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1. INTRODUCTION

Since their introduction in 1828, Green’s functions have become a funda-
mental mathematical technique for solving boundary—value problems. Prop-
erties of Green’s functions and matrices for various elliptic boundary value
problems for bounded and unbounded domains with compact boundaries
are investigated in detail by many authors (see, e.g., [11], [12], [15], [26], [3],
[16], [22], [27], [28], [29], [19], [13], [20], [24] and the references therein). To
the authors’ best knowledge Green’s functions for unbounded regions with
boundary extending to infinity have not been treated systematically in the
literature (except the particular cases: a cone, a half-space (half-plane) and
a strip say; see, e.g., [5], [21]).

Here we consider the Dirichlet Green’s function for the Helmholtz equa-
tion (reduced wave equation) in a non-locally perturbed half-plane with a
one—dimensional, infinite, smooth boundary line. Our goal is to investigate
properties of the Green’s function and its derivatives in a neighbourhood of
the pole and at infinity which are very important in many applications.

Our study is based on the existence and uniqueness results for the cor-
responding Dirichlet problem in various functional spaces.

In [7], with the help of the appropriate integral equation formulation, it
is shown that the Dirichlet problem for all wave numbers and for a non—
locally perturbed half—plane with no limit on the boundary curve amplitudes
or slopes has exactly one solution satisfying the upward propagating radi-
ation condition (UPRC) provided that a Dirichlet datum is bounded and
continuous function. The UPRC, suggested by Chandler—Wilde & Zhang
[8], generalizes both the Sommerfeld radiation condition and the Rayleigh
expansion condition for diffraction gratings (see also [25], [4], [17], [9]).

An important corollary of these results in the scattering theory is that for
a variety of incident fields including the incident plane wave, the Dirichlet
boundary—value problem (BVP) for the scattered field has a unique solution
(for detail information concerning the history of the problem see, e.g., [7]
and the references therein).

In this paper we apply the above results along with the theory of second
kind integral equations on unbounded domains, developed in [1] in the case
of weighted spaces. This enables us to isolate the so—called principal singular
part of the Dirichlet Green’s function and its derivatives, and establish
uniform bounds for them on a closed, non—locally perturbed half-plane.

2. PRELIMINARY MATERIAL

2.1. Here we introduce some notation used throughout.

For h € R, define I'y, = {x = (z1,72) € R? | 22 = h} and U;” = {z €
R2 | To > h}

For V.C R™ (n = 1,2) we denote by BC(V') the set of functions bounded
and continuous on V, a Banach space under the norm || - ||o,v, defined by
[¥lloo,v = sup [t (@)]. We abbreviate [ - flocx by [} - [|oo-

T
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For 0 < a < 1, we denote by BC%%(V) the Banach space of functions
¢ € BC(V), which are uniformly Hélder continuous with exponent «, with
the norm || - ||o,,v defined by

o
lelloay = ll¢llooy +  sup [4'“"( ) “Oﬁy)]-
z,yEV, x#y |z -y

Given v € Lo (V') denote by 0;v, j = 1,2, the (distributional) derivative
0
;—Sj) and Vv := (01v, O2v).
We denote by BC!(V) the Banach space
BCY(V):={p e BO(V) |09 € BC(V), j =1,2}

under the norm
lellnv = llelloc,v + [1016llo0,v + |02l 0c,v -
Further, let
BOY (V) i= {p € BC'(V) | 9 € BCO(V), j = 1,2)
denote a Banach space under the norm
lella,v = lelloo,v + 1010ll0,0,v + [|026l0,0,v-
2.2. Given f € BOM(R), 0 < a < 1, with f_ := inf f(z1) > 0 and
1€

fi = sup f(z1) < +o00, define
r1ER

Q;{ = {2 = (21,22) € R? | 29 > f(x1)},
Py = {(z1, f(21)) € R? | 21 € R},
ot .— ot - _ w2\ OF
QF =QfUT;, Q; =R’\Q7.
Let v(xz) = (v1(z),v2(x)) stand for the unit normal vector to I'y at the
point = € I'y directed out of Q}', and 9,5y = 0/0v(z) and 0, () = 0/07(x)

denote the usual normal and tangent derivatives on I'f, respectively.
2.3. Denote by

T
®(r,y) = 7 H (o —yl), (r,9) €B 2 £y, (2.1)

the free—space Green’s function (fundamental solution) for the Helmholtz
operator A + k2, where A = 97 + 07 is the Laplace operator and k is a

positive constant (a wave number), and HY is the Hankel function of the
first kind of order m.

Definition 2.1. Given a domain V C R? call v € C?(V) N Loo(V) a
radiating solution of the Helmholtz equation in V if Av+k%v = 0 in V and

v(z) = O(r~1/?), ag—i@ —ikv(z) = o(r~Y?), r = |z], (2.2)

as r = |z| — +oo, uniformly in z/|x|.
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The relations (2.2) are the classical Sommerfeld radiation conditions. The
set of radiating functions corresponding to the domain V' and the parameter
k we denote by Som(V; k).

Definition 2.2. Given a domain V C R2, say that v : V — C, a
solution of the Helmholtz equation Av + kv = 0 in V, satisfies the upward
propagating radiation condition in V' if, for some h € R and ¢ € Lo (T's),
it holds that U,‘L|r CV and

v(z) = 2/M¢(y) dsy, z €U/ .
é)yg
IS

The set of functions satisfying UPRC in V' with the parameter & we
denote by UPRC(V; k). Note that Som(V;k) C UPRC(V;k) (for details
see [8], [7]).

2.4. Let us introduce the Dirichlet Green’s function G(P)(z,) and the
impedance Green’s function G®)(z,y) for the Helmholtz operator A + k2
in the half-plane Uy (for details see [6], [8], [7]):

GP)(z,y) = B(z,y) — B(z,9),

GO (2,y) = O(x,y) + ®(z,y) + Pz —y), (2.3)

+oo
ik [ exp{i[zit + 2o VE? — 2]} g —
27 k2 —t2[\/k2 — 12 + k|
—00
_ |Z|€ik|2| t—1/2¢—klz]t [|z] + z2(1 + it)] dt. ze U(;r,

T ) Vit —2i[|z|t —i(|z] + 22)]?

P(z):=

v =(z1,22) €U, y=(y1,y2) €U,
y' = (y1,—y2) € Uy := R?\ Us.

Here and throughout all square roots are taken with non—negative real and
imaginary parts.

Note that these Green’s functions are radiating in UO+: G(D)(-7 Y), G(I)(-7
y) € Som(U;", k) and satisfy the Helmholtz equation in Uy (with respect
to  and y) and the Dirichlet and the impedance boundary conditions,
respectively, on 'y = 8UO+ :

GP)(z,y) =0 for zeTy, yEU_O"’, T #E Yy,

%G(I)(x,y) + kG (z,y) =0 for zely, ye U_JF, x # .
2
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Moreover, GP)(z,y) = GP)(y,z), GP)(z,y) = G (y,z), and there hold
the following inequalities for x,y € Uy” and G € {G™P), gDy

1G(z, )], [VaG(z,9)l, [VyG(2,y)| <

(1 +22)(1 +y2)

<
RNETIE

for |z —y| >4,

|G(z,y)| <ao(1+|Infx—y||) for 0<|z—y|<4, (2.4)
[V.G(z,y)|, |VyG(z,y)| <aolz— y|~t for 0 < |z —y| <4,

|Gz, y)|, [VaG(z,y)l, [VyG(z,y)l, [Va Ope) Glz, y)| <
<a 14 |x—y|]_3/2f0r yely, zo=h>fi+56,

with ap > 0 depending only on ¢ and k, and a; depending only on k, 6, I'¢,
and h.

Here and throughout the paper ¢ > 0 is some fixed number.

2.5. In [7] the following Dirichlet problem is studied completely.

Problem (P). Given g € BC(T'y), determine u € CQ(Q}") N C(Q}") such
that:

(i) w is a solution of the Helmholtz equation, i.e.,

Au+k*u=0 in Q;{;
(ii) [u]* = g on Ty where [-]* denotes the limit on I'y from QF;
(iii) for some § € R,
sup zh |u(z)| < oo;
mEQ;
(iv) u € UPRC(Q}"; k).
In [7] it is shown that the above Dirichlet problem is uniquely solvable

for arbitrary ¢ € BC(I') and f € BCH'(R). Moreover, the solution is
represented by the generalized double—layer potential

u(z) = /ay(y)c:<f>(x,y)¢(y) ds,, = e€Qf, (2.5)
Ly

where GD) is the impedance Green’s function for the Helmholtz operator in
the half-plane Ugr , while v is an unknown density which solves the integral
equation

39+ [ oGP v dSe =g(z), 2eT  (20)
Ly

Note that the kernel function 8,¢)G)(z,€) of the integral equation (2.6)

is bounded on I'y x 'y since f € BCH!(R) and the improper integrals in
(2.5) and (2.6) are well-defined due to the bounds (2.4).
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Further, let
Be = {f € BC"'(R)| iﬂefRf(fCl) 2c¢>0,|flliire < M},
z1

Xa(Ty) = {p € BC(Ty)le(2) = ¢(z1, (1)) = O(|z1 ™) (2.7)
as |z1| — +oo}.
In [1] the following assertion as Corollary 5.5 is proved.
Lemma 2.3. For 1 < p < co the integral equation (2.6) has exactly one

solution ¢ € L,(Ty) for every g € L,(Ty) and f € Bea. There exists a
constant c* > 0, depending only on ¢, M, and the wave number k, such that

|‘1Z)||Lp(r‘f) <c ||g||Lp(Ff) fOT 1< p< o0, g€ L;D(Ff); f € BC,M'

If g € X,(T'y), for somea € [0,3/2], it holds that ¢ € Xo(T'f). Moreover,
for a € [0,3/2], there exists a constant C*(a), depending on a,c, M, and k,
such that for all f € Bear and g € Xo(I'5), the solution v of the integral
equation (2.6) satisfies

()| <C*(a)(1 + |Zl|)*“§u€% [(1+ 1&g (&, (&), (2.8)

Z:(Zl,ZQ)EFf.

2.6. Denote by G;D)(y, x) the Dirichlet Green’s function for the Helm-
holtz equation in the domain Q}':

G (y.x) = GP(y,a) - V(y,2), yeQf, 2eQf, y£z, (29

where f € Be ar, G®P) is the Dirichlet Green’s function for the half-plane
Uf, and V(-,2) € C’Q(Q;{) N C’(Q;{)ﬁ UPRC(Q;{;IC) solves the following
Dirichlet problem

(A, + )V (y,z) =0 for y¢€ Q}", et (2.10)

V(y, o)t =GP (y,x) for yeTy z€ Q}' (2.11)

It is evident that, due to the results described in Subsection 2.5, for an
arbitrarily fixed x € Q;{, there exists a unique solution to the BVP (2.10)—
(2.11), which is represented in the form of the generalized double-layer
potential

V(yax) = / |:6D(§)G(I) (yvg):| Tﬁ(ﬁﬂ?) dSEa Y€ Q}_a T e Q+a (212)
Ly

where the unknown density (-, ) is a unique solution of the integral equa-
tion on I'y

1
- 30+ [ [ 6P )] v(e aldse =

Ly
=GP)(z,2), zely, ze€Qf. (213)
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With the help of Lemma 2.3 and the bounds (2.4) we will establish uniform
bounds for v(z, ), when (z,2) € Ty x QF, and for V(y,z) and G;D)(y,a?)
and its derivatives, when (y,z) € Q}" X Q}'

Note that throughout the paper the restrictions on I'y of the functions
GSCD) (y,x) and V(y, z) and its derivatives are understood as the correspond-
ing limits from Q}'

2.7. In what follows we need some technical lemmas which we formulate
here for the readers convenience.

We remark here that throughout the paper a;, b;, ¢j, C;, and §; denote
constants depending only on ¢ and M involved in (2.7), on § involved in
(2.4), and on a wave number k (if not otherwise stated). Moreover, we
assume that the fixed constant ¢ involved in the relations (2.4) satisfies the
inequality 0 < § < 6* with 6* = min{1/2, d}, where d is a Liapunov radius
for all curves I'y of the family B as (d depends only on M).

Lemma 2.4. Lety € @, T € Q_+, and f € Be . Then

1 1 01
I(z,y) = : __dSe< — %
@) / vl —e)%2 Ty )P “ = Tife g2
Ty

where 61 = 32¢/1 4+ L? and L := sup |f'(&1)].

§1€R
Proof. Let r := |z — y| and denote
I:={{ely||€—z|<r/2}, To:=T;\T1.
Clearly
(el = ly=¢&l=ly—al =g —a[=r/2
Eely = |z —¢& >r/2.

Therefore we have

_ dS¢
- <F/+F/>(1+Ix—£|)3/2(1+|y—£)3/2 )

1 / dSe 1 / dSe _
S ) CHe— T () ) Wly =€) =

sup

> / 3/2
wE€QE [1+\/|I1 — &2+ |ze — f(fl)ﬂ

+oo
e 7«)3/2 VI EPdse

27/2\/1 + L2 / 32v/1+ L2
3/2

1+t 3 = (1+r)3/2 ’
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whence the proof follows. O

Lemma 2.5. There exists a positive constant o such that

5 _
% for 0,(&m) <3, |§—n| <5,

| (2, & m)l < (2.14)

62|§—n|(1+x2)
[+ o (6.2 for 0.(&,m) >0, [€—n| <4,

Uﬂl@?”@faﬂerf; ZGQ_+; 937&57 x#n; fGBc,M;
Qz(fﬂ?) = mm{|x - 5‘, ‘x - 77‘},
and U is one of the following functions

(e, & m) € {VaGP(2,8) = VoG D7), VoGP (2,6) = VoGP (),
ng(I) (Z, 5) 7V77G(I) (’JJ, 77)3 ng('D) (Z, 5) 7V77G(D) (Z, 7’)7

8L/(E) G(I) (xv 5) - 81/(77)G(I) (I, 77)7 ay(g) G(D) (xv 5) - 81/(77) G(D) (I, 77) } :

Proof. We will demonstrate the proof only for one particular case, and let
for definiteness

U(z,€,n) = 05, GP)(x,€) — 05, P (z,7), €neTy, xeQf,

where |z — £| > 86 and |£ — 5| < §. Clearly, we then have |z — n| > 44.
Represent ¥ as follows

U(x,€,n) = / Ao(ty0x, GP (2, 1)dS}, (2.15)
Y

where v := &7 is a straight line segment connecting the points & and 7,
0= (ly,€3) = (§—n)|€—n|~" is a unit vector and dy(;) denotes the directional
derivative. It is evident that

W (z, & m)l = 1€ —nl igp{ 101,02, GP) (@, )] + 100,00, GP (2, 1)[ 3. (2.16)
ol

The direct calculations along with the recurrence relations for the Hankel
. 1 1 1 1 101 .
functions [H" (u))' = —H{" (i) and [H{" (1)) = H§" () — = H{" (1) give

9y, 00, G (2, t) =

ik 1 —t1 1) 1 — 11 (1) /
= H 7V (klz —t|) — H "/ (klz —t =
4atl{|x—t| e
ik (r1—-t1)% (z1—1t1)? .
= e ke Y e ) -
1 1 (1) '
N HY (ko —t HOD (k|lz — ¢
lz—¢] ! (Kl = tl) + o ¢ (e =
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(1 —t)? (21 —11)?
+WH§ (k| — 1)) - WHf Ykl =) p =

- ik ($1 - t1)2 1 (1)
e - g e - )

(z2-0) 1 ]pm :
— 1 — H _
|:(k+ ) |£L’7t/|3 |£L’7t/| 1 (k’ll‘ tl)_
b — )2 | = B (ke — t))+
R e
_ 2
7}4:@_ ,t12) HY (k| —#']) — HED (Kl — )| ¢, (2.17)
|z — ']
ik To —t
8t23z1 G(D)(x,t) = —Z(xl — tl) {k ﬁ[[{?)(kw 7t|)]/+

+ %H@(m —t)) —k %[H{”(klx — D%
i e - )|
- —%(ml ) {(k + 1)%%%@ — ) -
K 7%_;“"22) HY (k|x —t]) + (k + 1)%%”(1@ —t'])-
Lk 7322_:322) H (ko — t’|)} , (2.18)

where x = (z1,22),t = (t1,ta) € U, t' = (t1, —t2) € U, .
Due to the asymptotic formulas for the Hankel functions (for a large
argument) we easily conclude that

HD (ke —t']) — H (k| — t]) =

) ’ )
2 o s ezk\zft\ ezk\zfﬂ
=] Zemi(m+s

km

—3/2
|z — |12 |z —t|/2 +O0([ex (8,1 77/).

Applying this formula along with the relations
4:Egt2

)=l —t|-|o—tl= ———
gz, 0, t) = |z =] = [z — 1 PR p—,

1 1 - 4$2t2
|:L'7t|1/2 |l‘7t/|1/2 - |:L'7t|1/2|:L'7t/|1/2(|x7t/|1/2+|x7t|1/2)7

piklz—t] _ gikla—t'| _ iklz—t] [1 _ gik(lz—t |7|x7t\)i| _

_ikla—t| ;o e (k)
- € Q(xat 7t) Z n|

n=1

n

[a(z. ¢ )",
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and noting that o,(f,?') can be estimated by 0, (¢, ) from above and from
below, we derive from (2.17) and (2.18) for {,n € 'y, z € Q}", | —&| > 86,
and [£ —n[ < ¢

1+ .272)
sup{ |81y as C® (2, 1)] + 9100y P ()]} < — LI T2
sup{ 01,01, G (0, 1)| + 10,05, 6P (0]} < I
Now let us assume that |z —&| < 8 and | —n| < (x # &, © #n). Then
|z —n| < 126 and we can always choose in (2.15) a smooth line of integration
vo (in the place of ), such that |z —t| > 0.(£,n) for all t € vy and the
length of which is estimated by co|¢ — n|. Taking into consideration the

(2.19)

representation of the Hankel functions H\" (u) (n=0,1,2,---) for a small
argument p

dn(n) n dp—2(n)

HWV () = d* +
( ) ‘un ‘un72

+ o dy (n)p” Inpdy (n) p"+

()P I A () e (2.20)

where d*, d;, d}, d;* are constants, we easily conclude from (2.17) and (2.18)

c3
sup{ |8y,0z, GP)(x,t)| +18,,02, GP)(z, 1)} < —————
tevo{| ' @0+ 10 @01} [02(&m)]?

for |o—¢ <80, [¢—n|<d xeQf, &nely (2.21)
Note that for 6 < p,(&,1) < 8§ there holds the inequality

1 11 (48932
[02(&,m)]2 = 62 = 62 (14 [0u(& )3/

Therefore, from (2.15), (2.16), (2.19), and (2.21) the inequality (2.14) fol-
lows. (I

<

Lemma 2.6. Let f € By and Ty(z,X) :={§ € Ty | |z — &1| < A} with
some finite constant X > 0. Then

0,,G(E, ) dSe| <05, j=1,2, YVoeQf, Ge{GP,cD},

Ff(fb,)\)
where 03 is a constant depending only on A\, k, and M.

Proof. A principal part of the functions 0y, GP)(¢,z) and ijG(I) (x,€) is
a singular kerel —(27)7'9,, In |¢ — | and the remainder can be estimated
as O(|€ — z|In|¢ — z|). Therefore the proof immediately follows from the
well-known properties of Cauchy type integrals and harmonic logarithmic
potentials (see, e.g., [23], [9], [10]). O
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Lemma 2.7. For Vf € B.ar and a positive constant A there exists a
constant d4, depending only on A, M, §, and k, such that

/IG(é,x)l dSe < b, /\ayma(g,x)\ dSe < 64, Vo € QF, 25 < A,
Ly Ly

where G € {GP),GDY} and 83 is a constant depending only on X\, k, and
M.

Proof. We recall that the kernels 81,(5)6'(17)(5,37) and ay(E)G(I) (x,€) have
the function —(27) 10, (¢) In [ — x| as their principal singular part for | —
z| < 1, while they behave as O(|¢ — z|7%/2) for |¢ — 2| > 1. Now the
proof easily follows from the well-known properties of harmonic logarithmic
potentials (see, e.g., [14], [17], [9], [10]). O

Lemma 2.8. (i) Let {,m,z € T'y be different points and f € Be -
Moreover, let |€—n|+ |€ —z|+|n—z| < A with some finite positive constant
A. Then

d5 [€ — |

|8u(£)G(2:7§) - 8u(n)G(Z777)| < 92(5;7]) ’

where the constant é5 depends only on A, M, §, and k.
(i) Let £,z € Ty and f € Be,v. Then

6

106G (2,)] < A5l (2.22)
(iii) There exists a positive constant 67 such that
1 1
Or(1 + 22)( +x2) for |z—xz| >4,
(L+]z — o)
|0:,0x,G (2, 2)| < (2.23)
J P 57
for |z —x| <4,
|z — |2
02,02, Gz, 2) = ,,0,,G(y, )| <
(14 02(2,y)]3/2
51l ol (2.24)
7 —Y
L= I for o.(2,y) <6, |z—y| <94,
PRERE (zy) <3, |z -yl

Ge{GP, gD}, z,y,z€U.

Proof. (i) It suffices to prove the corresponding inequality for a principal
singular part of the normal derivative of the impedance Green’s function
8V(§)G(I)(z,§), i.e., to show that

95 1€ — 1

|8V(§) In|z =& — Dy 1n|zfn|| < )
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which is a well-known property of the logarithmic kernel (see, e.g., [14],

18], [2], [10]).

(ii) The inequality (2.22) is a ready consequence of the bounds (2.4) and
the relation

0,/ GD(2,€) = —(2m) 'O, ¢) In [e—€[+O(|z—E|In [2—¢]) for  |2—¢] < 6.

(iii) The inequality (2.23) follows from the explicit expressions of the
second order derivatives 0.,0,,G(z,z) (cf. (2.17) and (2.18)), while (2.24)
can be established by the reasoning applied in the proof of Lemma 2.5. O

3. UNIFORM BOUNDS FOR THE DENSITY FUNCTION #(z,2) AND ITs
DERIVATIVES

3.1. Let us introduce the integral operator
() ()= [ [006D 0] p@dse, zeTr @)
Ly

and rewrite (2.13) as follows

f% P(z,2) + (K, 2) (2) = GP)z,2), z€Ty, zeQf. (32

Apply the operator K to the equality (3.2) to obtain
1
=5 Ko, 2) + K (Ky (-, 2) = KGP) (),

whence it follows that K1 solves the integral equation (2.6) with the right—
hand side function g = ICG(D)(-7 x). Therefore, due to Lemma 2.3, we have
(see (2.8))

(0. 01 = | [ 0,406 0] wie.0yase| <
Ly
<C(a)(A4[z—aa|)™" Sup {(I+ly1—21))*|Q(y, 2)[} Yae[0,3/2], (3.3)
yely
where z € Q}' and
QG.2) = (KGP(.2)) (2) = / [0,06® (.0)] 6P (e.2)dse. (3.4)
Ly
Lemma 3.1. There exists a positive constant as, such that

(1 +z2)

|Q(Z,ZIZ’)| S a2 m, z € Ff, S Q}», f € BC’M. (35)

Proof. We establish the required estimate in several steps.
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Step 1. Assume that z € T'y and z € Q}r with r := |21 — 21| > 30, and

denote
Fl = {é- GFf | |§1 _Zl| S T/3},
Dyi={¢ely|[& — o <r/3},
I's:= Ff\{FIUFQ}'
Clearly,
2r
(el = Ja-mlzln-al-la-&alz235 22,
2
"> 9,

§ely = [&—2>

-
Eels = |G-z >3z >0, |€1—Z1|Z§Z5-

Decompose Q(z, z) as follows

Q(va) = Q(l)(zvx) + Q(Q)(va) + Q(B)(za :C)a
where
Q(p) (Z,Q?) = / |:8V(§)G(I)(Za€):| G(D) (va) dS&a p=12,3.

FP
Due to the estimates (2.4) and boundedness of the kernel function

dy(eyG P (2,6) on Ty x T'y we get
|Q(1)(z,x)| §/‘ay(5)G(I)(z,§)‘ ‘G(D)(&x)‘ ng <

I'y
1+ a9)(1+ &)
< () ao( 2 <
_/‘81/(5)G (Z,f)} |I’*§|3/2 dSE >
Iy

2 3/4

By Lemma 2.7 it is easy to see that
sup /‘81,(5)(?(1)(2,5)‘ dSe =: by < 400, (3.7)

zel
f r;

where the constant by depends only on M and k. Therefore

aoby (L+M)(1+ =z S5agbg (1+M)(1+=x
0bo (L+M)(L+x2) _ Sagbo (1 + )(+3/22). (3.8)

1
QW (2,2)| < - 5 <
2 4 nf &2 inf _
{9 +§lenrf |xe — & } {rJr&lEan |z — &o|

Note that
(i) z2>fr+2 = inf |22 —&| =22 —sup =22 — f1 >
gely €ery
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2 2 .
> 12 T2 2> Fit2 (z2 — 29) with 29 = f(21) Vz1€R; (3.9)
() r2e>0 — £z 1+ (3.10)

1 < 1+e+4+ A 1
1+7— 14+ 1+4+t+7 7~
1 A 1
et . (3.11)
I+e 14+Vt2472
With the help of (3.9) and (3.10) we get from (3.8)

1+ 2o
c - for o> f1 + 2,
! P+ e — 2]+ s — 2[)3? 220
QW (z,2)| < (3.12)

! fi <fy+2
c or x ,
21+ |z1 — 21372 2=

(i) {r>e>0,0<t<A} —

- 2 30
where ¢; =k, 3/202 and cg =5agbo(1+M) with k;=min { m, m} <1.
In view of (3.11) it follows from (3.12) that

clﬁ for xo > f+ +2,
QW (2, z)| < Cs (1+35+2(1+f+))3/2 )
1+30 (1+ |z — 2|)3/2
for zo < fi +2,
ie.,
QW (z,2)| < 031""—332(
(1+ |x — z[)3/2
for z € Ty, xEQ;{, |z1 — 21| > 36, (3.13)
3/2
where c3 = max { ¢, ¢ (14_361—:2;24_]04_)) / }

Quite analogously we derive

Q90 = [ 10,0/GP( ) I6P) (€ 0)| dSe <
I's

ap(1+ M)(1+ z2)
< [ 106 e R T s <
s

aobo (]. +M)(1 +$2)

3/2 =
1 (r ; _
% (5 i -
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(1 + CEQ)

<ep———>"20 — zeTy, zeQf, — 21| >30. (3.14
SO e 5T TR w1 = 21| 2 30 (3.14)

Further, we estimate Q?)(z,z) for 2 < f4 + 2 (see (2.4) and (3.10))

2>Zx|_/|a D(z,0l1GP) (&, 2)| dSe <

g/M G (¢, 2)| dSe <

2= €P7
2

< |
(@) -]

(1+M)
- W/m( (&, 2)| dSe <
3
2
= 3/2 a0(31/2+ ) IGP) (g, x)|dSe <
(3" (2%)" A +lo— a2 ¢
Cs

< 3.15
= Mt =P (3.15)

ao(1 + M)?by

2
29 3/
1436

where z €'y, x € Q}", |21 — 21| > 30, z2 < fy + 2, and ¢5 =

with

b= sup /|G(D) (&, )| dSe < +oc. (3.16)
zeﬂ}',mzéf++2 I

Now let zo > fy + 2 and denote ¢ := x9 — 29 > 2 for z = (z1,22) € I'y. By
(2.4), (3.9), and (3.10) we get

1+ M)? 1 1+ M
|Q(2)(va)|§/arz(_+€|3/2) ao( Efzil(wj )ngS

I'>

< aZ(1+ M)3( 1

14z /
V) e e al G mpn
2

dSe <
r/3

< 1+ 29 / dSE 1+ 29 / dt e
SO ) Tl rap = TR Gt
T 0

2
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< 1—|—a:2/ di_ 14w -2 1"
R R N e (e A (R P
0

g Lt 1 1 B

1 7~ T o)
_ 9 14 29 r <
TR R g Pl P (g ]
< 2¢; 1+ = 2¢; _ 1tz
T (@A) 2 (r + ) Vat+rqlr+q) —
< 2c¢7 L+ cg L+ 72 =
TP T T ()P

1+ 29

- (14 |21 — 21| + |z2 — 22|)3/2’ (3.17)

z €Iy, xEQ;{, |1 — 21| > 30, a0 > fr+2.
From (3.15) and (3.17) as above with the help of (3.11) we obtain

1+ 29
(1+ [z — 2[)3/2”
The equality (3.6) along with (3.13), (3.14), and (3.18) leads to the esti-

mate

Q(z, 7)< a3

QP (z,2)| <co 2€Ty, z€Qf, |11 —=[>35. (3.18)

1+ 29
a7
where a3 = c3 + ¢4 + cg.

Step 2. Now, let z € T'y, x € Q;{, and r = |z; — x1| < 36. First we
consider the case when xzo > fi + 2. Applying (2.4), (3.7), and (3.11) we
have from (3.4)

1Q(z,2)| < / 18,06 G D (2,6)] |GP) (€, )] dSe <

for zeT'y, :EGQ}', |z1 — 21]>30, (3.19)

ap(l +x2)(1 + M
S/"?V(s)G(I)(Z’ )l s |2 22|(3/2 )dSsS

< aobo(l—i-M)(l—l-CL‘Q) < C10 (1+$2)
I € D L O B E ) A

(3.20)

z eIy, :EEQ;{, |1 — 21| <30, x2 > fi +2.
In the case z2 < f1 + 2 we get (see (3.16))

1Q(z,2)) < / 10,6/ GD (2, )] |GP) (€, )] dS¢ <

Ly
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< by sup |8,,(§)G(I)(z,£)| <
z,6€ly

(1436 +2f4 +2)%2(1 + a2)
(1+ |z — 2|)3/2 -

< |bi SUIF) |3u(g)G(I)(Z,€)|
f

z,£€

C11 (1 —+ (ﬂg)

for zeTy, = GQ}F, |1 — 21] <36, 2 < fr+2.
Combining (3.20) and (3.21) we obtain

1+ a9
L+ ]z 2

with a3* = max{c1o, 11}, which along with (3.19) completes the proof. O

|Q(z,2)| < ad* for z € T'y, er;{, |21 — 21] < 36

Now let us return back to the relation (3.3) to estimate the function
(Ko (-, 2)) (2).
Lemma 3.2. There exists a positive constant as, such that
(14 2x2)
(14 |z —x|)3/2
Proof. The inequalities (3.3) and (3.5) imply

[(K(-, 2)) (2)| <as for zeT'y, xEQ;{, fe€Bem. (3.22)

00,2 () <O (@) sup (Gl e

zely, IEQ;{, Va € [0, 3/2],

where C**(a) = az C*(a) depends only on M, §, k and a.
Forzely, z € Q}', and zo < fi + 2 we have from (3.23)

. 1+ {1+|y1—$1|]3/2
Ky(-,x)) ()] < C*™(3/2 su <
(600-2) G £ O 6/2) (= o S | T3 ]
14 zo % 14+ x2

<C™(3/2)

- 3.24
T+ lo P2 =% T x o —apore &2

with a} = C**(3/2)(3 4+ 2f,)%/?, since
1 < 1+2(fr+1)
14+ |z1—2| = 14 |z—z
due to (3.11) (with e = 0 and A = 2(fy + 1)).
Ifzely, xc Q}', and x9 > f1 + 2, then by (3.9)

(L4 |yr — ) 1
SUp ————75 < sup <
yer; (L+1ly —x])*2 7 yer, (1 + |y —z|)3720)/2
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1
< su <
SR U e = flyn)p)E—2a/a =

< 1
T (L4 inf [z — f(y)[?) B2/
yel'y

< — <
(T4 1y ez — )02/

(3-24)/2 1
< <
S (1+ |xy — 22|2)(3—2a)/4 =
3-94)/2 2(3720,)/4
= “g “/ 3oz =
(1 + [z — 2o|)3722)/
C1

<
= U+ a2 — 22)]) 20072

with ¢ = 2u§372a)/2 and w1 = (fy +2)/2.

Therefore, from (3.23)

(Ke(-,2)) ()] < C**(a) er (1+22)

(1+ |21 — 21])2(1 + |22 — 22])(3-20)/2

for z €Ty, :EGQ}", To > fi + 2.
In turn this relation yields (with a = 3/2 and a = 0, respectively)
(1+ |21 — 21 )2 |(Ko (-, 2)) (2)] < C(3/2) 1 (1 +a2),

(L4 |22 =222 |y (-, 2)) (2)] £ C(0)er (1+a2),
whence, due to the inequality
(L4 |21 =21 ))>? + (L4 |22 — 222 > (L [z — 2])/2,

we conclude
(7)) ()| < —CTTD) o1 2Ot manfy 42, (3.25)
T (L4 |z—xf)3? ;o=
with a}* = 2 max{C**(3/2) ¢1, C**(0) ¢1 }.
From (3.24) and (3.25) the inequality (3.22) follows with a3 = max{a*,
a**}. O
Lemma 3.3. There ezists a positive constant as, such that for f € Be

a4(1+x2)
[W(z,2)| < § (14 |z —a])3/2
as (1+|Injz—z||) for |z—z|<d, zeTly, :EGQ;{.

for |z—x|>6, z€Tly, ze€Qf,
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Proof. From (3.2) we get
Y(z,x) =2 (K(-,x)) (2) — 2GP)(z,2), 2€Ty, x€ Q}"
Therefore the proof follows from Lemma 3.2 and the estimates (2.4). (]

3.2. In this subsection we will establish bounds for the first order deriva-
tives of the function v (z, ) with respect to the variable .
Put

VYi(z,2) = 0g;¢(2,2), j=1,2. (3.26)
Due to the invertibility and continuity of the operator f% I+ K (see Lemma

2.3 and (3.1)), where I stands for the identical operator, we easily see that
(2, z) solves the integral equation

(_% I+ /c) (2, 2) = _% (22 2 H K5 (-, 7)) (2) =00, G (2, 0) (3.27)

for z € Ty, x € Q}', 7 = 1,2. This equation is obtained by the formal
differentiation with respect to z; of the equation (2.13) (i.e., (3.2)).

By Lemma 2.3 we conclude that the integral equation (3.27) is uniquely
solvable for any = € Q;{ in the space X,(I'y) with arbitrary a € [0, 3/2]. To

obtain uniform bounds for ¥ (z,z) on I'y x Q;{ we apply the same approach
as above. To this end first we investigate the behaviour of the function

Qi(22) : = 02, Q(z,2) = (K0, GP(-,2) ) (2) =
_ / [0,06® (.0 0, 6P (e.x)dse,  (3.29)
Ly
zelp, 2€Qf, j=1,2.
Lemma 3.4. There ezists a positive constant as, such that for f € Be

a5(1—|—x2)
Qj(z,2)| < ¢ (L+[2—=])??
as (1 +|Injz—z||) for |z—z|<4§, =zeTly, IGQ;{.

for |z—z|>46, ze€Tly, IGQ;{,

Proof. The scheme of the proof is the same as in the proof of Lemma 3.1,
but it needs some modifications since the integral over I'; of the function
|0ij(D) (€ ,x)‘ is not any more uniformly bounded on Q}" and, moreover,
the restriction of the same function on I'y x I'y is a strictly singular kernel
(we recall that the function 8,5 GP) (¢, z) is bounded on I'y x I'y).

Step 1. Let z € I'y and = € Q}" with 7 := |x1 — 21| > 44. Further let
'y =T1UTI';UTs, where

Dy={§ely| & — | <r/4),

Lyi={¢ely|[& — a1 <r/4},
I's:= Ff \ {Fl UFQ},
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and denote

QW (2, ) = / 0,0 GD(2,6)] 0,,GP (g x)dSe, p=1,23.
FZJ
Clearly, Q;(z,x) = Q§.1)(2, x) + Q;-Q)(Z, x) + Q;-B)(Z, x). Applying the same

arguments as above and considering separately the two cases, xo > fi + 2
and zo < fy + 2, with the help of (2.4), (3.7), and (3.11) we easily get

ao(l+x2)(1+ M
00| < [ oo 60 2 s <
I'y

aobo(l—l-xg) Cl(l—l-l‘g)
- 3.29
A S Trp—apr O

(2)° + inf |oy — &2
4 ery
for zel'y, z € Q;{, |21 — x1| > 44.
Further we estimate Q§-2) (z,z). For A > 0 let us introduce

Qf(\) = {z € Qf | dist(x,Ty) > \} =QF \ | J B(z,)), (3.30)

zel'y

where B(z, \) is a circle centered at z and radius A.
First we assume that = € Q;{ (0). Note that for & € I'y we have |z —&| > 0
and |z — &1| > 30, and therefore due to (2.4) and (3.10), and Lemma 2.4

Q20| < [ [0 6P| [0, 66 )] dse <

T
ao(1+ M)? ag(1 + M)(1 + x,)
< [ e
2 3 ﬂ ’ dS&
<af(1+M) ( 3 ) (1+x2)/[1+|2§|]3/2[1+5|$§H3/2 <
1Y
02(1 +$2)
< (T3 P o

with ¢ = a2(1 + M)3 (%)3 01 (see Lemma 2.4).
Now, consider the case: z € Q}' \ Q}"(d) and denote by T = (T1,T2) =
(Z1, f(Z1)) € T'y the point of 'y nearest to z, i.e., |x — T| = dist(z, T'y).
Decompose I's into two parts: T'y := T', UT) where

Iy :={{ely||r —&| <0},
) =Ty \Ty={6e€Ty|6<|z; —&| <r/4}.
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Note that T € T since |z — Z1| < | — T| < §. Moreover,

3r
ey = |z1 —&| > |21 — 21| — |11 — &1 > T > 30,
3r

Eely = |v—£&| >4,
Eely = -7 <|—z|+ |z -7 <2/ -z

We proceed as follows

@ (z.3)] <

/ |:8V(E)G(I) (Z7 g) - 8V(E)G(I) (Zaf):| 8;CJG(D) (Ev .17) de+

Iy

+ 8, G (2,7) / 9y, GP)(€,2) dSe [+
1’\/

2

/[C‘L(g)G(I)(sz)} 02, GP) (€, x) S

"
F2

+

Due to Lemmas 2.5, 2.6, and 2.4, and estimates (2.4), (3.10), and (3.32) we
obtain

Q7o) < [ [0 6D - 0 6D a0 [0, 6 (6, 0)] dSet

g

+

00 G (2,7)| +

/ 8.,GP) (€, x) dSe
I
+/}8V(§)G(I)(Z,€)} ‘aij(D)(E,x)} dSe <

1"
1—‘2

(52|§ —f| an
d
S/uﬁgaa@WQM—a St

Iy

ao(l =+ M)2

EEERE *

/ 92,GP) (¢, 7) dSe
Ty

dSe

/a0(1+M)2 a0(1+M)(1+x2) <

e €F T Je—aP”

ry
2520,0

T+

23/2a0(1 + M)?

r3/2 d3+

ITa| +
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s (1+20\° dSe
a0 +M+9) ( 2 ) / T+ PP a2 =

"
F2

c3 c3 (14 2)
< <
Tt le =BT 14 |z - 2f]3
where |I'}| denotes the length of the arc I',. Combining (3.31) and (3.33)
we get

(3.33)

@] < 4 g
for zely, :EGQ;{, |21 — 1| > 46. (3.34)
Note that
§ely = lo—g>720, |2-¢=720
Therefore with the help of Lemma 2.4 and relations (2.4) we derive

Q§-3)(z,x)§
<
/a0(1+M)2 a0(1+M)(1+x2)
T A+l (L+[E—a])3?

9,,GP)(&,2)| dSe <

cr%/(.‘E)G(I) (27 6) ‘

ng <

3
1+ 29
(1+ |z — z|)3/2
for zely, :EEQ;{, |21 — x| > 46.

<ai(1+M)*6, (3.35)

From (3.29), (3.34), and (3.35) it follows that

Qs 2)] <@ o) + QP ,2)| + | (2.0)| <
1+ 2o
1+ |z — z|]3/2

Step 2. Let us now consider the case r = |z1 — 21| < 46.
Sub-step 2.1. First we provide that = € Q;{(é) (see (3.30)), so that
|z —&| > 6 for £ € T'y. Therefore,

|Qj<z,x>|g/

Ly

<ai for zely, :EEQ}", |z1 —x1| > 46. (3.36)

9.,GP) (&, )| dS¢. (3.37)

0GP (=€)

If, in addition, x93 > fi + 2, then applying the same arguments as in the
proof of the inequality (3.21), we get

65(1 + .272)

, _ Ul T T +
|Q](z,:c)|§[1+|27x|]3/2 for zely, z€Q;(d),

o> fr+2, |z1—x1| <45, (3.38)
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For x € Q;{(é) with zo < f} + 2, we have from (3.37)

1Qs(z)| < /

Ly

&;jG(D) (&, :c)‘ dSe¢  sup
z,6€Ty

A6y GP(2,9)|.

It is evident that
sup ‘ay(g)G(I)(z,ﬁ)‘ =: by < 400,

Z,EGFf
(3.39)
sup /‘8%. G(D)(f,:c)‘ dSe =:b3 < +o0.
2EQT(8), wa<fr+2
f
Thus, for x € Q}r(é) with xo < fy + 2 and |21 — 1] < 46, we have
1+ 2y
) . 3/2_ ~TH2

From (3.38) and (3.40) it follows
1+ x5
(1+ [z —a])3/2

Sub-step 2.2. Further, we assume that x € Q;{\Q;{(é) Recall that |z1—2;| <
44 and put

1Q;(z )| <cs for x € Q;{(é), |21 —x1] <46, (3.41)

Iy i={6€Ty||o1—&| <85}, Tpi=T,\T. (3.42)
It is evident that
§ely = |- >80, |z—¢& =44 (3.43)
We represent Q;(z,x) as follows
Qj(z,z) = Li(z,2) + (2, x) (3.44)
where
I(z2) = / [ay(@c:@) (z,{)} 0., G (¢, 2)dSe, j=1,2.  (3.45)
Ly

Using (3.43), (2.4), (3.10)

ao(1+ M)? ag(1+ M)?
Ir(z,x) S/ 2 — €32 |€ — xf3/2 dSe <

1+46\° ds,
< ad(1+ M) / < <
<aiuran' (5 ) U+ =R+ e —ah =

2

) WEERTAS dSe
<ao+an' (55) [ g e <o 040
Ly

for xGQ;{\Q;{(é), |21 — 21| < 46.
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Estimation of I (z, z) is a little bit complicated and needs subtle reasoning
related to the composition of singular kernels (cf. [24] and the references
therein). To obtain the required estimates for I;(z,x) in what follows we
consider the two possible cases separately

(i) |zr—7| <67tz —a|, (3.47)

(i) |z -7 >6"Yz -z, (3.48)

where T is a point on I'y nearest to x.

Clearly, |x — 7| < d and |21 — 71| < 5.

Sub-step 2.2.(1). First let us assume that (3.47) holds and devide I'; into
two disjoint parts (see (3.42))

I'y=I11 UI'19 with I'y; ={£ S F1||€ - f| < 2@}7 I =14 \Flh (349)
0 :=min{s, 6 |z — z|}.

It is easy to see that I'y; is connected, the distance from the end points of
I'y to I'1q is greater than 6, and, moreover,

Eely = |z—¢>2"" o -2 >30, |£—a]>27"¢ -7, (3.50)
(el = |z —¢ =227 E—T| >0, [&1—m|>201+L%) %0 (351)
We represent I as follows (see (3.45))
Li(z,2) = Ii(z, ) + Lia(z,x) (3.52)
where
holz2)i= [ [0u00D (0] 0,6P6.0)dSe, a=12.  (353)
g

With the help of Lemma 2.8, (3.39), and (3.50) we have

|111(Z,I)| < /{8V(£)G(I)(27€)_6V(E)G(I)(Zaf) 6;CJG(D)(€7x)dS§ +

T

+0@ 6P )| | [ 0,66 a)ase| <

INT]
d5a0 € — | / D
< — dSe + b 0. GP) (€, 2)dSe| <
E-dloEr) et [ oG D) dSE
11 '
455&0 (D)
<3, dSe +bo | | 0y, GP)(E, ) dSe|. (3.54)

INT] T
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Note that

B
[ dse< [ VIFTF@PR e < VIH T (5 )
' a
where 8 =71 + 20, a =T — 2p.
Therefore
/ dSe < 4v/1+ L2 p. (3.55)
INT]
Further, in accordance with the relation

1 z;—¢
0:,GP) (6 0) = —5- b

+O(lz = ¢| Infz - £]),

we easily conclude that

1 x; — &

‘ (D) d — J J

[ 0,6 e mas = —5- [ 2=
' '

dSe + o(1).

On the other hand the integral 7# fFu % dSe (j =1,2) can be repre-
sented as either the real or imaginary part of the Cauchy type integral
1 e~ 0 d¢

U(r) = —5- = (=& +i&, 7=z +izy, d¢=e"dS,

Ty
where 6(¢) is the angle between the tangent line at ¢ € T'j; and x; axis.
Rewrite this integral as follows (see, e.g., [23], §11)

—i0(¢) _ ,—i0(F
L [ e —em?@ 7ie—w(?)/ d¢

R p—

T '

1 - _
= ——e ORI L o),
2 T—1T0

where 7 = T1 + iT2, and 79 and 71 are the end points of the arc I'y;. By
relations (3.47) and (3.49) and since = € Q}" \ Q}"(é), ie, |z —T| <4, we
deduce that ¢ < |7 — 7;| < 4p, and consequently

1 < |7 — 71|

— < 4.
4~ |t —1| —

Therefore
()| < cs
with a positive constant cg depending only on M and 4.
Therefore we conclude that

/ 9:,GP) (&, ) dSe| < co. (3.56)
r

11
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Now, from (3.54), (3.55), and (3.56) it follows that
|111(Z,$)| < c1p0- (357)
Further, we estimate I12(z, z) using (3.53), (3.39), and (3.51)

L (z,2)] < /

OGP (28)| |02, GP) (¢, )| dse <

T2
5&
< ag by <2agbs /
1€ — &1 — 301|
T2
—zg/Wd 166 J
t t
§2a0b2\/1+L2 / m+ / m <
~i6s 20/VITL?
<ci[l+[Ingf]. (3.58)
Finally, from (3.52), (3.57), and (3.58) we obtain
[1(z,2)] < ci2[1 +[Ing]]
with ¢12 = max{cio, c11}, whence
[I1(z,2)] <eciz[1 4+ [Ind]] [1 + |In|z — 2| ] (3.59)

Sub-step 2.2.(ii). Now we assume that there holds (3.48) and estimate
Ii(z,x). To this end, divide the arc I'y determined by (3.42) into two
disjoint subsets: I'y = 011 U 012, where

on={{el |-z <p/4}, o12:=T1\on

with ¢ := 671z —z| < |z — 7| < 4.

It can be easily shown that the distance from the end points of I'; to o192
is greater than 24.

In view of (3.45), (2.4), and (3.39) we have

I (2, @) /‘a ©GD(z,¢€) ‘ ‘a GP)(e, a?)‘ dSe <

I'y

dSe dSe

< — .

soby [ gy = ob [+ € —d
I 012 012

It is easy to show that

feon = [(—a|>T—2[>6"z—2]=0
E€onn = [E—a|>27E-7,
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/dS&SQ 1+ L2,
O11

—o/V1+L? 166

_dSe / / / dt
V1+L2 + —
|30 =& 7 ) |7 - 51 |t]

—165 gViTER
< ec3[l 4 |Ingl]

with positive constant c¢i3 depending only on § and L. Taking into consid-
eration these relations we easily deduce

|11(Z,$)| < ag bs [2\/ 1+ L2 + ci13 (1 + |lng|)],

ie.,
[I1(z,2)] < c1a[1+|Ingl]. (3.60)
Now, if we combine the results (3.59) and (3.60), we get
[I1(z,2)] <e15[1+ ]| In|z — || ] (3.61)

for zeI'y and z € Q;{ \Q;{(é) with |z — z1]| < 40.
Finally, from (3.44), (3.46), and (3.61) it follows that

|Qj(z,2)| < s [1+ | Infz —z[|] (3.62)

for zeT'y and x € Q}" \ Q}"(é) with |z — x| < 40. (3.63)

Note that for x and z satisfying the relations (3.63) there holds the in-
equality

|z =l < V(49) + (fy +2)? = Ay,
and, therefore, if we assume that |« — z| > §, then (3.62) and (3.63) yield

1+ 29
) 3/2 -T2
Qs(e.a)| < o1+ g+ [l |1+ 40
which along with (3.36), (3.41), and (3.62) completes the proof. O

Corollary 3.5. There ezists a positive constant ag, such that

1 “+ X2 +
[(KQ;(,2)) (2)] < as i zely, zeQy.
Proof. Tt is a ready consequence of Lemmas 3.1 and 3.4. (]

Now, let us return back to the equation (3.27) and apply to the both
sides the operator K (see (3.26) and (3.28))

—5 (Ke5(,2) ()4 K (005 () (2) = Q2. ).
Due to Lemmas 3.2, 3.3, 3.4, and Corollary 3.5 we have
|(K*%; (@) (2)] = [27F (K (-, 2)) (2) + Qj(z,2)| <
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1+£E2 +
SGJW for ZGFf, Q'JGQ,
and
|(Kbj (@) (2)] = | 27" by (=, 2) + 00, GP(z,2)| <
1+ x5
ag ————————  for ze€Ty, zeQf, |z—z|>0,
<{ CTFE—ap? ! gz

as[l+|In|z —=z||] for zeTy, er;{, |z — x| <.

The relations (3.27) and (3.64) show that the principal singular part of
(2, z) near the pole x and at infinity (as |z — x| — 400) is the function
-2 8%.G(D) (z,x). Therefore we can prove the following proposition.

Lemma 3.6. There exists a positive constant ag, such that

1
ag(—+x2£)))/2 for zely, :CGQ}', |z — x| >0,
0 (z,2)| < [1;|Z—$|]
2 for zeTy, 2€Qf, |z—z] <0
|2 — | d
Proof. It is a ready consequence of estimates (3.64) and (2.4). O

3.3. In this subsection we will study the behaviuor of the tangent deriva-
tives of the functions ¢ (z,x) and V.9 (z,x) with respect to the variable
z € I'y for (z,2) € Ty x I'y. Throughout this subsection we assume that h
is a positive constant satisfying the inequality h > fi + 3 and f € B¢ .

We start with the following

Lemma 3.7. Let
K@ (y,n) = / [01/(5)6'(1)(?/75) OGP (&,m)dSe, y,meTs. (3.65)
Ly
There exists a positive constant dg, such that

ly —y" A+ Iy —y"[])
[1 + Qn(y’,y”)]3/2

n ="+ Inly —9"[])
(14 oy (', n")]?/?
fory,n, 'y 0,0 €Ty, [y —y"| <0, and |9 —n"| < 6.

Proof. We will prove the inequality (3.66). The proof of (3.67) is verbatim.
It is evident that (see Lemma 2.8)

K@y n) — K@ y",n)| <

< /Iau@)G(I)(y',s‘) —0u(6) GO (Y, )10y GP) (€, m)| dSe <
Ly

K@y n) — KP(y" n)| < s

. (3.66)

K@ (y,n') — K@ (y,n")| < b |

, (3.67)
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1

< 6 /|3u(g)G(I)(y'7§) — 0y6)GP (y", )|

Ly

We divide I'¢ into four subsets. Without loss of generality let us assume
that v} < vy, and put r := 271|y] — y{| and

My={{ely & <-8+y1}U{EeT & =85 +yi},
To:={6e€ly| -8 +y; <& <yj—-r}U
W{EeTy |y <& <y +8d},
Dy:={ el |y —r <& <) +r},
Ty={(eTy |yl +r<& <yl +r}
Further, let

1
L(z.2) = [ 1040GP0.8) - 6 "€
Ly

75 dS,
(L+]g =D 77°

7 =1,4.
Applying Lemmas 2.4, 2.5, 2.8, and (3.39) we obtain

551+ M)ly' —y'| 1
L(sa)| < dSe <
< [ L+ o'y P2 (L —n)e2 ¢

1 1 O2(1+M)|y —y"|
< + ds,
‘/[(1+|§—y’l)3/2 (L+lE—y D32 ] (1+[e—n)?2
1
[1 + Qn(y/’y//)]3/2’

3y —y"| 1
< — dSe <
—/}&@GM)(1+KnW” ¢

f

< 6102(1+ M) |y — "

|I2(z, x)

2

1 1 1
<46 y’y”/[ + ] dSe <
’ |r €=y lE—yl] rle—n32 "

51y ~ | /{ ! ! ]
- + dSe <
et ) HE T eIl
§1€nF2 " ’
el =y 10+l — ")
DL

20
I3 (2, )| + [14(2,2)| < / W

IN

dSe <

I'sul's
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2 ba

3/2
1 inf — rzul
( +§€;rslup4|£ nl) aUls

Ao VI+ L2y —y"| _  caly —y"]

3/2 — 1+ oy, y" 3/27
<1+ inf |§—77|) | nl )

£elsUTly

<

dSe <

whence the proof follows. O

Now we are in a position to show the Holder continuity property for

¥(z,x) and Vuio(z,2) = (Y12, ), 1%2(2, x)) (see (3.26)).

Lemma 3.8. There exist positive constants a1g and a1, such that

a10
< __ 3.69

a1 ]z’ = 2" (14 |In|z" = 2"]|)
[1 4 Ql-(Z',Z”)]s/Q ’

IX(2's2) = x(2",2)] < (3.70)

for z,2/,2" €Ty, zely, |F—2"<q,

where X € {ﬁ% 7/11, 1/12}

Proof. Step 1. The inequalities (3.69) follow immediately from Lemmas 3.3
and 3.6.

Step 2. Let us show the inequality (3.70) for the function . From (3.2)
we obtain

b(z2) = 267 (z,2) - 4 (KGP) () (2) + 4 (K0(,2) (2). (3.71)

Note that the kernel function of the integral operator K2 is the function
K@ given by (3.65). Taking into consideration that 2’, 2" € Ty and z € T,
with the help of (2.4) and the inequality (3.69) we get from (3.71)

V(' 2) = 92" 2)| < 2|GP) (2 @) =GP (", )|+

1+ M)(1+ h)
4 [ 10,6, GD (€)= 8,6, GD (2", ao( dSe+
F/| © (2',€) G) (=", )l 1+ € — 2|32 ¢
f
a
+ 4 /|K<2>(Z’,§) — K" ¢)| Wd&g. (3.72)
Ly

By the same approach as in the proof of Lemma 2.5 we can easily deduce
that

6P () - P, z)| < — 7 — 2]
) ) = [1 +Qm(zl’2//)]3/2

(3.73)

for 2/,2" € 'y and « € T'y,.
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The second summand in the right-hand side of (3.72) can be estimated

as the integral (3.68) in the proof of Lemma 3.7
1
/ 1006y G (2',€) = Dy eGP (", )]

——— dS, <
e —apre 2%

_ ol A+~ 2]
[1 4 QQ(Z',Z”)]?’/Q ’

The third summand in the right-hand side of (3.72) we can estimate with
the help of Lemmas 3.7 and 2.4

(3.74)

1
KOG & - K@ 6 — 48, <
JIKO ) = KOO s dS <
0¢ |2/ = 2" |(1+ | In|2" = 2"|]) 1
< dSe <
_/ [1—|—g§(z’,z”)]3/2 [1+|§—x|]3/2 [
Ly

dsS,
<5 01 1 ron 3
<05’ = 2"|(L+[In]2 Zm{/H+K PP+ E— P

/ dSe _
[+ 1€ = 2P+ e — ol | =

Ly
25156|z = 2" (14 |In|z" = 2"]|)
[+ ex(2',2")]?2
It is easy to see that (3.73)—(3.75) imply (3.70) for the function ).

The proof for the function v; is verbatim due to the equation (3.27), the
inequality (3.69) and Lemma 2.5. O

(3.75)

In what follows we show that the solutions 7 and ; of the integral
equations (3.2) and (3.27) possess the tangent derivatives (on I'y) which are
Holder continuous.

Lemma 3.9. Let f € Bey and x € I'y,. Then the solutions ¢ and 1, of
the integral equations (3.2) and (3.27) possess the tangent derivatives with
respect to z on I'y and there exists a positive constant a2, such that

10, () X(2,2)| < =

14|z —z|]3/2’

|a7—(€) X(€7x) - 87'(7]) X(T},x)| < M’
[1+ 0 (&, )]/
for Z’€7nerf’ xtha |€—77|§(57 j:1,2, V(XE[O’I)a

where X € {ﬁ% 7/11, 1/12}
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Proof. We will prove the lemma for the function v; since the proof for the

1) is verbatim.
We first show that the function

P(z,z) : = (Kp;(+, 7)) (2) =
:/[@@G@@gﬂ%@@m&,zem,zem,

possesses the tangent derivative with respect to z on I'y.
To this end we introduce a cut off function

1 for —-2<t <2,

p e C*([R),  ¢t):=
0 for |t1] >4,

0<op(t1) <1, Su%{lw(tl)l + e ()] + " ()]} =1 N < +oo.
tie

Represent P(z,x) as
P(z,z) = Pi(z,z) + Py(z, x),
where

Pi(0)i= [ [006P (2.)] vile.) L - o1 - )] dSi,

Ly

Py(z,2) := / {au(f)G(I)(ng)} Vi€, ) (21 — &1) dSe.
Ly
Note that
Or(yP1(z,7) = / {0r(:)00(6) G P (2, 6)] [1 — p(21 — &1)]—
I'i(z)

— [00(6)G P (2,€)] 0r 2y p(21 — €1)} (€, 2) dSe,

where I'1(2) :={€ € Ty | |21 — &1| > 2}

(3.76)

(3.77)

(3.78)

(3.79)

Therefore due to (2.4), (3.77), and Lemmas 3.6, 2.8(iii), and 2.4 we have

ag + 07 ag(l+N)(1+4h)

P =
Or (2 P2 (2, )] /)a+p—aﬁﬂ (1 + ¢ =)
Fl(Z)

< a
T (14 |z —x])3?

|8‘r(z/)P1 (ZI,$) - 87-(ZN)P1(ZII7x)| <

Co |ZI—Z”|
< dS: <
= / [+ 0e(2, 2P (1 + € — )32 77¢ =

Ly

ng <

(3.80)



84 D. Natroshvili and S. N. Chandler—Wilde

cs |Z’ _ Z”|
> [1+Qx(2172u)]3/2

(3.81)

for z,2/,2" €Ty, xzely, |F—272"| <.

Further we study the differentiability of the function P»(z, ) given by (3.79).
To this end let us first note that the line of integration in (3.79) is actually
the finite arc T'a(2) := {{ € T’y | |& — 21| < 4}. Therefore, the length of the
arc is bounded by the constant 4v/1 + L2. We represent Py (z,z) as follows

Py(z,x) = Po1(z,x) + Paa(z, ) (3.82)
with
Pu(ao)i= [ RO e - €060 dSe.

FQ(Z)

Pua(ao)i= ~5- [ (O tnle = € plar - €0) ¥5(6.0) de.
Ta(z)

where R(z,&) is the so—called regular part of the normal derivative of the
impedance Green’s function

1
R(2,8) : = 0,6 G (2,) + —0ue) In|2 — €] =
= Oy(e) (milz — € In|z — €] + olz — €+

+/@3|z—§|4ln|z—§|—&—/<V4|z—§|4+---); (3.83)

here k; are quite definite constants (depending on k, § and M).
From (3.83) it follows that

10-(2)R(2,8)| < calz =& Infz — €], (3.84)
|aT(z/)R(Zlaf) - aT(z//)R(ZII7£)| <
<yl = 2"+ |In|2" = &|| + |In]2" =€), (3.85)

for 2,2/, 2", £€Ty, |2/ — 2"| <4,
|Z_€|§A7 |Z,_€|§A7 |z”_€|§Av

where A > 0 is some constant and ¢4 depends only on M, 4, k, and A.
With the help of (3.83), (3.84), and (3.85) along with Lemma 3.6 we
deduce

10,00y Pt (2,2)] < / 10,0 [R(=,€) (1 — €0)]] [y (€, 2)| dSe <
I2(z)

/ dS& 465\/ 1+ L2
<ecs (

<

<
T+lg=al” = 7=
Ta(z) <1+ inf |§—x|)
§€Ta(2)
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<7 < €Ty, zely, (3.86)

14|z —x|]3/2’
|aT(Z/)P21(Z/7 l‘) - aT(z”)PQI(ZN; 1')| <

S/ |07 () [R(2', ) p(21 = &1)] = Or 2y [R(2", §)p (2] — £1)]1; (€, @)|dSe <
Ly

(L4 [Injz" = ¢[[+ [ In]z" = €] ])

< /7 1 dS <
<crlz' = 2" AT €2 e <
Ty (2 )Ul'2(2")
cs |Z/ o Z//|
- m. (3~87)

Before we start to study the function Psa(z,x) let us recall some basic
properties of the harmonic logarithmic kernel:

(i) a.,-(z)al,(g) In |Z - €| = 8,,(2)8.,-(5) In |Z — §| =

O T() ) (€ 2] (o) (€ )]
=gz 7 o |
(i) K" = 0100 [Guig Il ~ €D pler — )] K" (9] < -5,
K — K0l < e
(3.88)
Gl —e

K* ! 7K* 1"
| (275) (Z,g )| S [QZ(§/7§//)]27

where £,&',¢",2,2',2" € Ty, |2/ — 2] <6, and |¢' — £”| < 0; the constant
¢} depends only on M. Moreover, the function

5'(:) =0y [ BugInl — €l s (3.89)
I2(2)
exists for all z € I'y and is a Lipschitz continuous function, i.e.,
lg*(2") —g* (") < b |2/ = 2"| for |2/ —2"| <4 (3.90)

with the constant c5 depending only on M.

Taking into consideration that K*(z,£) has a compact support I's(z)
with respect to £ for a fixed z and applying the differentiation formula for
potential type integrals with weakly singular kernels we get (see, e.g., [10],
Theorem A32, formula (A19), Remarks A33 and A34):

0 Paless) =~ [ K (&) W5(6:2) = w52, )] dSe—
Ly
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1
- % wj(zax) g*(Z),

whence it follows that (see Lemma 3.8, (3.88), (3.89), and (3.90))

|aT(Z)P22 (Za ‘T)| <

S L[ A a0 e g
FQ(Z)
1 aio Co
1 a0 )< —D (301
T e SRS e GO

Let us now consider the difference
Or () Pa2(2', ) — 07 oy Paa (2", ) = I + Ir + I3+
b o W5 2) ' (")~ 05(2,2) 6" ()], (3.92)
where

h:/kﬂéom@m—%MMM%
r

h:/WM%WMw%%W%W%
r

I3 ¢:/{K*(Z',ﬁ)[%(f,:v)*%'(z',w)]*K*(Z",S)Wj(E,Z)*Tﬁj(z"vﬂf)]}dsév
[y
Iy :={S el | & — 21 < 4VI1+ L2z — 2]}
Clearly, |21 — 27| <|2' = 2"| < V1+ L%z} — 2|

Using the relations (3.88) and Lemma 3.8 we derive

¢ awlg— I+ Infe = |
|Il| < / |Z’ _€| dS§ <
Iy

[T+ 04(&, )22

Cfalo
> [1_’_9%(2/72//)]3/2

/u+|mmfamd&s

1

e |2 = 2" (1+ | ]2 = 2"| )
N TN ) R

and, analogously,

(3.93)

e |7 = 2" (14| ]2 = 2"|)

L] <
| 2| = [1 _'_Qx(zl7z//)]3/2

(3.94)
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Further we have (see (3.88) and Lemma 3.8)

1) < / (K" (2, €) — K*(2", )] [y (€. 2) — ()] |+

Lp\IY

+ K727, ) [v;(2", 2) — ¢ (2, 2)] |} dSe <

c [ GlE=2] el 10+ ke A1)

[oc(2', 2")]2 1+ 04 (€, 2/)]3/2 dSe+

*
2

a10|z'—z”|(1—|—|ln|z'—z”||)/ c S
1+ 0u(#/, 22 =g
rs;

where I'y := {{ € Ty \ Ty | min{z{, 2} — 4 < & < max{z{, 2{} +4}.
Note that,

Eel; = -2 < VI+ L6 -2 <
<VI+L2(4+ |21 — 2] < V1+ L2 (4 +9),
€= 2" <1+ L%(4+9),
61— 21 > 4V1+ L2 |2 — 2] > 4]/ — 2",

€= 24l =2, |e—2"| 23] — 2|

Therefore,

|I3] <

ciz |2 — 2" /1+|1n|§—z’||d5€+

[1 + gm(z’,z”)]3/2 |§ _ Z’|

*

2

ci3)2’ —2"|(1 + |In|2'—2"]|)?

+ [1 + Qx(Z/,Z”)]3/2 -

c1a]2 —2"|(1+|In|2"—2"|)?
[1+Qx(zla Z//)]S/Q
With the help of Lemma 3.8 and (3.90) we get
(2", 2) g7 (2") — (¢, 2) g7 (2")] <
05 (2", x) = 3 (2", o)l g™ (2")] + | (2", )| g™ (") — g7 ()] <

cs |2 = 2" (14| In|z" = 2"]|)

(3.95)

IN

< 0T 0.(2, 22 (3.96)
In view of (3.92)—(3.96) we conclude
T (1 1 I )2
9oy Pos (2 )~ P (o ) < 02— MLm= 2T 5 )

[1 + Qx(Z',Z”)P/Q
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By estimates (3.86), (3.87), (3.91), and (3.97) from (3.82) we have
C17
T+ 1 — a2
roy " ciz|2’ — 2"[(1+]In |2’ — 2"||)
|8‘r(z/)P2(Z 7x) a‘r(z”)PQ(Z 7x)| < [1 + gm(z’,z”)]3/2

Finally, the estimates (3.80), (3.81), and (3.98) along with (3.78) lead to
the relations

|8T(Z)P2(Z) $)| <
(3.98)

C18
(1+ ]z — )32’

/ " cisl2’—2"|(1 +[In |2'—2"]))?
|0;:nP(2',2) =0 P (2", )| < T ou(2, 22

for z,2/,2" €Ty, x €Ty, |2/ — 2| <.
Now the proof of the lemma follows from (2.4), (3.76), (3.99), Lemmas
2.5 and 2.8, and the equality (cf. (3.2), (3.27))

Vi(z,2) = =2 0,,GP)(z,2) + 2 (Kpj (-, 2)) (2), 2€Ty, €Dy 0O

|aT(z)P(Zv ’l,’)| <
(3.99)

4. UNIFORM BOUNDS FOR THE DIRICHLET GREEN’S FUNCTION AND ITS
DERIVATIVES

In this section we will estimate the so—called regular part V(y,x) of the
Dirichlet Green’s function defined by (2.12) and its derivatives. This leads to

the corresponding uniform bounds for the function Gng)(y7 x) on Q;ﬁ X Q;ﬁ
4.1. We start with the following proposition.

Theorem 4.1. Let f € By and (y,x) € Q;{ X Q;{ Then there exists a
positive constant Cy, such that

Ci(1 1
W02 0E22) oy oy ol +ly—T1 26,
V(y,z)| < 1+ ]z -yl (4.1)

Cill + Iz —yll]  for |z—y|+|z—2|+|y—] <5,

where V(y, z) is a unique solution of the Dirichlet boundary value problem
(2.10)~(2.11), and T and § are points on I'y nearest to x and y, respectively.

Proof. As we have mentioned above (see Subsection 2.6), the solution V (-, z)
of the BVP (2.10)—(2.11) can be represented (in Q}') by formula (2.12) with
the density function (-, 2) which solves the integral equation (2.13). We
rewrite (2.12) as follows

Vo) = [ [0406P 0.9 vie)dse -

Ly

_ / 040G P (5,6 | P (¢ 2) dSe+

Ly
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+2 / 000 GP .0 | (Ku(,2))() dSe, yaeQf xQf. (42)
Ly
Due to the estimates (2.4) and Lemma 3.2 it follows from (4.2) that a
principal singular part of V(y, z) is the function —2W (y, x), where

W) = [ [0,06P0.9)] 6P¢.0)dse (43)
Ly
(cf.  the estimates (2.4) and (3.22) for the function GP)(¢ z) and
K(-, z))(§), respectively). Therefore it suffices to obtain the bounds (4.1)
for the function W (y, ).

To this end we consider separately the four possible cases:
() 22> f4 42, y2= fo +2, (i) 222 f1 42, y2<f4 +2,
(i) 22 < fy +2, y2 > f4 +2, (iv) 22 < fh +2, y2 < fi +2.
Case (i). Since in the case under consideration |z —&| > 6 and |y —¢&| > §

for any £ € I'y, with the help of bounds (2.4) and Lemma 2.4 along with
relations (3.9)—(3.11) we have

(4.4)

a(l+y2)d+22)
|W(y,x)|§/[1+|£yH3/2[1+|§x|]3/2

Ly

dSe <

o 2l +y2)(1 +22)
T [yl P
Case (ii). Let r := |z — y| and consider the two sub—cases:
(i), r>2(fr+2), (i), r<2(fy+2).
Sub—case (ii);. We denote

Fye={¢eTylly—¢& <r/2}, To=T;\I.

It is evident that
>0

)

€€F1 — |1‘—§|2

N3

§€F2 g |y75|2 253 |CE*£|Z(5,

N3

since f1 +2 > 4.
Therefore by (2.4), (4.3), and Lemmas 2.7 and 2.4 we derive

Wy, )| < /|au(§)G(I)(y’€)| ao(1+ M)(1 + 22)
I

dSe <
FENTEEEEE

/ ao(1+M)? a1+ M)(1+ x2) dSe <
= /1 <

L[ —ylP2 [1+ 16— =[]

2
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63(1 + (ﬂg) T
STLrpi /|f9v<s>G( (4,6 dSe+
Ly

dSe -
[1+[€—ylP2[1+ ¢ —a|]32 =

+ ca(1 + x2) /
Ly
< (l+yo)(1+22)
T [ty
Sub—case (ii)2. Note that xzo < |z2 — yo| + |y2| < 3(f+ + 2) and apply
again the bounds (2.4) and Lemma 2.7 to obtain
aO(S + M)(l + z2)
[1+1€6—=[]3/2

|Wmmm/wmﬁmmo| dSe < o6 <

Iy

(1 +y2)(1 + x2)
[14 |z —y|]3/2°

Case (iii). It is quite similar to Case (ii) and we easily arrive at the
inequalities obtained in Sub—cases (ii); and (ii)s.
Case (iv). Put ry := |y; — x1| and consider the two cases:
(iv); 1 > 26, (iv)y 71 <26

Sub—case (iv);. Denote

Lyi={&ely |6 — x| <ri/2},
Iy = {f ely | |€1 *y1| < 7’1/2},
[3:=T;\{T1UT2}.

<cgll +2(fy +2)?

It is evident that

§el = ly—¢lz 520

fel: — fo—¢l2 3
T
2
Therefore in view of (2.4), (3.9)—(3.11), Lemmas 2.4 and 2.7 we deduce

a 2
|Wmmm/“°@*M)

£ely = |r—¢>2L >0, |x—§|2%26.

T+ =y P2 |G, )| dSe+

ao(3+ M)?

——d
[T+ IE — el 2 ¢

+ / 10,6)GP(y, €]
T2
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a%(3+M)4
*/[1+|5y13/2[1+|5x|13/2 @5 =

3

< cr(l+22)(1 +y2)

T [tz —yl]P2
Sub—case (iv)a. Since r1 = |x1 —y1| < 28 we have |z —y|? < 4[0%2 + (f4 +
2)?] =: A2
We consider the two possible cases
| — 7| < Kolz — ¥ (4.5)
and
2 — 70 2 ol — o, (46)

where, as above, T is a point on I'y nearest to x and ko = (124;) L.
Let there hold the inequality (4.5) and represent W (y,x) as follows

W(ya ‘T) = Wl (ya LIJ) + WQ(ya :C) + W3(ya :C)a (47)
where
Wj (yax) = / [au(ﬁ)G(I) (yag) G(D)(f,iﬂ) dS§7 j = 172337
Ly

with

Fyi={ely | & —yl = 46},

Iy = {fEFf | |§17y1|§45, |£7f| §2I<L0|937y|}, (48)

Ly :={§ €Ty | [&1 — 1| = 46, |€ = 7] = 2r0lx — yl}.
Clearly

el = [& —x1|>20, [&— | > 49,
and therefore, by (2.4)

Wi (y, 2)] g/

1

a3(3+M)4
[T+ €=y ]32[1 + [ — x]]3/2

dS§ S Csg. (49)

Before we start to estimate the functions Wy and W3 let us note that

1) £€ToUTs = [€—2|<[(88)2+(f++2)%2 = Ag, [€—y| < As;
2) (el = |~y > (1 —3ro)|lz —y| >2" |z —yl,
|€—z|>27 T =€ > 27 7 — &,

N

44,

14, |

1§ — |
In =—-
‘n 24,

S ‘

S ‘
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3) €T = [§ -2 2§ —Z| - |z — 7| = Kolz —yl,
|§ — = Koly — 2
g | g el
‘n 24y || 24,

We employed here that |Ilnt¢] is a decreasing function for ¢; € (0,1).
Using these relations along with (2.4) and Lemma 2.7 we deduce

a2l +|Inlé —z
Waly. o)l + Waty.a)| < [ e s
s
+ [ oGOl an 1+ | tufe —a  dSe <
s
2Kko|z—y|
<o |/ 1+]|1Inft:||]dtr +
|z —yl
—2kKo|z—y|

+ [+ Iz / 19,6)G® (4,6)] dSe| <

Ly
<ecp[l4|In|z—yl|. (4.10)
It is evident that (4.7), (4.9), and (4.10) yield
Wy, z)] < cun L+ In|z—yll] (4.11)

for x and y satisfying conditions (iv)s and (4.5).
Now we assume that there holds (4.6) (along with (iv)2) and decompose
W (y,x) as follows

W(y,z) = Wi (y, ) + W3 (y, ), (4.12)
where
Wj*(y7x) = / |:8V(£)G(I)(ya€):| G(D)(gax) dS&a .7: 1,2;
F;f

here I'; :=T'; and I’y :=T'y \ I';, where I'y is defined by (4.8).
By the same arguments as above (see (4.9)) we easily deduce

W ()] < era (4.13)
Note that (see (4.6) and the items 1) and 3) above)
el =6 —a| > |z —7| = role —yl,
€= al = [(89)” + (f+ +2)%)/% = Az,

e—al| | molz—y
24, 24, ’

<
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Therefore with the help of (2.4) and Lemma 2.7 we get

|W@@@nSag/mwwﬂﬂ@@nu+\mm—xm¢%s
rs

< en [+ nfe = ol1) [ 106D (0. €)]dSe <
Ly
<cua[L+] lnfa — o). (a.11

Due to (4.12), (4.13), and (4.14) we arrive at the inequality (4.11) for « and
y satisfying the conditions (4.6) and (iv)s.
Further we show that, if either

|$_f|267 x2§f++2a y2§f++2a |x1—y1|§25, (415>
or
|y_y|267 x2§f++2a y2§f+ +27 |x1—y1|§25, (416>

then W (y, x) is uniformly bounded by a constant depending only on M, §,
and k. Indeed, by (2.4) and Lemma 2.7 we have

ao(l —|—M)(1 +.T,‘2)
[141¢—=[]32

IW@wﬂs/@@ﬁm@@I dSe <
Ly

< ao(3 + M) / 10,6/ (3, )] dSe < ao(3 + M)6,4

Ly

if  and y satisfy (4.15), and

ao(l+ M)(1
Wi < [ 4

IGP)(€,2)| dSe <

< ap(3+ M)? / |GP) (¢, 2)| dSe < ao(3 + M)25,

Ly

if z and y satisfy (4.16), i.e.,

c15(1+ y2)(1 + x2)
W (y,z)| < [1+ |z —y|]3/2

if  and y satisfy either (4.15) or (4.16).

Thus, W (z,y) has a logarithmic singularity O(In |« — y|) if and only if
the both points x and y are situated on I'y, and the uniform bounds given
n (4.1) hold. O
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Corollary 4.2. Let f € Bey and (y,z) € Q;{ X Q;{ Then there exists
a positive constant Cy, such that
Co(1+ y2)(1 + x2)
D
GP o) < [T+l -yl
Coll+|In|z—y||] for |z—y| <4,

for |z —y| >4,

where G}D) (y,x) is the Dirichlet Green’s function for the Helmholtz operator
given by (2.9).

Proof. 1t is a ready consequence of the bounds (2.4) and Theorem 4.1. O

4.2. Here we investigate the first order derivatives of the function V (y, x)
and G;D)(y,a?). Due to the symmetry property of the Green’s function

G}D)(y,aﬁ) = G;D)(x,y), it suffices to study the properties of derivatives

with respect to the variable x.
From (4.2) it follows that for (z,y) € Q}" X Q}'

0.,V (w2) = [ 00 GD0.9)] 01,016, ) dSe =

Ly
= _2Wj(yvx) +2/ [aV(E)G(I)(yag)} (K:a%w(,a?))(f) dSe, j=1,2,
Ly
where Wj(y, ) := 0., W (y,x) (see (4.3)), i.e.,
Ly

Theorem 4.3. Let f € B. v and (y,x) € Q}' X Q}" Then there exists a
positive constant C3, such that

C3(1+ 1+ _ B
f1(+|xy2)( I]3/€2) for |z —y|+|x—7|+|y—7| =9,
102,V (y, 7)| < Y (4.18)
J 03 B 3
for |z—y|+|z—T|+|y—yl <9,
lz—yl

where T and y are points on I'y nearest to x and y, respectively.

Proof. Due to the estimates (3.64) and (2.4) we see that a principal singular
part of .,V (y,z) is —2W;(y,z). Therefore in what follows we will study
the behaviour of the function W;(y, x) defined by (4.17).

As in Theorem 4.1 we will consider separately the four possible cases
(i)—(iv) described by the inequalities (4.4).

Cases (i)—(ii) can be considered by the same arguments as in the proof
of Theorem 4.1 to obtain
c1(1+y2)(1 + 22)
Wiy, z)| < [1+ [z —y[]32

(4.19)
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for {za > f1 +2, yo > fr + 2} or {z2 > fy +2, y2 < f1 +2}.

Case (iii), i.e., {z2 < f+ +2, y2 > f4 + 2}

If |x — 7| > d, with the help of (4.17), (2.4), and Lemma 2.4 we easily
derive an inequality of type (4.19).

If |z — Z| < 4, then we represent W;(y, ) as follows

Wily,z) = W (y,2) + W2 (y, ),

where
Wi (y,2) = / [0,0GD(w.€)] 0, 6P (¢ 2)dSe, p=1,2
FP
with
Dy:={Sely|[€ -7 226}, Ta:=Tf\Iu.
Since

el = |€—$|2(5,
by the bounds (2.4) and Lemma 2.4 we get

(1) co(14+y2)(1 4 22)
[/]7. < .
| 7 (yvx)|— [1 |x—y|]3/2

Since
el = 0y(6,T) 247 o —yl,
for Wj@)(y,a?), in view of (2.4), (3.9)—(3.11), and Lemmas 2.5 and 2.6, we

have

W (y,2)] < / |00 GD (4,€) = 9 GP . 7) | |02, GP) (€, )| dSe+
T

10 G (,7) | [ 0,,6P(¢, ) dSe| <
135
</52|§*f|(1+y2) ao
— ) [ +0y(&T)]32% € -2

03 ag (1 +y2)(L+ M) _ ca(l+y2)(1 + 22)
[L+fe—yl]32 7 [1+|z—y|]P?
Combining the results obtained we see that in the case under consideration
the estimate of type (4.19) holds true.
Case (iv), Le., {z2 < f4 +2, yo < f1 +2}.
In addition, if one of the following conditions
1) |x_§|267 2) |y_g|26> 3) |y_x|26

holds, then with the help of bounds (2.4), and Lemmas 2.4, 2.5, 2.6, 2.7,
along with (3.9)—(3.11) and arguments applyed in the previous case, we ar-
rive at the inequality of type (4.18) (cf. the proof of Lemma 3.4). Therefore

dSc+
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it remains to consider the situation when
lz—Z| <6, ly-yl<d,  fy—al<o (4.20)
In what follows we assume that the inequalities (4.20) hold and let
11 :={§ €Ly | & — 1] > 40},

Y2 ={{ €Ty | &1 — o] <46} =Ty \ .

Clearly,
Wiy, z) = Wii(y, ) + Wja(y, z), (4.21)
with
Wplvna) = [ [040GD0.9)] 0,6 ¢,0)dSe, p=1,2. (422)
Tp
Since

femn = oelz,y) =6,
we easily show that

ds,
Wi (y, )] S/[1+|€y|}§j2[1€+ S (4.23)

71

Further we will estimate Wj2(y, ). To this end we consider the two possible
cases:

(a) |z -7 <8 Mz —yl, () o —7 > 8 a —yl. (4.24)
Sub—case: (4.20) and (4.24) (a).
Denote r := |z — y| and

o1 ={cy||E-T <4}, o:=9\o1.
Clearly,

Eey = |lz—¢>271 T ¢,

5r _ r
E€eo = |€—y|2§7 |€—y|257

€0y = [£—1z| >

ool =3

We represent Wjs(y, ) in the form
Wia(y, z) = Li(y,x) + LI2(y, x),
where

IQ(yaI) = / [&z(f)G(I)(%O axJG(D)(gax) dS&a qg=12.

Tq
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Applying the inequalities (2.4), Lemmas 2.5, 2.7, and 2.8(ii) along with the
arguments employed in the proof of inequalities (3.55) and (3.56), we derive

g1

4 18y Dy, 3| / 0, GP(¢, x) dSe| <

C5|§7f| 1 6
ds,
S/[gy@,w [ i

|2 / ng-f—

/ 9:,GP) (€, x) dSe |+

o2

/al,G (€, 7) dSe

<

Ix—yl

B2 < []066D .6 | 0,6 (6.0)] dse <

o2

< @ <

€10

< .
lz -yl

These relations lead to the inequality

C11
Wia(y, )| < . 4.25
Win(y.a)| < 2 (1.25)
Sub—case: (4.20) and (4.24) (b).
In the case in question we have
€y = |r—¢>[T—2|>87r—yl,
and therefore from (4.22) by (2.4) and Lemma 2.7 it follows
ag C12
Wia(y, )| < / ‘ eGP (y, &) | ——dSe < . 4.26
[Wia (9, 2) OGO | g WS (420

V2

Now, from (4.21), (4.23), (4.25), and (4.26) we see that in the case under
consideration

€13
lz =yl
Thus we have established the inequality (4.18) for the principal singular
part of the function 9.,V (y,z). This completes the proof. O

(W (y, z)| <
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Corollary 4.4. Let f and G;D)(y,a?) be the same as in Corollary 4.2.
Then there exists a positive constant Cy4, such that

Cy(1+y2)(1 + x2)
(D) (D) [1+ [z —y|]3/2
|z -y

for |z —y| >4,

for |z —y| <4,

where (y,z) € Q}" X Q}'

Proof. Tt readily follows from the symmetry property of the Green’s function

G}D)(y, x) = G;D)(x,y), Theorem 4.3, formula (2.9) and bounds (2.4). O

4.3. In this subsection we will find uniform bounds for the second order
derivatives of the Green’s function G;D)(y, z) for y € T'y and x2 > f4.
First we prove the following proposition.

Theorem 4.5. Let f € Bom, y € F}", and x € 'y, with constant
h > fy + 6. Then there exists a positive constant Cs, such that
Cs

am'ay 14 ) S—a
|02; O 2)V (45 )] [1+ |z —y| P2

where V(y, x) is the regular part of the Dirichlet Green’s function G;D)(y, x)
given by (2.12)—(2.13).

Proof. Let ¢ be the function given by the relations (3.77). In view of (2.12)
we have

V(y,z) = Vi(y,z) + Va(y, x), (4.27)
where
‘/l(yvx) = / [au(E)G(I)(yag)} [1 - 90(51 - y1)]¢(fﬂ«") dS&? (428)
Ly
Vo) = [ (00000 el - vieadse  (429)

Ly

Note that the integrands in (4.28) and (4.29) vanish when |1 — y1| < 2 and
|€&1 — y1| > 4, respectively, due to properties of the function ¢.
Denote

Fyi={{ely| & —uyi] > 2},

Ly :={ el |6 —wnl <4}
From (4.28) it follows that

aazj al/(y)‘/l(ya :C) =
= / [ay(y)au(f)G(I) (y,f)} [1— @& —y1)]¥;(€,z) dSe+

I'y
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+ [ 006D 09| ) /62 )l (€ dSe,

I

where (&, x) = 0,,¢(§,2), j = 1,2, and (y,7) € Q}" X Q}'
With the help of Lemmas 2.4, 2.8(iii), 3.6 and (3.77), and since the
integrand is a continuous function of y € QF, we obtain

1 1
[T+ Jy = €117 [T+ 1€ — [P

dSe <

|aa:j al/(y)‘/l(ya :C)| = /

1

< @ yeTy, xely; (4.30)

)y
here and in what follows ¢ with subscript denotes positive constants de-
pending only on ¢, M, k, §, and h.

Further, we estimate 0;,0,,)Va(y,2), j = 1,2. To this end recall that
(see (2.1), (2.3), (2.20))

1
GPy, &) = =5 Inly — €[+ ¥(y,¢)
™
for y € Q}', Eely, 0<|y—¢ < A=const, (4.31)
where ¥(-,-) and its first order derivatives are continuous and the second

order derivatives possess a logarithmic singularity.
The equalities (4.29) and (4.31) imply

00, Va(w2) = [ {[0,00u0GP0:9)] wl&s —m) -

Ly
~ 000G P W O] W) (€1 —v) v (€. x)dSe =

= Xl(y;QT) +X2(y,$), (432)

where z € I'y, y € Q;{ \Q;{(é) (see (3.30)), and
Xi(y, z) :/{[0,,(9)81,(5)\1/(3/,5)] e —y1) —
Ly

~ [0 G w,0] nw¢' & — ) s a)dSe,  (4.33)

1
Xalu.) = =5 [ [Butdutey Iy = €l] 9(€r — ) 5 (€,) dSe.

Ly
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With the help of (3.77), Lemmas 2.7 and 3.6, and properties of the function
U(y,x), we deduce

C3

1+ inf |€ —
+§lenr2|§ x|

< {1+ mly—el)+ 6@ w01} dse <

I

< [ “ for yeTy, zely. (4.34)

(AP

Next we estimate X»(y, z). Note that d,(,)0,(¢) In|y — & is a hypersingular
kernel on I'y and we have to transform the expression (4.33) before we pass
to the limit as y approaches I'y.

It can be easily checked that for an arbitrary two times differentiable
function g there holds the equality

() Ou(e) 9(y — &) = W(§) - v(y)) Ayg(y — &) — Or(y)0r(e) 9(y — &)-

Since In |£ — y| is a harmonic function for y # £, we have
Ou()Ouie)y [y — &l = Or(y)Or ) Infy — €.

Therefore for x € I'y, and y € Q}' \ Q}'(é) we can rewrite Xo in the form
(with the help of the integration by parts formula)

1
Xo(y,x) = %/[37(@37(@,) In |y — &l — y1)v;(€,x)dSe =

Ly
1
- _%/[&(y) Infy — €10 [p(E&1 — y1)¥;(& 2)]dSe =
Ly

= Xy, 2) + X5 (y, @), (4.35)
(1) 1
X2 (y,x) = 7% /[aT(y) 1n|y - 5”[87'(5)90(51 - y1)]?/fj(§,=’ﬂ)d5§a (436)
Ly
(2) 1
X7 (y,x) : = o0 /[aT(y) In |y — &|Je(§1 — 1) [0 (6)¢5 (€, 2)]dSe. (4.37)
Ly

Due to properties of the harmonic logarithmic potential (see [23], §12, §14)
we can assume y € Q;{ \ Q;{(é) in (4.35)—(4.37) (remark that the potentials
(4.36) and (4.37) have no jumps when y crosses the line I'y and that the
function 9,y In |y — & is a singular kernel on I'y). Moreover, the line of
integration in (4.36) is the arc

re={el|2< (& —yl <4}
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By Lemma 3.6 then we have for y € I'y and z € I'y,

(1) C4dS§ Cq
X5 (y,x S/ < .
S B e e TR PR
f

It remains to estimate X 2(2)(y, x), which can be rewritten as follows

1
X@@@%>5;ﬂ&@mwfmw@me&@%@wF
Ly

— Or(y)¥j(y, )] dSe—

(4.38)

1
5 (07 ()Y (y, )] /[aT(y) In|y — &[] p(&1 — y1) dSe.

Ly

Applying Lemma 3.9 (with o = 1/2) and the inequality (see, e.g., [23], §14)

/[3T(y) 1n|y - f” 90(51 - y1)dS£ < / 3T(y) In |y _ €| ng
Ty oy
+ / |07y In |y — &| | dSe < cq,
IS
we derive

X2 (y,2)| < er

<%
Tty =32
Consequently, in view of (4.35), (4.38), and (4.39) we get

Co
Xo(y,2)| < —— 2
| Q(y )| = [1+|y—x|]3/2

From (4.32), (4.34), and (4.40) it follows that

for yEFf, zely.

for yel'y, zely.

€10
[1+ |y — =]]3/2
which along with (4.30) and (4.27) completes the proof.

for yeI'y, x €Ty,

+

1 [ 1
d —_— [ <
F/Ié—yl 1+ 0.(&y))*? e [1+|y—w|]3/2] -

(4.39)

(4.40)

O

Corollary 4.6. Let f and h be the same as in Theorem 4.6. Then there

erists a positive constant Cg, such that
Cs

O Dy GYF) < ———
| K (y) f (y7x)| — [1+|x7'y|]3/27

where GSCD) (y,x) is the Dirichlet Green’s function given by (2.9).

Proof. It follows from Theorem 4.5 and the bounds (2.4).

for yel'y, xzely,
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