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Abstract. The aim of the paper is to study the question on the existence
and uniqueness of a solution of the problem

W (t) =p(t)u(r(t) +q(t),  ula)+ ) =c,
where p, q : [a,b] — R are Lebesgue integrable functions, 7 : [a,b] — [a, ]
is a measurable function, and \,c € R. More precisely, some solvability

conditions established in [5,6,8] are refined for the special case, where
T maps the segment [a, b] into some subsegment o, 71] C [a, b].
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INTRODUCTION

The following notation is used throughout.
R is the set of all real numbers, Ry = [0, +0o0].

x|+
e = T g =
C(Ja,b]; D), where D C R, is the set of absolutely continuous functions
u: [a,b] — D.
Mp is the set of measurable functions 7 : [a, b] — [a, b].
L([a,b]; R) is the Banach space of Lebesgue integrable functions p :
[a,b] — R with the norm

b
Ipll = [ pto)lds.
a
By a solution of the equation

W' (t) = p(t)u(r(t)) + q(t), (0.1)
where p,q € L([a,b]; R) and 7 € M,p, we understand a function u €

C(Ja,b]; R) satisfying the equality (0.1) almost everywhere in [a,b]. Note
also that throughout the paper the equalities and inequalities with inte-
grable functions are understood to hold almost everywhere.

Consider the problem on the existence and uniqueness of a solution of

the equation (0.1) satisfying the boundary condition

u(a) — Au(b) = ¢, (0.2)
resp.

u(a) + Mu(b) = ¢, (0.3)

where A € R, and c € R.

The theory of differential equations with deviating arguments was begun
to develop in 50’s of the 20th century (see, e.g., [9,11] and references therein).
Throughout the second half of the 20th century, a lot was done to construct
the general theory of boundary value problems for functional differential
equations (see, e.g., [1,2,10,12] and references therein). In spite of this,
there are only few effective criteria for the solvability of special types of
boundary value problems for functional differential equations.

In [5,8] and [6], there were established sufficient conditions for the unique
solvability of the problem (0.1), (0.2) and (0.1), (0.3), respectively. More-
over, those results are, in general, nonimprovable (see the examples con-
structed in [5,6,8]). On the other hand, if 7 maps the segment [a,b] into
some subsegment [79,71] C [a,b], the above-mentioned results can be im-
proved in a certain way. In the present paper, some results from [5,6,8] are
refined for such special case of the equation (0.1). For this purpose, put

7o = ess inf {7(¢t) : ¢ € [a, b]}, 1 =esssup{7(t) : t € [a,b]}.
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It is clear that 79,71 € [a,b], 790 < 71, and 7(¢) € [79,71] for almost all
t € la,bl.

The paper is organized as follows. Sections 1 and 2 deal with the prob-
lem (0.1), (0.2) and (0.1), (0.3), respectively. Section 3 is devoted to the
examples verifying the optimality of the obtained results.

The Cauchy problem is a special case of the discussed boundary value
problem (for A = 0). In that case, the below formulated theorems coincide
with the results obtained in [4].

The following result is well-known from the general theory of the bound-
ary value problems for functional differential equations (see [1-3,10,12]).

Theorem 0.1. The problem (0.1), (0.2), resp. (0.1), (0.3), is uniquely
solvable if and only if the corresponding homogeneous problem

u'(t) = p(t)u(r(t), (0.1o)

u(a) — Au(b) =0, (0.29)
resp.

' (t) = p(t)u(r(t)),

u(a) + Au(b) =0, (0.30)

has only the trivial solution.

1. PrROBLEM (0.1), (0.2)
1.1. Main Results.

Theorem 1.1. Let A € [0,1] and
b

A [ (o) ds 40 [ [pls)leds. (1.1)

T1

If
A<, (1.2)

(LT”[p(S)]_derA/:[p(S)]_ds> (1 _/:[p(s)hds) SA-14A, (1.3)

(=) (15 [T enas) = a- [peas-a f[p<s>1_ds, (1.9

0

and either

/To[p(s)]ds+)\/b[p(s)]ds</\+\/1A, (1.5)
/Tl[p(s)]ds+/\/b[p(s)]ds< 1+Xx+2vV1-A (1.6)
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T0 b
/ p(s)]_ds + )\/ p(s)]_ds > A+ VI—4, (1.7)
- A

Jr
L ()]s + X 7 [p(s)] ~ds — A
then the problem (0.1), (0.2) has a unique solution.

/ﬁ[p(s)],ds <1 . (1.8)

Remark 1.1. Theorem 1.1 is nonimprovable in the sense that neither of
the strict inequalities (1.3), (1.4), (1.6), and (1.8) can be replaced by the
nonstrict one (see Examples 3.1-3.4).

Example 1.1. On the segment [0, 1] consider the boundary value problem

W' (t) = k(1 — 3t)u (W) +q(t),

u(0) — Au(l) = ¢,
where A € [1,1], k €]0,6[, ¢ € L([a,b]; R), c € R, and r € [2,1] is such
that 3(1+3r)(1 —r) > 1. Put

1 1— —1)2
a:( +3’I“;( 7")7 ﬁ:(3r6 ) .

It is not difficult to verify that 79 = %, 71 = r, and the condition (1.2)
holds. Obviously, if

3(4x—1) 34 —1)71% 1-2A
k
ST T \/{ o
then the conditions (1.3) and (1.4) are fulfilled. If
l+—1+¢r+mvmaw4)
a 122202 ’
then the condition (1.5) is satisfied. If
Lo 6(1+\) |
T Br—=124+3X1+3r)(1-1r)
then the condition (1.6) holds. If
—1+ /1424 2(6a — 1)
122202 ’

(1.9)

(1.10)

k<

k>

1
-+
@
then the condition (1.7) is fulfilled. If

6A(a+ B) — 1+ /[6A(a + B) — 1]2 + 144X aB(1 — A)
< )

12 a3

then the condition (1.8) is satisfied.

In particular, if k& € ]0,3.02[U[3.65,4.52[, A = 0.95, and r = 1T, then,
according to Theorem 1.1, the problem (1.9) has a unique solution.

k
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Theorem 1.2. Let A € ]0,1] and

B [ " p(s)]_ds + A / f[p<s>]_ds. (1.11)

B <)\, (1.12)

-8 (14 [ oeas) 1= [ olas- / ()] ds, (1.13)
(/a +ds+/\/[p +ds) (1/ [p(s) >

If

>1—/\+/ [p(s)],dsH/ p(s)]_ds, (1.14)
and either
T0 b
/ p(s)]sds + )\/ p(s)]sds < 1+ VA=B, (1.15)
/n ps)ads - A [ Ip(s)]ads <2+ 23 "B (1.16)
To b
/ p(s)]sds + A [ [p(s)]sds > 1+ VA—B, (1.17)
Tl AN—B
s)lids <1+ 1.18
|, polds < T eds + A2 ()] ads —1° (1.18)

then the problem (0.1), (0.2) has a unique solution.

Remark 1.2. Theorem 1.2 is nonimprovable in the sense that neither of
the strict inequalities (1.13), (1.2), (1.16), and (1.18) can be replaced by the
nonstrict one (see Examples 3.5-3.8).

Note also that if 7p = @ and 71 = b, then from Theorems 1.1 and 1.2 we
obtain Corollary 1.1 in [5].

Example 1.2. On the segment [0, 1] consider the boundary value problem
(1.9), where \ € } %, 1], ke]—6X0[, g€ L([a,b]; R), c€ R, and r € [%, 1]
is such that 3A\2(1 + 3r)(1 —r) > 1. Define the numbers a and 3 by (1.10).

It is not difficult to verify that 79 = %, 71 = r, and the condition (1.12)
holds. Obviously, if

> D BN g,y

k< 342D +\/[3(‘“”rg<1x),

and

4 4
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then the conditions (1.13) and (1.2) are fulfilled. If

1 =141+ 240a(6)2a—1
<24 + /1 + 24 a(6)2a — 1)

Ao 12)2a2 ’
then the condition (1.15) is satisfied. If
12
k| <

(Br—1)2+3X1+3r)(1—1) "
then the condition (1.16) holds. If

k> 1 N —1++/1+ 24 a(6)\2a — 1)
pYe 12)2a2 ’

then the condition (1.17) is fulfilled. If

(Aa+B) —1— /[6(Aa+ B) — 1]2 — 144X aB(1 — \)
12 af

6
|k >

and

6(Aa+ 3) — 1+ /[6(Aa + B) — 1]2 — 144 aB(1 — \)
12 a3 ’

then the condition (1.18) is satisfied.

In particular, if k € [—4.08, —3.66]U]—3.10, —0.12[ , A = 0.95, and r = %,

then, according to Theorem 1.2, the problem (1.9) has a unique solution.

LIS

Remark 1.3. Let A € [0, 1]. Denote by H; the set of 6—tuples (z;)%_, € R}
satisfying

r1 4+ a2+ Arg < 1,

(x4+)\(x5+a?6))(1—x2)>)\—1+x1—|—x2+)\x3,
(1—.%‘1—332—)\333)(14-1‘5)>)\—Z‘4—)\I6,

and either

:c4+/\16</\+\/17x1—127/\$3,
I4+$5+)\$6<1+)\+2\/1—$1—$2—)\$3

or

T4 + A\g 2)\4—\/1—3:1—372—)\373 ,
(xa+Azg — A)(z5 — 1) <1 =21 — 20 — A3
Further, denote by Hy the set of 6—tuples (z;)%_; € RS satisfying
T4+ x5+ v < A,
AN—zg — x5 — Aag)(L+x2) > 1 — 21 — Aas,
(:L'l +>\(’l}2+£€3))(17$5) >1—A+a4+ MNas + x6) ,
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and either

I1+)\I3<1+\/)\—$4—$5—)\I6,

$1+Z2+>\£C3<2+2\/>\7$47$57>\’£6

or

1’1+>\56321+\/>\*CE4*:C5*>\16,
(x1 +Azg —1)(z2 — 1) < A — 24 — x5 — A6

Now, according to Theorems 1.1 and 1.2, if p € L([a, b]; R) is such that the
point

])[p(S)]+d8,]1[p(8)]+ds,/b[p(8)]+d87])[p(8)]ds,]l[p(S)]ds,/b[p(S)]ds

belongs to the set Hy U Hs, then the problem (0.1), (0.2) has a unique
solution.

On Fig. 1.1 one can see the intersection of the set Hy U Hy and the 3—di-
mensional subspace {(0,,0,y,2,0): z,y,z € R} of the space RS, i.e., the
sets

G1={(x,y,2) € Ri : (0,2,0,y,2,0) € Hy},
G = {(xayaz) € Ri— : (O,x,O,y,z,O) € HQ}

Theorem 1.3. Let A € [0,1],

/Tl[p(s)]ers <1, /Tl[p(s)],ds <1, (1.19)

| wensasa [ pr<s>1+ds

_ (/To[p(s)]_ds + )\/ [p(s)]_ds> (1-T)<1-x (1.20)

and either

( [ o [ j[p(s)]+ds> 1-7)-
_ /aT1 [p(s)]-ds — )\/:[p(s)]_ds > (1=N)(1-1), (1.21)
where
T= max{/ [p(s)]+ds, / [p(s) } (1.22)

Then the problem (0.1), (0.2) has a unique solution.
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Fig. 1.1.

Remark 1.4. Theorem 1.3 is nonimprovable in the sense that the strict
inequalities (1.20) and (1.21) cannot be replaced by the nonstrict ones (see

Examples 3.9 and 3.10).

Note also that if the segment |7, 71] degenerates to a point ¢ € [a, b], i.e.,

7(t)

c for t € [a,b], then T = 0 and the inequalities (1.20) and (1.21) can

b
)ds+>\/ p(s)ds #1 —X.
c
the last relation is sufficient and necessary for the unique

be rewritten as

S

(

p

[

/

b

On the other hand

c for ¢ € [a,b].

(t)

with 7

)

(0.2

)

0.1

(

Theorem 1.4. Let A € [0,1] and let there exist v € C

solvability of the problem
such that

0, +00[)

bl;]

)

a

[

(

(1.23)
(1.24)

o,

)

a

for te]

(®)]-

> Ay(b),

Y (t) > [p®)]+y(r(1) + [p

a

(

v

and either

(1.25)
(1.26)

)

¥(10) = (@) + A(v(b) —y(m1)) <1+

A(y(0) = ~(m)

1) —(a) <3+ A

+(

)
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7(10) = (@) + A(v(b) = (1)) > 1+ A, (1.27)
1
¥(m0) = v(a) + A(y(b) = y(m)) = A
Then the problem (0.1), (0.2) has a unique solution.

y(r) — (1) <14 (1.28)

Remark 1.5. Theorem 1.4 is nonimprovable in the sense that the strict
inequalities (1.26) and (1.28) cannot be replaced by the nonstrict ones (see
Examples 3.3 and 3.4).

Note also that if 79 = a and 7, = b, then from Theorem 1.4 we obtain
Theorem 1.1 in [8].

Remark 1.6. Let A € [1,4+o00[ and let functions p, 7, and ¢ be defined by

—pla+b—1), FOLa+b—r(@a+b—1),

CORS

" (1.2)
q(t) = —qla+b—1t) for tE€&]la,bl.
Put u=1/X and ¢ = —pec. It is clear that if u is a solution of the problem
(0.1), (0.2), then the function v, defined by v(t) e u(a+b—1t) for t € [a,b],
is a solution of the problem
V() = FOUED) + 30, vla) - po(d) =7, (1.30)
and vice versa, if v is a solution of the problem (1.30), then the function

u, defined by u(t) def v(a+b—t) for t € [a,b], is a solution of the problem

(0.1), (0.2).
Therefore, Theorems 1.1-1.4 immediately yield the following assertions.

Theorem 1.5. Let A € [1,+o00[ and

gl / [p(s)]_ds + /T:wsnds

If )
( /h,+@+/@ +@)1/U) ) > 148,
(1-5) (1+ [t Leds) > 5= 5 [ wolas /:[p(snm,
and either

§/amuo<s>1+ds " /:[msmds <t +V1-B,
%/aTO[p(s)]ers + /Tb[p(s)]+ds <1+ % +2V/1-B
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or

T0 b _
%/a [p(s)]+ds + /T1 [p(s)]4ds > % “\V1-B,
1 . E
s)]ids < |
/TO e /\fTO +ds+f +ds— 1

then the problem (0.1), (0.2) has a unique solution.
Theorem 1.6. Let A € [1,+o0[ and

defl/[P +d5+/[27 J+ds.

A<

() o )1 [l o
L s+ [oods) (1 [ pe)lids) >
(5t [l (o [

>1—§+§/:[<>]+ds+L[<>1+ds

/ [p(s) ds+/n[p _ds <1+ %

X/a Ip(s)]- ds+/[<>1_ds<2+2¢;
3 ) ds+/[p 21

T1 PN A
S _dS 1 /\ ’
/m [p(s)]-ds < L [p(s))—ds + [ [p(s)]—ds — 1

then the problem (0.1), (0.2) has a unique solution.
Theorem 1.7. Let A € [1,4+00[, the condition (1.19) be fulfilled, and let

either
3 [ borass [ :[p(s)]ds

T1 b
_ <§/a [p(s)]+ds + /7'1 [p(s)]+ds> (1-T)<1- %

If

>/|>—‘

and either

or

~4,

>/|'—‘
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or

T1 b
<§ [ bass [ [p(s)]ds> (1-1)-

5 [ s | :[p<s>]+ds > (1-5) 0=,

where T is defined by (1.22). Then the problem (0.1), (0.2) has a unique
solution.

Theorem 1.8. Let A € |1, +00| and let there exist v € C([a, b];]0, +00])
such that

—'(t) = [p()] -~ (r(t)) + [pt)]+  for t € [a,b],
v(a) < My(b),
and either
v(a) = v(70) + A(y(11) = (b)) <1+,
(0@ = 1(m)) +7(r) = 1) <3+ 5

V(10) = (1) <1+ Y(a) = (7o) + A(y(11) = (b)) =1~

Then the problem (0.1), (0.2) has a unique solution.

Remark 1.7. According to Remarks 1.1-1.6 , Theorems 1.5-1.8 are non-
improvable in an appropriate sense.

1.2. Proofs. According to Theorem 0.1, to prove Theorems 1.1-1.4 it is
sufficient to show that the homogeneous problem (0.1p), (0.29) has only the
trivial solution. First introduce the following notation

70 T1 b
A= [ Cpds, A= [ polds, A= [ Ip(s))ds
“ o o (1.31)

Bi= [ pte)-ds, B /:[ms)]ds, B, = /:Lms)]ds.

Proof of Theorem 1.1. Assume that the problem (0.1p), (0.2¢) has a non-
trivial solution u.

First suppose that u does not change its sign in [79, 71]. Without loss of
generality we can assume that

u(t) >0 for tE€ [r,m) (1.32)
Put
M = max{u(t) : t € [0, 7]}, m =min{u(t) : t € [ro, ]}, (1.33)
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and choose tyr, ty, € [10,71] such that
u(ty) = M, u(tm) =m. (1.34)
Furthermore, let
oo = min{tps, tm }, aq = max{tar, tm}, (1.35)

T1

Ao = [l A= [ pelads, Am= [ (o)

T[;g agtl ;‘1 (136)
Bor= [ [p(s)l-ds, Baa= [ [p(s)]-ds, Bas= [ [p(s)]-ds.
To [e70] [e5%
It is clear that
m >0, M >0, (1.37)

since if M = 0, then, in view of (0.1¢), (1.32), and (1.33), we obtain u(m) =
0 and u/(t) = 0 for t € [a, ], i.e., u = 0. Obviously, either

tar < tom (1.38)
or
tar > tm. (1.39)

First suppose that (1.38) holds. The integrations of (0.1g) from a to
tar, from tps to tp,, from t,, to 71, and from 7 to b, on account of (1.31),
(1.33)—(1.36), and the assumption A € [0, 1], result in

M—u(@)= [ p)lutr(s)ds — [ [p()]-u(r(s))ds <
S M(A1 +A21) —m(31 +Bgl), (140)
m =3 = [ poleutr(e)ds = [ ple))ur(s))as <
S MAQQ — mBQQ, (141)

Autn) = m) < u(m) = m = [ o)) sulr(9)ds-
— [ - ur(s)ds < Motz — s (1.42)

b b
u(b) — ufm) = / [p()]u(r(s))ds — / Ip(s)]—u(r(s))ds <
< MAs; —mBs. (1.43)

Multiplying both sides of (1.43) by A, summing with (1.40) and (1.42), and
taking into account (0.2¢) and the assumption A € [0, 1], we get

M — dm S M(A1 +A21 +A23 +>\A3) 7m(B1 +Bgl +B23 +>\B3).
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Hence, by virtue of (1.1), (1.2), (1.31), (1.36), and (1.37), the last inequality
implies
0< M(1— Ay — Ay — Ags — Ms) <
<m(X— By — By — Bys — AB3). (1.44)
On the other hand, by (1.36) and (1.37), (1.41) results in
0 <m(1+ Ba) < M(1+4 Ag). (1.45)
Thus, it follows from (1.44) and (1.45) that
(1— A1 — Asy — Aog — AA3) (1 + Ba) <
< (A= By — Bay — Baz — AB3) (1 + As2). (1.46)

Obviously, on account of (1.1), (1.31), (1.36), and the assumption X € [0, 1],
we find

(1 — Ay — Apy — Agz — Mas) (1 + Bag) =
= (1— A1 — Ay — MA3) (1 + Bs) — (1 — Ay — Ay — MAj3) (Boy + Bas)+
+Ag (14 Ba) > (1= A)(1+ Ba) — (Ba1 + Bag) + Az

and

(A= By — By — Bag — AB3) (1 + Ag) =
= A+ Mg — (B1 + AB3) (1 + Agz) — (Ba1 + Bas) (1 + A) <
<X =By — ABs + Agy — (Ba1 + Bas).
By virtue of the last two inequalities, (1.46) yields
(1= A)(1+ B2) <A~ B — B3,

which, in view of (1.31), contradicts (1.4).

Now suppose that (1.39) is fulfilled. The integrations of (0.1g) from a to
tm, from t,,, to tar, and from ¢ps to b, on account of (1.31) and (1.33)—(1.36),
result in

mfumr:/m@@»wvwnﬁg— " [p(s)]_u(r(s))ds <

S M(A1 +A21) —m(31 +Bgl), (147)
M+m=[Mwmww@m—[Mwmmwmws

’ S MA22 - mBQQ; (148)

b b
M@*M:lBMMMdWMf[bm»MdWMS
< M(A23 + Ag) — m(B23 + B3). (1.49)
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Multiplying both sides of (1.49) by A, summing with (1.47), and taking into
account (0.2¢) and the assumption A € [0, 1], we get

m—AM < M(A1 + As1+ANAssz+ )\Ag) — m(31 + Bo1+ABos+ )\Bg). (1.50)

Hence, by virtue of (1.1), (1.2), (1.31), (1.36), and (1.37), it follows from
(1.48) and (1.50) that

0 < M(1— Ay) <m(l— Ba),
0 <m(1+4 By + Bai 4+ ABas + AB3) < M (A + Ay + Ao1 + Mo + AA3).
Thus,
(1+ By + Bay + ABag + AB3) (1 — Ag;) <
< (A + Ap+ Agy + Mas + AAs) (1 — Ba). (1.51)

Obviously, in view of (1.1), (1.2), (1.31), (1.36), and the assumption A €
[0, 1], we obtain

(14 By + Ba1 + ABag + AB3) (1 — Agp) =1 — Ago+
+(B1 + Ba1 + AB22 + ABag + ABs) (1 — Agz) — ABa2 (1 — Ag) >
>1— Ay + (B1 4+ ABy + AB3) (1 — Ay) — ABa»
and
(A4 A1 + Ao1 4+ Aoz + AA3) (1 — By) =
= A= ABay + (A1 + Az1 + Aas 4+ M3) (1 — Ba) <
<A = ABago + Ay + Aoy + Aga + Aoz + AA3 — Agp <
<A—ABgys + A — Ags.
By virtue of the last two inequalities, (1.51) implies
(Br+AB2+AB3) (1 —Az) < A—1+A,
which, in view of (1.31), contradicts (1.3).
Now suppose that u changes its sign in [rg, 71]. Put
mo = —min{u(t) : t € [70, 7]}, My = max{u(t) : t € [r0, 1]} (1.52)
and choose ag, a; € [19,71] such that
u(ag) = —mo, u(ag) = M. (1.53)

It is clear that
My >0, mo > 0, (1.54)
and without loss of generality we can assume that ag < «;. Furthermore,
define numbers As;, Bo; (i = 1,2,3) by (1.36) and put
def 1-A
= f A— By — AB: 1.
g(x) x—f—Bl—f—)\Bg—)\er or x> 1 3, (1.55)

where A is given by (1.1).
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The integrations of (0.1p) from a to ag, from ag to ay, and from a3 to
b, in view of (1.31), (1.36), (1.52), and (1.53), result in

o)+ mo = [ p())-utr(sDds — [ o) sutr(s)ds <
< MO (Bl + Bgl) + mo Al + Agl) (156)
Moerof/ [p(s)]+u(r dsf/ [p(s) 7(s))ds <
< MoAazz + moBas, (1.57)
b b
Mo — u(b) :/ [p(s)]-u(7(s))ds —/ [p(s)]+u(r(s))ds <
< Mo (Bas + Bs) + mo(Aas + As). (1.58)

Multiplying both sides of (1.58) by A, summing with (1.56), and taking into
account (0.29), (1.54), and the assumption A € [0, 1], we get

AMo+mg < Mo(B1+Ba1+ Baz+ABs) +mg (A1 + Az + A2z +AA3). (1.59)
Due to (1.1), (1.2), (1.31), and (1.36), we have
Ar + Aoy + Ags + NA35 < 1, Az < 1.
Thus, it follows from (1.54), (1.57), and (1.59) that
Bos > 1,  Bi+ Boy + Bog + ABs > A, (1.60)
and
Bag > 1+ %2(1 — As), (1.61)

Mo 1—A; — Ay1 — Aoz — NA3
B1+B21 + Bog + AB3 — X\

According to (1.60) and the fact that
(1—Ag2) (1= Ay —Agy —Ags—AAg) > 1— A1 — Ay — Ao — Aoz —AA3z = 1 - A,

(1.62)

from (1.61) and (1.62) we get
1-A
Bog > 1+ . 1.63
2= Bi+ Boi + Bz + ABs — A (1.63)

First suppose that (1.5) and (1.6) are satisfied. By virtue of (1.60), from
(1.63) we have

1— A< (Bay —1)(B1 4 Ba1 + Bag + ABs — \) <

1 1
< Z(BH— Bs1+ Baa+ Bas+ ABs — 1 —)\)22 1(31 + By +ABs —1 —)\)2,

which, in view of (1.2), (1.31), (1.36), and (1.60), contradicts (1.6).
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Now suppose that (1.7) and (1.8) are fulfilled. It is not difficult to verify
that, on account of (1.7) and (1.31), the function g defined by (1.55) is
nondecreasing in [0, +-o0o[. Therefore, from (1.63) we obtain

1-A
Bo1 + Bog + Bas > 1+ + By + Bag =
21 22 23 2 Byt Bor + Bos + B3 — A 21 23
1-A
=1 B Bos) >1 0)=1+—=——"7"-+——
+g( 21 + 23)_ + g(0) +Bl+)\B3—)\’
which, in view of (1.31) and (1.36), contradicts (1.8). O

Proof of Theorem 1.2. Assume that the problem (0.1¢), (0.2¢) has a non-
trivial solution wu.

First suppose that u does not change its sign in [rg,71]. Without loss
of generality we can assume that (1.32) is fulfilled. Define the numbers
M and m by (1.33) and choose tps,t,, € [r0,71] such that (1.34) holds.
Furthermore, define the numbers ag, a1 and Ag;, Bo; (i = 1,2,3) by (1.35)
and (1.36), respectively. It is clear that (1.37) is satisfied, since if M = 0,
then, in view of (0.1¢), (1.32), and (1.33), we obtain u(79) = 0 and u/(t) =0
for t € [a,b], i.e., u = 0. It is also evident that either (1.38) or (1.39) is
fulfilled.

First suppose that (1.38) holds. The integrations of (0.1¢) from ¢as to
tm, from a to 79, and from 7y to b, in view of (1.31)—(1.34), result in

M —m= [ ip(e)]ulr(s))ds — [ p(s) u(rie))ds < MBy, (164
o) =) = [ o)-utr(s)ds — [l sutr(s)ds <
< MB; —mAy, (1.65)
b b
u(ry) — u(b) = / [p($)] —u(r(s))ds — / [p($)]+ ulr(s))ds <
< M(BQ + B3) — m(AQ + Ag) (1.66)

Multiplying both sides of (1.66) by A, summing with (1.65), and taking into
account (0.29), (1.33), (1.37), and the assumption A € ]0, 1], we get

M()\ — 1) S U(To)()\ — 1) § M(Bl + )\BQ + )\Bg) — m(A1 + )\Ag + )\Ag),
ie.,
Ogm(Al—l—)\AQ-i-)\Az;) SM(l—)\+Bl+)\BQ+)\B3) (167)

On the other hand, due to (1.11), (1.12), (1.31), (1.37), and the assump-
tion A € ]0,1], (1.64) yields

0<M(1-By) <m. (1.68)
Thus, it follows from (1.67) and (1.68) that
(A1 + Mz + MA3) (1 — B2) <1— X+ By + AB; + ABs,
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which, on account of (1.31), contradicts (1.2).

Now suppose that (1.39) is fulfilled. The integrations of (0.1p) from a to
tm, from t,,, to tps, and from ¢y to b, on account of (1.31) and (1.33)—(1.36),
yield

M@fm:/w@@LMdm@f/w@@hwdwﬁé

S M<B1+B21) 7771(141 +A21), (169)
m—M=[MwmAv@m—[Mwﬂwwmws

" S MBQQ — mAQZ (170)
M—MM=[U@WM#W%—ABMMMNW%S

< M(B23 + B3) — m(Agg + A3). (1.71)

Multiplying both sides of (1.71) by A, summing with (1.69), and taking into
account (0.2¢) and the assumption A € ]0, 1], we get

AM —m § M(Bl + Bgl + /\B23 + >\B3) - m(A1 + A21 + )\A23 + /\A3)

Hence, by virtue of (1.11), (1.12), (1.31), (1.36), (1.37), and the assumption
A €0, 1], the last inequality results in

0 < M(A—By—Bay—ABas—ABs) < m(1—Ay— Ay — Mgz — MAs). (1.72)
On the other hand, due to (1.36) and (1.37), (1.70) implies
0<m(1+ Agp) < M(1+ Ba). (1.73)
Thus, it follows from (1.72) and (1.73) that
(A= B1 — Ba1 — ABa3 — AB3) (1 + Ag) <
< (1= Ay — Aoy — Moz — AA3) (1 4 Baa). (1.74)
Obviously, on account of (1.11), (1.31), (1.36), and the assumption A € ]0, 1],
we obtain
(A= By — Ba1 — ABag — AB3) (1 + Agp) =
= (A= By — Ba1 — Bay — ABys — AB3) (1 + Az) + Baa (1 + A3)—
—(XA = B1 — By1 — ABa3z — ABs) (A21 + Agz) >
> (A= B)(1+ Ag) 4 Baa — AM(Ag + Azs)
and
(1= Ay — Aoy — AMag — As) (1+ Byy) =
=1—A; — M3 — (A1 + Maz) + (1 — Ay — Az1 — Mag — AA3)Bay <
<1—A; — M3 — M(Ag + Azs) + Boa.
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By virtue of the last two inequalities, (1.74) yields
(A= B)(1+42) <1—A; — A,
which, in view of (1.31), contradicts (1.13).

Now suppose that u changes its sign in [rg,71]. Define the numbers mq
and My by (1.52) and choose ag, a1 € [0, 71] such that (1.53) holds. It is
clear that (1.54) is satisfied and without loss of generality we can assume
that ap < 1. Moreover, define the numbers As;, By, (i = 1,2,3) by (1.36)
and put

A—B

def
= fi 1-A4;—-)A L.
g(x) x+A1+)\A3—1+x or x> 1 3, (1.75)

where B is given by (1.11).

In a similar manner as in the second part of the proof of Theorem 1.1,
it can be shown that the inequalities (1.57) and (1.59) hold. Due to (1.11),
(1.12), (1.31), (1.36), and the assumption A € ]0, 1], we have

Bi1 4 Bo1 + Bag + AB3 < A, Bos < 1.
Thus, by virtue of (1.54), it follows from (1.57) and (1.59) that

Ago > 1, Ay + Aoy + Ags + NA3 > 1, (1.76)
and
mo
> —(1-B 1.
A22_1+M0( 22) (1.77)

mo A — B1 — By — Bz — AB3
Mo = Ay + Aoy + Agg + MA3 — 17

According to (1.76), the assumption A € ]0,1], and the fact that

(1.78)

(1—Bas) (A=B1—Ba1—Ba3—AB3) > A—By—Ba1—ABas—Bys—AB3 > A\—B,
from (1.77) and (1.78) we get

A—B
Ai+ Agp + Agg + XNA5 — 17

First suppose that (1.15) and (1.16) are satisfied. By virtue of (1.76),
from (1.79) we have

Ago > 1+ (1.79)

A= B < (Agp—1) (A1 + A1 + Az + A3 — 1) <

1
< (AU Ay o+ sy Ag + M = 2)" = J(A1 4+ Az + 75 - 2)°,

=

which, in view of (1.12), (1.31), (1.36), and (1.76), contradicts (1.16).
Now suppose that (1.17) and (1.18) are fulfilled. It is not difficult to
verify that, on account of (1.17) and (1.31), the function g defined by (1.75)
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is nondecreasing in [0, 4+o00[. Therefore, from (1.79) we obtain

A—B
Aoy + Ago + Asz > 1+ + Ay + Ay =
21 22 23 2> A+ Ag + Ags + M5 — 1 21 23
A—B
=1 A A >1 0O)=1+——7———
+g( 21 + 23)_ +9(0) +A1+)\A3717

which, in view of (1.31) and (1.36), contradicts (1.18). O

Proof of Theorem 1.3. Assume that the problem (0.1p), (0.2¢) has a non-
trivial solution wu.

First suppose that u has a zero in [r9, 71]. Define the numbers mg and
My by (1.52) and choose ag, aq € [0, 71] such that (1.53) holds. Obviously,

mg > 0, My > 0, mo + My >0 (1.80)

since, if mg = 0 and My = 0, then, in view of (0.1p) and (1.52), we obtain
u(mo) = 0 and «/(t) = 0 for t € [a,b], i.e,, u = 0. It is also evident that
without loss of generality we can assume that ag < ;.

The integration of (0.1p) from g to aq, on account of (1.52), (1.53), and
(1.80), yields

M+ mo = [ lpo)leatonds - [ po)-u(r(o)ds <

<y [ o)l +mo [ pl)-ds, (1.81)

0 To

which, by virtue of (1.19) and (1.80), results in My + mg < My + myo, a
contradiction.

Now suppose that u has no zero in [y, 71]. Without loss of generality we
can assume that u(t) > 0 for t € [7g,71]. Define the numbers M and m by
(1.33) and choose tps, tm € [70, 1] such that (1.34) holds. Furthermore, let

t b
fil) / [p(5)] + s + A / [p(s)]yds for t € [a,b],
° ¢ (1.82)

t b
£ % / Ip(s)]_ds + A /t p(s)]_ds for tcab]

It is obvious that
M >0, m > 0, (1.83)
and either (1.38) or (1.39) is satisfied.

If (1.38) holds, then the integration of (0.1g) from ¢ps to t,,, on account
of (1.33), (1.34), and (1.83), results in

M—m= / " p(s)]u(r(s))ds — / " p(s)] u(r(s))ds < M / " [p(s)) - ds.

tm
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If (1.39) holds, then the integration of (0.1p) from ¢, to tas, in view of
(1.33), (1.34), and (1.83), results in

tar

Mom= [ p)utr(s)ds — [ ps)]ulr(s)ds < M /ﬁmsmds.

Therefore, due to (1.19) and (1.83), in both cases (1.38) and (1.39) we have
0<M(1—-T)<m, (1.84)

where T is defined by (1.22).
First suppose that (1.20) holds with T" given by (1.22). The integrations
of (0.1p) from a to tp;r and from ¢y to b, on account of (1.33) and (1.34),

imply

/ [p(s)] 4 u(r(s))ds — / [p(s)] _u(r(s))ds <

<M / " p(s)]eds — m / " p(s)]_ds, (1.85)
M= / [p(8)] 1 u(r(s))ds — / [p(s)]_u(r(s))ds <
<M t [p(s)]+ds —m t [p(s)]—ds. (1.86)

Multiplying both sides of (1.86) by A, summing with (1.85), and taking into
account (0.29), (1.82), and the assumption A € [0, 1], we get

b

M- <M ( / " ()] ds + A [p<s>1+ds> -

tar b
—-m (/ [p(s)]—ds + )\/t [p(s)]_ds> =Mfi(tam) —mf_(ta). (1.87)

It is easy to verify that, in view of the assumption A € [0, 1], the functions
f+ and f_ defined by (1.82) are nondecreasing in [a,b] and thus, due to
(1.31) and (1.82), it follows from (1.87) that

M1 =X) < M fi(tar) =mf-(tar) < Mfi(m) —mf-(70) =
= M(A1 + AQ + /\A3) - m(B1 + /\B2 + /\B3) (188)
By virtue of (1.84), (1.88) yields
M(1 =) < M(Ay + Ay + AA3) — M (By + ABy 4+ ABs) (1 - T),

which, in view of (1.31) and (1.83), contradicts (1.20).
Now suppose that (1.21) holds with T given by (1.22). The integrations
of (0.1p) from a to ¢, and from t,, to b, on account of (1.33) and (1.34),
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imply

m—u(a)= [ [p)]culr(s)ds — [ [p(s)]_u(r(s))ds >

>m/m +ds—M/ (1.89)

= / ())ds — / [p(s)]u(r(s))ds >

> m/ +ds—M/ (1.90)

Multiplying both sides of (1.90) by A, summing with (1.89), and taking into
account (0.2¢), (1.82), and the assumption A € [0, 1], we obtain

tm b
m(l—X)=m </ [p(s)]+ds + /\/t [p(S)]+d5> -

m

tm b
—M(/ plo))-ds+ A [p(S)]—dS>=mf+(tm)—Mf—(tm)- (191)

As above, in view of the assumption A € [0, 1], the functions f; and f_
defined by (1.82) are nondecreasing in [a,b] and thus, due to (1.31) and
(1.82), it follows from (1.91) that

m(l =) Z2mfi(tm) = Mf_(tm) = mfi(r0) = Mf (1) =

By virtue of (1.19), (1.22), and (1.84), (1.92) implies
m(l — )\)(1 — T) 2 m(A1 + )\Ag + )\A3) (1 — T) — m(31 + B2 + )\B3),
which, in view of (1.31) and (1.83), contradicts (1.21). O

Proof of Theorem 1.4. Assume that the problem (0.1¢), (0.2¢) has a non-
trivial solution wu.

According to (1.23), (1.24), and Theorem 1.1 in [7], u changes its sign in
[T0, 71]. Define the numbers mg and My by (1.52) and choose ag, a1 € [70, 71]
such that (1.53) holds. Obviously, (1.54) is satisfied and without loss of
generality we can assume that oy < ag. From (0.1p), (0.29), (1.23), and
(1.24), due to (1.52) and (1.54), we obtain

(Mov( )+ (t))'
> [p(t)]+ (Moy(7(t)) + u(r(1))) + [p(£)]- (Mo — u(r(t))) = (1.93)
> [p(®)]+ (Mov( (t)) +u(r(t ))) f01“ t € a,0],
Moy(a) + u(a) — A(Moy(b) + u(b)) > 0,
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and
(moy(t) — u(t))" >
> [p(t)]+ (moy(1(t)) — u(r(1))) + [p(t)]- (mo +u(r(t))) = (1.94)
> [p(t)]+ (moy(1(t)) —u(r(t)) for t€[a,b],
moy(a) — u(a) — )\(mofy(b) — u(b)) > 0.

Hence, according to (1.23), (1.24), Theorem 1.1 in [7], and Remark 0.1 in [7],
we get

Moy(t) + u(t) >0, moy(t) —u(t) >0 for ¢€la,b].
By virtue of the last inequalities, it follows from (1.93) and (1.94) that
(Moy(t) +u(®) >0, (moy(t) —u(t)) >0 for telab]. (1.95)

The integration of the first inequality in (1.95) from 1 to g, in view of
(1.53) and (1.54), yields

Movy(ao) —mo — Moy(ar) — My > 0,

ie.,
mo

My
On the other hand, the integrations of the second inequality in (1.95)
from a to a7 and from «g to b, on account of (1.53), imply

moy(a1) — Mo — moy(a) + u(a) > 0, (1.97)
moy(b) — u(b) — moy(ag) —mg > 0. (1.98)
Multiplying both sides of (1.98) by A, summing with (1.97), and taking into
account (0.29), (1.54), and the assumption A € [0, 1], we get
M,
v(a1) = y(a) + A(7(b) —v(ao)) Z>\+m—§- (1.99)

First suppose that (1.25) and (1.26) are fulfilled. Summing (1.96) and
(1.99) and taking into account (1.54), we obtain

V(o) = v(on) 2 1+ (1.96)

v(a0) = v(a) + A(y(b) = (o)) = 1+ A+ Moy % >34+ X (1.100)
mo 0

On the other hand, by virtue of the fact that the function  is nondecreasing
in [a, b] and the assumption X € [0,1], we get

AY(0) + (1 = A)y(71) = v(a) = XMy(b) + (1 = A)y(ao) —~(a),
which, together with (1.100), contradicts (1.26).
Now suppose that (1.27) and (1.28) are satisfied. According to (1.27),

(1.54), and the fact that the function 7 is nondecreasing in [a, b], it follows
from (1.99) that

m 1
ML

Mo =~ ~(ea) —y(a) + A(v(b) — (o)) — A
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and thus, (1.96) implies
1
Y(aa) = v(a) + A(v(b) = ¥(a0)) — A

V(o) = v(en) =2 1+ (1.101)

Let

of 1
g(x) def — +z for x>\ (1.102)

By virtue of (1.101), (1.102), the assumption A € [0,1], and the fact that
the function v is nondecreasing in [a, b], we get

V(1) =7(70) =

=7(ao) —v(a1) + (1) — v(ao) + v(a1) — (7o) >
1
= e =@ A0 — @) A
+)\(’Y(7'1)—7( )) (o) —v(m0) =
=1+g(( 1) — (@) + A(v(b) — (@) +
—(

+y(a) = v(10) + A(v(11) — 7(b)). (1.103)

It is easy to verify that the function g is nondecreasing in [1 + A, +oo[ and
thus, according to (1.27) and the fact that the function v is nondecreasing
in [a,b], we find

9(v(@1) =7(a) + A(v(0) = v(@0))) = g(v(70) = () + A((D) = 7(1)))-
Therefore, (1.103) yields

Y(m1) = (70) = 1+ g(v(70) — (@) + A(v(b) — (7)) )+

+7(a) = 7(10) + A(y(11) = (b)) =
1

which contradicts (1.28). O

2. ProBLEM (0.1), (0.3)
2.1. Main Results.

Theorem 2.1. Let A € Ry, the condition (1.19) be fulfilled, and let
either
T1 b
[ eds 1 [ po)-ds-
a To

T0 b
- (/ [p(s)]_ds + /\/ [p(s)]+ds> (1-T) <1+A (2.1)
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or

0 b
( | s [ [p(s)]ds> (1-7)-

T1 b
f/ [p(s)]—ds — /\/ [p(s)]+ds > (14+X) (1 -1T), (2.2)

where T is defined by (1.22). Then the problem (0.1), (0.3) has a unique
solution.

Remark 2.1. Theorem 2.1 is nonimprovable in the sense that the strict
inequalities (2.1) and (2.2) cannot be replaced by the nonstrict ones (see
Examples 3.11 and 3.12).

Note also that if the segment |7, 71] degenerates to a point ¢ € [a, b], i.e.,
T(t) = c for t € [a,b], then T' = 0 and the inequalities (2.1) and (2.2) can

be rewritten as
c b
/ p(s)ds — )\/ p(s)ds A1+ X.

On the other hand, the last relation is sufficient and necessary for the unique
solvability of the problem (0.1), (0.3) with 7(¢) = ¢ for t € [a, b].

The following theorem can be understood as a supplement of the previous
one for the case T' > 1, where T is given by (1.22).

Theorem 2.2. Let A € [0,1],

Dd“/ [p(s +@+A/U¢ (2.3)
and let one of the following items be fulfilled:
a)
/ )] pds>1, (2.4)

/[p +ds+>\/[p _ds+
(/ [p(s) ds+/\/1[p()]+ds></ [p(s +dsl)<1+>\ (2.5)

/HW@L@21, (2.6)

0

D>1-)\%, (2.7)

[ wensds e [ f[p<s>]ds+
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n ( | wen-asa [ f[p<s>1+ds> (/ lple))-ds - ) <1 @

c) the condition (2.6) holds,
D<1-)\, (2.9)

and either

/T0 [p(s)]—ds + A b[p(s)]+ds <-A+v1-D, (2.10)

/Tl[p(s)]der/\/b[p(s)]ers <l-XA+2vV1-D (2.11)

or

T0 b
/ [p(s)]_ds + A / p(s)]sds > A+ VI—D (2.12)

and the condition (2.8) holds.
Then the problem (0.1), (0.3) has a unique solution.

Remark 2.2. Theorem 2.2 is nonimprovable in the sense that neither of the
strict inequalities (2.5), (2.8), and (2.11) can be replaced by the nonstrict
one (see Examples 3.13-3.16).

Note also that if 79 = @ and 71 = b, then from Theorems 2.1 and 2.2 we
obtain Corollary 1.1 in [6].

Example 2.1. On the segment [0, 1] consider the boundary value problem

u'(t) =k (|2t2_ i i) v (%) ), (2.13)

u(0) + Au(l) = ¢,

where A € [0,1], k € R, ¢ € L([a,b]; R), and ¢ € R.
It is not difficult to verify that 7o = i and 7 = %. Obviously, if £ < —16,
then the condition (2.4) holds. If

8(14+A) — V[BL+N]2+512(1+\) < k<0,

then the condition (2.5) is fulfilled. If k& > 16, then the condition (2.6) is
satisfied. If k > 32(1 — A2), then the condition (2.7) holds. If

1 1 2 1
OS,K_MH/[M} Foiz it

A A

then the condition (2.8) is fulfilled. If 0 < k < 32(1—\?), then the condition
(2.9) is satisfied. If

16(1 + 2)2) 1+2)21°  1-x2
0§k<T+16\/|:T +4T,




then the condition (2.10) holds. If
R+NA-N -2 o TR+ -2 34N
(24 N)2 (2+X)2 (2+A)27
then the condition (2.11) is satisfied. If
16(1 + 2)\° 1+2)2]% 12
p> o 1002X) ; )+16\/[—+ ] Yl
then the condition (2.12) is fulfilled.

In particular if k € | —17.4, —16[U[16,22.21[U[23.38,23.81[ and A = 0.3,
then, according to Theorem 2.2, the problem (2.13) has a unique solution.

0<k<32

Remark 2.3. Let X € [0,1]. Denote by H the set of 6—tuples (z;)¢_; € RS
satisfying one of the following items:

)

To <1, 5 <1,
and either
1+ Ta+ M5 +x6) — (a+Aa3)(1—-T) <1+ A
or
(x1+Ax6)(1=T) —xg —a5 — Maz+23) > 1+ N)(1-T),

where T' = max{x2, z5};

b)
x2 21,
1+ a2+ Mas +26) + (x4 + Azg) (22 — 1) < 1+ A;
c)
x5 > 1,
:clJr:cng/\:cGzlf)\Q,
1+ a2+ Mas +26) + (x4 + Azg)(as — 1) < 1+ A;
d)
x5 > 1,
:c1+:cg+/\:cG<1—)\2,
and either
Z4+/\13<7)\+\/17$17127)\’1}6,
x4+x5+)\x3<1—)\+2\/1—x1—x2—)\x6
or

I4+)\I32—)\+\/1—$1—$2—)\$6,
1+ a2+ Mas + 26) + (x4 + Azg)(as — 1) <1+ A.
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Now, according to Theorems 2.1 and 2.2, if p € L([a, b]; R) is such that
the point

])[p(S)]+d8,]1[p(8)]+ds,/b[p(8)]+d87]0[p(8)]ds,]l[p(S)]ds,/b[p(S)]ds

belongs to the set H, then the problem (0.1), (0.3) has a unique solution.

On Fig. 2.1 one can see an intersection of the set H and the 3—dimen-
sional subspace {(0,,0,y,2,0): z,y,z € R} of the space RS, i.e., the set

G = {(z,y,2) ERi: (0,2,0,y,2,0) € H}.

<>
<>

'—g

S S S S S S P e
SO S E e
NI 8 e O 8 e O s e
S S T e o e e s e
e e e e e e e e e o e e
B e e e s e e
e e e e
s e e e
ﬁg‘ e

Fig. 2.1.

Remark 2.4. Let A € [1,+00] and let the functions p, 7, and ¢ be defined
by (1.29). Put u =1/X and ¢ = pe.

It is clear that if u is a solution of the problem (0.1), (0.3), then the
function v, defined by v(t) def u(a+b—1t) for t € [a,b], is a solution of the
problem

v'(t) = p(t)o(7 (1)) + (1),

v(a) + po(b) =¢, (2.14)
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and vice versa, if v is a solution of the problem (2.14), then the function

u, defined by u(t) def v(a+b—t) for t € [a,b], is a solution of the problem
(0.1), (0.3).

Therefore, Theorem 2.2 immediately implies the following assertion.

Theorem 2.3. Let A € [1,+o0],

B [Meas+ [ bt

and let one of the following items be fulfilled:

a)
[ s)-ds=1
To
and the condition (2.8) holds;

p(s))4ds>1, D>1-—
To

and the condition (2.5) holds;

[ weds=1, D<i-g

and either

%/aTo[p(s)]ds+/Tf[p(s)]+ds<%Jr\/l5,
%/aTO[p(s)]ds+/T:[p(s)]+ds<1%+2\/15

5/ " p(s))ds + / o)eds = 5 +/1- D

and the condition (2.5) holds.
Then the problem (0.1), (0.3) has a unique solution.

Remark 2.5. According to Remarks 2.2 and 2.4, Theorem 2.3 is nonim-
provable in an appropriate sense.

2.2. Proofs. According to Theorem 0.1, to prove Theorems 2.1 and 2.2 it
is sufficient to show that the homogeneous problem (0.1¢), (0.3¢) has only
the trivial solution. As above, define the numbers A4;, B; (i = 1,2,3) by
(1.31).

Proof of Theorem 2.1. Assume that the problem (0.1p), (0.3¢) has a non-
trivial solution wu.

First suppose that u has a zero in [rg,71]. Define the numbers mgy and
My by (1.52) and choose ag, aq € [0, 71] such that (1.53) holds. Obviously,
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(1.80) is satisfied since, if mg = 0 and My = 0, then, in view of (0.1p) and
(1.52), we obtain u(7g) =0 and w'(¢) =0 for t € [a,b], i.e., w = 0. It is also
evident that without loss of generality we can assume that oy < a;.

The integration of (0.1p) from g to ay, by virtue of (1.52), (1.53), and
(1.80), yields the inequality (1.81), which, on account of (1.19) and (1.80),
results in My + mg < My + mg, a contradiction.

Now suppose that u has no zero in |19, 71]. Without loss of generality
we can assume that u(t) > 0 for ¢ € [r9, 71]. Define the numbers M and m
by (1.33) and choose tas, ty € [70,71] such that (1.34) holds. It is obvious
that (1.83) is fulfilled and either (1.38) or (1.39) is satisfied. As in the
proof of Theorem 1.3, one can show that in both cases (1.38) and (1.39) the
inequality (1.84) holds, where T is defined by (1.22).

On the other hand, the integrations of (0.1¢) from a to tps, from ¢y to
b, from a to t,,, and from ¢,, to b, in view of (1.33) and (1.34), yield

tar

M —u(a) = [ [p(s)]4u(r(s))ds — M[?J(S)]—U(T(S))ds <

w [ blsio /a -

M — u(b) = / [p(s)]_u(r(s))ds — / ()] u(r(s))ds <

< M/ ds—m/ s)|4ds, (2.16)
/ ()]s ulr(ds — [ ()] u(r(s))ds >

tm tm
> m/ s)]+ds — M/ (2.17)

m—u(b) = / [p(s)]u(r(s))ds - /m[p< ) ulr(s))ds >
> m/ ds— M/ $)].4 ds. (2.18)

t b
10 d:efM/ [p(s)]ersf)\m/t [p(s))4ds for t€[a,b],

Put

. \ (2.19)
folt) % / [p(s)]_ds — AM /t p(s)_ds for t¢[a,b],

t b
éfm/ [p(s)]ersf)\M/ [p(s))4ds for t€[a,b],
“ t (2.20)

t b
t) d:efM/ [p(s)],dsf/\m/t [p(s)]_ds for t€[a,b].
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First suppose that (2.1) holds, where T is defined by (1.22). Multiplying
both sides of (2.16) by A, summing with (2.15), and taking into account
(0.30), (2.19), and the assumption A\ € Ry, we get

M1+ <M / U p()]ads — xm [ [p(s)] 4 ds—

tar b
- (m/ [p(s)]-ds — AM t [p(s)]—d8> = filtar) = fa(tnr). (2.2

It is easy to verify that the functions f; and fs defined by (2.19) are non-
decreasing in [a,b] and therefore, due to (1.31) and (2.19), it follows from
(2.21) that

M1+ A) < filtm) — foltm) < fr(m) = fa(mo) =
= M(A; + Ay + ABz 4+ ABs) — m(B1 + As). (2.22)
Thus, (1.84) and (2.22) imply
M(1+)) < M (A1 4+ Az +ABy + AB3) — M (B + M3) (1 -T),

which, in view of (1.31) and (1.83), contradicts (2.1).

Now suppose that (2.2) is satisfied, where T is defined by (1.22). Mul-
tiplying both sides of (2.18) by A, summing with (2.17), and taking into
account (0.3¢), (2.20), and the assumption A € R, we obtain

m(1+A) > m / " p($) o ds — AM / [p(s)) 1 ds—

. b
- (M/ [p(S)]—dS—Am/t [p(S)]—d8> = fa(tm) = fa(tm).  (2.23)

It is easy to verify that the functions f3 and f4 defined by (2.20) are non-
decreasing in [a, b] and thus, due to (1.31) and (2.20), it follows from (2.23)
that

m(L+A) 2 fs(tm) = fa(tm) = f3(10) = fa(m1) =
=m(A1 + ABs) — M (B1 + Bz + M3 + AA3). (2.24)
By virtue of (1.19) and (1.22), (1.84) and (2.24) yield
m(L+A)(1 —=T) >m(A; +ABs) (1 = T) — m(B1 + By + A3 + A3),
which, in view of (1.31) and (1.83), contradicts (2.2). O

Proof of Theorem 2.1. Assume that the problem (0.1¢), (0.3¢) has a non-
trivial solution wu.

First suppose that u changes its sign in |79, 71]. Define numbers mq and
My by (1.52) and choose g, a1 € [19,71] such that (1.53) holds. It is clear
that (1.54) is satisfied and without loss of generality we can assume that
ap < aj. Furthermore, define the numbers As;, Bo; (i = 1,2,3) by (1.36).
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The integrations of (0.1p) from a to ay, from ag to ay, from «; to b, and
from 7 to b, in view of (1.31), (1.36), (1.52), and (1.53), result in

—mg — u(a / [p(s)]+u(r dsf/ [p(s)]—u(r(s))ds <

< Mo(Ay + Az1) + mo(Bi + Bar), (2.25)
o)+ mo = [ pel)utrds [ o)l eutr(s)ds <
< My(B1 + Bgl) + mo (A1 + A21) (2.26)
Moerof/ [p(s)]+u(r ds*/ [p(s)]-u(r(s))ds <
< MyAss + moBas, (2.27)
Mv%@jﬁ%ﬂwﬂwﬁjﬁWﬂwWW%S
< Mo (Bas + Bs) + mg(Azs + As), (2.28)

b
u(b) = Mo < u(b) —u(n) = / [p(s)]+u(7(s))ds—

1

b
= [ b u(r(s))ds < Moda + moBa. (2.20)

Multiplying both sides of (2.28) by A, summing with (2.25), and taking into
account (0.3¢) and the assumption A € [0, 1], we get

AMy —mp <
< Mo (A1 + As1 + ABgs + AB3) +mo(B1 + Ba1 + Aas + AA3).  (2.30)
Analogously, (2.26) and (2.29) imply
mo — AMo < Mo(B1 + Ba1 + As) +mo (A1 + As1 + ABs).  (2.31)

First suppose that the assumption a) holds. In that case A # 0. Accord-
ing to (1.36), (2.4), and (2.5), we have B2z < 1. Consequently, in view of
(1.54), (2.27) yields

0 < mo(1— Baa) < Mo(Azz —1). (2.32)
Moreover, it follows from (2.5) that
Ags <1+ M. (233)

From (2.2) we get
Mo()\ — Ay — Ay — ABa3 — )\33) < mg (31 + Bo1 + Moz + AAs + 1)7
which, together with (2.32), implies
(A= Ay — Az1 — ABys — AB3) (1 — Ba) <
< (B1+ Ba1 + AMas + A3z + 1) (Age — 1). (2.34)
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Obviously,
(A — Ay — Ay — ABa3 — )\Bg) (1 - 322) >
> A — Ay — Ao — M(Ba2 + Bas + Bs). (2.35)

On the other hand, by virtue of (2.33) and the assumption X € )0, 1], we
obtain

(B1 4 Ba1 4+ Aas + M3 4 1) (A2 — 1) =
= (B1 + A3) (A — 1) + By (A2 — 1) + Mgz (A2 — 1)+
+A25 =1 < (B1+ A3) (A2 — 1) + ABa1 + Aoz + Agg — 1. (2.36)
Using (1.31), (1.36), (2.35), and (2.36), (2.34) results in
Ay + Ay + A(Ba + Bs) + (B1 + AM3) (A; — 1) > 1+ A,

which, in view of (1.31), contradicts (2.5).

Now suppose that the assumption b) holds. In that case A # 0. According
to (1.36), (2.6), and (2.8), we have Ay < 1. Consequently, on account of
(1.54), (2.27) implies

0< Mo(]. — A22) < my (B22 — ].) (237)

Moreover, it follows from (2.3), (2.6)—(2.8), and the assumption A € ]0, 1]
that
Boo <14+ A (238)

From (2.31) we obtain
mo(1— Ay — Aoy — AB3) < Mo(By + Bay + A3 + A), (2.39)
which, together with (2.37), yields
(1— Ay — Az — ABs) (1 — Agp) <
< (B1+4 Ba1 + M3 + \) (Ba2 — 1). (2.40)
Clearly,
(1— Ay — Ay — AB3) (1 — Ag) >
>1— Ay — Aoy — Agy — AB;. (2.41)

On the other hand, by virtue of (2.38) and the assumption A € ]0, 1], we
get

(Bi+ Ba1 + M3z + A) (B2 — 1) =
= (B1 +AA3) (B — 1) + Ba1 (B2 — 1) + ABy2a — A <
< (Bi4AA3)(By — 1) + A(Ba1 + Ba2) — A (2.42)
Using (1.31), (1.36), (2.41), and (2.42), (2.40) implies
A; 4+ As + A(By + B3) 4 (B1 + A3) (Ba — 1) > 1+ A,
which, in view of (1.31), contradicts (2.8).
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Finally suppose that the assumption ¢) holds. According to (1.31), (1.36),
(2.3), and (2.9), we have
Axp < 1, Ay + Ao +ABs < 1.
Thus, it follows from (1.54), (2.27), and (2.31) that
By > 1, Bi + Bo1 + A3+ A >0, (2.43)
and
(1— Ay — Ag1 — AB3) (1 — Agz) < (Bi+ Bay + A3+ A) (Baz — 1). (2.44)
According to (2.3), (2.43), and the fact that
(1— Ay — Ag1 — ABs) (1 — Ago) >1— Ay — Ayy — Aoy —AB3 > 1— D,
from (2.44) we get
1-D
B+ By + M3+ )\

First suppose that (2.10) and (2.11) are satisfied. By virtue of (2.43),
from (2.45) we obtain

1-D < (Bi+Bai+ A3+ \)(Bay — 1) <

By > 1+

(2.45)

1 1
< (Bit Boy 4 Boa + M — 14 0)" < 2(Br 4 Ba+ M5 — 14 0),

which, in view of (1.31), (2.9), and (2.43), contradicts (2.11).
Now suppose that (2.8) and (2.12) are fulfilled. Let
def 1-D
Le f > CB1— M — A,
9(z) ey - i W ! 3

where D is given by (2.3). It is not difficult to verify that, on account of
(1.31) and (2.12), the function g is nondecreasing in [0, +oo[. Therefore,
from (2.45) we obtain

1-D
Boy + Bao + Boz > 1+ + By =
21 22 23 2 Bi + Bor + M A 21
1-D
+g( 21)_ +¢(0) +B1+)\A3+)\’

which, in view of (1.31), (1.36), and (2.3), contradicts (2.8).

Now suppose that u does not change its sign in [7g, 71]. Without loss of
generality we can assume that (1.32) is satisfied. Define the numbers M
and m by (1.33) and choose tar,tm € [70, 71] such that (1.34) holds. It is
clear that (1.37) is satisfied since, if M = 0, then, in view of (0.1¢), (1.32),
and (1.33), we obtain u(79) = 0 and /() =0 for ¢ € [a,b], i.e., u = 0.

The integrations of (0.1p) from a to ¢y, from ¢y to b, from a to 79, and
from 7 to b, in view of (1.31)—(1.34), result in (2.15), (2.16),

—u(a) < u(r) —u(a) =
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70 7o

= [ [p@)]yulr(s)ds — [ [p(s)]l-u(r(s))ds < MAy,  (2.46)

a a

_ / Ip(s)]_u(r(s))ds — / p(s)su(r(s))ds < MBs.  (2.47)

m m
Moreover, from (2.15) and (2.16), in view of (1.31) and (1.37), we find
M —u(b) < M(Bs + Bs). (2.49)

Multiplying both sides of (2.47) by A, summing with (2.48), and taking into
account (0.3¢), (1.37), and the assumption A € [0, 1], we get

A+ Ay + B3 > 1. (2.50)
Analogously, (2.46) and (2.49) yield
A1+ ABg + A\B3 > A\ (2.51)

First suppose that the assumption a) holds. By virtue of (1.31), (2.4),
and (2.51), (2.5) results in

1+ A> A1+ Ay + A(Bz+ Bs) > 1+ A, (2.52)

a contradiction.
Now suppose that the assumption b) holds. With respect to (1.31), (2.6),
(2.50), and the assumption A € [0,1], (2.8) implies (2.52), a contradiction.
Finally suppose that the assumption c¢) holds. On account of (1.31) and
(2.3), (2.50) contradicts (2.9). O

3. COMMENTS AND EXAMPLES

In the examples below, the functions p € L([a,b]; R) and 7 € Mgy, are
constructed such that the homogeneous problem (0.1¢), (0.2¢), resp. (0.1p),
(0.3p), has a nontrivial solution. Then, according to the Fredholm property
(for more general case see, e.g., [1-3,10,12]) of the problem (0.1), (0.2), resp.
(0.1), (0.3), there exist ¢ € L([a,b]; R) and ¢ € R such that the problem
(0.1), (0.2), resp. (0.1), (0.3), has no solution.

Example 3.1. Let A € [0,1] and let z;,y; € R+ (i = 1,2, 3) be such that
T1+ 20+ Argz < 1 (3.1)

and

(y1+/\y2+)\y3)(17x2):/\—1+x1+x2+)\x3.
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Let, moreover, a =0, b =7,

-1 for te[0,1]
x1 for ¢el,2]
To for t¢e€[2,3]
p(t) =< —yo for te[3,4] , (3.2)
0 for te[4,5]
T3 for tel[5,6]
—ys3 for t¢e€[6,7]
and
2 for te0,1[U[3,4[U[6,7]
T(t) =143 for te€[1,3[U[5,6

Obviously, 79 = 2, 71 = 4, and

T0 T1 b
[ leds=on [ ipsads =oa, [ fpls))eds =z,

70 T1 b (33)
[ welds=u [ po)ds = [ ipls))-ds -
a T0 T1
On the other hand, the function
y1(l—a)(1—t)+1—21 — a9 for te]0,1]
x1(t—2)+1— a9 for tell,2]
x2(t—3)+1 for t¢e€2,3]
u(t) = Cya(1—22)(3 —1) +1 for te[3,4]
1—y2(1—$2) for te [4,5[
x3(t—5)+1—ya(l —x2) for tel5,6]
y3(1 —22)(7T—t) + 1+ 23 — (y2 + y3)(1 — 22) for te€l6,7]

is a nontrivial solution of the problem (0.1¢), (0.2¢).
This example shows that the strict inequality (1.3) in Theorem 1.1 cannot
be replaced by the nonstrict one.

Example 3.2. Let A € [0,1] and let ;,y; € Ry (i = 1,2,3) be such that
(3.1) holds and

(1 -2 — 22— Awg) (L4 92) = XA — y1 — Ays.
Let, moreover,a =0,b="7,p € L([a b]; R) be defined by (3.2), and
€ [4,5]
€[L,3]

2 for )
T(t) =<3 for U [5,6] .
4 for ¢te0,1[U[3,4[U [6,7]

Obviously, 7o = 2, 71 =4, and (3.3) is fulfilled.



On the other hand, the function

y1(1—1) + 14y — (w1 + 22)(1 + y2) for te[0,1]
21(14+y2)(t—2)+ 14+ y2 — x2(1 + y2) for ¢e€(l,2]
22(l4+y2)t—3)+ 14y for te2,3]
u(t) =qya(4—1t)+1 for te[3,4]
1 for ¢e€[4,5]
x3(1 +y2)(t —5)+1 for te[5,6]
ys(7T—t)+1—ys + a3(1 4+ y2) for tel6,7]

is a nontrivial solution of the problem (0.1¢), (0.2¢).
This example shows that the strict inequality (1.4) in Theorem 1.1 cannot
be replaced by the nonstrict one.

Example 3.3. Let A € [0,1] and let ;,y; € Ry (i = 1,2,3) be such that
(3.1) holds and

Y14+ Mz < A+ /1 — a1 — a9 — g,
Y+ y2 4+ Mz > 1+ A+2y1 — 2 — 29 — A3

Puta=+1—x; —29 — Azz3 and k = A +a — y1 — A\y3. Obviously, k > 0
and yo > 1+ a + k. Let, moreover, a =0, b = 10,

-1 for te0,1]
Z1 for te(1,2]
T2 for te[2,3]
—k for te[3,4]
-1 for te€[4,5
p(t) = .51 , (3.4)
—(y2—1—a—k) for te5,6]
- for tel6,7]
0 for ¢e7,8]
T3 for ¢e€[8,9[
—Ys3 for te9,10]
and
7 for te[0,1[U[3,4[U9,10]
4 f tell,3|Ul4,5/U[6,7[U (8,9
T(t) = or te[1,3[U14,5[V16, 7V 890 (3.5)
5 for te[5,6]
2 for te(7,8]

Obviously, 7o = 2, 71 = 7, and (3.3) is satisfied.
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On the other hand, the function

ayr(1—t)+ak+x1+x2—1 for te

0,1
x1(2—t)+ak+z2—1 for tel1,2]
z2(3 —t)+ak—1 for t¢e€2,3]
ak(4—1t)—1 for te[3,4]
u(t) = t—5 for te[4,5] (3.6)
0 for te[5,6]
at — 6) for tel6,7]
a for t¢e7,8]
z3(8 —t) + « for ¢e€8,9]
ayz(10 —t) + o — x5 — ays for te[9,10]
is a nontrivial solution of the problem (0.1¢), (0.2¢).
In the sequel, let A € [0,1] and z; =0 (i =1,2,3). Put
¢
~y(Et) =46 +/ [p(s)]-ds for t€ a,b], (3.7

where § > 25 (y1 + y2 + y3) and p € L([a,b]; R) is defined by (3.4). Obvi-
ously, v satisfies (1.23) with 7 € M given by (3.5), (1.24), and

Y(10) =v(a) = y1, (1) = v(70) = 2,  Y(b) —y(11) = ys. (3.8)

Thus, (1.25) is fulfilled and

A(y(0) = (1)) + (1) —v(a) =y1 +y2 + Ay > 3+ \.

On the other hand, as we have shown, the problem (0.1p), (0.29) has
a nontrivial solution u given by (3.6).

This example shows that the strict inequalities (1.6) in Theorem 1.1 and
(1.26) in Theorem 1.4 cannot be replaced by the nonstrict ones.

Example 3.4. Let A € [0,1] and let z;,y; € R+ (i = 1,2, 3) be such that
(3.1) holds and

Y1+ Ays > A+ /1 — a1 — 20 — Aag,
—x1—$2—)\$3

1
>14+
vz UL+ Ay — A
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Puta=1—27 — 22 — Azg and 8 = y1 + A\ys — A. Obviously, a > 0, 8 > 0,
and yo > 1+ % Let, moreover, a =0, b =9,

1 for te]0,1]
-1 for tel,2]
T2 for te2,3]
-1 for te[3,4]
p(t) =4 —(y2—1— %) for te[4,5] (3.9)
-3 for telb,06]
0 for tel6,7]
—1s3 for tel7,8]
T3 for t¢e€8,9]
and
3 for te€[0,1[U[2,4[U[5,6]U[8,9]
(t) = 6 for te[1,2[U]7,8 (3.10)
4 for te[4,5]
2 for te6,7]
Obviously, 7o = 2, 7 = 6, and (3 3) is satisfied.
On the other hand, the function
Br1(1 —t) +yra— (1 —x2)3  for t€][0,1]
ay1(2—1t) — (1 —x2)f for te[1,2]
Bx2(3—t)— 0 for ¢e€2,3]
Bt —4) for te[3,4]
u(t)y =40 for te€4,5] (3.11)
a(t —5) for ¢ e€[5,6]
o for te€16,7]
ays(7—1t) + for ¢e7,8]
Bx3(9 —t) + a(l — y3) — Bs for ¢€8,9]

is a nontrivial solution of the problem (0.1g), (0.2¢).

In the sequel, let A € [0,1] and z; = 0 (¢ = 1,2,3). Define the func-
tion v € C([a,b];]0,+00]) by (3.7), where § > 25(y1 + y2 + y3) and
p € L([a,b]; R) is given by (3.9). Obviously, v satisfies (1.23) with 7 € Mg
given by (3.10), (1.24), and (3.8). Thus, (1.27) is fulfilled and

o 1
V) =) =y2 21+ 2 =1+ :
g ¥(10) = v(a) + A((b) = ¥(11)) = A
On the other hand, as we have shown, the problem (0.1p), (0.29) has
a nontrivial solution u given by (3.11).
This example shows that the strict inequalities (1.8) in Theorem 1.1 and
(1.28) in Theorem 1.4 cannot be replaced by the nonstrict ones.
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Example 3.5. Let A € ]0,1] and let x;,y; € Ry (i = 1,2,3) be such that
Y1+ y2 +Ayz < A (3.12)

and
(A_yl — Y2 _)‘yS)(1+x2) =1—-2; — A\zs.
Let, moreover, a =0, b =7,

- for tel0,1]

x1 for te|l,2]

0 for t¢e€[2,3]

p(t) =q —y2  for tel[3,4], (3.13)

T2 for te[4,5]

x3 for te[5,6]

—ys3 for te6,7]

and
5 for ¢te0,1[U[3,4[U [6,7]
) ={4  for tel1,2[U[L0]
3 for te2,3]
Obviously, 7o = 3, 1 = 5, and (3.3) is fulfilled.
On the other hand, the function

y1(1+22)(1—t) +1— 21 +y2(1 + x2) for te]0,1]
21t —2) + 1+ yo(1 + x2) for ¢ell,2]
14+ y2(1 + 22) for te2,3]
u(t) = ya(l+m2)(4—t)+1 for ¢ e [3,4]
z2(t —5) + 1+ a2 for ¢e4,5]
x3(t —5) + 1422 for ¢e€5,6]
ys(L+22)(7T—t) + 14+ 20 + x5 — y3(1 + 22) for tel6,7]

is a nontrivial solution of the problem (0.1p), (0.2¢).
This example shows that the strict inequality (1.13) in Theorem 1.2 can-
not be replaced by the nonstrict one.

Example 3.6. Let A € ]0,1] and let z;,y; € R+ (i = 1,2, 3) be such that
(3.12) holds and

(14 Azg 4+ Awz) (1 —y2) =1 = A+ y1 + A(y2 + y3).
Let, moreover, a =0, b= "7, p € L([a,b]; R) be defined by (3.13), and

)
[U[3,4[U[6,7]
[U[4,6]

3 for [0,1
T(t) =<4 for te(l,2
5 for te2,3]

Obviously, 7o = 3, 71 = 5, and (3.3) is fulfilled.



On the other hand, the function

—_

ut) =< y23—-1t)+1

=

8

yl(l —t) +1 —1‘1(1 —yg)

o(1—y2)(t —4)+1 -y
3s(1—y2)(t—=5)+1—y2+ z2(1 — yo)
y3(7—=1)+1—y2 —yz+ (2 + 23)(1 — 32) for

for
for
for
for
for
for

is a nontrivial solution of the problem (0.1¢), (0.2¢).
This example shows that the strict inequality (1.2) in Theorem 1.2 cannot
be replaced by the nonstrict one.

Example 3.7. Let A € ]0,1] and let x;,y; € Ry (i = 1,2,3) be such that

(3.12) holds and

1+ Azs < 14+ V/A—y1 —y2 — M3,
$1+$2+)\$322+2\/)\—y1—y2—)\y3.

Puta=+vVA—y1—y2— Ay and k = 1+ a — 21 — Ax3. Obviously, k > 0
and 29 > 1+ o + k. Let, moreover, a = 0, b = 10,

and

T(t) =

OIS BN RN

x

—Y1

for
for
for

for

for te]
for te]
for te]
for te]|
for te]|
for te]
for te]
for te]|
for te]|
for te]|

Obviously, 7o = 2, 71 = 7, and (3.3) is satisfied.
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On the other hand, the function

ary(1—t)+y1 +y2+alk—1) for te[0,1]
y1(2—1t) +y2 +alk—1) for t¢e[1,2]
y2(3 —t) + a(k — 1) for te[2,3]
ak(4—t) — « for ¢ e [3,4]
u(t) = a(t —5) for te[4,5]
0 for t¢e[5,6]
t—6 for te[6,7]
1 for te[7,8]
ar3(8—t)+1 for te[8,9]
y3(10 —t) + 1 — y3 — axs for te9,10]

is a nontrivial solution of the problem (0.1¢), (0.2¢).
This example shows that the strict inequality (1.16) in Theorem 1.2 can-
not be replaced by the nonstrict one.

Example 3.8. Let A € ]0,1] and let x;,y; € Ry (i = 1,2,3) be such that
(3.12) holds and

x1+)\x321+\/)\—y1—y2—)\y37
A—Y1— Y2 — Ay3
1+ Az — 1
Put a=XA—y; —y2 — Ays and B = x1 + Axrg — 1. Obviously, a > 0, 8 > 0,
and zo > 1+%. Let, moreover, a =0, b =9,

T9 > 1+

x1 for te]0,1]
—y1 for ¢tell,2]
—Ya for te2,3]
3 for te[3,4]
p(t) = nglf% for te[4,5],
1 for ¢€5,6]
0 for ¢t€16,7]
—ys3 for ¢e 7,8
T3 for t¢e[8,9]
and
3 for te[0,1[U]8,9]
(t) = 6 for te[l,4[U[5,6[U[7,8]
4 for t¢e[4,5]
2 for t¢e6,7]

Obviously, 7o = 2, 71 = 6, and (3.3) is satisfied.
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On the other hand, the function

r1(1—1t)+ B(y1 +12) — for tel0,1]
ﬁy1(2—t)+ﬁy2—a for te (1,2
By2(3 —t) — for te[2,3]

alt —4) for te[3,4]

u(t) =40 for te€[4,5]
Bt —5) for te[5,6]

B for tel6,7]
Bys(T—1) + for te€ (7,8
ar3(9—t)+ (1 —y3) —axz  for te[8,9

is a nontrivial solution of the problem (0.1¢), (0.2¢).
This example shows that the strict inequality (1.18) in Theorem 1.2 can-
not be replaced by the nonstrict one.

Example 3.9. Let A € ]0,1] (for the case A = 0 see Example 3.11),
k €10,1[, and € > 0. Choose m > 0 such that

m < min oy 2Lk
- N1 - k) + ek
and put a = 0, b = 3, and

—aom for te€l0,1] 1 for te(0,1]
p(t) = B for te[1,2], 7(t)=1.2 for te1,2[,
A(lf/\kk)+sk for te[2,3] t* for te 2,3

2 if m=k
It is not difficult to verify that o =1, i, = 2, and

" m —-m b _
/ [p(s))+-ds :/ [p(s)]+ds = kT, / [p(s)]+ds = W7

70 1

[T =22 b[p(S)]_dSZ | we-as=o.

m 0 To

_{+—(%m> it m

Thus, the condition (1.19) holds, T' =

/[p +ds+A/[p ] ds—
</am[p( ds+,\/[p ) (1-T)=1-X+e.
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On the other hand, the function

A—(A=—m)t for te]0,1]
ut) =< (k—m)(t—1)+m for ¢ell,2]
1-k)(t—3)+1  for te[23

is a nontrivial solution of the problem (0.1¢), (0.2¢).
This example shows that the strict inequality (1.20) in Theorem 1.3 can-
not be replaced by the nonstrict one.

Example 3.10. Let A € [0,1], k > 1, and € € [0,1[. Choose M > &2
and put a =0, b =4, and

IVH;C;EM for tel0,1]
*MJ\Zk for te [1’2[ t for te [0, ].[
p(t) = T(t) =<1 for tell,3],
— k1 for te2,3]
s ’ 2 for te(3,4]
0 for te€[3,4]

where

2 if M=k
It is not difficult to verify that 79 =1, 71 = 2, and

N poeds = [ ptolleds =0,

0 70

/ p(s)]-ds = / p(s))-ds = 2L / f[p<s>1_ds 3

Thus, the condition (1.19) holds, T' = I\/_Ik’ and

T0 b
( [ sneds+n [ [p<s>]+ds> (1-T)-

T1 b
—/ [p(s)]_ds—)\/ p(s)]ds = (1 - \)(1-T) —e.

1

Mk :
o {2 - (M—k)(EM—A—EM) if M#k

On the other hand, the function

A+ (M=)t for te[0,1]
u(t) = (M—k)(2—-1t)+k for te[l,2]
(k—1)B-t)+1 for te[2,3]
1 for te[3,4]

is a nontrivial solution of the problem (0.1g), (0.2¢).
This example shows that the strict inequality (1.21) in Theorem 1.3 can-
not be replaced by the nonstrict one.
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Example 3.11. Let A € [0,+00[, k > 1, and € > 0. Choose m > 0 such

that
) k(k+ N
< 1, ————
m_mm{ , k:+)\+€k;}
and put a =0, b = 3, and
BA e for te0,1] t* for te]0,1]
plt) = { —Em for te[l,2[, rt)=<1 for tell,2[,
1-m for te[2,3] 2 for te23
where
(k+2) .
. (k—i—x\—&-ak m) if m#k .
1 if m=k

It is not difficult to verify that 7o = 1, 71 = 2, and

1 b —m T1
[eeds =22 wes [polads =0 [Mpo)ads =0,

T1 0

[Twer-as=o, | b[p(S)]—ds: /ﬁ[p@]_dsz kom

0 70

Thus, the condition (1.19) holds, T' =

/[p +ds+A/[p _ds—
- (/amws)]dsH/an(s)nds) (1-T)=1+Ar+e.

On the other hand, the function

(k+ Nt —X for te]0,1]
(k—m)(2—t)+m for tel1,2]
(1-m)(t—3)+1 for te[2,3]

u(t)

is a nontrivial solution of the problem (0.1¢), (0.30).
This example shows that the strict inequality (2.1) in Theorem 2.1 cannot
be replaced by the nonstrict one.

Example 3.12. Let A €0, 400 (for the case A = 0 see Example 3.10),
k €]0,A[, and € € [0,27%[. Choose M > (A IZ) and put a = 0, b = 3,
and

— (% +e) for ¢ €[0,1] t* for te[0,1]
p(t) = { M=k for te[l,2], 7(t)=<2 for te[1,2],
M+1

== for te[2,3] 1 for ¢ € [2,3]
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where

2 if M=k
It is not difficult to verify that 79 =1, 71 = 2, and

[Emm@m /%@h@fﬁmmwMﬁf,

[ wen-ds =2 e /Ua /@ SELALY

Thus, the condition (1.19) holds, T' = 4=£  and

T0 b
(/ [p(s)]4+ds + /\/ [p(s)]ds) (1-T)-

_/a ds—)\/ $)ads = (140 (1-T) — <.

On the other hand, the function

M(\—k :
t*{1+M1—k </\—§<+5A)1*k) it M#Fk '

A—(A—k)t for te[0,1]
ut) = (M —k)(t—1)+k  for te[l,2]
(M+1)B3-t)—1 for te[2,3]

is a nontrivial solution of the problem (0.1p), (0.3¢).

This example shows that the strict inequality (2.2) in Theorem 2.1 cannot
be replaced by the nonstrict one.

Example 3.13. Let A € [0,1] and let z;,y; € Ry (i = 1,2,3) be such
that
To > 1
and
x1+ o2+ My2 +ys) + (1 + As) (w2 — 1) =1+ .

Let, moreover, a = 0, b = 8§,

—y for te][0,1]
x1 for ¢e€1,2]
xo — 1 for te€2,3]
0 for te[3,4]
P=9, for te[4,5
—Ya for te[5,6]
—ys3 for ¢e€6,7]
T3 for te€(7,8]



and
2 for te[0,1[U][7,8]
T(t) =<5 for te[l,3[U[4,7] -
6 for te[3,4]

Obviously, 7o = 2, 71 = 6, and (3.3) is satisfied.
On the other hand, the function

yi(we — Dt —1)+1 -2 — 31 for te€]0,1]
z1(t—2)+1— a9 for ¢te[l,2]
(x2 —1)(t —3) for ¢e2,3]
u(t) = 0 for te[3,4]
t—4 for te[4,5]
ya(b—t)+1 for ¢ e [5,6]
ys(6—t) + 1 —yo for tel6,7]
x3(xe — 1)(7T—t)+1—y2 —y3 for tel7,8]

is a nontrivial solution of the problem (0.1g), (0.3¢).
This example shows that the strict inequality (2.5) in Theorem 2.2 cannot
be replaced by the nonstrict one.

Example 3.14. Let A € [0,1] and let z;,y; € Ry (i = 1,2,3) be such
that
y2 > 1, T+ Ays > 1— A2,
and
1422+ Ay2 +y3) + (y1 +Azg) (2 — 1) =1+ A\

Let, moreover, a = 0, b = 8,

1 for te]0,1]
-1 for tel,2]
T2 for te2,3]
-1 for te[3,4]
t) = ,
=1, for te[4,5]
—(y2—1) for ¢ e[5,6]
T3 for tel6,7]
—ys3 for tel7,8]
and
3 for te][0,1[U]2, [U[S,G[U[?,S]
T(t) = ¢ 6 for te[1,2[U]6,
2 for t¢e[4,5]
Obviously, 7o = 2, 71 = 6, and (3.3) is satisfied.
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On the other hand, the function

z1t—1)+1—20—y1(y2 — 1) for tel0,1]
yily2 =)t —2) + 1 — o for te[1,2]
z2(t —3) + 1 for te 2,3
u(t) = 4 for te[3,4]
0 for ¢e€[4,5]
(yo —1)(6 — 1) +1 —yso for tel5,6]
23(y2 — (7T —t)+1—ya —a3(y2 — 1) for te[6,7]
ys(8 —t)+1—ya —a3(y2 — 1) — ys3 for te(7,8]

is a nontrivial solution of the problem (0.1¢), (0.3¢).
This example shows that the strict inequality (2.8) in the assumption b)
of Theorem 2.2 cannot be replaced by the nonstrict one.

Example 3.15. Let A € [0,1] and let z;,y; € Ry (i = 1,2,3) be such
that

Yy > 1, r1 + a2 + )\yg <1l-— )\2, (314)

y1+)\:c3<f)\+\/1fxlfa:27)\y3,
y1+y2+>\aﬁ321—/\+2\/1—x1—x2—>\y3-

Pata=+1—21 —29 —Myz and k = o — A — y; — Aw3. Obviously, k > 0
and y2 > 1+ a+k. Let, moreover, a =0, b = 10, p € L([a, b]; R) be defined
by (3.4), and

8 for te0,1[U[3,4[U [8,9]
4 fi 1 U 4 1
(1) = or te[,S[ [4,5[ U [6,7[U[9,10]
5 for te[5,6]
2 for ¢ e7,8]
Obviously, 7o =2, 71 = 8, and (3.3) is satisfied.

On the other hand, the function

ay1(1—t)+x1 + 22 + ka — 1 for ¢e€]0,1]
x1(2—t)+a2+ka—1 for te1,2]
x2(3 —t) +ka—1 for t¢e[2,3]
ka(d—1t)—1 for te[3,4]
w317 for te[4,5]
0 for te€[5,6]
at — 6) for t€16,7]
a for te(7,8]
azs(t — 8) + « for ¢e€[8,9]
ys(t —9) + a+ axs for te[9,10]
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is a nontrivial solution of the problem (0.1¢), (0.30).
This example shows that the strict inequality (2.11) in Theorem 2.2 can-
not be replaced by the nonstrict one.

Example 3.16. Let A € [0,1] and let z;,y; € Ry (i = 1,2,3) be such
that (3.14) holds and

Y1+ Ay > A+ /1 — 21 — 20 — My3,
x4+ Ay2 +ys) + (v +Azs) (y2 —1) > 1+ X

Puta=1—21 —22 — A\ys and § = y; + Azs + A. Obviously, a > 0, 8 > 0,
and yo > 1+ % Let, moreover, a = 0, b =9, p € L([a, b]; R) be defined by
(3.9), and

3 for te[0,1]U[2,4[U[5,6[U[7,8]
f 1.2/ U
oo lT e rel2uBe
4 for t¢e[4,5]
2 for te6,7]
Obviously, 1o =2, 71 = 7, and (3.3) is satisfied.

On the other hand, the function

181 —t) +yra+z28—03  for te]0,1]

10(2 *t)+"£26 6] for ¢el,2]

x2B(3 —1t) — for t¢e€2,3]

Bt —4) for te[3,4]

u(t) =<0 for te[4,5]
a(t —5) for t¢e[5,6]

a for ¢e6,7]

ysB(t —7) 4+« for tel7,8]

xzat —8) + o+ ysf for te€8,9]

is a nontrivial solution of the problem (0.1¢), (0.3¢).
This example shows that the strict inequality (2.8) in the assumption ¢)
of Theorem 2.2 cannot be replaced by the nonstrict one.
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