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Abstract. The aim of the paper is to study the question on the existence
and uniqueness of a solution of the problem

u′(t) = p(t)u(τ(t)) + q(t), u(a) + λu(b) = c,

where p, q : [a, b] → R are Lebesgue integrable functions, τ : [a, b] → [a, b]
is a measurable function, and λ, c ∈ R. More precisely, some solvability
conditions established in [5, 6, 8] are refined for the special case, where

τ maps the segment [a, b] into some subsegment [τ0, τ1] ⊆ [a, b].
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Introduction

The following notation is used throughout.
R is the set of all real numbers, R+ = [0, +∞[ .

[x]+ =
|x|+ x

2
, [x]− =

|x| − x

2
.

C̃([a, b]; D), where D ⊆ R, is the set of absolutely continuous functions
u : [a, b] → D.
Mab is the set of measurable functions τ : [a, b]→ [a, b].
L([a, b]; R) is the Banach space of Lebesgue integrable functions p :

[a, b]→ R with the norm

‖p‖L =

∫ b

a

|p(s)|ds.

By a solution of the equation

u′(t) = p(t)u(τ(t)) + q(t), (0.1)

where p, q ∈ L([a, b]; R) and τ ∈ Mab, we understand a function u ∈
C̃([a, b]; R) satisfying the equality (0.1) almost everywhere in [a, b]. Note
also that throughout the paper the equalities and inequalities with inte-
grable functions are understood to hold almost everywhere.

Consider the problem on the existence and uniqueness of a solution of
the equation (0.1) satisfying the boundary condition

u(a)− λu(b) = c, (0.2)

resp.

u(a) + λu(b) = c, (0.3)

where λ ∈ R+ and c ∈ R.
The theory of differential equations with deviating arguments was begun

to develop in 50’s of the 20th century (see, e.g., [9,11] and references therein).
Throughout the second half of the 20th century, a lot was done to construct
the general theory of boundary value problems for functional differential
equations (see, e.g., [1, 2, 10, 12] and references therein). In spite of this,
there are only few effective criteria for the solvability of special types of
boundary value problems for functional differential equations.

In [5,8] and [6], there were established sufficient conditions for the unique
solvability of the problem (0.1), (0.2) and (0.1), (0.3), respectively. More-
over, those results are, in general, nonimprovable (see the examples con-
structed in [5, 6, 8]). On the other hand, if τ maps the segment [a, b] into
some subsegment [τ0, τ1] ⊆ [a, b], the above–mentioned results can be im-
proved in a certain way. In the present paper, some results from [5,6,8] are
refined for such special case of the equation (0.1). For this purpose, put

τ0 = ess inf {τ(t) : t ∈ [a, b]}, τ1 = ess sup {τ(t) : t ∈ [a, b]}.
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It is clear that τ0, τ1 ∈ [a, b], τ0 ≤ τ1, and τ(t) ∈ [τ0, τ1] for almost all
t ∈ [a, b].

The paper is organized as follows. Sections 1 and 2 deal with the prob-
lem (0.1), (0.2) and (0.1), (0.3), respectively. Section 3 is devoted to the
examples verifying the optimality of the obtained results.

The Cauchy problem is a special case of the discussed boundary value
problem (for λ = 0). In that case, the below formulated theorems coincide
with the results obtained in [4].

The following result is well–known from the general theory of the bound-
ary value problems for functional differential equations (see [1–3,10, 12]).

Theorem 0.1. The problem (0.1), (0.2), resp. (0.1), (0.3), is uniquely

solvable if and only if the corresponding homogeneous problem

u′(t) = p(t)u(τ(t)), (0.10)

u(a)− λu(b) = 0, (0.20)

resp.

u′(t) = p(t)u(τ(t)),

u(a) + λu(b) = 0, (0.30)

has only the trivial solution.

1. Problem (0.1), (0.2)

1.1. Main Results.

Theorem 1.1. Let λ ∈ [0, 1] and

A
def
=

∫ τ1

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]+ds . (1.1)

If

A < 1 , (1.2)
(∫ τ0

a

[p(s)]−ds + λ

∫ b

τ0

[p(s)]−ds

)(
1−

∫ τ1

τ0

[p(s)]+ds

)
> λ−1+A, (1.3)

(
1−A

)(
1 +

∫ τ1

τ0

[p(s)]−ds

)
> λ−

∫ τ0

a

[p(s)]−ds− λ

∫ b

τ1

[p(s)]−ds , (1.4)

and either
∫ τ0

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]−ds < λ +
√

1−A , (1.5)

∫ τ1

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]−ds < 1 + λ + 2
√

1−A (1.6)
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or
∫ τ0

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]−ds ≥ λ +
√

1−A , (1.7)

∫ τ1

τ0

[p(s)]−ds < 1 +
1−A

∫ τ0

a
[p(s)]−ds + λ

∫ b

τ1

[p(s)]−ds− λ
, (1.8)

then the problem (0.1), (0.2) has a unique solution.

Remark 1.1. Theorem 1.1 is nonimprovable in the sense that neither of
the strict inequalities (1.3), (1.4), (1.6), and (1.8) can be replaced by the
nonstrict one (see Examples 3.1–3.4).

Example 1.1. On the segment [0, 1] consider the boundary value problem

u′(t) = k(1− 3t)u

(
(3r − 1)t + 1

3

)
+ q(t),

u(0)− λu(1) = c,

(1.9)

where λ ∈
[
1
4 , 1
]
, k ∈ ]0, 6[ , q ∈ L([a, b]; R), c ∈ R, and r ∈

[
2
3 , 1
]

is such
that 3(1 + 3r)(1− r) ≥ 1. Put

α =
(1 + 3r)(1− r)

2
, β =

(3r − 1)2

6
. (1.10)

It is not difficult to verify that τ0 = 1
3 , τ1 = r, and the condition (1.2)

holds. Obviously, if

k <
3(4λ− 1)

4λ
+

√[
3(4λ− 1)

4λ

]2
+ 9

1− λ

λ
,

then the conditions (1.3) and (1.4) are fulfilled. If

k <
1

α
+
−1 +

√
1 + 24λ2α(6α− 1)

12λ2α2
,

then the condition (1.5) is satisfied. If

k ≤ 6(1 + λ)

(3r − 1)2 + 3λ(1 + 3r)(1− r)
,

then the condition (1.6) holds. If

k ≥ 1

α
+
−1 +

√
1 + 24λ2α(6α− 1)

12λ2α2
,

then the condition (1.7) is fulfilled. If

k <
6λ(α + β)− 1 +

√
[6λ(α + β)− 1]2 + 144λαβ(1− λ)

12λαβ
,

then the condition (1.8) is satisfied.
In particular, if k ∈ ]0, 3.02[∪[3.65, 4.52[ , λ = 0.95, and r = 17

24 , then,
according to Theorem 1.1, the problem (1.9) has a unique solution.
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Theorem 1.2. Let λ ∈ ]0, 1] and

B
def
=

∫ τ1

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]−ds . (1.11)

If

B < λ , (1.12)

(
λ−B

)(
1 +

∫ τ1

τ0

[p(s)]+ds

)
> 1−

∫ τ0

a

[p(s)]+ds−λ

∫ b

τ1

[p(s)]+ds , (1.13)

(∫ τ0

a

[p(s)]+ds + λ

∫ b

τ0

[p(s)]+ds

)(
1−

∫ τ1

τ0

[p(s)]−ds

)
>

> 1− λ +

∫ τ0

a

[p(s)]−ds + λ

∫ b

τ0

[p(s)]−ds , (1.14)

and either
∫ τ0

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]+ds < 1 +
√

λ−B , (1.15)

∫ τ1

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]+ds < 2 + 2
√

λ−B (1.16)

or
∫ τ0

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]+ds ≥ 1 +
√

λ−B , (1.17)

∫ τ1

τ0

[p(s)]+ds < 1 +
λ−B

∫ τ0

a
[p(s)]+ds + λ

∫ b

τ1

[p(s)]+ds− 1
, (1.18)

then the problem (0.1), (0.2) has a unique solution.

Remark 1.2. Theorem 1.2 is nonimprovable in the sense that neither of
the strict inequalities (1.13), (1.2), (1.16), and (1.18) can be replaced by the
nonstrict one (see Examples 3.5–3.8).

Note also that if τ0 = a and τ1 = b, then from Theorems 1.1 and 1.2 we
obtain Corollary 1.1 in [5].

Example 1.2. On the segment [0, 1] consider the boundary value problem
(1.9), where λ ∈

]
3
4 , 1
]
, k ∈ ]− 6λ, 0[ , q ∈ L([a, b]; R), c ∈ R, and r ∈

[
2
3 , 1
]

is such that 3λ2(1 + 3r)(1− r) ≥ 1. Define the numbers α and β by (1.10).
It is not difficult to verify that τ0 = 1

3 , τ1 = r, and the condition (1.12)
holds. Obviously, if

|k| > 3(4λ− 1)

4
−

√[
3(4λ− 1)

4

]2
− 9(1− λ)

and

|k| < 3(4λ− 1)

4
+

√[
3(4λ− 1)

4

]2
− 9(1− λ) ,
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then the conditions (1.13) and (1.2) are fulfilled. If

|k| < 1

λα
+
−1 +

√
1 + 24λα(6λ2α− 1)

12λ2α2
,

then the condition (1.15) is satisfied. If

|k| ≤ 12

(3r − 1)2 + 3λ(1 + 3r)(1− r)
,

then the condition (1.16) holds. If

|k| ≥ 1

λα
+
−1 +

√
1 + 24λα(6λ2α− 1)

12λ2α2
,

then the condition (1.17) is fulfilled. If

|k| > 6(λα + β)− 1−
√

[6(λα + β)− 1]2 − 144λαβ(1− λ)

12λαβ

and

|k| < 6(λα + β)− 1 +
√

[6(λα + β)− 1]2 − 144λαβ(1− λ)

12λαβ
,

then the condition (1.18) is satisfied.
In particular, if k ∈ [−4.08,−3.66]∪ ]−3.10,−0.12[ , λ = 0.95, and r = 17

24 ,
then, according to Theorem 1.2, the problem (1.9) has a unique solution.

Remark 1.3. Let λ ∈ [0, 1]. Denote by H1 the set of 6−tuples (xi)
6
i=1 ∈ R6

+

satisfying

x1 + x2 + λx3 < 1 ,
(
x4 + λ(x5 + x6)

)
(1− x2) > λ− 1 + x1 + x2 + λx3 ,

(1− x1 − x2 − λx3)(1 + x5) > λ− x4 − λx6 ,

and either

x4 + λx6 < λ +
√

1− x1 − x2 − λx3 ,

x4 + x5 + λx6 < 1 + λ + 2
√

1− x1 − x2 − λx3

or

x4 + λx6 ≥ λ +
√

1− x1 − x2 − λx3 ,

(x4 + λx6 − λ)(x5 − 1) < 1− x1 − x2 − λx3 .

Further, denote by H2 the set of 6−tuples (xi)
6
i=1 ∈ R6

+ satisfying

x4 + x5 + λx6 < λ ,

(λ− x4 − x5 − λx6)(1 + x2) > 1− x1 − λx3 ,
(
x1 + λ(x2 + x3)

)
(1− x5) > 1− λ + x4 + λ(x5 + x6) ,
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and either

x1 + λx3 < 1 +
√

λ− x4 − x5 − λx6 ,

x1 + x2 + λx3 < 2 + 2
√

λ− x4 − x5 − λx6

or

x1 + λx3 ≥ 1 +
√

λ− x4 − x5 − λx6 ,

(x1 + λx3 − 1)(x2 − 1) < λ− x4 − x5 − λx6 .

Now, according to Theorems 1.1 and 1.2, if p ∈ L([a, b]; R) is such that the
point



τ0∫

a

[p(s)]+ds,

τ1∫

τ0

[p(s)]+ds,

b∫

τ1

[p(s)]+ds,

τ0∫

a

[p(s)]−ds,

τ1∫

τ0

[p(s)]−ds,

b∫

τ1

[p(s)]−ds




belongs to the set H1 ∪ H2, then the problem (0.1), (0.2) has a unique
solution.

On Fig. 1.1 one can see the intersection of the set H1∪H2 and the 3−di-
mensional subspace {(0, x, 0, y, z, 0) : x, y, z ∈ R} of the space R6, i.e., the
sets

G1 = {(x, y, z) ∈ R3
+ : (0, x, 0, y, z, 0) ∈ H1},

G2 = {(x, y, z) ∈ R3
+ : (0, x, 0, y, z, 0) ∈ H2}.

Theorem 1.3. Let λ ∈ [0, 1],
∫ τ1

τ0

[p(s)]+ds < 1 ,

∫ τ1

τ0

[p(s)]−ds < 1 , (1.19)

and either
∫ τ1

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]+ds−

−
(∫ τ0

a

[p(s)]−ds + λ

∫ b

τ0

[p(s)]−ds

)
(
1− T

)
< 1− λ (1.20)

or (∫ τ0

a

[p(s)]+ds + λ

∫ b

τ0

[p(s)]+ds

)
(
1− T

)
−

−
∫ τ1

a

[p(s)]−ds− λ

∫ b

τ1

[p(s)]−ds >
(
1− λ

)(
1− T

)
, (1.21)

where

T = max

{∫ τ1

τ0

[p(s)]+ds,

∫ τ1

τ0

[p(s)]−ds

}
. (1.22)

Then the problem (0.1), (0.2) has a unique solution.
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Fig. 1.1.

Remark 1.4. Theorem 1.3 is nonimprovable in the sense that the strict
inequalities (1.20) and (1.21) cannot be replaced by the nonstrict ones (see
Examples 3.9 and 3.10).

Note also that if the segment [τ0, τ1] degenerates to a point c ∈ [a, b], i.e.,
τ(t) = c for t ∈ [a, b], then T = 0 and the inequalities (1.20) and (1.21) can
be rewritten as ∫ c

a

p(s)ds + λ

∫ b

c

p(s)ds 6= 1− λ .

On the other hand, the last relation is sufficient and necessary for the unique
solvability of the problem (0.1), (0.2) with τ(t) = c for t ∈ [a, b].

Theorem 1.4. Let λ ∈ [0, 1[ and let there exist γ ∈ C̃([a, b]; ]0, +∞[)
such that

γ′(t) ≥ [p(t)]+γ(τ(t)) + [p(t)]− for t ∈ [a, b] , (1.23)

γ(a) > λγ(b) , (1.24)

and either

γ(τ0)− γ(a) + λ
(
γ(b)− γ(τ1)

)
< 1 + λ , (1.25)

λ
(
γ(b)− γ(τ1)

)
+ γ(τ1)− γ(a) < 3 + λ (1.26)
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or

γ(τ0)− γ(a) + λ
(
γ(b)− γ(τ1)

)
≥ 1 + λ , (1.27)

γ(τ1)− γ(τ0) < 1 +
1

γ(τ0)− γ(a) + λ
(
γ(b)− γ(τ1)

)
− λ

. (1.28)

Then the problem (0.1), (0.2) has a unique solution.

Remark 1.5. Theorem 1.4 is nonimprovable in the sense that the strict
inequalities (1.26) and (1.28) cannot be replaced by the nonstrict ones (see
Examples 3.3 and 3.4).

Note also that if τ0 = a and τ1 = b, then from Theorem 1.4 we obtain
Theorem 1.1 in [8].

Remark 1.6. Let λ ∈ [1, +∞[ and let functions p̃, τ̃ , and q̃ be defined by

p̃(t)
def
= −p(a + b− t), τ̃(t)

def
= a + b− τ(a + b− t),

q̃(t)
def
= −q(a + b− t) for t ∈ [a, b].

(1.29)

Put µ = 1/λ and c̃ = −µc. It is clear that if u is a solution of the problem

(0.1), (0.2), then the function v, defined by v(t)
def
= u(a+ b− t) for t ∈ [a, b],

is a solution of the problem

v′(t) = p̃(t)v(τ̃ (t)) + q̃(t), v(a) − µv(b) = c̃ , (1.30)

and vice versa, if v is a solution of the problem (1.30), then the function

u, defined by u(t)
def
= v(a + b− t) for t ∈ [a, b], is a solution of the problem

(0.1), (0.2).

Therefore, Theorems 1.1–1.4 immediately yield the following assertions.

Theorem 1.5. Let λ ∈ [1, +∞[ and

B̃
def
=

1

λ

∫ τ0

a

[p(s)]−ds +

∫ b

τ0

[p(s)]−ds .

If

B̃ < 1 ,

(
1

λ

∫ τ1

a

[p(s)]+ds +

∫ b

τ1

[p(s)]+ds

)(
1−

∫ τ1

τ0

[p(s)]−ds

)
>

1

λ
− 1 + B̃ ,

(
1− B̃

)(
1 +

∫ τ1

τ0

[p(s)]+ds

)
>

1

λ
− 1

λ

∫ τ0

a

[p(s)]+ds−
∫ b

τ1

[p(s)]+ds ,

and either

1

λ

∫ τ0

a

[p(s)]+ds +

∫ b

τ1

[p(s)]+ds <
1

λ
+

√
1− B̃ ,

1

λ

∫ τ0

a

[p(s)]+ds +

∫ b

τ0

[p(s)]+ds < 1 +
1

λ
+ 2

√
1− B̃
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or

1

λ

∫ τ0

a

[p(s)]+ds +

∫ b

τ1

[p(s)]+ds ≥ 1

λ
+

√
1− B̃ ,

∫ τ1

τ0

[p(s)]+ds < 1 +
1− B̃

1
λ

∫ τ0

a
[p(s)]+ds +

∫ b

τ1

[p(s)]+ds− 1
λ

,

then the problem (0.1), (0.2) has a unique solution.

Theorem 1.6. Let λ ∈ [1, +∞[ and

Ã
def
=

1

λ

∫ τ0

a

[p(s)]+ds +

∫ b

τ0

[p(s)]+ds .

If

Ã <
1

λ
,

(
1

λ
− Ã

)(
1 +

∫ τ1

τ0

[p(s)]−ds

)
> 1− 1

λ

∫ τ0

a

[p(s)]−ds−
∫ b

τ1

[p(s)]−ds,

(
1

λ

∫ τ1

a

[p(s)]−ds +

∫ b

τ1

[p(s)]−ds

)(
1−

∫ τ1

τ0

[p(s)]+ds

)
>

> 1− 1

λ
+

1

λ

∫ τ1

a

[p(s)]+ds +

∫ b

τ1

[p(s)]+ds ,

and either

1

λ

∫ τ0

a

[p(s)]−ds +

∫ b

τ1

[p(s)]−ds < 1 +

√
1

λ
− Ã ,

1

λ

∫ τ0

a

[p(s)]−ds +

∫ b

τ0

[p(s)]−ds < 2 + 2

√
1

λ
− Ã

or

1

λ

∫ τ0

a

[p(s)]−ds +

∫ b

τ1

[p(s)]−ds ≥ 1 +

√
1

λ
− Ã ,

∫ τ1

τ0

[p(s)]−ds < 1 +
1
λ
− Ã

1
λ

∫ τ0

a
[p(s)]−ds +

∫ b

τ1

[p(s)]−ds− 1
,

then the problem (0.1), (0.2) has a unique solution.

Theorem 1.7. Let λ ∈ [1, +∞[ , the condition (1.19) be fulfilled, and let

either

1

λ

∫ τ0

a

[p(s)]−ds +

∫ b

τ0

[p(s)]−ds−

−
(

1

λ

∫ τ1

a

[p(s)]+ds +

∫ b

τ1

[p(s)]+ds

)
(
1− T

)
< 1− 1

λ
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or (
1

λ

∫ τ1

a

[p(s)]−ds +

∫ b

τ1

[p(s)]−ds

)
(
1− T

)
−

− 1

λ

∫ τ0

a

[p(s)]+ds−
∫ b

τ0

[p(s)]+ds >

(
1− 1

λ

)(
1− T

)
,

where T is defined by (1.22). Then the problem (0.1), (0.2) has a unique

solution.

Theorem 1.8. Let λ ∈ ]1, +∞[ and let there exist γ ∈ C̃([a, b]; ]0, +∞[)
such that

−γ′(t) ≥ [p(t)]−γ(τ(t)) + [p(t)]+ for t ∈ [a, b] ,

γ(a) < λγ(b) ,

and either

γ(a)− γ(τ0) + λ
(
γ(τ1)− γ(b)

)
< 1 + λ ,

1

λ

(
γ(a)− γ(τ0)

)
+ γ(τ0)− γ(b) < 3 +

1

λ
or

γ(a)− γ(τ0) + λ
(
γ(τ1)− γ(b)

)
≥ 1 + λ ,

γ(τ0)− γ(τ1) < 1 +
λ

γ(a)− γ(τ0) + λ
(
γ(τ1)− γ(b)

)
− 1

.

Then the problem (0.1), (0.2) has a unique solution.

Remark 1.7. According to Remarks 1.1–1.6 , Theorems 1.5–1.8 are non-
improvable in an appropriate sense.

1.2. Proofs. According to Theorem 0.1, to prove Theorems 1.1–1.4 it is
sufficient to show that the homogeneous problem (0.10), (0.20) has only the
trivial solution. First introduce the following notation

A1 =

∫ τ0

a

[p(s)]+ds, A2 =

∫ τ1

τ0

[p(s)]+ds, A3 =

∫ b

τ1

[p(s)]+ds,

B1 =

∫ τ0

a

[p(s)]−ds, B2 =

∫ τ1

τ0

[p(s)]−ds, B3 =

∫ b

τ1

[p(s)]−ds.

(1.31)

Proof of Theorem 1.1. Assume that the problem (0.10), (0.20) has a non-
trivial solution u.

First suppose that u does not change its sign in [τ0, τ1]. Without loss of
generality we can assume that

u(t) ≥ 0 for t ∈ [τ0, τ1]. (1.32)

Put

M = max{u(t) : t ∈ [τ0, τ1]}, m = min{u(t) : t ∈ [τ0, τ1]}, (1.33)
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and choose tM , tm ∈ [τ0, τ1] such that

u(tM ) = M, u(tm) = m. (1.34)

Furthermore, let

α0 = min{tM , tm}, α1 = max{tM , tm}, (1.35)

A21 =

∫ α0

τ0

[p(s)]+ds, A22 =

∫ α1

α0

[p(s)]+ds, A23 =

∫ τ1

α1

[p(s)]+ds,

B21 =

∫ α0

τ0

[p(s)]−ds, B22 =

∫ α1

α0

[p(s)]−ds, B23 =

∫ τ1

α1

[p(s)]−ds.

(1.36)

It is clear that

m ≥ 0, M > 0, (1.37)

since if M = 0, then, in view of (0.10), (1.32), and (1.33), we obtain u(τ0) =
0 and u′(t) = 0 for t ∈ [a, b], i.e., u ≡ 0. Obviously, either

tM < tm (1.38)

or

tM ≥ tm. (1.39)

First suppose that (1.38) holds. The integrations of (0.10) from a to
tM , from tM to tm, from tm to τ1, and from τ1 to b, on account of (1.31),
(1.33)–(1.36), and the assumption λ ∈ [0, 1], result in

M − u(a) =

∫ tM

a

[p(s)]+u(τ(s))ds −
∫ tM

a

[p(s)]−u(τ(s))ds ≤

≤ M
(
A1 + A21

)
−m

(
B1 + B21

)
, (1.40)

m−M =

∫ tm

tM

[p(s)]+u(τ(s))ds −
∫ tm

tM

[p(s)]−u(τ(s))ds ≤

≤MA22 −mB22, (1.41)

λ
(
u(τ1)−m

)
≤ u(τ1)−m =

∫ τ1

tm

[p(s)]+u(τ(s))ds−

−
∫ τ1

tm

[p(s)]−u(τ(s))ds ≤MA23 −mB23, (1.42)

u(b)− u(τ1) =

∫ b

τ1

[p(s)]+u(τ(s))ds −
∫ b

τ1

[p(s)]−u(τ(s))ds ≤

≤MA3 −mB3. (1.43)

Multiplying both sides of (1.43) by λ, summing with (1.40) and (1.42), and
taking into account (0.20) and the assumption λ ∈ [0, 1], we get

M − λm ≤M
(
A1 + A21 + A23 + λA3

)
−m

(
B1 + B21 + B23 + λB3

)
.
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Hence, by virtue of (1.1), (1.2), (1.31), (1.36), and (1.37), the last inequality
implies

0 < M
(
1−A1 −A21 −A23 − λA3

)
≤

≤ m
(
λ−B1 −B21 −B23 − λB3

)
. (1.44)

On the other hand, by (1.36) and (1.37), (1.41) results in

0 ≤ m
(
1 + B22

)
≤ M

(
1 + A22

)
. (1.45)

Thus, it follows from (1.44) and (1.45) that
(
1−A1 −A21 −A23 − λA3

)(
1 + B22

)
≤

≤
(
λ−B1 −B21 −B23 − λB3

)(
1 + A22

)
. (1.46)

Obviously, on account of (1.1), (1.31), (1.36), and the assumption λ ∈ [0, 1],
we find

(
1−A1 −A21 −A23 − λA23

)(
1 + B22

)
=

=
(
1−A1 −A2 − λA3

)(
1 + B2

)
−
(
1−A1 −A2 − λA3

)(
B21 + B23

)
+

+A22

(
1 + B22

)
≥
(
1−A

)(
1 + B2

)
−
(
B21 + B23

)
+ A22

and
(
λ−B1 −B21 −B23 − λB3

)(
1 + A22

)
=

= λ + λA22 −
(
B1 + λB3

)(
1 + A22

)
−
(
B21 + B23

)(
1 + A22

)
≤

≤ λ−B1 − λB3 + A22 −
(
B21 + B23

)
.

By virtue of the last two inequalities, (1.46) yields
(
1−A

)(
1 + B2

)
≤ λ−B1 − λB3,

which, in view of (1.31), contradicts (1.4).
Now suppose that (1.39) is fulfilled. The integrations of (0.10) from a to

tm, from tm to tM , and from tM to b, on account of (1.31) and (1.33)–(1.36),
result in

m− u(a) =

∫ tm

a

[p(s)]+u(τ(s))ds −
∫ tm

a

[p(s)]−u(τ(s))ds ≤

≤ M
(
A1 + A21

)
−m

(
B1 + B21

)
, (1.47)

M −m =

∫ tM

tm

[p(s)]+u(τ(s))ds −
∫ tM

tm

[p(s)]−u(τ(s))ds ≤

≤MA22 −mB22, (1.48)

u(b)−M =

∫ b

tM

[p(s)]+u(τ(s))ds −
∫ b

tM

[p(s)]−u(τ(s))ds ≤

≤ M
(
A23 + A3

)
−m

(
B23 + B3

)
. (1.49)
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Multiplying both sides of (1.49) by λ, summing with (1.47), and taking into
account (0.20) and the assumption λ ∈ [0, 1], we get

m−λM ≤M
(
A1+A21+λA23+λA3

)
−m

(
B1+B21+λB23+λB3

)
. (1.50)

Hence, by virtue of (1.1), (1.2), (1.31), (1.36), and (1.37), it follows from
(1.48) and (1.50) that

0 < M
(
1−A22

)
≤ m

(
1−B22

)
,

0 ≤ m
(
1 + B1 + B21 + λB23 + λB3

)
≤M

(
λ + A1 + A21 + λA23 + λA3

)
.

Thus,

(1 + B1 + B21 + λB23 + λB3

)
(1−A22

)
≤

≤
(
λ + A1 + A21 + λA23 + λA3

)(
1−B22

)
. (1.51)

Obviously, in view of (1.1), (1.2), (1.31), (1.36), and the assumption λ ∈
[0, 1], we obtain

(1 + B1 + B21 + λB23 + λB3

)
(1−A22

)
= 1−A22+

+
(
B1 + B21 + λB22 + λB23 + λB3

)(
1−A22

)
− λB22

(
1−A22

)
≥

≥ 1−A22 +
(
B1 + λB2 + λB3

)(
1−A2

)
− λB22

and
(
λ + A1 + A21 + λA23 + λA3

)(
1−B22

)
=

= λ− λB22 +
(
A1 + A21 + λA23 + λA3

)(
1−B22

)
≤

≤ λ− λB22 + A1 + A21 + A22 + λA23 + λA3 −A22 ≤
≤ λ− λB22 + A−A22.

By virtue of the last two inequalities, (1.51) implies
(
B1 + λB2 + λB3

)(
1−A2

)
≤ λ− 1 + A,

which, in view of (1.31), contradicts (1.3).

Now suppose that u changes its sign in [τ0, τ1]. Put

m0 = −min{u(t) : t ∈ [τ0, τ1]}, M0 = max{u(t) : t ∈ [τ0, τ1]} (1.52)

and choose α0, α1 ∈ [τ0, τ1] such that

u(α0) = −m0, u(α1) = M0. (1.53)

It is clear that

M0 > 0, m0 > 0, (1.54)

and without loss of generality we can assume that α0 < α1. Furthermore,
define numbers A2i, B2i (i = 1, 2, 3) by (1.36) and put

g(x)
def
=

1−A

x + B1 + λB3 − λ
+ x for x > λ−B1 − λB3, (1.55)

where A is given by (1.1).
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The integrations of (0.10) from a to α0, from α0 to α1, and from α1 to
b, in view of (1.31), (1.36), (1.52), and (1.53), result in

u(a) + m0 =

∫ α0

a

[p(s)]−u(τ(s))ds−
∫ α0

a

[p(s)]+u(τ(s))ds ≤

≤ M0

(
B1 + B21

)
+ m0

(
A1 + A21

)
, (1.56)

M0 + m0 =

∫ α1

α0

[p(s)]+u(τ(s))ds −
∫ α1

α0

[p(s)]−u(τ(s))ds ≤

≤ M0A22 + m0B22, (1.57)

M0 − u(b) =

∫ b

α1

[p(s)]−u(τ(s))ds −
∫ b

α1

[p(s)]+u(τ(s))ds ≤

≤ M0

(
B23 + B3

)
+ m0

(
A23 + A3

)
. (1.58)

Multiplying both sides of (1.58) by λ, summing with (1.56), and taking into
account (0.20), (1.54), and the assumption λ ∈ [0, 1], we get

λM0+m0 ≤ M0

(
B1+B21+B23+λB3

)
+m0

(
A1+A21+A23+λA3

)
. (1.59)

Due to (1.1), (1.2), (1.31), and (1.36), we have

A1 + A21 + A23 + λA3 < 1, A22 < 1.

Thus, it follows from (1.54), (1.57), and (1.59) that

B22 > 1, B1 + B21 + B23 + λB3 > λ, (1.60)

and

B22 ≥ 1 +
M0

m0

(
1−A22

)
, (1.61)

M0

m0
≥ 1−A1 −A21 −A23 − λA3

B1 + B21 + B23 + λB3 − λ
. (1.62)

According to (1.60) and the fact that
(
1−A22

)(
1−A1−A21−A23−λA3

)
≥ 1−A1−A21−A22−A23−λA3 = 1−A,

from (1.61) and (1.62) we get

B22 ≥ 1 +
1−A

B1 + B21 + B23 + λB3 − λ
. (1.63)

First suppose that (1.5) and (1.6) are satisfied. By virtue of (1.60), from
(1.63) we have

1−A ≤
(
B22 − 1

)(
B1 + B21 + B23 + λB3 − λ

)
≤

≤ 1

4

(
B1+ B21+ B22+ B23+ λB3 − 1− λ

)2
=

1

4

(
B1 + B2 + λB3 − 1− λ

)2
,

which, in view of (1.2), (1.31), (1.36), and (1.60), contradicts (1.6).
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Now suppose that (1.7) and (1.8) are fulfilled. It is not difficult to verify
that, on account of (1.7) and (1.31), the function g defined by (1.55) is
nondecreasing in [0, +∞[ . Therefore, from (1.63) we obtain

B21 + B22 + B23 ≥ 1 +
1−A

B1 + B21 + B23 + λB3 − λ
+ B21 + B23 =

= 1 + g
(
B21 + B23

)
≥ 1 + g(0) = 1 +

1−A

B1 + λB3 − λ
,

which, in view of (1.31) and (1.36), contradicts (1.8). �

Proof of Theorem 1.2. Assume that the problem (0.10), (0.20) has a non-
trivial solution u.

First suppose that u does not change its sign in [τ0, τ1]. Without loss
of generality we can assume that (1.32) is fulfilled. Define the numbers
M and m by (1.33) and choose tM , tm ∈ [τ0, τ1] such that (1.34) holds.
Furthermore, define the numbers α0, α1 and A2i, B2i (i = 1, 2, 3) by (1.35)
and (1.36), respectively. It is clear that (1.37) is satisfied, since if M = 0,
then, in view of (0.10), (1.32), and (1.33), we obtain u(τ0) = 0 and u′(t) = 0
for t ∈ [a, b], i.e., u ≡ 0. It is also evident that either (1.38) or (1.39) is
fulfilled.

First suppose that (1.38) holds. The integrations of (0.10) from tM to
tm, from a to τ0, and from τ0 to b, in view of (1.31)–(1.34), result in

M −m =

∫ tm

tM

[p(s)]−u(τ(s))ds −
∫ tm

tM

[p(s)]+u(τ(s))ds ≤ MB2, (1.64)

u(a)− u(τ0) =

∫ τ0

a

[p(s)]−u(τ(s))ds −
∫ τ0

a

[p(s)]+u(τ(s))ds ≤

≤MB1 −mA1, (1.65)

u(τ0)− u(b) =

∫ b

τ0

[p(s)]−u(τ(s))ds −
∫ b

τ0

[p(s)]+u(τ(s))ds ≤

≤ M
(
B2 + B3

)
−m

(
A2 + A3

)
. (1.66)

Multiplying both sides of (1.66) by λ, summing with (1.65), and taking into
account (0.20), (1.33), (1.37), and the assumption λ ∈ ]0, 1], we get

M(λ− 1) ≤ u(τ0)(λ − 1) ≤M
(
B1 + λB2 + λB3

)
−m

(
A1 + λA2 + λA3

)
,

i.e.,

0 ≤ m
(
A1 + λA2 + λA3

)
≤ M

(
1− λ + B1 + λB2 + λB3

)
. (1.67)

On the other hand, due to (1.11), (1.12), (1.31), (1.37), and the assump-
tion λ ∈ ]0, 1], (1.64) yields

0 < M
(
1−B2

)
≤ m. (1.68)

Thus, it follows from (1.67) and (1.68) that
(
A1 + λA2 + λA3

)(
1−B2

)
≤ 1− λ + B1 + λB2 + λB3,
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which, on account of (1.31), contradicts (1.2).
Now suppose that (1.39) is fulfilled. The integrations of (0.10) from a to

tm, from tm to tM , and from tM to b, on account of (1.31) and (1.33)–(1.36),
yield

u(a)−m =

∫ tm

a

[p(s)]−u(τ(s))ds −
∫ tm

a

[p(s)]+u(τ(s))ds ≤

≤ M
(
B1 + B21

)
−m

(
A1 + A21

)
, (1.69)

m−M =

∫ tM

tm

[p(s)]−u(τ(s))ds −
∫ tM

tm

[p(s)]+u(τ(s))ds ≤

≤MB22 −mA22, (1.70)

M − u(b) =

∫ b

tM

[p(s)]−u(τ(s))ds −
∫ b

tM

[p(s)]+u(τ(s))ds ≤

≤ M
(
B23 + B3

)
−m

(
A23 + A3

)
. (1.71)

Multiplying both sides of (1.71) by λ, summing with (1.69), and taking into
account (0.20) and the assumption λ ∈ ]0, 1], we get

λM −m ≤ M
(
B1 + B21 + λB23 + λB3

)
−m

(
A1 + A21 + λA23 + λA3

)
.

Hence, by virtue of (1.11), (1.12), (1.31), (1.36), (1.37), and the assumption
λ ∈ ]0, 1], the last inequality results in

0 < M
(
λ−B1−B21−λB23−λB3

)
≤ m

(
1−A1−A21−λA23−λA3

)
. (1.72)

On the other hand, due to (1.36) and (1.37), (1.70) implies

0 ≤ m
(
1 + A22

)
≤ M

(
1 + B22

)
. (1.73)

Thus, it follows from (1.72) and (1.73) that
(
λ−B1 −B21 − λB23 − λB3

)(
1 + A22

)
≤

≤
(
1−A1 −A21 − λA23 − λA3

)(
1 + B22

)
. (1.74)

Obviously, on account of (1.11), (1.31), (1.36), and the assumption λ ∈ ]0, 1],
we obtain

(
λ−B1 −B21 − λB23 − λB3

)(
1 + A22

)
=

=
(
λ−B1 −B21 −B22 − λB23 − λB3

)(
1 + A2

)
+ B22

(
1 + A2

)
−

−
(
λ−B1 −B21 − λB23 − λB3

)
(A21 + A23

)
≥

≥
(
λ−B

)(
1 + A2

)
+ B22 − λ

(
A21 + A23

)

and
(
1−A1 −A21 − λA23 − λA3

)(
1 + B22

)
=

= 1−A1 − λA3 −
(
A21 + λA23

)
+
(
1−A1 −A21 − λA23 − λA3

)
B22 ≤

≤ 1−A1 − λA3 − λ
(
A21 + A23

)
+ B22.
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By virtue of the last two inequalities, (1.74) yields
(
λ−B

)(
1 + A2

)
≤ 1−A1 − λA3,

which, in view of (1.31), contradicts (1.13).

Now suppose that u changes its sign in [τ0, τ1]. Define the numbers m0

and M0 by (1.52) and choose α0, α1 ∈ [τ0, τ1] such that (1.53) holds. It is
clear that (1.54) is satisfied and without loss of generality we can assume
that α0 < α1. Moreover, define the numbers A2i, B2i (i = 1, 2, 3) by (1.36)
and put

g(x)
def
=

λ−B

x + A1 + λA3 − 1
+ x for x > 1−A1 − λA3, (1.75)

where B is given by (1.11).
In a similar manner as in the second part of the proof of Theorem 1.1,

it can be shown that the inequalities (1.57) and (1.59) hold. Due to (1.11),
(1.12), (1.31), (1.36), and the assumption λ ∈ ]0, 1], we have

B1 + B21 + B23 + λB3 < λ, B22 < 1.

Thus, by virtue of (1.54), it follows from (1.57) and (1.59) that

A22 > 1, A1 + A21 + A23 + λA3 > 1, (1.76)

and

A22 ≥ 1 +
m0

M0

(
1−B22

)
, (1.77)

m0

M0
≥ λ−B1 −B21 −B23 − λB3

A1 + A21 + A23 + λA3 − 1
. (1.78)

According to (1.76), the assumption λ ∈ ]0, 1], and the fact that
(
1−B22

)(
λ−B1−B21−B23−λB3

)
≥ λ−B1−B21−λB22−B23−λB3 ≥ λ−B,

from (1.77) and (1.78) we get

A22 ≥ 1 +
λ−B

A1 + A21 + A23 + λA3 − 1
. (1.79)

First suppose that (1.15) and (1.16) are satisfied. By virtue of (1.76),
from (1.79) we have

λ−B ≤
(
A22 − 1

)(
A1 + A21 + A23 + λA3 − 1

)
≤

≤ 1

4

(
A1 + A21 + A22 + A23 + λA3 − 2

)2
=

1

4

(
A1 + A2 + λA3 − 2

)2
,

which, in view of (1.12), (1.31), (1.36), and (1.76), contradicts (1.16).
Now suppose that (1.17) and (1.18) are fulfilled. It is not difficult to

verify that, on account of (1.17) and (1.31), the function g defined by (1.75)
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is nondecreasing in [0, +∞[ . Therefore, from (1.79) we obtain

A21 + A22 + A23 ≥ 1 +
λ−B

A1 + A21 + A23 + λA3 − 1
+ A21 + A23 =

= 1 + g
(
A21 + A23

)
≥ 1 + g(0) = 1 +

λ−B

A1 + λA3 − 1
,

which, in view of (1.31) and (1.36), contradicts (1.18). �

Proof of Theorem 1.3. Assume that the problem (0.10), (0.20) has a non-
trivial solution u.

First suppose that u has a zero in [τ0, τ1]. Define the numbers m0 and
M0 by (1.52) and choose α0, α1 ∈ [τ0, τ1] such that (1.53) holds. Obviously,

m0 ≥ 0, M0 ≥ 0, m0 + M0 > 0 (1.80)

since, if m0 = 0 and M0 = 0, then, in view of (0.10) and (1.52), we obtain
u(τ0) = 0 and u′(t) = 0 for t ∈ [a, b], i.e., u ≡ 0. It is also evident that
without loss of generality we can assume that α0 < α1.

The integration of (0.10) from α0 to α1, on account of (1.52), (1.53), and
(1.80), yields

M0 + m0 =

∫ α1

α0

[p(s)]+u(τ(s))ds −
∫ α1

α0

[p(s)]−u(τ(s))ds ≤

≤M0

∫ τ1

τ0

[p(s)]+ds + m0

∫ τ1

τ0

[p(s)]−ds, (1.81)

which, by virtue of (1.19) and (1.80), results in M0 + m0 < M0 + m0, a
contradiction.

Now suppose that u has no zero in [τ0, τ1]. Without loss of generality we
can assume that u(t) > 0 for t ∈ [τ0, τ1]. Define the numbers M and m by
(1.33) and choose tM , tm ∈ [τ0, τ1] such that (1.34) holds. Furthermore, let

f+(t)
def
=

∫ t

a

[p(s)]+ds + λ

∫ b

t

[p(s)]+ds for t ∈ [a, b],

f−(t)
def
=

∫ t

a

[p(s)]−ds + λ

∫ b

t

[p(s)]−ds for t ∈ [a, b].

(1.82)

It is obvious that

M > 0, m > 0, (1.83)

and either (1.38) or (1.39) is satisfied.
If (1.38) holds, then the integration of (0.10) from tM to tm, on account

of (1.33), (1.34), and (1.83), results in

M −m =

∫ tm

tM

[p(s)]−u(τ(s))ds −
∫ tm

tM

[p(s)]+u(τ(s))ds ≤ M

∫ τ1

τ0

[p(s)]−ds.
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If (1.39) holds, then the integration of (0.10) from tm to tM , in view of
(1.33), (1.34), and (1.83), results in

M −m =

∫ tM

tm

[p(s)]+u(τ(s))ds−
∫ tM

tm

[p(s)]−u(τ(s))ds ≤ M

∫ τ1

τ0

[p(s)]+ds.

Therefore, due to (1.19) and (1.83), in both cases (1.38) and (1.39) we have

0 < M
(
1− T

)
≤ m, (1.84)

where T is defined by (1.22).
First suppose that (1.20) holds with T given by (1.22). The integrations

of (0.10) from a to tM and from tM to b, on account of (1.33) and (1.34),
imply

M − u(a) =

∫ tM

a

[p(s)]+u(τ(s))ds −
∫ tM

a

[p(s)]−u(τ(s))ds ≤

≤ M

∫ tM

a

[p(s)]+ds−m

∫ tM

a

[p(s)]−ds, (1.85)

u(b)−M =

∫ b

tM

[p(s)]+u(τ(s))ds −
∫ b

tM

[p(s)]−u(τ(s))ds ≤

≤ M

∫ b

tM

[p(s)]+ds−m

∫ b

tM

[p(s)]−ds. (1.86)

Multiplying both sides of (1.86) by λ, summing with (1.85), and taking into
account (0.20), (1.82), and the assumption λ ∈ [0, 1], we get

M(1− λ) ≤ M

(∫ tM

a

[p(s)]+ds + λ

∫ b

tM

[p(s)]+ds

)
−

−m

(∫ tM

a

[p(s)]−ds + λ

∫ b

tM

[p(s)]−ds

)
= Mf+(tM )−mf−(tM ). (1.87)

It is easy to verify that, in view of the assumption λ ∈ [0, 1], the functions
f+ and f− defined by (1.82) are nondecreasing in [a, b] and thus, due to
(1.31) and (1.82), it follows from (1.87) that

M(1− λ) ≤ Mf+(tM )−mf−(tM ) ≤ Mf+(τ1)−mf−(τ0) =

= M
(
A1 + A2 + λA3

)
−m

(
B1 + λB2 + λB3

)
. (1.88)

By virtue of (1.84), (1.88) yields

M(1− λ) ≤M
(
A1 + A2 + λA3

)
−M

(
B1 + λB2 + λB3

)(
1− T

)
,

which, in view of (1.31) and (1.83), contradicts (1.20).
Now suppose that (1.21) holds with T given by (1.22). The integrations

of (0.10) from a to tm and from tm to b, on account of (1.33) and (1.34),
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imply

m− u(a) =

∫ tm

a

[p(s)]+u(τ(s))ds −
∫ tm

a

[p(s)]−u(τ(s))ds ≥

≥ m

∫ tm

a

[p(s)]+ds−M

∫ tm

a

[p(s)]−ds, (1.89)

u(b)−m =

∫ b

tm

[p(s)]+u(τ(s))ds −
∫ b

tm

[p(s)]−u(τ(s))ds ≥

≥ m

∫ b

tm

[p(s)]+ds−M

∫ b

tm

[p(s)]−ds. (1.90)

Multiplying both sides of (1.90) by λ, summing with (1.89), and taking into
account (0.20), (1.82), and the assumption λ ∈ [0, 1], we obtain

m(1− λ) ≥ m

(∫ tm

a

[p(s)]+ds + λ

∫ b

tm

[p(s)]+ds

)
−

−M

(∫ tm

a

[p(s)]−ds + λ

∫ b

tm

[p(s)]−ds

)
= mf+(tm)−Mf−(tm). (1.91)

As above, in view of the assumption λ ∈ [0, 1], the functions f+ and f−
defined by (1.82) are nondecreasing in [a, b] and thus, due to (1.31) and
(1.82), it follows from (1.91) that

m(1− λ) ≥ mf+(tm)−Mf−(tm) ≥ mf+(τ0)−Mf−(τ1) =

= m
(
A1 + λA2 + λA3

)
−M

(
B1 + B2 + λB3

)
. (1.92)

By virtue of (1.19), (1.22), and (1.84), (1.92) implies

m(1− λ)(1− T ) ≥ m
(
A1 + λA2 + λA3

)(
1− T

)
−m

(
B1 + B2 + λB3

)
,

which, in view of (1.31) and (1.83), contradicts (1.21). �

Proof of Theorem 1.4. Assume that the problem (0.10), (0.20) has a non-
trivial solution u.

According to (1.23), (1.24), and Theorem 1.1 in [7], u changes its sign in
[τ0, τ1]. Define the numbers m0 and M0 by (1.52) and choose α0, α1 ∈ [τ0, τ1]
such that (1.53) holds. Obviously, (1.54) is satisfied and without loss of
generality we can assume that α1 < α0. From (0.10), (0.20), (1.23), and
(1.24), due to (1.52) and (1.54), we obtain

(
M0γ(t) + u(t)

)
′ ≥

≥ [p(t)]+
(
M0γ(τ(t)) + u(τ(t))

)
+ [p(t)]−

(
M0 − u(τ(t))

)
≥

≥ [p(t)]+
(
M0γ(τ(t)) + u(τ(t))

)
for t ∈ [a, b],

(1.93)

M0γ(a) + u(a)− λ
(
M0γ(b) + u(b)

)
> 0,



97

and
(
m0γ(t)− u(t)

)
′ ≥

≥ [p(t)]+
(
m0γ(τ(t)) − u(τ(t))

)
+ [p(t)]−

(
m0 + u(τ(t))

)
≥

≥ [p(t)]+
(
m0γ(τ(t)) − u(τ(t))

)
for t ∈ [a, b],

(1.94)

m0γ(a)− u(a)− λ
(
m0γ(b)− u(b)

)
> 0.

Hence, according to (1.23), (1.24), Theorem 1.1 in [7], and Remark 0.1 in [7],
we get

M0γ(t) + u(t) ≥ 0, m0γ(t)− u(t) ≥ 0 for t ∈ [a, b].

By virtue of the last inequalities, it follows from (1.93) and (1.94) that
(
M0γ(t) + u(t)

)
′ ≥ 0,

(
m0γ(t)− u(t)

)
′ ≥ 0 for t ∈ [a, b]. (1.95)

The integration of the first inequality in (1.95) from α1 to α0, in view of
(1.53) and (1.54), yields

M0γ(α0)−m0 −M0γ(α1)−M0 ≥ 0,

i.e.,

γ(α0)− γ(α1) ≥ 1 +
m0

M0
. (1.96)

On the other hand, the integrations of the second inequality in (1.95)
from a to α1 and from α0 to b, on account of (1.53), imply

m0γ(α1)−M0 −m0γ(a) + u(a) ≥ 0, (1.97)

m0γ(b)− u(b)−m0γ(α0)−m0 ≥ 0. (1.98)

Multiplying both sides of (1.98) by λ, summing with (1.97), and taking into
account (0.20), (1.54), and the assumption λ ∈ [0, 1[ , we get

γ(α1)− γ(a) + λ
(
γ(b)− γ(α0)

)
≥ λ +

M0

m0
. (1.99)

First suppose that (1.25) and (1.26) are fulfilled. Summing (1.96) and
(1.99) and taking into account (1.54), we obtain

γ(α0)− γ(a) + λ
(
γ(b)− γ(α0)

)
≥ 1 + λ +

M0

m0
+

m0

M0
≥ 3 + λ. (1.100)

On the other hand, by virtue of the fact that the function γ is nondecreasing
in [a, b] and the assumption λ ∈ [0, 1[ , we get

λγ(b) + (1− λ)γ(τ1)− γ(a) ≥ λγ(b) + (1− λ)γ(α0)− γ(a),

which, together with (1.100), contradicts (1.26).
Now suppose that (1.27) and (1.28) are satisfied. According to (1.27),

(1.54), and the fact that the function γ is nondecreasing in [a, b], it follows
from (1.99) that

m0

M0
≥ 1

γ(α1)− γ(a) + λ
(
γ(b)− γ(α0)

)
− λ
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and thus, (1.96) implies

γ(α0)− γ(α1) ≥ 1 +
1

γ(α1)− γ(a) + λ
(
γ(b)− γ(α0)

)
− λ

. (1.101)

Let

g(x)
def
=

1

x− λ
+ x for x > λ. (1.102)

By virtue of (1.101), (1.102), the assumption λ ∈ [0, 1[ , and the fact that
the function γ is nondecreasing in [a, b], we get

γ(τ1)− γ(τ0) =

= γ(α0)− γ(α1) + γ(τ1)− γ(α0) + γ(α1)− γ(τ0) ≥

≥ 1 +
1

γ(α1)− γ(a) + λ
(
γ(b)− γ(α0)

)
− λ

+

+λ
(
γ(τ1)− γ(α0)

)
+ γ(α1)− γ(τ0) =

= 1 + g
(
γ(α1)− γ(a) + λ

(
γ(b)− γ(α0)

))
+

+γ(a)− γ(τ0) + λ
(
γ(τ1)− γ(b)

)
. (1.103)

It is easy to verify that the function g is nondecreasing in [1 + λ, +∞[ and
thus, according to (1.27) and the fact that the function γ is nondecreasing
in [a, b], we find

g
(
γ(α1)− γ(a) + λ

(
γ(b)− γ(α0)

))
≥ g
(
γ(τ0)− γ(a) + λ

(
γ(b)− γ(τ1)

))
.

Therefore, (1.103) yields

γ(τ1)− γ(τ0) ≥ 1 + g
(
γ(τ0)− γ(a) + λ

(
γ(b)− γ(τ1)

))
+

+ γ(a)− γ(τ0) + λ
(
γ(τ1)− γ(b)

)
=

= 1 +
1

γ(τ0)− γ(a) + λ
(
γ(b)− γ(τ1)

)
− λ

,

which contradicts (1.28). �

2. Problem (0.1), (0.3)

2.1. Main Results.

Theorem 2.1. Let λ ∈ R+, the condition (1.19) be fulfilled, and let

either
∫ τ1

a

[p(s)]+ds + λ

∫ b

τ0

[p(s)]−ds−

−
(∫ τ0

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]+ds

)
(
1− T

)
< 1 + λ (2.1)
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or
(∫ τ0

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]−ds

)
(
1− T

)
−

−
∫ τ1

a

[p(s)]−ds− λ

∫ b

τ0

[p(s)]+ds >
(
1 + λ

)(
1− T

)
, (2.2)

where T is defined by (1.22). Then the problem (0.1), (0.3) has a unique

solution.

Remark 2.1. Theorem 2.1 is nonimprovable in the sense that the strict
inequalities (2.1) and (2.2) cannot be replaced by the nonstrict ones (see
Examples 3.11 and 3.12).

Note also that if the segment [τ0, τ1] degenerates to a point c ∈ [a, b], i.e.,
τ(t) = c for t ∈ [a, b], then T = 0 and the inequalities (2.1) and (2.2) can
be rewritten as ∫ c

a

p(s)ds− λ

∫ b

c

p(s)ds 6= 1 + λ .

On the other hand, the last relation is sufficient and necessary for the unique
solvability of the problem (0.1), (0.3) with τ(t) = c for t ∈ [a, b].

The following theorem can be understood as a supplement of the previous
one for the case T ≥ 1, where T is given by (1.22).

Theorem 2.2. Let λ ∈ [0, 1],

D
def
=

∫ τ1

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]−ds , (2.3)

and let one of the following items be fulfilled:

a)
∫ τ1

τ0

[p(s)]+ds ≥ 1 , (2.4)

∫ τ1

a

[p(s)]+ds + λ

∫ b

τ0

[p(s)]−ds+

+

(∫ τ0

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]+ds

)(∫ τ1

τ0

[p(s)]+ds− 1

)
< 1 + λ ; (2.5)

b)
∫ τ1

τ0

[p(s)]−ds ≥ 1 , (2.6)

D ≥ 1− λ2 , (2.7)
∫ τ1

a

[p(s)]+ds + λ

∫ b

τ0

[p(s)]−ds+
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+

(∫ τ0

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]+ds

)(∫ τ1

τ0

[p(s)]−ds− 1

)
< 1 + λ ; (2.8)

c) the condition (2.6) holds,

D < 1− λ2 , (2.9)

and either
∫ τ0

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]+ds < −λ +
√

1−D , (2.10)

∫ τ1

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]+ds < 1− λ + 2
√

1−D (2.11)

or
∫ τ0

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]+ds ≥ −λ +
√

1−D (2.12)

and the condition (2.8) holds.

Then the problem (0.1), (0.3) has a unique solution.

Remark 2.2. Theorem 2.2 is nonimprovable in the sense that neither of the
strict inequalities (2.5), (2.8), and (2.11) can be replaced by the nonstrict
one (see Examples 3.13–3.16).

Note also that if τ0 = a and τ1 = b, then from Theorems 2.1 and 2.2 we
obtain Corollary 1.1 in [6].

Example 2.1. On the segment [0, 1] consider the boundary value problem

u′(t) = k

( |2t− 1|
2

− 1

4

)
u

(
2t + 1

4

)
+ q(t),

u(0) + λu(1) = c,

(2.13)

where λ ∈ [0, 1], k ∈ R, q ∈ L([a, b]; R), and c ∈ R.
It is not difficult to verify that τ0 = 1

4 and τ1 = 3
4 . Obviously, if k ≤ −16,

then the condition (2.4) holds. If

8(1 + λ)−
√

[8(1 + λ)]2 + 512(1 + λ) < k ≤ 0,

then the condition (2.5) is fulfilled. If k ≥ 16, then the condition (2.6) is
satisfied. If k ≥ 32(1− λ2), then the condition (2.7) holds. If

0 ≤ k < −8(1 + λ)

λ
+

√[
8(1 + λ)

λ

]2
+ 512

1 + λ

λ
,

then the condition (2.8) is fulfilled. If 0 ≤ k < 32(1−λ2), then the condition
(2.9) is satisfied. If

0 ≤ k < −16(1 + 2λ2)

λ2
+ 16

√[
1 + 2λ2

λ2

]2
+ 4

1− λ2

λ2
,
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then the condition (2.10) holds. If

0 ≤ k < 32
(2 + λ)(1− λ)− 2

(2 + λ)2
+ 32

√[
(2 + λ)(1− λ)− 2

(2 + λ)2

]2
+

3 + λ2

(2 + λ)2
,

then the condition (2.11) is satisfied. If

k ≥ −16(1 + 2λ2)

λ2
+ 16

√[
1 + 2λ2

λ2

]2
+ 4

1− λ2

λ2
,

then the condition (2.12) is fulfilled.
In particular if k ∈ ]− 17.4,−16[∪[16, 22.21[∪[23.38, 23.81[ and λ = 0.3,

then, according to Theorem 2.2, the problem (2.13) has a unique solution.

Remark 2.3. Let λ ∈ [0, 1]. Denote by H the set of 6−tuples (xi)
6
i=1 ∈ R6

+

satisfying one of the following items:

a)
x2 < 1 , x5 < 1 ,

and either

x1 + x2 + λ(x5 + x6)− (x4 + λx3)(1− T ) < 1 + λ

or

(x1 + λx6)(1− T )− x4 − x5 − λ(x2 + x3) > (1 + λ)(1− T ) ,

where T = max{x2, x5};
b)

x2 ≥ 1 ,

x1 + x2 + λ(x5 + x6) + (x4 + λx3)(x2 − 1) < 1 + λ ;

c)

x5 ≥ 1 ,

x1 + x2 + λx6 ≥ 1− λ2 ,

x1 + x2 + λ(x5 + x6) + (x4 + λx3)(x5 − 1) < 1 + λ ;

d)

x5 ≥ 1 ,

x1 + x2 + λx6 < 1− λ2 ,

and either

x4 + λx3 < −λ +
√

1− x1 − x2 − λx6 ,

x4 + x5 + λx3 < 1− λ + 2
√

1− x1 − x2 − λx6

or

x4 + λx3 ≥ −λ +
√

1− x1 − x2 − λx6 ,

x1 + x2 + λ(x5 + x6) + (x4 + λx3)(x5 − 1) < 1 + λ .
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Now, according to Theorems 2.1 and 2.2, if p ∈ L([a, b]; R) is such that
the point



τ0∫

a

[p(s)]+ds,

τ1∫

τ0

[p(s)]+ds,

b∫

τ1

[p(s)]+ds,

τ0∫

a

[p(s)]−ds,

τ1∫

τ0

[p(s)]−ds,

b∫

τ1

[p(s)]−ds





belongs to the set H , then the problem (0.1), (0.3) has a unique solution.
On Fig. 2.1 one can see an intersection of the set H and the 3−dimen-

sional subspace {(0, x, 0, y, z, 0) : x, y, z ∈ R} of the space R6, i.e., the set

G = {(x, y, z) ∈ R3
+ : (0, x, 0, y, z, 0) ∈ H}.

PSfrag replacements

G

x

y

z

1

Fig. 2.1.

Remark 2.4. Let λ ∈ [1, +∞[ and let the functions p̃, τ̃ , and q̃ be defined
by (1.29). Put µ = 1/λ and c̃ = µc.

It is clear that if u is a solution of the problem (0.1), (0.3), then the

function v, defined by v(t)
def
= u(a + b− t) for t ∈ [a, b], is a solution of the

problem
v′(t) = p̃(t)v(τ̃ (t)) + q̃(t), v(a) + µv(b) = c̃, (2.14)
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and vice versa, if v is a solution of the problem (2.14), then the function

u, defined by u(t)
def
= v(a + b− t) for t ∈ [a, b], is a solution of the problem

(0.1), (0.3).

Therefore, Theorem 2.2 immediately implies the following assertion.

Theorem 2.3. Let λ ∈ [1, +∞[ ,

D̃
def
=

1

λ

∫ τ0

a

[p(s)]+ds +

∫ b

τ0

[p(s)]−ds ,

and let one of the following items be fulfilled:

a) ∫ τ1

τ0

[p(s)]−ds ≥ 1

and the condition (2.8) holds;

b) ∫ τ1

τ0

[p(s)]+ds ≥ 1 , D̃ ≥ 1− 1

λ2
,

and the condition (2.5) holds;

c) ∫ τ1

τ0

[p(s)]+ds ≥ 1 , D̃ < 1− 1

λ2
,

and either

1

λ

∫ τ0

a

[p(s)]−ds +

∫ b

τ1

[p(s)]+ds < − 1

λ
+

√
1− D̃ ,

1

λ

∫ τ0

a

[p(s)]−ds +

∫ b

τ0

[p(s)]+ds < 1− 1

λ
+ 2

√
1− D̃

or

1

λ

∫ τ0

a

[p(s)]−ds +

∫ b

τ1

[p(s)]+ds ≥ − 1

λ
+

√
1− D̃

and the condition (2.5) holds.

Then the problem (0.1), (0.3) has a unique solution.

Remark 2.5. According to Remarks 2.2 and 2.4, Theorem 2.3 is nonim-
provable in an appropriate sense.

2.2. Proofs. According to Theorem 0.1, to prove Theorems 2.1 and 2.2 it
is sufficient to show that the homogeneous problem (0.10), (0.30) has only
the trivial solution. As above, define the numbers Ai, Bi (i = 1, 2, 3) by
(1.31).

Proof of Theorem 2.1. Assume that the problem (0.10), (0.30) has a non-
trivial solution u.

First suppose that u has a zero in [τ0, τ1]. Define the numbers m0 and
M0 by (1.52) and choose α0, α1 ∈ [τ0, τ1] such that (1.53) holds. Obviously,
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(1.80) is satisfied since, if m0 = 0 and M0 = 0, then, in view of (0.10) and
(1.52), we obtain u(τ0) = 0 and u′(t) = 0 for t ∈ [a, b], i.e., u ≡ 0. It is also
evident that without loss of generality we can assume that α0 < α1.

The integration of (0.10) from α0 to α1, by virtue of (1.52), (1.53), and
(1.80), yields the inequality (1.81), which, on account of (1.19) and (1.80),
results in M0 + m0 < M0 + m0, a contradiction.

Now suppose that u has no zero in [τ0, τ1]. Without loss of generality
we can assume that u(t) > 0 for t ∈ [τ0, τ1]. Define the numbers M and m
by (1.33) and choose tM , tm ∈ [τ0, τ1] such that (1.34) holds. It is obvious
that (1.83) is fulfilled and either (1.38) or (1.39) is satisfied. As in the
proof of Theorem 1.3, one can show that in both cases (1.38) and (1.39) the
inequality (1.84) holds, where T is defined by (1.22).

On the other hand, the integrations of (0.10) from a to tM , from tM to
b, from a to tm, and from tm to b, in view of (1.33) and (1.34), yield

M − u(a) =

∫ tM

a

[p(s)]+u(τ(s))ds −
∫ tM

a

[p(s)]−u(τ(s))ds ≤

≤ M

∫ tM

a

[p(s)]+ds−m

∫ tM

a

[p(s)]−ds, (2.15)

M − u(b) =

∫ b

tM

[p(s)]−u(τ(s))ds −
∫ b

tM

[p(s)]+u(τ(s))ds ≤

≤ M

∫ b

tM

[p(s)]−ds−m

∫ b

tM

[p(s)]+ds, (2.16)

m− u(a) =

∫ tm

a

[p(s)]+u(τ(s))ds −
∫ tm

a

[p(s)]−u(τ(s))ds ≥

≥ m

∫ tm

a

[p(s)]+ds−M

∫ tm

a

[p(s)]−ds, (2.17)

m− u(b) =

∫ b

tm

[p(s)]−u(τ(s))ds −
∫ b

tm

[p(s)]+u(τ(s))ds ≥

≥ m

∫ b

tm

[p(s)]−ds−M

∫ b

tm

[p(s)]+ds. (2.18)

Put

f1(t)
def
= M

∫ t

a

[p(s)]+ds− λm

∫ b

t

[p(s)]+ds for t ∈ [a, b],

f2(t)
def
= m

∫ t

a

[p(s)]−ds− λM

∫ b

t

[p(s)]−ds for t ∈ [a, b],

(2.19)

f3(t)
def
= m

∫ t

a

[p(s)]+ds− λM

∫ b

t

[p(s)]+ds for t ∈ [a, b],

f4(t)
def
= M

∫ t

a

[p(s)]−ds− λm

∫ b

t

[p(s)]−ds for t ∈ [a, b].

(2.20)
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First suppose that (2.1) holds, where T is defined by (1.22). Multiplying
both sides of (2.16) by λ, summing with (2.15), and taking into account
(0.30), (2.19), and the assumption λ ∈ R+, we get

M(1 + λ) ≤M

∫ tM

a

[p(s)]+ds− λm

∫ b

tM

[p(s)]+ds−

−
(

m

∫ tM

a

[p(s)]−ds− λM

∫ b

tM

[p(s)]−ds

)
= f1(tM )− f2(tM ). (2.21)

It is easy to verify that the functions f1 and f2 defined by (2.19) are non-
decreasing in [a, b] and therefore, due to (1.31) and (2.19), it follows from
(2.21) that

M(1 + λ) ≤ f1(tM )− f2(tM ) ≤ f1(τ1)− f2(τ0) =

= M
(
A1 + A2 + λB2 + λB3

)
−m

(
B1 + λA3

)
. (2.22)

Thus, (1.84) and (2.22) imply

M(1 + λ) ≤M
(
A1 + A2 + λB2 + λB3

)
−M

(
B1 + λA3

)(
1− T

)
,

which, in view of (1.31) and (1.83), contradicts (2.1).
Now suppose that (2.2) is satisfied, where T is defined by (1.22). Mul-

tiplying both sides of (2.18) by λ, summing with (2.17), and taking into
account (0.30), (2.20), and the assumption λ ∈ R+, we obtain

m(1 + λ) ≥ m

∫ tm

a

[p(s)]+ds− λM

∫ b

tm

[p(s)]+ds−

−
(

M

∫ tm

a

[p(s)]−ds− λm

∫ b

tm

[p(s)]−ds

)
= f3(tm)− f4(tm). (2.23)

It is easy to verify that the functions f3 and f4 defined by (2.20) are non-
decreasing in [a, b] and thus, due to (1.31) and (2.20), it follows from (2.23)
that

m(1 + λ) ≥ f3(tm)− f4(tm) ≥ f3(τ0)− f4(τ1) =

= m
(
A1 + λB3

)
−M

(
B1 + B2 + λA2 + λA3

)
. (2.24)

By virtue of (1.19) and (1.22), (1.84) and (2.24) yield

m(1 + λ)(1− T ) ≥ m
(
A1 + λB3

)(
1− T

)
−m

(
B1 + B2 + λA2 + λA3

)
,

which, in view of (1.31) and (1.83), contradicts (2.2). �

Proof of Theorem 2.1. Assume that the problem (0.10), (0.30) has a non-
trivial solution u.

First suppose that u changes its sign in [τ0, τ1]. Define numbers m0 and
M0 by (1.52) and choose α0, α1 ∈ [τ0, τ1] such that (1.53) holds. It is clear
that (1.54) is satisfied and without loss of generality we can assume that
α0 < α1. Furthermore, define the numbers A2i, B2i (i = 1, 2, 3) by (1.36).
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The integrations of (0.10) from a to α0, from α0 to α1, from α1 to b, and
from τ1 to b, in view of (1.31), (1.36), (1.52), and (1.53), result in

−m0 − u(a) =

∫ α0

a

[p(s)]+u(τ(s))ds −
∫ α0

a

[p(s)]−u(τ(s))ds ≤

≤ M0

(
A1 + A21

)
+ m0

(
B1 + B21

)
, (2.25)

u(a) + m0 =

∫ α0

a

[p(s)]−u(τ(s))ds−
∫ α0

a

[p(s)]+u(τ(s))ds ≤

≤ M0

(
B1 + B21

)
+ m0

(
A1 + A21

)
, (2.26)

M0 + m0 =

∫ α1

α0

[p(s)]+u(τ(s))ds −
∫ α1

α0

[p(s)]−u(τ(s))ds ≤

≤ M0A22 + m0B22, (2.27)

M0 − u(b) =

∫ b

α1

[p(s)]−u(τ(s))ds −
∫ b

α1

[p(s)]+u(τ(s))ds ≤

≤ M0

(
B23 + B3

)
+ m0

(
A23 + A3

)
, (2.28)

u(b)−M0 ≤ u(b)− u(τ1) =

∫ b

τ1

[p(s)]+u(τ(s))ds−

−
∫ b

τ1

[p(s)]−u(τ(s))ds ≤ M0A3 + m0B3. (2.29)

Multiplying both sides of (2.28) by λ, summing with (2.25), and taking into
account (0.30) and the assumption λ ∈ [0, 1], we get

λM0 −m0 ≤
≤M0

(
A1 + A21 + λB23 + λB3

)
+ m0

(
B1 + B21 + λA23 + λA3

)
. (2.30)

Analogously, (2.26) and (2.29) imply

m0 − λM0 ≤ M0

(
B1 + B21 + λA3

)
+ m0

(
A1 + A21 + λB3

)
. (2.31)

First suppose that the assumption a) holds. In that case λ 6= 0. Accord-
ing to (1.36), (2.4), and (2.5), we have B22 < 1. Consequently, in view of
(1.54), (2.27) yields

0 < m0

(
1−B22

)
≤M0

(
A22 − 1

)
. (2.32)

Moreover, it follows from (2.5) that

A22 < 1 + λ. (2.33)

From (2.2) we get

M0

(
λ−A1 −A21 − λB23 − λB3

)
≤ m0

(
B1 + B21 + λA23 + λA3 + 1

)
,

which, together with (2.32), implies
(
λ−A1 −A21 − λB23 − λB3

)(
1−B22

)
≤

≤
(
B1 + B21 + λA23 + λA3 + 1

)(
A22 − 1

)
. (2.34)
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Obviously,
(
λ−A1 −A21 − λB23 − λB3

)(
1−B22

)
≥

≥ λ−A1 −A21 − λ
(
B22 + B23 + B3

)
. (2.35)

On the other hand, by virtue of (2.33) and the assumption λ ∈ ]0, 1], we
obtain

(
B1 + B21 + λA23 + λA3 + 1

)(
A22 − 1

)
=

=
(
B1 + λA3

)(
A22 − 1

)
+ B21

(
A22 − 1

)
+ λA23

(
A22 − 1

)
+

+A22 − 1 ≤
(
B1 + λA3

)(
A2 − 1

)
+ λB21 + A22 + A23 − 1. (2.36)

Using (1.31), (1.36), (2.35), and (2.36), (2.34) results in

A1 + A2 + λ
(
B2 + B3

)
+
(
B1 + λA3

)(
A2 − 1

)
≥ 1 + λ,

which, in view of (1.31), contradicts (2.5).
Now suppose that the assumption b) holds. In that case λ 6= 0. According

to (1.36), (2.6), and (2.8), we have A22 < 1. Consequently, on account of
(1.54), (2.27) implies

0 < M0

(
1−A22

)
≤ m0

(
B22 − 1

)
. (2.37)

Moreover, it follows from (2.3), (2.6)–(2.8), and the assumption λ ∈ ]0, 1]
that

B22 < 1 + λ. (2.38)

From (2.31) we obtain

m0

(
1− A1 −A21 − λB3

)
≤ M0

(
B1 + B21 + λA3 + λ

)
, (2.39)

which, together with (2.37), yields
(
1−A1 −A21 − λB3

)(
1−A22

)
≤

≤
(
B1 + B21 + λA3 + λ

)(
B22 − 1

)
. (2.40)

Clearly,
(
1−A1 −A21 − λB3

)(
1−A22

)
≥

≥ 1−A1 −A21 −A22 − λB3 . (2.41)

On the other hand, by virtue of (2.38) and the assumption λ ∈ ]0, 1], we
get
(
B1 + B21 + λA3 + λ

)(
B22 − 1

)
=

=
(
B1 + λA3

)(
B22 − 1

)
+ B21

(
B22 − 1

)
+ λB22 − λ ≤

≤
(
B1 + λA3

)(
B2 − 1

)
+ λ
(
B21 + B22

)
− λ. (2.42)

Using (1.31), (1.36), (2.41), and (2.42), (2.40) implies

A1 + A2 + λ
(
B2 + B3

)
+
(
B1 + λA3

)(
B2 − 1

)
≥ 1 + λ,

which, in view of (1.31), contradicts (2.8).
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Finally suppose that the assumption c) holds. According to (1.31), (1.36),
(2.3), and (2.9), we have

A22 < 1, A1 + A21 + λB3 < 1.

Thus, it follows from (1.54), (2.27), and (2.31) that

B22 > 1, B1 + B21 + λA3 + λ > 0, (2.43)

and
(
1−A1 −A21 − λB3

)(
1−A22

)
≤
(
B1 + B21 + λA3 + λ

)(
B22 − 1

)
. (2.44)

According to (2.3), (2.43), and the fact that
(
1−A1 −A21 − λB3

)(
1−A22

)
≥ 1−A1 −A21 −A22 − λB3 ≥ 1−D,

from (2.44) we get

B22 ≥ 1 +
1−D

B1 + B21 + λA3 + λ
. (2.45)

First suppose that (2.10) and (2.11) are satisfied. By virtue of (2.43),
from (2.45) we obtain

1−D ≤
(
B1 + B21 + λA3 + λ

)(
B22 − 1

)
≤

≤ 1

4

(
B1 + B21 + B22 + λA3 − 1 + λ

)2 ≤ 1

4

(
B1 + B2 + λA3 − 1 + λ

)2
,

which, in view of (1.31), (2.9), and (2.43), contradicts (2.11).
Now suppose that (2.8) and (2.12) are fulfilled. Let

g(x)
def
=

1−D

x + B1 + λA3 + λ
+ x for x > −B1 − λA3 − λ,

where D is given by (2.3). It is not difficult to verify that, on account of
(1.31) and (2.12), the function g is nondecreasing in [0, +∞[ . Therefore,
from (2.45) we obtain

B21 + B22 + B23 ≥ 1 +
1−D

B1 + B21 + λA3 + λ
+ B21 =

= 1 + g
(
B21

)
≥ 1 + g(0) = 1 +

1−D

B1 + λA3 + λ
,

which, in view of (1.31), (1.36), and (2.3), contradicts (2.8).

Now suppose that u does not change its sign in [τ0, τ1]. Without loss of
generality we can assume that (1.32) is satisfied. Define the numbers M
and m by (1.33) and choose tM , tm ∈ [τ0, τ1] such that (1.34) holds. It is
clear that (1.37) is satisfied since, if M = 0, then, in view of (0.10), (1.32),
and (1.33), we obtain u(τ0) = 0 and u′(t) = 0 for t ∈ [a, b], i.e., u ≡ 0.

The integrations of (0.10) from a to tM , from tM to b, from a to τ0, and
from τ1 to b, in view of (1.31)–(1.34), result in (2.15), (2.16),

−u(a) ≤ u(τ0)− u(a) =
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=

∫ τ0

a

[p(s)]+u(τ(s))ds −
∫ τ0

a

[p(s)]−u(τ(s))ds ≤ MA1, (2.46)

−u(b) ≤ u(τ1)− u(b) =

=

∫ b

τ1

[p(s)]−u(τ(s))ds −
∫ b

τ1

[p(s)]+u(τ(s))ds ≤MB3. (2.47)

Moreover, from (2.15) and (2.16), in view of (1.31) and (1.37), we find

M − u(a) ≤M
(
A1 + A2

)
, (2.48)

M − u(b) ≤M
(
B2 + B3

)
. (2.49)

Multiplying both sides of (2.47) by λ, summing with (2.48), and taking into
account (0.30), (1.37), and the assumption λ ∈ [0, 1], we get

A1 + A2 + λB3 ≥ 1. (2.50)

Analogously, (2.46) and (2.49) yield

A1 + λB2 + λB3 ≥ λ. (2.51)

First suppose that the assumption a) holds. By virtue of (1.31), (2.4),
and (2.51), (2.5) results in

1 + λ > A1 + A2 + λ
(
B2 + B3

)
≥ 1 + λ, (2.52)

a contradiction.
Now suppose that the assumption b) holds. With respect to (1.31), (2.6),

(2.50), and the assumption λ ∈ [0, 1], (2.8) implies (2.52), a contradiction.
Finally suppose that the assumption c) holds. On account of (1.31) and

(2.3), (2.50) contradicts (2.9). �

3. Comments and Examples

In the examples below, the functions p ∈ L([a, b]; R) and τ ∈ Mab are
constructed such that the homogeneous problem (0.10), (0.20), resp. (0.10),
(0.30), has a nontrivial solution. Then, according to the Fredholm property
(for more general case see, e.g., [1–3,10,12]) of the problem (0.1), (0.2), resp.
(0.1), (0.3), there exist q ∈ L([a, b]; R) and c ∈ R such that the problem
(0.1), (0.2), resp. (0.1), (0.3), has no solution.

Example 3.1. Let λ ∈ [0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such that

x1 + x2 + λx3 < 1 (3.1)

and
(
y1 + λy2 + λy3

)(
1− x2

)
= λ− 1 + x1 + x2 + λx3.
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Let, moreover, a = 0, b = 7,

p(t) =





−y1 for t ∈ [0, 1[

x1 for t ∈ [1, 2[

x2 for t ∈ [2, 3[

−y2 for t ∈ [3, 4[

0 for t ∈ [4, 5[

x3 for t ∈ [5, 6[

−y3 for t ∈ [6, 7]

, (3.2)

and

τ(t) =





2 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [6, 7]

3 for t ∈ [1, 3[ ∪ [5, 6[

4 for t ∈ [4, 5[

.

Obviously, τ0 = 2, τ1 = 4, and
∫ τ0

a

[p(s)]+ds = x1,

∫ τ1

τ0

[p(s)]+ds = x2,

∫ b

τ1

[p(s)]+ds = x3,

∫ τ0

a

[p(s)]−ds = y1,

∫ τ1

τ0

[p(s)]−ds = y2,

∫ b

τ1

[p(s)]−ds = y3.

(3.3)

On the other hand, the function

u(t) =






y1(1− x2)(1− t) + 1− x1 − x2 for t ∈ [0, 1[

x1(t− 2) + 1− x2 for t ∈ [1, 2[

x2(t− 3) + 1 for t ∈ [2, 3[

y2(1− x2)(3− t) + 1 for t ∈ [3, 4[

1− y2(1− x2) for t ∈ [4, 5[

x3(t− 5) + 1− y2(1− x2) for t ∈ [5, 6[

y3(1− x2)(7− t) + 1 + x3 − (y2 + y3)(1− x2) for t ∈ [6, 7]

is a nontrivial solution of the problem (0.10), (0.20).
This example shows that the strict inequality (1.3) in Theorem 1.1 cannot

be replaced by the nonstrict one.

Example 3.2. Let λ ∈ [0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(3.1) holds and

(
1− x1 − x2 − λx3

)(
1 + y2

)
= λ− y1 − λy3.

Let, moreover, a = 0, b = 7, p ∈ L([a, b]; R) be defined by (3.2), and

τ(t) =






2 for t ∈ [4, 5[

3 for t ∈ [1, 3[ ∪ [5, 6[

4 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [6, 7]

.

Obviously, τ0 = 2, τ1 = 4, and (3.3) is fulfilled.
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On the other hand, the function

u(t) =





y1(1− t) + 1 + y2 − (x1 + x2)(1 + y2) for t ∈ [0, 1[

x1(1 + y2)(t− 2) + 1 + y2 − x2(1 + y2) for t ∈ [1, 2[

x2(1 + y2)(t− 3) + 1 + y2 for t ∈ [2, 3[

y2(4− t) + 1 for t ∈ [3, 4[

1 for t ∈ [4, 5[

x3(1 + y2)(t− 5) + 1 for t ∈ [5, 6[

y3(7− t) + 1− y3 + x3(1 + y2) for t ∈ [6, 7]

is a nontrivial solution of the problem (0.10), (0.20).
This example shows that the strict inequality (1.4) in Theorem 1.1 cannot

be replaced by the nonstrict one.

Example 3.3. Let λ ∈ [0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(3.1) holds and

y1 + λy3 < λ +
√

1− x1 − x2 − λx3 ,

y1 + y2 + λy3 ≥ 1 + λ + 2
√

1− x1 − x2 − λx3 .

Put α =
√

1− x1 − x2 − λx3 and k = λ + α − y1 − λy3. Obviously, k > 0
and y2 ≥ 1 + α + k. Let, moreover, a = 0, b = 10,

p(t) =





−y1 for t ∈ [0, 1[

x1 for t ∈ [1, 2[

x2 for t ∈ [2, 3[

−k for t ∈ [3, 4[

−1 for t ∈ [4, 5[

−
(
y2 − 1− α− k

)
for t ∈ [5, 6[

−α for t ∈ [6, 7[

0 for t ∈ [7, 8[

x3 for t ∈ [8, 9[

−y3 for t ∈ [9, 10]

, (3.4)

and

τ(t) =





7 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [9, 10]

4 for t ∈ [1, 3[ ∪ [4, 5[ ∪ [6, 7[ ∪ [8, 9[

5 for t ∈ [5, 6[

2 for t ∈ [7, 8[

. (3.5)

Obviously, τ0 = 2, τ1 = 7, and (3.3) is satisfied.
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On the other hand, the function

u(t) =





αy1(1− t) + αk + x1 + x2 − 1 for t ∈ [0, 1[

x1(2− t) + αk + x2 − 1 for t ∈ [1, 2[

x2(3− t) + αk − 1 for t ∈ [2, 3[

αk(4− t)− 1 for t ∈ [3, 4[

t− 5 for t ∈ [4, 5[

0 for t ∈ [5, 6[

α(t− 6) for t ∈ [6, 7[

α for t ∈ [7, 8[

x3(8− t) + α for t ∈ [8, 9[

αy3(10− t) + α− x3 − αy3 for t ∈ [9, 10]

(3.6)

is a nontrivial solution of the problem (0.10), (0.20).
In the sequel, let λ ∈ [0, 1[ and xi = 0 (i = 1, 2, 3). Put

γ(t) = δ +

∫ t

a

[p(s)]−ds for t ∈ [a, b], (3.7)

where δ > λ
1−λ

(y1 + y2 + y3) and p ∈ L([a, b]; R) is defined by (3.4). Obvi-

ously, γ satisfies (1.23) with τ ∈ Mab given by (3.5), (1.24), and

γ(τ0)− γ(a) = y1, γ(τ1)− γ(τ0) = y2, γ(b)− γ(τ1) = y3. (3.8)

Thus, (1.25) is fulfilled and

λ
(
γ(b)− γ(τ1)

)
+ γ(τ1)− γ(a) = y1 + y2 + λy3 ≥ 3 + λ.

On the other hand, as we have shown, the problem (0.10), (0.20) has
a nontrivial solution u given by (3.6).

This example shows that the strict inequalities (1.6) in Theorem 1.1 and
(1.26) in Theorem 1.4 cannot be replaced by the nonstrict ones.

Example 3.4. Let λ ∈ [0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(3.1) holds and

y1 + λy3 ≥ λ +
√

1− x1 − x2 − λx3 ,

y2 ≥ 1 +
1− x1 − x2 − λx3

y1 + λy3 − λ
.
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Put α = 1− x1 − x2 − λx3 and β = y1 + λy3 − λ. Obviously, α > 0, β > 0,
and y2 ≥ 1 + α

β
. Let, moreover, a = 0, b = 9,

p(t) =






x1 for t ∈ [0, 1[

−y1 for t ∈ [1, 2[

x2 for t ∈ [2, 3[

−1 for t ∈ [3, 4[

−
(
y2 − 1− α

β

)
for t ∈ [4, 5[

−α
β

for t ∈ [5, 6[

0 for t ∈ [6, 7[

−y3 for t ∈ [7, 8[

x3 for t ∈ [8, 9]

, (3.9)

and

τ(t) =






3 for t ∈ [0, 1[ ∪ [2, 4[ ∪ [5, 6[ ∪ [8, 9]

6 for t ∈ [1, 2[ ∪ [7, 8[

4 for t ∈ [4, 5[

2 for t ∈ [6, 7[

. (3.10)

Obviously, τ0 = 2, τ1 = 6, and (3.3) is satisfied.
On the other hand, the function

u(t) =





βx1(1− t) + y1α− (1− x2)β for t ∈ [0, 1[

αy1(2− t)− (1− x2)β for t ∈ [1, 2[

βx2(3− t)− β for t ∈ [2, 3[

β(t− 4) for t ∈ [3, 4[

0 for t ∈ [4, 5[

α(t − 5) for t ∈ [5, 6[

α for t ∈ [6, 7[

αy3(7− t) + α for t ∈ [7, 8[

βx3(9− t) + α(1− y3)− βx3 for t ∈ [8, 9]

(3.11)

is a nontrivial solution of the problem (0.10), (0.20).
In the sequel, let λ ∈ [0, 1[ and xi = 0 (i = 1, 2, 3). Define the func-

tion γ ∈ C̃([a, b]; ]0, +∞[) by (3.7), where δ > λ
1−λ

(y1 + y2 + y3) and

p ∈ L([a, b]; R) is given by (3.9). Obviously, γ satisfies (1.23) with τ ∈Mab

given by (3.10), (1.24), and (3.8). Thus, (1.27) is fulfilled and

γ(τ1)− γ(τ0) = y2 ≥ 1 +
α

β
= 1 +

1

γ(τ0)− γ(a) + λ
(
γ(b)− γ(τ1)

)
− λ

.

On the other hand, as we have shown, the problem (0.10), (0.20) has
a nontrivial solution u given by (3.11).

This example shows that the strict inequalities (1.8) in Theorem 1.1 and
(1.28) in Theorem 1.4 cannot be replaced by the nonstrict ones.



114

Example 3.5. Let λ ∈ ]0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such that

y1 + y2 + λy3 < λ (3.12)

and (
λ− y1 − y2 − λy3

)(
1 + x2

)
= 1− x1 − λx3.

Let, moreover, a = 0, b = 7,

p(t) =






−y1 for t ∈ [0, 1[

x1 for t ∈ [1, 2[

0 for t ∈ [2, 3[

−y2 for t ∈ [3, 4[

x2 for t ∈ [4, 5[

x3 for t ∈ [5, 6[

−y3 for t ∈ [6, 7]

, (3.13)

and

τ(t) =





5 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [6, 7]

4 for t ∈ [1, 2[ ∪ [4, 6[

3 for t ∈ [2, 3[

.

Obviously, τ0 = 3, τ1 = 5, and (3.3) is fulfilled.
On the other hand, the function

u(t) =






y1(1 + x2)(1− t) + 1− x1 + y2(1 + x2) for t ∈ [0, 1[

x1(t− 2) + 1 + y2(1 + x2) for t ∈ [1, 2[

1 + y2(1 + x2) for t ∈ [2, 3[

y2(1 + x2)(4− t) + 1 for t ∈ [3, 4[

x2(t− 5) + 1 + x2 for t ∈ [4, 5[

x3(t− 5) + 1 + x2 for t ∈ [5, 6[

y3(1 + x2)(7− t) + 1 + x2 + x3 − y3(1 + x2) for t ∈ [6, 7]

is a nontrivial solution of the problem (0.10), (0.20).
This example shows that the strict inequality (1.13) in Theorem 1.2 can-

not be replaced by the nonstrict one.

Example 3.6. Let λ ∈ ]0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(3.12) holds and

(
x1 + λx2 + λx3

)(
1− y2

)
= 1− λ + y1 + λ

(
y2 + y3

)
.

Let, moreover, a = 0, b = 7, p ∈ L([a, b]; R) be defined by (3.13), and

τ(t) =






3 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [6, 7]

4 for t ∈ [1, 2[ ∪ [4, 6[

5 for t ∈ [2, 3[

.

Obviously, τ0 = 3, τ1 = 5, and (3.3) is fulfilled.
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On the other hand, the function

u(t) =





y1(1− t) + 1− x1(1− y2) for t ∈ [0, 1[

x1(1− y2)(t− 2) + 1 for t ∈ [1, 2[

1 for t ∈ [2, 3[

y2(3− t) + 1 for t ∈ [3, 4[

x2(1− y2)(t− 4) + 1− y2 for t ∈ [4, 5[

x3(1− y2)(t− 5) + 1− y2 + x2(1− y2) for t ∈ [5, 6[

y3(7− t) + 1− y2 − y3 + (x2 + x3)(1− y2) for t ∈ [6, 7]

is a nontrivial solution of the problem (0.10), (0.20).
This example shows that the strict inequality (1.2) in Theorem 1.2 cannot

be replaced by the nonstrict one.

Example 3.7. Let λ ∈ ]0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(3.12) holds and

x1 + λx3 < 1 +
√

λ− y1 − y2 − λy3 ,

x1 + x2 + λx3 ≥ 2 + 2
√

λ− y1 − y2 − λy3 .

Put α =
√

λ− y1 − y2 − λy3 and k = 1 + α − x1 − λx3. Obviously, k > 0
and x2 ≥ 1 + α + k. Let, moreover, a = 0, b = 10,

p(t) =





x1 for t ∈ [0, 1[

−y1 for t ∈ [1, 2[

−y2 for t ∈ [2, 3[

k for t ∈ [3, 4[

α for t ∈ [4, 5[

x2 − 1− α− k for t ∈ [5, 6[

1 for t ∈ [6, 7[

0 for t ∈ [7, 8[

x3 for t ∈ [8, 9[

−y3 for t ∈ [9, 10]

,

and

τ(t) =





4 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [8, 9[

7 for t ∈ [1, 3[ ∪ [4, 5[ ∪ [6, 7[ ∪ [9, 10]

5 for t ∈ [5, 6[

2 for t ∈ [7, 8[

.

Obviously, τ0 = 2, τ1 = 7, and (3.3) is satisfied.
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On the other hand, the function

u(t) =





αx1(1− t) + y1 + y2 + α(k − 1) for t ∈ [0, 1[

y1(2− t) + y2 + α(k − 1) for t ∈ [1, 2[

y2(3− t) + α(k − 1) for t ∈ [2, 3[

αk(4− t)− α for t ∈ [3, 4[

α(t− 5) for t ∈ [4, 5[

0 for t ∈ [5, 6[

t− 6 for t ∈ [6, 7[

1 for t ∈ [7, 8[

αx3(8− t) + 1 for t ∈ [8, 9[

y3(10− t) + 1− y3 − αx3 for t ∈ [9, 10]

is a nontrivial solution of the problem (0.10), (0.20).
This example shows that the strict inequality (1.16) in Theorem 1.2 can-

not be replaced by the nonstrict one.

Example 3.8. Let λ ∈ ]0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(3.12) holds and

x1 + λx3 ≥ 1 +
√

λ− y1 − y2 − λy3 ,

x2 ≥ 1 +
λ− y1 − y2 − λy3

x1 + λx3 − 1
.

Put α = λ− y1 − y2 − λy3 and β = x1 + λx3 − 1. Obviously, α > 0, β > 0,
and x2 ≥ 1 + α

β
. Let, moreover, a = 0, b = 9,

p(t) =





x1 for t ∈ [0, 1[

−y1 for t ∈ [1, 2[

−y2 for t ∈ [2, 3[
α
β

for t ∈ [3, 4[

x2 − 1− α
β

for t ∈ [4, 5[

1 for t ∈ [5, 6[

0 for t ∈ [6, 7[

−y3 for t ∈ [7, 8[

x3 for t ∈ [8, 9]

,

and

τ(t) =






3 for t ∈ [0, 1[ ∪ [8, 9]

6 for t ∈ [1, 4[ ∪ [5, 6[ ∪ [7, 8[

4 for t ∈ [4, 5[

2 for t ∈ [6, 7[

.

Obviously, τ0 = 2, τ1 = 6, and (3.3) is satisfied.
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On the other hand, the function

u(t) =





αx1(1− t) + β(y1 + y2)− α for t ∈ [0, 1[

βy1(2− t) + βy2 − α for t ∈ [1, 2[

βy2(3− t)− α for t ∈ [2, 3[

α(t − 4) for t ∈ [3, 4[

0 for t ∈ [4, 5[

β(t− 5) for t ∈ [5, 6[

β for t ∈ [6, 7[

βy3(7− t) + β for t ∈ [7, 8[

αx3(9− t) + β(1− y3)− αx3 for t ∈ [8, 9]

is a nontrivial solution of the problem (0.10), (0.20).
This example shows that the strict inequality (1.18) in Theorem 1.2 can-

not be replaced by the nonstrict one.

Example 3.9. Let λ ∈ ]0, 1] (for the case λ = 0 see Example 3.11),
k ∈ ]0, 1[ , and ε ≥ 0. Choose m > 0 such that

m ≤ min

{
λ,

λ(1− k)k

λ(1− k) + εk

}

and put a = 0, b = 3, and

p(t) =






−λ−m
m

for t ∈ [0, 1[

k−m
k

for t ∈ [1, 2[

λ(1−k)+εk

λk
for t ∈ [2, 3]

, τ(t) =






1 for t ∈ [0, 1[

2 for t ∈ [1, 2[

t∗ for t ∈ [2, 3]

,

where

t∗ =

{
1 + 1

k−m

(
λ(1−k)k

λ(1−k)+εk
−m

)
if m 6= k

2 if m = k
.

It is not difficult to verify that τ0 = 1, τ1 = 2, and
∫ τ1

a

[p(s)]+ds =

∫ τ1

τ0

[p(s)]+ds =
k −m

k
,

∫ b

τ1

[p(s)]+ds =
λ(1− k) + εk

λk
,

∫ τ0

a

[p(s)]−ds =
λ−m

m
,

∫ b

τ0

[p(s)]−ds =

∫ τ1

τ0

[p(s)]−ds = 0 .

Thus, the condition (1.19) holds, T = k−m
k

, and

∫ τ1

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]+ds−

−
(∫ τ0

a

[p(s)]−ds + λ

∫ b

τ0

[p(s)]−ds

)
(
1− T

)
= 1− λ + ε .
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On the other hand, the function

u(t) =





λ− (λ−m)t for t ∈ [0, 1[

(k −m)(t− 1) + m for t ∈ [1, 2[

(1− k)(t− 3) + 1 for t ∈ [2, 3]

is a nontrivial solution of the problem (0.10), (0.20).
This example shows that the strict inequality (1.20) in Theorem 1.3 can-

not be replaced by the nonstrict one.

Example 3.10. Let λ ∈ [0, 1], k > 1, and ε ∈ [0, 1[. Choose M ≥ k+λ
1−ε

and put a = 0, b = 4, and

p(t) =






M−λ−εM
k

for t ∈ [0, 1[

−M−k
M

for t ∈ [1, 2[

−k−1
M

for t ∈ [2, 3[

0 for t ∈ [3, 4]

, τ(t) =






t∗ for t ∈ [0, 1[

1 for t ∈ [1, 3[

2 for t ∈ [3, 4]

,

where

t∗ =

{
2− εMk

(M−k)(M−λ−εM) if M 6= k

2 if M = k
.

It is not difficult to verify that τ0 = 1, τ1 = 2, and
∫ τ0

a

[p(s)]+ds =
M − λ− εM

k
,

∫ b

τ0

[p(s)]+ds =

∫ τ1

τ0

[p(s)]+ds = 0 ,

∫ τ1

a

[p(s)]−ds =

∫ τ1

τ0

[p(s)]−ds =
M − k

M
,

∫ b

τ1

[p(s)]−ds =
k − 1

M
.

Thus, the condition (1.19) holds, T = M−k
M

, and
(∫ τ0

a

[p(s)]+ds + λ

∫ b

τ0

[p(s)]+ds

)
(
1− T

)
−

−
∫ τ1

a

[p(s)]−ds− λ

∫ b

τ1

[p(s)]−ds =
(
1− λ

)(
1− T

)
− ε .

On the other hand, the function

u(t) =





λ + (M − λ)t for t ∈ [0, 1[

(M − k)(2− t) + k for t ∈ [1, 2[

(k − 1)(3− t) + 1 for t ∈ [2, 3[

1 for t ∈ [3, 4]

is a nontrivial solution of the problem (0.10), (0.20).
This example shows that the strict inequality (1.21) in Theorem 1.3 can-

not be replaced by the nonstrict one.
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Example 3.11. Let λ ∈ [0, +∞[ , k > 1, and ε ≥ 0. Choose m > 0 such
that

m ≤ min

{
1,

k(k + λ)

k + λ + εk

}

and put a = 0, b = 3, and

p(t) =





k+λ
k

+ ε for t ∈ [0, 1[

−k−m
k

for t ∈ [1, 2[

1−m
m

for t ∈ [2, 3]

, τ(t) =





t∗ for t ∈ [0, 1[

1 for t ∈ [1, 2[

2 for t ∈ [2, 3]

,

where

t∗ =

{
2− 1

k−m

(
k(k+λ)
k+λ+εk

−m
)

if m 6= k

1 if m = k
.

It is not difficult to verify that τ0 = 1, τ1 = 2, and
∫ τ1

a

[p(s)]+ds =
k + λ

k
+ ε ,

∫ b

τ1

[p(s)]+ds =
1−m

m
,

∫ τ1

τ0

[p(s)]+ds = 0 ,

∫ τ0

a

[p(s)]−ds = 0 ,

∫ b

τ0

[p(s)]−ds =

∫ τ1

τ0

[p(s)]−ds =
k −m

k
.

Thus, the condition (1.19) holds, T = k−m
k

, and

∫ τ1

a

[p(s)]+ds + λ

∫ b

τ0

[p(s)]−ds−

−
(∫ τ0

a

[p(s)]−ds + λ

∫ b

τ1

[p(s)]+ds

)
(
1− T

)
= 1 + λ + ε .

On the other hand, the function

u(t) =






(k + λ)t − λ for t ∈ [0, 1[

(k −m)(2− t) + m for t ∈ [1, 2[

(1−m)(t− 3) + 1 for t ∈ [2, 3]

is a nontrivial solution of the problem (0.10), (0.30).
This example shows that the strict inequality (2.1) in Theorem 2.1 cannot

be replaced by the nonstrict one.

Example 3.12. Let λ ∈ ]0, +∞[ (for the case λ = 0 see Example 3.10),

k ∈ ]0, λ[ , and ε ∈
[
0, λ−k

k

[
. Choose M ≥ k(λ−k)

λ−k−εk
and put a = 0, b = 3,

and

p(t) =





−
(

λ−k
M

+ ε
)

for t ∈ [0, 1[

M−k
M

for t ∈ [1, 2[

−M+1
k

for t ∈ [2, 3]

, τ(t) =





t∗ for t ∈ [0, 1[

2 for t ∈ [1, 2[

1 for t ∈ [2, 3]

,
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where

t∗ =

{
1 + 1

M−k

(
M(λ−k)
λ−k+εM

− k
)

if M 6= k

2 if M = k
.

It is not difficult to verify that τ0 = 1, τ1 = 2, and

∫ τ0

a

[p(s)]+ds = 0 ,

∫ b

τ0

[p(s)]+ds =

∫ τ1

τ0

[p(s)]+ds =
M − k

M
,

∫ τ1

a

[p(s)]−ds =
λ− k

M
+ ε ,

∫ τ1

τ0

[p(s)]−ds = 0 ,

∫ b

τ1

[p(s)]−ds =
M + 1

k
.

Thus, the condition (1.19) holds, T = M−k
M

, and
(∫ τ0

a

[p(s)]+ds + λ

∫ b

τ1

[p(s)]−ds

)
(
1− T

)
−

−
∫ τ1

a

[p(s)]−ds− λ

∫ b

τ0

[p(s)]+ds =
(
1 + λ

)(
1− T

)
− ε .

On the other hand, the function

u(t) =





λ− (λ− k)t for t ∈ [0, 1[

(M − k)(t− 1) + k for t ∈ [1, 2[

(M + 1)(3− t)− 1 for t ∈ [2, 3]

is a nontrivial solution of the problem (0.10), (0.30).
This example shows that the strict inequality (2.2) in Theorem 2.1 cannot

be replaced by the nonstrict one.

Example 3.13. Let λ ∈ [0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such
that

x2 ≥ 1

and

x1 + x2 + λ
(
y2 + y3

)
+
(
y1 + λx3

)(
x2 − 1

)
= 1 + λ.

Let, moreover, a = 0, b = 8,

p(t) =





−y1 for t ∈ [0, 1[

x1 for t ∈ [1, 2[

x2 − 1 for t ∈ [2, 3[

0 for t ∈ [3, 4[

1 for t ∈ [4, 5[

−y2 for t ∈ [5, 6[

−y3 for t ∈ [6, 7[

x3 for t ∈ [7, 8]

,
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and

τ(t) =





2 for t ∈ [0, 1[ ∪ [7, 8]

5 for t ∈ [1, 3[ ∪ [4, 7[

6 for t ∈ [3, 4[

.

Obviously, τ0 = 2, τ1 = 6, and (3.3) is satisfied.
On the other hand, the function

u(t) =






y1(x2 − 1)(t− 1) + 1− x2 − x1 for t ∈ [0, 1[

x1(t− 2) + 1− x2 for t ∈ [1, 2[

(x2 − 1)(t− 3) for t ∈ [2, 3[

0 for t ∈ [3, 4[

t− 4 for t ∈ [4, 5[

y2(5− t) + 1 for t ∈ [5, 6[

y3(6− t) + 1− y2 for t ∈ [6, 7[

x3(x2 − 1)(7− t) + 1− y2 − y3 for t ∈ [7, 8]

is a nontrivial solution of the problem (0.10), (0.30).
This example shows that the strict inequality (2.5) in Theorem 2.2 cannot

be replaced by the nonstrict one.

Example 3.14. Let λ ∈ [0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such
that

y2 ≥ 1 , x1 + x2 + λy3 ≥ 1− λ2 ,

and

x1 + x2 + λ
(
y2 + y3

)
+
(
y1 + λx3

)(
y2 − 1

)
= 1 + λ.

Let, moreover, a = 0, b = 8,

p(t) =





x1 for t ∈ [0, 1[

−y1 for t ∈ [1, 2[

x2 for t ∈ [2, 3[

−1 for t ∈ [3, 4[

0 for t ∈ [4, 5[

−(y2 − 1) for t ∈ [5, 6[

x3 for t ∈ [6, 7[

−y3 for t ∈ [7, 8]

,

and

τ(t) =






3 for t ∈ [0, 1[ ∪ [2, 4[ ∪ [5, 6[ ∪ [7, 8]

6 for t ∈ [1, 2[ ∪ [6, 7[

2 for t ∈ [4, 5[

.

Obviously, τ0 = 2, τ1 = 6, and (3.3) is satisfied.
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On the other hand, the function

u(t) =





x1(t− 1) + 1− x2 − y1(y2 − 1) for t ∈ [0, 1[

y1(y2 − 1)(t− 2) + 1− x2 for t ∈ [1, 2[

x2(t− 3) + 1 for t ∈ [2, 3[

4− t for t ∈ [3, 4[

0 for t ∈ [4, 5[

(y2 − 1)(6− t) + 1− y2 for t ∈ [5, 6[

x3(y2 − 1)(7− t) + 1− y2 − x3(y2 − 1) for t ∈ [6, 7[

y3(8− t) + 1− y2 − x3(y2 − 1)− y3 for t ∈ [7, 8]

is a nontrivial solution of the problem (0.10), (0.30).
This example shows that the strict inequality (2.8) in the assumption b)

of Theorem 2.2 cannot be replaced by the nonstrict one.

Example 3.15. Let λ ∈ [0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such
that

y2 ≥ 1 , x1 + x2 + λy3 < 1− λ2, (3.14)

y1 + λx3 < −λ +
√

1− x1 − x2 − λy3 ,

y1 + y2 + λx3 ≥ 1− λ + 2
√

1− x1 − x2 − λy3 .

Put α =
√

1− x1 − x2 − λy3 and k = α − λ − y1 − λx3. Obviously, k > 0
and y2 ≥ 1+α+k. Let, moreover, a = 0, b = 10, p ∈ L([a, b]; R) be defined
by (3.4), and

τ(t) =






8 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [8, 9[

4 for t ∈ [1, 3[ ∪ [4, 5[ ∪ [6, 7[ ∪ [9, 10]

5 for t ∈ [5, 6[

2 for t ∈ [7, 8[

.

Obviously, τ0 = 2, τ1 = 8, and (3.3) is satisfied.
On the other hand, the function

u(t) =





αy1(1− t) + x1 + x2 + kα− 1 for t ∈ [0, 1[

x1(2− t) + x2 + kα− 1 for t ∈ [1, 2[

x2(3− t) + kα− 1 for t ∈ [2, 3[

kα(4− t)− 1 for t ∈ [3, 4[

t− 5 for t ∈ [4, 5[

0 for t ∈ [5, 6[

α(t− 6) for t ∈ [6, 7[

α for t ∈ [7, 8[

αx3(t− 8) + α for t ∈ [8, 9[

y3(t− 9) + α + αx3 for t ∈ [9, 10]
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is a nontrivial solution of the problem (0.10), (0.30).
This example shows that the strict inequality (2.11) in Theorem 2.2 can-

not be replaced by the nonstrict one.

Example 3.16. Let λ ∈ [0, 1] and let xi, yi ∈ R+ (i = 1, 2, 3) be such
that (3.14) holds and

y1 + λx3 ≥ −λ +
√

1− x1 − x2 − λy3 ,

x1 + x2 + λ
(
y2 + y3

)
+
(
y1 + λx3

)(
y2 − 1

)
≥ 1 + λ.

Put α = 1− x1 − x2 − λy3 and β = y1 + λx3 + λ. Obviously, α > 0, β > 0,
and y2 ≥ 1 + α

β
. Let, moreover, a = 0, b = 9, p ∈ L([a, b]; R) be defined by

(3.9), and

τ(t) =





3 for t ∈ [0, 1[ ∪ [2, 4[ ∪ [5, 6[ ∪ [7, 8[

7 for t ∈ [1, 2[ ∪ [8, 9]

4 for t ∈ [4, 5[

2 for t ∈ [6, 7[

.

Obviously, τ0 = 2, τ1 = 7, and (3.3) is satisfied.
On the other hand, the function

u(t) =






x1β(1− t) + y1α + x2β − β for t ∈ [0, 1[

y1α(2− t) + x2β − β for t ∈ [1, 2[

x2β(3− t)− β for t ∈ [2, 3[

β(t− 4) for t ∈ [3, 4[

0 for t ∈ [4, 5[

α(t− 5) for t ∈ [5, 6[

α for t ∈ [6, 7[

y3β(t− 7) + α for t ∈ [7, 8[

x3α(t− 8) + α + y3β for t ∈ [8, 9]

is a nontrivial solution of the problem (0.10), (0.30).
This example shows that the strict inequality (2.8) in the assumption c)

of Theorem 2.2 cannot be replaced by the nonstrict one.
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