a|6ﬂa—0,rﬁ{yn+1:ﬂ)} = (O, ey 07 1), y1|§iro,r = (—1)i—10'i, 7= 17 2,
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from (82) it follows that

~ 1 ~ ~
2/ (L, w,w)dy = / (A — o] 'E)Y0, w)ds—
Q §1T0,T yn+1

TOT

7/3 L ((A1+051E)a,w)ds+/ (@, @)ds—

~2ﬂ—0,7— Yn+1 8QT0,Tm{yn+1=7—0}

1 ~
—/ (w,w)ds +/ ((2By + E)Yyw,w)dy. (83)
8070 rm{va+1 T} Q Yn+1

TONT

By virtue of (39) and (40), for the characteristic matrix Qo(a) = Fag +
> i1 Ajaj of system (1) we have

1 (1)t

aY=alE+al A =— E+ 0; A1 =
Qo) = a5 B VI+o? Vit
_ 7L (A + (1) ), i=1,2. (84)

(_1)1-71 m(

From (84),(28) and (79),(81) it immediately follows that
1 - 1 .
/ (A — o] 'E)w, w)ds — / (A1 + 05 'E)YW, w)ds =
glﬂ-g - Ynt1 gzq—o - Yn+l

2’ 2 i
:Z/ \/1+0 / V1+a? ZfAJ J2ds>

OiYn+1 0iYn+1 =

wwds>

Sirg,r Sirg,

>f—22/ Bt =25 S5 65)

=1 j=1 Sirg,r i=1 j=1
0.2
where ¢; = max;—1 2 —”H , while y = 5. < %
iro.r

Owing to (23) and the fact that ———lq, . = %0, similarly to (29) we

have
~ 1
2By +—F)@,7) >2(x - +—) @, @ -
<( A Yn+1 La(Qrgr) 0 ( JL2(@ry )

=2(A =X+ %”WHM(QTO,T)- (86)

For 7 < €, by (77) we find that

/ (w,w)ds — / (0, W)ds =
0y, {ynt1=70} O+ {Ynt1=7}

- / (@, @)ds > 0. (87)
6QT0’Tﬁ{yn+1:To}

By means of (80) and analogously to (30), for A > Ao we get

2/ (z)\a an @)dy = 2(}?‘)\7@)[/2(07017) S
Q

TOT
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_ o~
< A= 20)l@llq,,.) + )\_—)\OHFAQHLQ(QTO,T)- (88)
From (83), (85)-(88) follows

~ 1 ~
A =200 | La(0ry ) + ﬁHFAH%Q(QTO 2

>*—ZZIIAJHL2 S 20 20+ 5B, 0 (59)

i=1 j=1

According to (89), we have

~ 1 ~
(=231, @, ) < 2 ZZHAJHL?(SW ot B,

i=1 j=1
whence, taking into account the fact that

1l 2200 0) = [ Lan@ryrrs I35 LyBry oy = Wil iy s By 6= 12,

[N La(92ry ) = 1F L 5 (92,0
we arrive at

||u||L2 A(Qrg,7) S

1 -
< (Cl) mzznf HL2X Sirg,r) )\_—)\OHF”L2,A(QTO,7)' (90)

i=1 j=1

Let now u e Wi)\ (D~,,7) or, what comes to the same thing, u € WQQ,/\ (Qry.7)-
Below it will be assumed that elements of the matrix B are continuous
and bounded together with their partial derivatives of first order with re-
spect to variables x1,...,2,,t in the closed domain D, -, and in this case
E € Loo(Qryr), i =1,...,n+ 1. Therefore, if u;(P) is the largest char-
acterlstlc number of the nonnegatlvely defined symmetric matrix B’ B ; at
the point P € Qm,r, then we will have

us = Pesgz ] | Joax wi(P) < 4o0. (91)

Differentiating system (78) and the boundary conditions (79) with respect
both to y,, 2 < p < n, and to the vector function v» = 1, in the domain
Q.. r, we obtain the following problem:

Bvj 0 o — (A1 — 1 E)of, + ZA WP+ BuwP =F, — B, u, (92)
n =2
F%P|§”w = ;p, i=1,2. (93)

Since by our assumption % € W3, (Qr, 7), we get v’ € Wy (Qy, +) and,
applying estimate (90) to the solution v? of problem (92), (93) and to ,
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with regard for (91) and (77) for 7 < € we obtain

61% 7
1722 r@00 < (5 )VT—TEZZNQNMH@W”+

i=1 j=1
2

1 I o~ i
+)\_—)\0”pr B Bypu”Lz,)\(Qro,T) = ( ) mzz ||fyp]||L2 )\(S“'() 7-)

i=1j5=1

1 ~ 1o -
+ﬁ||prHLz,A(QTO,T) + X — o HuHLzA(QTo,T) <

1
C1\ 2
<(% )vﬁ——EjzﬂﬁﬂmH@ma+A 5o IFn s s @ ot

11]1

—Ir)‘ - |:(c7'1> E\/ﬁz Z ”f HLz NES T)+>\ Xo ”‘FHL2 A(Qrg, )| (94)

i=1 j=1

p=2,...,mn

By virtue of (78), from the equality ﬁ(yw_lLﬂ)ywrl = yn+1 (yn+1F)yw+1
for vP, where p = n + 1, we arrive with regard for (79) at the following
problem:

n
+1 1y antl o Bontl
EUZ7L+1 * Yn+1 (Al B ylE) v Z AZU?Z + Bv" -
=2

1 ~ i~ ~
= (yn+1F)y7L+1 — Eo"t - Z Aiv" — (B + yn+1Bva+1)u7 (95)
Ynt1 i=2

R i=1,2. (96)

iTQ,T Yn+1’
For the solution v" ! of problem (95), (96), by (90)-(94) we have

1
+1
[0 sy < (7 )VT—TEQZNﬁHmm”@W”+
i=1j

sy~ B
n

- |
X = o

<
LZ,A(QTO,T)

n
- Z APUP - (B + yn+1Byn+1)a‘

c1\ 2 v
<(7) mZZ”fW"LH Sror)

i=1 j=1

+

+
Lo A(QTO 7')

+§]mn{() S S Wl s

=1 j=1

A_MJ——wwﬂanl
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1 = Ho
— || F
+)\_)\O|| yp||L2,)\(QTO,T)+ )\_)\0

X

1 2
c1\ 2 1 g _1 3
) [(?) o Z ) (5] PNT R e ||F”L“(QW’]}+

=1 j=1
+(1 + 70) po %

1
2

2 > ~.
+(1+T0),LLO|:(CT_1) ﬁZZ”ﬁ”LM(QTOHJF

i=1 j=1
1 ~ 1 ntl

)\7—)\0||F||L2,A(QTO,T) + )\7/\0||U 22 7(Qrg.0)- (97)

Solving inequality (97) with respect to ||v"+1||L2J(QTOYT) for A > Ao + 1,

i.e. for )\71)\0 <1, we get
2
n+1 i i
1 sy < C1| S0 g G+ 1Py | 99

i=1
where C is the positive constant depending on the coefficients of system
(1), values o1, o2, T, To, Ao, po and parameter A, but independent of @, and
hence of v"F1, fi, F.
According to our assumption above, the planes SO : ot — 27 = 0 for
-0y l<o< oy ! are non-characteristic for system (1), and this is equivalent
to the condition

det(A; =y E) #0, —oy' <y1 <oy’ (99)
By (99), system (78) in Q, , can be rewritten as
n
Uy, = Yni1(A1 — 1 E)7? {F — By, 11— Y Ay, — Bﬂ} :
i=2

whence owing to (90), (94) and (98), for v! = %, we obtain

2
I sy < Co| 1P g 800+ 1Pl 0] (100
=1

where the positive constant Co does not depend on u, ]E, F.

Combining now inequalities (90), (94), (98) and (100) and getting back to
the initial independent variables x1, ..., zy,t, for the solution u € Lo x(D)N
W3 (Dx, r) of problem (1), (2) we find the estimate

2
a0y 1 < Ca| SO0 w500+ Pty 0| (10D
=1

with the positive constant Cj3, not depending on v and f?, F, S;
SiNDr -

T0,T
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In a similar way we can prove that for the solution u € Lo (D) N
W;J)\rl(DTOJ), k > 1, of problem (1), (2) the estimate

2
el by < Ca [Z 1w oy + 1F Nt o] (102)
i=1

is valid, where the positive constant C4 does not depend on u, f*, F.
When constructing the solution u € Lo (D) of problem (1), (2) whose

existence was stated in Theorem 2, we approximated the vector functions

F, = IEHE(F”BT’ fl= fzﬁg(ﬂ”éﬁa j=1,2; T = 79, by the vector func-

tions Fr, € C5°(D-), f1, € C5°(Sjr)), 7 =1,2; p=1,2,... respectively in

~ ~

the spaces Lo A(D;), L2 A(Sjr), i.e. there took place equalities (73). Now

approximating vector functions Fr, and f, can be constructed as follows.
We take the function x,(£) € C°°(R"~1) such that 0 < x(§) <1,£ € R 1,
X(E) =1 for |§~| < p and X,,(E) = 0 for \«§| >p+1. If F, € WQI,/\(DT)7
fie WQ{A(S]‘T), j = 1,2, then as is known [26, p. 205], there exist vector
functions F7, € C*°(D-)NW3 ,(D-), f3 € C>(S;7) NW; ,(S}r) such that

[Erp — Frpllwy (0, < P 17y = Fobllwy s < s (103)

Assume

~ ~ ~ ~

F‘rp = Xp(g)fEHE(F:p)v fgp = Xp(g)fiﬁg(f:g)a j=12,
Fw:fgig(ﬁw)a ] _]::1 (A] )a .72172

™ £z TP

(104)

Note that if F|p, =0, fi]s,, =0, j = 1,2, the vector functions FJ, ﬁTp,

., =1,2,0<e <7 =1, possess the same property, i.e.
F:ple = FTP'EE =0, f:;zj;lsja = 7]'p|§j5 =0, j=12 (105)

By equality (71), for the norm of the space W21 1 (D7), for properties of

the function x,(§) and for relations (103) and (104) we, obviously, have

T |y~ Frpllw (o) = 0. (106)
Analogously,
; j _ £ _
S (17 = fpllwy (s, = 0- (107)
holds.

Owing to (105) and to our construction above, it is evident that

Frp € ®5(D,), fl,€®h(S;r), j=1,2,
for any k£ and «, p =1,2,.... Therefore according to Remark 12, problem
(1), (52) has the solution u,, € ®*(D,) C W3 (D7), T = 70. Now estimate
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(101) implies

[urt = urpllwy \ (Dry ) <

2
< o = Bl + 15 = Fryllag 0y
=1

from which by (106) and (107) it follows that the sequence {u,,} is funda-
mental in VV21 1 (Dxy,7). Consequently, since the space W21 A (Dxy,7) is com-

plete, there exists the vector function u? € VV21 \(Dx, ) such that urp, — u?

as p — oo in the space Wj ,(Dr, +). On the other hand, by virtue of (74),
as is shown while proving Theorem 2, the same sequence {u-p} converges to
the solution u, € Ly x(D;) of problem (1), (52) in the space Lg x(D;). But
ur is the narrowing of the solution u of problem (1), (2) of the class Lo x
to the domain D... Therefore by the uniqueness of the solution of problems
(1), (2) and (1), (52) of the class Ly » we obtain

U|DT0,T =uj € WQI,/\(DTO,T)a

which was to be demonstrated.
Just in the similar manner, on the basis of estimate (102) we can prove
that under additional smoothness of data of the problem F' € WQk (D7),

fie WQI“,/\(S”O), i=1,2,0 <7 < 79, the solution u of problem (1), (2)
belongs to the space WQIT)\(DTO,T).
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