
Memoirs on Differential Equations and Mathematical Physics

Volume 30, 2003, 105–146

David Natroshvili, Tilo Arens, and Simon N. Chandler-Wilde

UNIQUENESS, EXISTENCE, AND INTEGRAL

EQUATION FORMULATIONS FOR

INTERFACE SCATTERING PROBLEMS



Abstract. We consider a two-dimensional transmission problem in which
Helmholtz equations with different wave numbers hold in adjacent non-
locally perturbed half-planes having a common boundary which is an infi-
nite, one-dimensional, rough interface line. First a uniqueness theorem for
the interface problem is proved provided that the scatterer is a lossy ob-
stacle. Afterwards, by potential methods, the non-homogeneous interface
problem is reduced to a system of integral equations and existence results
are established.
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1. Introduction

We consider a two-dimensional transmission problem for the Helmholtz
equations (reduced wave equations) in non-locally perturbed half-planes Ω1

and Ω2 having a common infinite boundary which is assumed to be the
graph of a bounded smooth function. These type of mathematical problems
model time-harmonic electromagnetic and acoustic scattering by a pene-
trable unbounded obstacle in an inhomogeneous (piecewise homogeneous)
medium. In both domains we look for scattered waves corresponding to dif-
ferent wave numbers and satisfying certain transmission conditions on the
interface. In addition, the scattered waves satisfy the so-called upward and
downward propagating radiation conditions (UPRC and DPRC) along with
some growth conditions in the x2 direction, suggested by Chandler-Wilde
& Zhang [9], which generalize both the Sommerfeld radiation condition and
the Rayleigh expansion condition for diffraction gratings (see also [24], [4]).
In [8], with the help of the appropriate integral equation formulation, it
is shown that the Dirichlet problem for a non-locally perturbed half-plane
has exactly one solution satisfying the UPRC, provided that the boundary
datum is a bounded and continuous function. This result is valid for all
wave numbers and holds without any constraints imposed on the maximum
boundary amplitude or slope.

An important corollary of these results in the scattering theory is that for
a variety of incident fields including the incident plane wave, the Dirichlet
boundary-value problem for scattered field has a unique solution (for detail
information concerning the history of the problem see, e.g., [8] and references
therein.)

In this paper we first prove the uniqueness theorem for the interface prob-
lem provided that an obstacle Ω1 represents a lossy medium, which means
that the corresponding wave number is complex. Afterwards we apply the
potential method to reduce the non-homogeneous interface problem to the
corresponding system of integral equations and establish existence results
on the basis of the theory developed in [11] and [1] for a class of systems of
second kind integral equations on unbounded domains.

2. Formulation of the Interface Problem. Preliminary

Material

2.1. Here we introduce some notation used throughout.
For h ∈ R, define Γh = {x = (x1, x2) ∈ R2 | x2 = h} and U+

h = {x ∈
R2 | x2 > h}, U−h = {x ∈ R2 | x2 < h}.

For V ⊂ Rn (n = 1, 2) we denote by BC(V ) the set of functions bounded
and continuous on V , a Banach space under the norm ‖ · ‖∞,V , defined by
‖ψ‖∞,V := sup

x∈V
|ψ(x)|. We abbreviate ‖ · ‖∞,R by ‖ · ‖∞.

For 0 < α ≤ 1, we denote by BC0,α(V ) the Banach space of functions
ϕ ∈ BC(V ), which are uniformly Hölder continuous with exponent α, with
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norm ‖ · ‖0,α,V defined by

‖ϕ‖0,α,V := ‖ϕ‖∞,V + sup
x,y∈V,x6=y

[ |ϕ(x) − ϕ(y)|
|x− y|α

]
.

Given v ∈ L∞(V ) denote by ∂jv, j = 1, 2, the (distributional) derivative
∂v(x)

∂xj
; ∇v = (∂1v, ∂2v).

We denote by BC1(V ) the Banach space

BC1(V ) := {ϕ ∈ BC(V ) | ∂jϕ ∈ BC(V ), j = 1, 2}

under the norm

‖ϕ‖1,V := ‖ϕ‖∞,V + ‖∂1ϕ‖∞,V + ‖∂2ϕ‖∞,V .

Further, let

BC1,α(V ) := {ϕ ∈ BC1(V ) | ∂jϕ ∈ BC0,α(V ), j = 1, 2}

denote a Banach space under the norm

‖ϕ‖1,α,V := ‖ϕ‖∞,V + ‖∂1ϕ‖0,α,V + ‖∂2ϕ‖0,α,V .

2.2. Given f ∈ BC1,α(R), 0 < α ≤ 1, with f− := inf
x1∈R

f(x1) > 0 and

f+ := sup
x1∈R

f(x1) < +∞, define the adjacent two-dimensional regions Ω1

and Ω2 by

Ω1 = {x = (x1, x2) ∈ R2 | x2 < f(x1)},
Ω2 = {x = (x1, x2) ∈ R2 | x2 > f(x1)},

so that the interface Γ is

∂Ω1 = ∂Ω2 = Γ := {(x1, f(x1)) | x1 ∈ R}.

Whenever we wish to denote explicitly the dependence of the regions and

interface on the function f we will write Ωj,f or Ωf
j for Ωj (j = 1, 2) and

Γf or Γf for Γ.
Further, let n(x) = (n1(x), n2(x)) stand for the unit normal vector to Γ at

the point x ∈ Γ directed out of Ω1, and ∂n(x) = ∂/∂n(x) = n1(x)∂1+n2(x)∂2

and ∂τ(x) = ∂/∂τ(x) = n2(x)∂1 − n1(x)∂2 denote the usual normal and
tangent derivatives with respect to Γ.

2.3. Now we formulate the interface problem which models the scattering
of acoustic (or electromagnetic) waves by the penetrable unbounded obstacle
Ω1. The incident plane wave uinc(x) = eik2(x·d), x ∈ R2, with d = (d1, d2) ∈
Σ1 := {(ξ1, ξ2) ∈ R2 | ξ21 + ξ22 = 1} the propagation direction, will produce
a scattered wave u2 in Ω2 and a transmitted wave u1 in Ω1. Note that one
could also consider other types of incident waves, e.g., the so-called point-
source waves, rather then plane waves. The waves u1 and u2 are annihilated
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by the Helmholtz operators (reduced wave operators) ∆ + k2
1 and ∆ + k2

2 ,
respectively, i.e.,

(∆ + k2
1)u1(x) = 0, x ∈ Ω1, (2.1)

(∆ + k2
2)u2(x) = 0, x ∈ Ω2, (2.2)

and satisfy the so-called conductive interface (transmission) conditions on
Γ (cf. [13], [14], [18], [16], [17], [21])

u2(x) + uinc(x) = u1(x), x ∈ Γ, (2.3)

µ∗2
k2

∂n(x)[u2(x) + uinc(x)] =
µ∗1
k1

∂n(x)u1(x), x ∈ Γ, (2.4)

where ∆ is the two-dimensional Laplacian and we assume that

µ∗1, µ
∗
2, k2 ∈ R+ := (0,+∞), k1 = λ1 + iλ2,

λ1 = Re k1 > 0, λ2 = Im k1 > 0.
(2.5)

We set

µ :=
µ∗1
µ∗2

k2

k1
=

µ∗1k2

µ∗2|k1|2
(λ1 − iλ2) = µ1 + iµ2,

µ1 =
µ∗1k2λ1

µ∗2|k1|2
> 0, µ2 = −µ

∗
1k2λ2

µ∗2|k1|2
< 0.

(2.6)

The functions u1 and u2 have to satisfy additional restrictions at infinity
which guarantee the uniqueness. To formulate these conditions we introduce
some notations and definitions.

Denote by

Φk(x, y) :=
i

4
H

(1)
0 (k|x− y|), (x, y) ∈ R2, x 6= y, (2.7)

the free-space Green’s function (fundamental solution) for the Helmholtz

operator ∆ + k2; here H
(1)
m is the Hankel function of the first kind of order

m.

Definition 2.1. Given a domain G ⊂ R2, call v ∈ C2(G) ∩ L∞(G) a
radiating solution of the Helmholtz equation in G if ∆v+ k2v = 0 in G and

v(x) = O(r−1/2),
∂v(x)

∂r
− ikv(x) = o(r−1/2), r = |x|, (2.8)

as r = |x| → +∞, uniformly in x/|x|.

The conditions (2.8) are the classical Sommerfeld radiation conditions. A
set of radiating functions corresponding to the domain G and the parameter
k we denote by Som(G, k).

Definition 2.2 ([9]). Given a domain G ⊂ R2, say that v : G → C, a
solution of the Helmholtz equation ∆v+ k2v = 0 in G, satisfies the upward
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(downward) propagating radiation condition – UPRC (DPRC) in G if, for
some h ∈ R and ϕ ∈ L∞(Γh), it holds that U+

h ⊂ G (U−h ⊂ G) and

v(x) = 2θ

∫

Γh

∂Φk(x, y)

∂y2
ϕ(y) dsy, x ∈ U+

h (x ∈ U−h ), (2.9)

where θ = 1 for the UPRC and θ = −1 for the DPRC.

We denote the set of functions satisfying the UPRC [DPRC] in G with
the parameter k by UPRC(G; k) [DPRC(G, k)].

Note that the existence of the integral (2.9) for arbitrary ϕ ∈ L∞(Γh) is
assured by the bound which follows from the asymptotic behaviour of the
Hankel function for small and large real argument∣∣∣∣
∂Φk(x, y)

∂y2

∣∣∣∣ ≤ C |x2 − y2|
(
|x− y|−2 + |x− y|−3/2

)
, x, y ∈ R2, x 6= y,

which holds for some C > 0 depending only on k.
From now on, along with equations (2.1)–(2.4) we assume that

u1 ∈ DPRC(Ω1, k1), u2 ∈ UPRC(Ω2, k2), (2.10)

sup
Ωj

|x2|β|uj(x)| <∞, j = 1, 2, (2.11)

for some β ∈ R. Thus, the interface problem we intend to investigate reads
as follows.

Problem (P). Given f1∈BC1,α(Γ) and f2∈BC0,α(Γ) find u1 ∈ C2(Ω1)∩
BC1(Ω1 \ U−h1

) (h1 < f−) and u2 ∈ C2(Ω2) ∩ BC1(Ω2 \ U+
h2

) (h2 > f+),

solutions of the Helmholtz equations (2.1) and (2.2), such that (2.10) and
(2.11) are fulfilled and

[u1(x)]
− − [u2(x)]

+ = f1(x)

µ [∂n(x)u1(x)]
− − [∂n(x)u2(x)]

+ = f2(x)



 on Γ.

The symbols [·]+ and [·]− denote the limits on Γ from Ω2 and Ω1, respec-
tively.

The following result states properties of the upward (downward) propa-
gating radiation condition needed later and shows that any radiating solu-
tion satisfies the UPRC (DPRC).

Lemma 2.3 ([10]). Given H ∈ R and v : U+
H → C, the following

statements are equivalent:
(i) v ∈ C2(U+

H ), v ∈ L∞(U+
H \ U+

a ) for all a > H, ∆v + k2v = 0 in U+
H ,

and v satisfies UPRC in U+
H ;

(ii) there exists a sequence (vn) of radiating solutions such that vn(x) →
v(x) uniformly on compact subsets of U+

H and

sup
x∈U+

H
\U+

a ,n∈N

|vn(x)| < +∞

for all a > H ;
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(iii) v satisfies (2.9) for h = H and some ϕ ∈ L∞(ΓH );
(iv) v ∈ L∞(U+

H \ U+
a ) for some a > H and v satisfies (2.9) for each

h > H with ϕ = v|Γh
;

(v) v ∈ C2(U+
H ), v ∈ L∞(U+

H \ U+
a ) for all a > H, ∆v + k2v = 0 in

U+
H , and, for every h > H and radiating solution in U+

H , w, such that the
restriction of w and ∂2w to Γh are in L1(Γh), it holds that

∫

Γh

(
v
∂w

∂n
− w

∂v

∂n

)
ds = 0.

2.4. Let

x, y ∈ U±a , a ∈ R, y′ = (y1, 2a− y2),

where y′ is a mirror image of y = (y1, y2) ∈ R2 with respect to the straight
line Γa.

Denote byG
±(D)
k (x, y; a) andG

±(I)
k (x, y; a) the Dirichlet Green’s function

and the impedance Green’s function for the Helmholtz operator ∆ + k2 in
the half-planes U±a . It is well-know that (see, e.g., [9], [8])

G
±(D)
k (x, y; a) = Φk(x, y)− Φk(x, y′), x, y ∈ U±a ,
G
±(I)
k (x, y; a) = Φk(x, y) + Φk(x, y′) + P

(±)
k (x− y′), x, y ∈ U±a ,

(2.12)

where

P
(±)
k (z) : = − ik

2π

+∞∫

−∞

exp{i[z1t± z2
√
k2 − t2]}√

k2 − t2[
√
k2 − t2 + k]

dt =

=
|z|eik|z|

π

∞∫

0

t−1/2e−k|z|t [|z| ± z2(1 + it)]√
t− 2i [|z|t− i(|z| ± z2)]2

dt, z ∈ U±0 .

Here and throughout all square roots are taken with non-negative real and
imaginary parts.

The functions G
±(D)
k (x, y) are radiating in U±a and

G
±(D)
k (x, y; a) = 0 for x ∈ Γa,

while G
±(I)
k (x, y) are radiating functions in U±a and

∂

∂x2
G
±(I)
k (x, y; a)± ik G

±(I)
k (x, y; a) = 0 for x ∈ Γa. (2.13)
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Moreover, for G(x, y) ∈ {G±(D)
k (x, y; a), G

±(I)
k (x, y; a)} there hold the fol-

lowing inequalities

|G(x, y)|, |∇xG(x, y)|, |∇yG(x, y)| ≤

≤ C
(1 + |x2|)(1 + |y2|)

|x− y|3/2
for |x− y| ≥ 1,

|G(x, y)| ≤ C (1 + | log |x− y| |) for 0 < |x− y| ≤ 1,

|∇xG(x, y)|, |∇yG(x, y)| ≤ C |x− y|−1 for 0 < |x− y| ≤ 1,

|G(x, y)|, |∇xG(x, y)|, |∇yG(x, y)|, |∇x ∂n(y)G(x, y)| ≤
≤ C1[1 + |x1 − y1|]−3/2 for |x2 − y2| ≥ δ > 0, |x2| = H, y ∈ Γ,

(2.14)

with C > 0 depending only on a and k, and C1 > 0 depending only on a,
k, δ, Γ, and H (for details see [6], [9], [8]).

Denote by G(j)(x, y), j = 1, 2, the generalized Dirichlet Green’s functions
for the domains Ωj :

G(1)(x, y) = G
−(D)
k1

(x, y;h2)− V (1)(x, y), y, x ∈ Ω1,

G(2)(x, y) = G
+(D)
k2

(x, y;h1)− V (2)(x, y), y, x ∈ Ω2,

where V (1)(·, y) [V (2)(·, y)] is a solution to the Helmholtz equation (2.1)
[(2.2)] satisfying the DPRC [UPRC] and the boundary condition

V (1)(x, y) = G
−(D)
k1

(x, y;h2), y ∈ Ω1, x ∈ Γ,
[
V (2)(x, y) = G

+(D)
k2

(x, y;h1), y ∈ Ω2, x ∈ Γ
]
. (2.15)

Due to the results obtained in [9], [8], and [2] the functions V (j)(x, y) and
G(j)(x, y) are determined uniquely, are radiating and admit some bounds
similar to (2.14) (see [23])

|G(j)(x, y)|, |∇xG
(j)(x, y)|, |∇yG

(j)(x, y)| ≤

≤ C∗j
(1 + |x2|)(1 + |y2|)

|x− y|3/2
for |x− y| ≥ 1,

|G(j)(x, y)| ≤ C∗j (1 + | log |x− y| |) for 0 < |x− y| ≤ 1,

|∇xG
(j)(x, y)|, |∇yG

(j)(x, y)| < C∗j |x− y|−1 for 0 < |x− y| ≤ 1,

|G(j)(x, y)|, |∇xG
(j)(x, y)|, |∇yG

(j)(x, y)|, |∇x ∂n(y)G
(j)(x, y)| ≤

≤ C∗∗j [1 + |x1 − y1|]−3/2 for x2 = aj , y ∈ Γ,

a1 < f− < f+ < a2,

(2.16)

with C∗j > 0 depending only on hj , kj , and Γ, and C∗∗j > 0 depending only
on hj , kj , aj and Γ.
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Lemma 2.4. Let uj ∈ C2(Ωj) ∩ C1(Ωj) be a solution to the equation
(∆ + k2

j )uj(x) = 0 in Ωj satisfying the UPRC for j = 2 and the DPRC for
j = 1. Then

uj(x) = (−1)j

∫

Γ

∂G(j)(x, y)

∂n(y)
[uj(y)]Γ ds, x ∈ Ωj ,

where n(x) is a unit normal vector at the point x ∈ Γ pointing out of Ω1,

[uj(y)]Γ = lim
Ωj3x→y∈Γ

uj(x).

Proof. For definiteness let j = 2. On the one hand, by standard arguments
we easily derive (cf. [9], [2])

u2(x) = −
∫

Γ

{
[G

+(D)
k2

(x, y;h1)]Γ [∂n(y)u2(y)]Γ−

− [∂n(y)G
+(D)
k2

(x, y;h1)]Γ [u2(y)]Γ

}
ds, x ∈ Ω2.

On the other hand,

0 =

∫

Γ

{[V (2)(x, y)]Γ [∂n(y)u2(y)]Γ − [∂n(y)V
(2)(x, y)]Γ [u2(y)]Γ} ds, x ∈ Ω2,

since u2 ∈ UPRC(Ω2, k2) and V (2)(x, ·) ∈ Som(Ω2, k2), and [V (2)(x, ·)]Γh
,

[∂y2V
(2)(x, ·)]Γh

∈ L1(Γh) for h > x2 (see Lemma 2.3).
Now, in view of (2.15) and summing these two equations, the proof is

complete.
The case j = 1 can be treated quite similarly. �

2.5. Here we introduce some definitions which we will employ later, in
Section 4 (for details see [12], [8], [1]).

For a sequence {ϕn} ⊂ BC(R) and ϕ ∈ BC(R) we say that {ϕn} con-

verges strictly to ϕ and write ϕn
s→ ϕ if ϕn converges to ϕ in the Buck’s

strict topology (s-topology) ([3]) which is equivalent to the following: {ϕn}
is bounded in BC(R) and ϕn → ϕ uniformly on every compact subsets of
R.

A set X ⊂ BC(R) is said to be sequentially compact in the strict topology
if any sequence in X has a subsequence that is convergent in the strict
topology with limit in X .

Further, let k(·, ·) be measurable, k(s, ·) ∈ L1(R) and Kk ψ(·) :=∫
R

k(·, t)ψ(t) dt ∈ L∞(R) for every ψ ∈ L∞(R). Assume that

‖|k‖| := ess sup
s∈R

∫

R

|k(s, t)| dt = ess sup
s∈R

‖k(s, ·)‖L1(R) <∞.

Identify k(·, ·) : R2→C with the mapping s 7→ k(s, ·) in Z :=L∞(R, L1(R)),
which is measurable and essentially bounded with norm ‖|k‖|. Let K denote
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the set of those functions k ∈ Z having the property Kkψ ∈ C(R) for every
ψ ∈ L∞(R). Clearly, Z is a Banach space with the norm ‖| · ‖| and K is a
closed subset of Z. Moreover,

‖|k‖| = sup
s∈R

‖k(s, ·)‖L1(R) for k ∈ K.

Note that Kk : L∞(R) → C(R) and is bounded iff k ∈ K. In this case
‖Kk‖ = ‖|k‖|.

For a sequence {kn} ∈ K and k ∈ K we say that {kn} is σ-convergent

(converges in the σ-topology) to k and write kn
σ→ k if sup

n∈N

‖|kn‖| <∞ and,

for all ψ ∈ L∞(R), Kkn
ψ(s) → Kkψ(s), i.e.,

∫

R

kn(s, t)ψ(t) dt→
∫

R

k(s, t)ψ(t) dt as n→ +∞,

uniformly on every compact subsets of R with respect to s.
A subset K1 ⊂ K is said to be σ-sequentially compact if each sequence

in K1 has a σ-convergent subsequence with limit in K1.
A linear operator K is said to be sequentially compact with respect to

σ-topology if for any bounded set X ⊂ BC(R), the set K(X) is sequentially
compact in the strict topology.

A family Q of linear operators on BC(R) is said to be collectively se-
quentially compact with respect to the σ-topology if for any bounded set
X ⊂ BC(R) the set ∪K∈QK(X) is sequentially compact in the strict topol-
ogy.

Finally, for a sequence of linear operators {Kn} and K on BC(R) we

write Kn
σ→ K if Knϕn

s→ Kϕ for every ϕn
s→ ϕ.

3. The Uniqueness Result

Here we show that the homogeneous version of the above formulated
interface problem possesses only the trivial solution.

First we introduce some notations which are used in the remaining part
of the paper. For A > 0, h1 < f− and h2 > f+ define

Ωj(A) := {x ∈ Ωj | −A < x1 < A}, j = 1, 2,

Γh(A) := {x ∈ Γh| −A < x1 < A},
Γ(A) := {x ∈ Γ | −A < x1 < A},

Ω1,h1 := Ω1 \ U−h1
= U+

h1
\ Ω2,

Ω2,h2 := Ω2 \ U+
h2

= U−h2
\ Ω1,

Ωj,hj
(A) := {x ∈ Ωj,hj

| −A < x1 < A}, j = 1, 2,

γj(±A) = {x ∈ Ωj,hj
(A) | x1 = ±A}, j = 1, 2.

(3.1)
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Theorem 3.1. Let
(i) for h1 < f− and h2 > f+

uj : Ωj → C, j = 1, 2, u1 ∈ C2(Ω1) ∩BC1(Ω1 \ U−h1
),

u2 ∈ C2(Ω2) ∩BC1(Ω2 \ U+
h2

);

(ii) u1 and u2 solve the equations (2.1) and (2.2), respectively, and

[u1(x)]
− = [u2(x)]

+ on Γ, (3.2)

µ [∂n(x)u1(x)]
− = [∂n(x)u2(x)]

+ on Γ, (3.3)

where k1, k2, and µ are determined by (2.5) and (2.6);
(iii) u1∈ DPRC(Ω1, k1) and u2∈ UPRC(Ω2, k2);
(iv) u1 and u2 meet the conditions

sup
Ωj

|x2|β|uj(x)| <∞, j = 1, 2,

for some β ∈ R.
Then uj = 0 in Ωj , j = 1, 2.

Proof. We prove the theorem in several steps.
Step 1. Apply Green’s first theorem to uj and its complex conjugate uj

in Ωj,hj
(A) to obtain
∫

Ω1,h1
(A)

{|∇u1|2 − k2
1 |u1|2} dx =

∫

Γ(A)

∂u1

∂n
u1 ds−

∫

Γh1
(A)

∂u1

∂x2
u1 ds+

+

[ ∫

γ1(A)

−
∫

γ1(−A)

]
∂u1

∂x1
u1 ds, (3.4)

−
∫

Ω2,h2
(A)

{|∇u2|2 − k2
2 |u2|2} dx =

∫

Γ(A)

∂u2

∂n
u2 ds−

∫

Γh2
(A)

∂u2

∂x2
u2ds−

−
[ ∫

γ2(A)

−
∫

γ2(−A)

]
∂u2

∂x1
u2 ds. (3.5)

Multiply (3.4) by −µ, add to (3.5), take into consideration the interface
conditions (3.2) and (3.3), and take the imaginary part of the equation
obtained

2− Imµ

∫

Ω1,h1
(A)

|∇u1|2 dx+ Im(µk2
1)

∫

Ω1,h1
(A)

|u1|2 dx =

= Im

{
µ

∫

Γh1
(A)

∂u1

∂x2
u1 ds−

∫

Γh2
(A)

∂u2

∂x2
u2 ds− µR1(A)−R2(A)

}
, (3.6)
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where

Rj(A) :=

( ∫

γj(A)

−
∫

γj(−A)

)
∂uj

∂x1
uj ds, j = 1, 2. (3.7)

Note that

− Imµ = −µ2 =
µ∗1k2λ2

µ∗2|k1|2
> 0, Im(µk2

1) =
µ∗1
µ∗2
k2λ2 > 0, (3.8)

due to (2.5) and (2.6).
Step 2. Here we derive the inequality

f− − h1√
1 + L2

∫

Γ(A)

|u1(x)|2 ds ≤ 2

∫

Ω1,h1
(A)

|u1(x)|2 dx+

+2(f+ − h1)(f− − h1)

∫

Ω1,h1
(A)

|∂2u1(x)|2 dx, (3.9)

where L = sup
x1∈R

|f ′(x1)| <∞.

In fact, from the equality

u1(x1, f(x1)) = u1(x1, b) +

f(x1)∫

b

∂2u1(x1, x2) dx2, h1 ≤ b ≤ f−,

using the Cauchy-Schwarz inequality we get

|u1(x1, f(x1))|2 ≤ 2|u1(x1, b)|2+2[f(x1)− b]

f(x1)∫

b

|∂2u1(x1, x2)|2dx2≤

≤ 2|u1(x1, b)|2 + 2(f+ − h1)

f(x1)∫

h1

|∂2u1(x1, x2)|2 dx2.

Integrating over the interval (−A,A) with respect to x1 gives

A∫

−A

|u1(x1, f(x1))|2 dx1 ≤ 2

A∫

−A

|u1(x1, b)|2 dx1+

+ 2(f+ − h1)

∫

Ω1 ,h1(A)

|∂2u1(x1, x2)|2 dx.
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Note that ds =
√

1 + [f ′(x1)]2 dx1 ≤
√

1 + L2 dx1. Therefore, we have

1√
1 + L2

∫

Γ(A)

|u1(x)|2 ds ≤

≤ 2

A∫

−A

|u1(x1, b)|2 dx1 + 2(f+ − h1)

∫

Ω1,h1
(A)

|∂2u1(x)|2dx.

Now, integration from h1 to f− with respect to b leads to the inequality
(3.9). Note that the coefficients in (3.9) do not depend on A.

Now, by virtue of (3.9) it follows from (3.6) that

2δ0

∫

Γ(A)

|u1(x)|2 ds ≤ Im

{
µ

∫

Γh1
(A)

∂2u1 u1 ds

}
−

− Im

∫

Γh2
(A)

∂2u2 u2 ds− Im{µR1(A)} − ImR2(A) (3.10)

with δ0 > 0 independent of A (see (3.8))

δ0 =
µ∗1k2λ2

µ∗2

f− − h1√
1 + L2

δ1
δ2
> 0,

δ1 = min{1, |k1|−2}, δ2 = max{2, 2(f+ − h1)(f− − h1)}.

Step 3. Due to condition (3.2)

[u1(x)]Γ =[u2(x)]Γ =: E(x), x∈Γ, and let Ẽ(x1) :=E(x1, f(x1)). (3.11)

By Lemma 2.4 we can then represent u1 and u2 in the form

u1(x) = −
∫

Γ

∂G(1)(x, y)

∂n(y)
E(y) ds, x ∈ Ω1, (3.12)

u2(x) =

∫

Γ

∂G(2)(x, y)

∂n(y)
E(y)ds, x ∈ Ω2. (3.13)

Let us consider the functions

v1(x;A) = −
∫

Γ(A)

∂G(1)(x, y)

∂n(y)
E(y) ds, x ∈ Ω1, (3.14)

v2(x;A) =

∫

Γ(A)

∂G(2)(x, y)

∂n(y)
E(y)ds, x ∈ Ω2. (3.15)

It is evident that v1 is radiating in Ω1 and v2 is radiating in Ω2 (due to

the compactness of Γ(A)). Due to the bounds (2.16) (cf. [10], Lemma 6.1),
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for p ≥ 1

v1(x;A)|Γh1
, ∂1v1(x;A)|Γh1

, ∂2v1(x;A)|Γh1
∈ Lp(Γh1) ∩ BC(Γh1),

v2(x;A)|Γh2
, ∂1v2(x;A)|Γh2

, ∂2v2(x;A)|Γh2
∈ Lp(Γh2) ∩ BC(Γh2).

Therefore, due to Lemma 2.3, v1 and v2 are representable in the form of
double layer potentials

v1(x;A) = −2

∫

Γh1

∂Φk1(x, y)

∂y2
[v1(y;A)]Γh1

ds, x2 < h1,

v2(x;A) = 2

∫

Γh2

∂Φk2(x, y)

∂y2
[v2(y;A)]Γh2

ds, x2 > h2.

In turn, these representations imply (see [10], Remark 2.15)

v1(x;A) =
1

2π

+∞∫

−∞

exp

{
ix1ξ1 − ix2

√
k2
1 − ξ21

}
g1(ξ1) dξ1, x2 < h1,

v2(x;A) =
1

2π

+∞∫

−∞

exp

{
ix1ξ1 + ix2

√
k2
2 − ξ21

}
g2(ξ1) dξ1, x2 > h2,

where

g1(ξ1) = Fx1→ξ1 [ϕ1(x1)] exp

{
ih1

√
k2
1 − ξ21

}
=

= ϕ̂1(ξ1) exp

{
ih1

√
k2
1 − ξ21

}
,

g2(ξ1) = Fx1→ξ1 [ϕ2(x1)] exp

{
−ih2

√
k2
2 − ξ21

}
=

= ϕ̂2(ξ1) exp

{
−ih2

√
k2
2 − ξ21

}
,

Im
√
k2
1 − ξ21 > 0, Re

√
k2
1 − ξ21 > 0,

√
k2
2 − ξ21 = i

√
ξ21 − k2

2 for ξ21 > k2
2 ,

ϕ1(x1) := [v1(x)]Γh1
, ϕ2(x1) := [v2(x)]Γh2

,

F±1 denote the Fourier (direct and inverse) transforms

ϕ̂(ξ1) = Fx1→ξ1 [ϕ(x1)] :=

+∞∫

−∞

ϕ(x1)e
−ix1ξ1 dx1,

F−1
ξ1→x1

[ψ(ξ1)] :=
1

2π

+∞∫

−∞

ψ(ξ1)e
ix1ξ1 dξ1.
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Applying these relations we derive (cf. [10], Lemma 6.1)

∫

Γh1

∂v1
∂x2

v1 ds =
1

2π

+∞∫

−∞

∂̂v1
∂x2

∣∣∣∣
Γh1

v̂1|Γh1
dξ1 =

= − i

2π

+∞∫

−∞

√
k2
1 − ξ21 |g1(ξ1)|2 dξ1,

∫

Γh2

∂v2
∂x2

v2 ds =
1

2π

+∞∫

−∞

∂̂v2
∂x2

∣∣∣∣
Γh2

v̂2|Γh2
dξ1 =

=
i

2π

+∞∫

−∞

√
k2
2 − ξ21 |g2(ξ1)|2dξ1,

Im

∫

Γh1

∂v1
∂x2

v1 ds ≤ 0, Re

∫

Γh1

∂v1
∂x2

v1ds ≥ 0, (3.16)

Im

∫

Γh2

∂v2
∂x2

v2 ds ≥ 0, Re

∫

Γh2

∂v2
∂x2

v2 ds ≤ 0. (3.17)

In view of (3.16) and (2.6) we see that

Im

{
µ

∫

Γh1

∂v1
∂x2

v1ds

}
=µ2 Re

∫

Γh1

∂v1
∂x2

v1ds+µ1 Im

∫

Γh1

∂v1
∂x2

v1ds≤0. (3.18)

Step 4. Let (cf. (3.11))

w(x1) := u1(x1, f(x1)) = u1(x)|Γ = E(x) = Ẽ(x1). (3.19)

It is evident that w ∈ BC(R) and

A∫

−A

|w(x1)|2 dx1 ≤
∫

Γ(A)

|u(x1)|2 ds ≤ (1 + L2)1/2

A∫

−A

|w(x1)|2 dx1 (3.20)

with the same L as in (3.9).
Further, we define

WA(x1) =

A∫

−A

(1 + |x1 − y1|)−3/2 |w(y1)| dy1. (3.21)

From (3.14) and (3.15) with the help of (2.16) we easily get

|vj(x;A)|, |∇xvj(x;A)|≤cj(1 + L2)1/2WA(x1) for x∈Γhj
, j = 1, 2. (3.22)
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For x ∈ Γhj
we have

|uj(x)| ≤ cj(1 + L2)1/2

+∞∫

−∞

[1 + |x1 − y1|−3/2] |w(y1)| dy1 =

= cj(1 + L2)1/2 W∞(x1), (3.23)

|uj(x)− vj(x)|, |∇uj(x) −∇vj(x)| ≤

≤ cj(1 + L2)1/2

∫

R\[−A,A]

[1 + |x1 − y1|−3/2] |w(y1)| dy1 =

= cj(1 + L2)1/2 [W∞(x1)−WA(x1)]. (3.24)

Using the relations (3.17), (3.21), (3.22), (3.23), and (3.24) we derive

− Im

∫

Γh2
(A)

∂u2

∂x2
u2 ds = − Im

∫

Γh2
(A)

[
∂u2

∂x2
u2 −

∂v2
∂x2

v2

]
ds−

− Im

[ ∫

Γh2
(A)

∂v2
∂x2

v2 ds−
∫

Γh2

∂v2
∂x2

v2 ds

]
− Im

∫

Γh2

∂v2
∂x2

v2 ds ≤

≤− Im

∫

Γh2
(A)

[
∂u2

∂x2
u2 −

∂v2
∂x2

v2

]
ds−

− Im

[ ∫

Γh2
(A)

∂v2
∂x2

v2ds−
∫

Γh2

∂v2
∂x2

v2ds

]
≤

≤
∫

Γh2
(A)

∣∣∣∣
∂u2

∂x2
u2 −

∂v2
∂x2

v2

∣∣∣∣ ds+

∫

Γh2
\Γh2

(A)

∣∣∣∣
∂v2
∂x2

v2

∣∣∣∣ ds ≤

≤
∫

Γh2
(A)

{∣∣∣∣
∂u2

∂x2
− ∂v2
∂x2

∣∣∣∣ |u2|+
∣∣∣∣
∂v2
∂x2

∣∣∣∣ |u2 − v2|
}
ds+

+

∫

Γh2
\Γh2

(A)

∣∣∣∣
∂v2
∂x2

v2

∣∣∣∣ ds ≤

≤ 2c22 (1 + L2)

A∫

−A

[W∞(x1)−WA(x1)]W∞(x1) dx1+

+ c22(1 + L2)

∫

R\[−A,A]

|WA(x1)|2 dx1, (3.25)

with some c2 > 0 independent of A.
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By quite the same arguments we obtain

Im

{
µ

∫

Γh1
(A)

∂u1

∂x2
u1ds

}
=µ2 Re

∫

Γh1
(A)

∂u1

∂x2
u1ds+µ1 Im

∫

Γh1
(A)

∂u1

∂x2
u1ds≤

≤ 4c21(1 + L2)|µ|
A∫

−A

[W∞(x1)−WA(x1)]W∞(x1) dx1+

+ 2c21(1 + L2)|µ|
∫

R\[−A,A]

|WA(x1)|2 dx1 (3.26)

with some c1 > 0 independent of A, due to (3.16), (3.18), (3.21), (3.22),
(3.23), and (3.24).

Now, from (3.10), (3.20), (3.25), and (3.26) it follows that

A∫

−A

|w(x1)|2 dx1 ≤ c∗

{ A∫

−A

[W∞(x1)−WA(x1)]W∞(x1) dx1+

+

∫

R\[−A,A]

|WA(x1)|2 dx1

}
+M(A0), A0 < A ≤ +∞, (3.27)

M(A0) = sup
A>A0

{|µ| |R1(A)|+ |R2(A)|} , (3.28)

c∗ = max{2c22(1 + L2), 4c21(1 + L2)};

here A0 > 0 is an arbitrarily fixed number.
Applying Lemma A in [9] (see also Lemma 6.2 in [10]) from (3.27) we

conclude that w ∈ L2(R) and
∫

Γ

|w(x1)|2 dx1 ≤M(A0).

By the item (i) of Theorem 3.1, (3.11) and (3.19) we then have

u1|Γ, u2|Γ ∈ L2(Γ) ∩ BC1(Γ) (3.29)

and ∫

Γ

|uj(x)|2 ds ≤ (1 + L2)1/2M(A0), j = 1, 2,

with M(A0) given by (3.28). In what follows we will show that M(A0) tends
to zero as A0 → +∞.

Step 5. Since uj ∈ BC1(Ωj,hj
), j = 1, 2 (see (3.1)) there exist positive

numbers Nj < +∞ (depending on hj) such that

|uj(x)|, |∇uj(x)| ≤ Nj for x ∈ Ωj,hj
. (3.30)
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Therefore, for δj =
ε1

8N2
j

> 0 we have

f(x1)∫

f(x1)−δ1

∣∣∣∣
∂u1

∂x1
u1

∣∣∣∣ dx2 ≤ N2
1 δ1 =

ε1
8|µ| , x1 ∈ R, (3.31)

f(x1)+δ2∫

f(x1)

∣∣∣∣
∂u2

∂x1
u2

∣∣∣∣ dx2 ≤ N2
2 δ2 =

ε1
8
, x1 ∈ R, (3.32)

where ε1 is a sufficiently small positive number such that h1 < f(x1)± δj <
h2. For δj > 0 let

Ω∗1,h1
(δ1) := {x ∈ Ω1,h1 | h1 < x2 < f(x1)− δ1},

Ω∗2,h2
(δ2) = {x ∈ Ω2,h2 | f(x1) + δ2 < x2 < h2}.

It can be shown that

dist(Ω∗j,hj
(δj); Γ) = inf

x∈Ω∗

j,hj
(δj), y∈Γ

|x− y| ≥ δj√
1 + L2

> 0. (3.33)

Step 6. From (3.12) and (3.13)

|uj(x)|2 ≤ 2I1j(x;A1) + 2I2j(x;A1),

where

I1j(x;A1) =

[ ∫

Γ(A1)

∂G(j)(x, y)

∂n(y)
E(y) ds

]2

, (3.34)

I2j(x;A1) =

[ ∫

Γ\Γ(A1)

∂G(j)(x, y)

∂n(y)
E(y) ds

]2

.

Assuming that

x ∈ Ω∗j,hj
(δj), |x1| > 2A1, (3.35)

we have |x − y| ≥ |x1 − y1| ≥ |x1|/2 for y ∈ Γ(A1) and due to (2.16) and
Cauchy inequality we get

I1j(x;A1) ≤ c′j

A1∫

−A1

dy1
(1 + |x1 − y1|)3

∫

Γ(A1)

|E(y)|2 ds ≤

≤ 2A1c
′
j

( |x1|
2

)−3

‖E‖2L2(Γ) ≤ c′j‖E‖2L2(Γ)|x1|−2, (3.36)

where c′j does not depend on A1 (note that it depends on δj).
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Further, under the conditions (3.35) (for definiteness let x1 > 2A1) with
the help of (2.16) and (3.33) we derive

I2j(x;A1)≤(1+L2)







−A1∫

−∞

+

x1−1∫

A1

+

x1+1∫

x1−1

+

∞∫

x1+1



∣∣∣∣
∂G(j)(x, y)

∂n(y)

∣∣∣∣ |Ẽ(y1)|dy1





2

≤

≤c2j (1+L2)







−A1∫

−∞

+

x1−1∫

A1

+

∞∫

x1+1


 |Ẽ(y1)|

(1 + |x1 − y1|)3/2
dy1+

+

x1+1∫

x1−1

|Ẽ(y1)|
|x− y| dy1





2

≤

≤ c2j (1 + L2)




+∞∫

−∞

dt

1 + t3
+

√
1 + L2

δj




2 ∫

R\[−A1,A1]

|Ẽ(y1)|2 dy1 ≤

≤ c′′j ‖E‖2L2(Γ\Γ(A1))
, (3.37)

where c′′j > 0 does not depend on A1 (note that it depends on δj).

In view of (3.34), (3.36), and (3.37) under the conditions (3.35) we have

|uj(x)|2 ≤ c′j ‖E‖2L2(Γ)|x1|−2 + c′′j ‖E‖2L2(Γ\Γ(A1)), (3.38)

where c′j and c′′j do not depend on A1. Therefore, due to (3.11), (3.29) and
(3.38) we can choose A1 such that

c′j ‖E‖2L2(Γ)A
−2
1 + c′′j ‖E‖2L2(Γ\Γ(A1)) <

ε1
4mj

and, consequently,

|uj(x)|2 ≤
ε1

4mj
for x ∈ Ω∗j,hj

(δj), |x1| = A ≥ A1, (3.39)

where mj = 2 |µ|Nj (h2 − h1).
Step 7. Applying (3.7), (3.30), (3.31), (3.32), and (3.39) and taking

A ≥ A1 ≥ A0 we derive

|µ| |R1(A)|+ |R2(A)| ≤

≤ |µ|





f(−A)−δ1∫

h1

+

f(−A)∫

f(−A)−δ1

+

f(A)−δ1∫

h1

+

f(A)∫

f(A)−δ1





∣∣∣∣
∂u1

∂x1

∣∣∣∣ |u1| dx2+

+





f(−A)+δ∫

f(−A)

+

h2∫

f(−A)+δ

+

f(A)+δ∫

f(A)

+

h2∫

f(A)+δ





∣∣∣∣
∂u2

∂x1

∣∣∣∣ |u2| dx2 ≤

≤ |µ|
{
N1[f(−A)− h1]

ε1
4m1

+
ε1

8|µ| +N1[f(A)− h1]
ε1

4m1
+

ε1
8|µ|

}
+
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+

{
ε1
8

+N2[h2 − f(−A)]
ε1

4m2
+
ε1
8

+N2[h2 − f(A)]
ε1

4m2

}
≤

≤ ε1
4

+ 2|µ|N1(h2 − h1)
ε1

4m1
+
ε1
4

+ 2N2(h2 − h1)
ε1

4m2
= ε1.

Since ε1 > 0 is an arbitrary (sufficiently small) number it follows that

lim
A→+∞

M(A) = 0, (3.40)

where M(A) is determined by (3.28).
In turn, (3.40) along with (3.29) implies: uj(x) = 0 for x ∈ Γ, j = 1, 2.

Now, applying the uniqueness results for the Dirichlet problem (see [9],
Theorem 3.4, and [7], Theorem 3.1) we conclude: uj(x) = 0 in Ωj , j = 1, 2.
The proof is complete. �

4. Existence of Solution

4.1. Potentials and integral operators. Let us look for a solution of
Problem (P) in the form

u1(x) = µ−1W1(ϕ)(x) + µ−1 V1(ψ)(x), x ∈ Ω1, (4.1)

u2(x) = W2(ϕ)(x) + V2(ψ)(x), x ∈ Ω2, (4.2)

where

W1(ϕ)(x) :=

∫

Γ

[
∂

∂n(y)
G
−(I)
k1

(x, y;h2)

]
ϕ(y) ds,

V1(ψ)(x) :=

∫

Γ

G
−(I)
k1

(x, y;h2) ψ(y) ds,

W2(ϕ)(x) :=

∫

Γ

[
∂

∂n(y)
G

+(I)
k2

(x, y;h1)

]
ϕ(y) ds,

V2(ψ)(x) :=

∫

Γ

G
+(I)
k2

(x, y;h1) ψ(y) ds;

hereG
−(I)
k1

(x, y;h2) andG
+(I)
k2

(x, y;h1) are the impedance Green’s functions

introduced in Subsection 2.3 for the half-planes U−h2
and U+

h1
, respectively,

with h1 < f− < f+ < h2 (see (2.12), (2.13)).
Recall that n(x) denotes the unit normal vector to Γ at the point x ∈ Γ

directed outward of Ω1. Throughout this section we assume that Γ ∈ C1,1

if not otherwise stated.
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Further, we introduce the integral operators:

(K∗jϕ)(x) :=

∫

Γ

K∗
j (x, y)ϕ(y) ds, x ∈ Γ, (4.3)

(Kjϕ)(x) :=

∫

Γ

Kj(x, y)ϕ(y) ds, x ∈ Γ, (4.4)

(Hjϕ)(x) :=

∫

Γ

Hj(x, y)ϕ(y) ds, x ∈ Γ, (4.5)

(L±j ϕ)(x) := lim
δ→0+

n(x) · ∇xWj(ϕ)(x ± δn(x)), (4.6)

where

K∗
1 (x, y) = ∂n(y)G

−(I)
k1

(x, y;h2), K∗
2 (x, y) = ∂n(y)G

+(I)
k2

(x, y;h1), (4.7)

K1(x, y) = ∂n(x)G
−(I)
k1

(x, y;h2), K2(x, y) = ∂n(x)G
+(I)
k2

(x, y;h1), (4.8)

H1(x, y) = G
−(I)
k1

(x, y;h2), H2(x, y) = G
+(I)
k2

(x, y;h1). (4.9)

For x, y ∈ Γ let

ϕ̃(y1) = ϕ(y1, f(y1)), %(y1) = {1 + [f ′(y1)]
2}1/2,

K̃∗
j (x1, y1) = %(y1)K

∗
j (x, y), K̃j(x1, y1) = %(y1)Kj(x, y),

H̃j(x1, y1) = %(y1)Hj(x, y),

(4.10)

with x = (x1, f(x1)) and y = (y1, f(y1)), and

(K̃∗j ϕ̃)(x1) :=

+∞∫

−∞

K̃∗
j (x1, y1) ϕ̃(y1) dy1, (4.11)

(K̃j ϕ̃)(x1) :=

+∞∫

−∞

K̃j(x1, y1) ϕ̃(y1) dy1, (4.12)

(H̃jϕ̃)(x1) :=

+∞∫

−∞

H̃j(x1, y1) ϕ̃(y1) dy1. (4.13)

All integrals involved in (4.3)–(4.6) and (4.11)–(4.13) exist as improper
integrals, while (4.6) determines a singular integro-differential operator, and,
in general, the operators L±j are correctly defined for ϕ ∈ C1,α(Γ) (see (4)

below).
For some M > b > a > 0, η ∈ (0, 1] and k ≥ 1 integer, let us define

B(k, η, a, b,M) := {f ∈ Ck,η(R) | inf
R

f(x1) ≥ a, sup
R

f(x1) ≤ b

and ‖f‖k,η,R ≤M}.
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Below, when necessary, we will indicate dependence of a function, an
operator, or of a set on the boundary f ∈ B(k, η, a, b,M) by a sub- or
superscript f .

The following results have been proved in [6] as Lemmas 4.1–4.2, in [25]
as Lemmas A.1-A.4 and in [1] as Theorems 3.11-3.12.

Lemma 4.1. Let ψ ∈ BC(Γf ) and f ∈ B(1, 1, a, b,M). Then
(i) W1(ψ), V1(ψ) ∈ C2(Ω1 ∪Ω2,h2)∩DPRC(Ω1, k1), V1(ψ) ∈ C(U−h2

) and

they solve the Helmholtz equation (2.1) in Ω1 ∪ Ω2,h2 , provided h2 > b;

(ii) W2(ψ), V2(ψ) ∈ C2(Ω2∪Ω1,h1)∩UPRC(Ω2, k2), V2(ψ) ∈ C(U+
h1

) and
they solve the Helmholtz equation (2.2) in Ω2 ∪ Ω1,h1 , provided h1 < a;

(iii) for x ∈ Γf

[Wj(ψ)(x)]± := lim
δ→0+

Wj(ψ)(x ± δn(x)) = (±2−1 I +K∗j )ψ(x), (4.14)

[Vj(ψ)(x)]± := lim
δ→0+

Vj(ψ)(x ± δn(x)) = Hjψ(x), (4.15)

[∂n(x)Vj(ψ)(x)]± :=

= lim
δ→0+

n(x) · ∇Vj(ψ)(x ± δn(x)) = (∓2−1 I +Kj)ψ(x), (4.16)

lim
δ→0+

n(x) · [∇Wj(ψ)(x + δn(x))−∇Wj(ψ)(x − δn(x))] = 0, (4.17)

where all the limits exist uniformly for x in compact subsets of Γf ;
(iv) there exist Cj > 0 such that

|x2|−1/2|Vj(ψ)|, |x2|−1/2|Wj(ψ)| ≤ Cj ‖ψ‖∞,Γf

as |x2| → +∞.

As we have already remarked, the operators L±j are well defined in Ωj

for BC1,α-smooth density functions.
To show this, for a unit vector-function l(x) = (l1(x), l2(x)) let us intro-

duce the differentiation operators

D(∂x, l(x)) := l2(x)
∂

∂x1
− l1(x)

∂

∂x2
, ∂l(x) := l1(x)

∂

∂x1
+ l2(x)

∂

∂x2
.

For an arbitrary C2-smooth function Ψ and arbitrary unit vector-functions

l(j) = (l
(j)
1 , l

(j)
2 ), j = 1, 2, there holds the identity

∂l(1)(x)∂l(2)(y) Ψ(x− y) = −(l(1)(x) · l(2)(x)) ∆xΨ(x− y)−
−D(∂x, l

(1)(x))D(∂y , l
(2)(y)) Ψ(x − y). (4.18)

Denote by ñ(x) (with |ñ(x)| = 1) a BC0,1-continuous extension from Γ
onto R2 of the unit normal vector n(x), x ∈ Γ, and let ∂τ̃(x) := D(∂x, ñ(x)).
Note that for x ∈ Γ, ∂τ̃(x) = ∂τ(x) and ∂ñ(x) = ∂n(x) are usual tangent and
normal differentiation operators at the point x ∈ Γ.

Due to (2.7) and (4.18) we have

∂ñ(x)∂ñ(y)Φkj
(x, y)=−(ñ(x) · ñ(y))k2

j Φkj
(x, y)−∂τ̃ (y)∂τ̃(x)Φkj

(x, y) (4.19)
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for x 6= y.

Further, we represent G
+(I)
k2

(x, y;h1) as

G
+(I)
k2

(x, y;h1) = Φk2(x, y) +R
+(I)
k2

(x, y;h1), (4.20)

where R
+(I)
k2

(x, y;h1) = Φk2(x, y
′) + P

(+)
k2

(x − y′) is a C2-smooth function

in U
+

h∗

1
for h∗1 > h1 (cf. (2.12)).

Let for some constants A and B (A < B)

Ωj(A,B) := {x ∈ Ωj | A < x1 < B}, Γ(A,B) := {x ∈ Γ | A < x1 < B}.

We decompose W2(ϕ)(x) as follows

W2(ϕ)(x) = Q1(x) +Q2(x) +Q3(x), x ∈ Ω2 ∪ Ω1,h1 ,

where ϕ ∈ BC1,α(Γ),

Q1(x) :=

∫

Γ\Γ(A,B)

[∂n(y)G
+(I)
k2

(x, y;h1)]ϕ(y) ds,

Q2(x) :=

∫

Γ(A,B)

[∂n(y)R
+(I)
k2

(x, y;h1)]ϕ(y) ds,

Q3(x) :=

∫

Γ(A,B)

[∂n(y)Φk2(x, y)]ϕ(y) ds.

It is evident that for z ∈ Γ(A/2, B/2) and p = 1, 2, we have

lim
x→z

ñ(x) · ∇xQp(x) = ∂n(z)Qp(z) =

=

∫

Γ\Γ(A,B)

[∂n(z)∂n(y)G
+(I)
k2

(z, y;h1)]ϕ(y)ds, (4.21)

where the integrals exist as improper integrals.
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Applying (4.19) and integration by parts we get

ñ(x) · ∇xQ3(x) = ∂ñ(x)Q3(x) =

∫

Γ(A,B)

[∂ñ(x)∂n(y)Φk2(x, y)]ϕ(y) ds =

= −
∫

Γ(A,B)

(ñ(x) · n(y))∆xΦk2(x, y)ϕ(y) ds−

−
∫

Γ(A,B)

[∂τ(y)∂τ̃(x)Φk2(x, y)]ϕ(y) ds =

=

∫

Γ(A,B)

(ñ(x) · n(y)) k2
2 Φk2(x, y)ϕ(y) ds + [∂τ̃(x)Φk2(x, yA)]ϕ(yA)−

− [∂τ̃(x)Φk2(x, yB)]ϕ(yB) +

∫

Γ(A,B)

[∂τ̃(x)Φk2(x, y)] ∂τ(y)ϕ(y) ds,

where yA = (A, f(A)), yB = (B, f(B)), and x1 ∈ (A/2, B/2), h1 < x2 < h2

(h1 < f−, h2 > f+).
Note that the last summand has no jump on Γ(A/2, B/2) (see, e.g., [20],

[13]), that is, for z ∈ (A/2, B/2)

lim
x→z

∫

Γ(A,B)

∂τ̃(x)Φk2(x, y)∂τ(y)ϕ(y) ds =

∫

Γ(A,B)

∂τ(z)Φk2(z, y) ∂τ(y)ϕ(y) ds,

where the right-hand side is understood as a singular integral in the Cauchy
Principal Value sense and is well defined due to the imbedding ϕ ∈ BC1,α(Γ)
(see, e.g., [22]).

Thus, we have shown that for arbitrary ϕ ∈ BC1,α(Γ), 0 < α ≤ 1, and
arbitrary z ∈ Γ

lim
x→z

∂ñ(x)W2(ϕ)(x) =

∫

Γ\Γ(A,B)

[∂n(z)∂n(y)G
+(I)
k2

(z, y;h1)]ϕ(y) ds+

+

∫

Γ(A,B)

[∂n(z)∂n(y)R
+(I)
k2

(z, y;h1)]ϕ(y)ds+

+

∫

Γ(A,B)

(n(z) · n(y))k2
2Φk2(z, y)ϕ(y)ds+

+

∫

Γ(A,B)

∂τ(z)Φk2(z, y) ∂τ(y)ϕ(y) ds+ [∂τ(z)Φk2(z, yA)]ϕ(yA)−

− [∂τ(z)Φk2(z, yB)]ϕ(yB),

where A and B are arbitrary constants such that A/2 < z1 < B/2. It is
evident that the limit exists uniformly for z in compact subsets of Γ.
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The similar results are true for the potential W1(ϕ). As a consequence
we obtain (cf. (4.6))

L+
j ϕ = L−j ϕ =: Ljϕ, j = 1, 2, ϕ ∈ BC1,α(Γ).

This implies that the operator L1−L2 is well-defined for functions of the
space BC1,α(Γ). However, this operator can be extended onto the space of
bounded continuous functions BC(Γ) (cf. [13]).

Lemma 4.2. The operator L1 − L2 is well-defined and bounded for
functions of the space BC(Γ).

Proof. First, we recall the singular behaviour of the Hankel function H
(1)
0

as t→ 0

H
(1)
0 (t) =

2i

π
(log

t

2
+ C) + 1 +O(t2 log t), (4.22)

where C denotes Euler’s constant.
With the help of definition (4.6), Lemma 4.1.(ii), and equalities (4.20)

and (4.22) we easily conclude that

Lϕ := (L1 −L2)ϕ(x) =

=

∫

Γ

{∂n(x)∂n(y)[G
−(I)
k1

(x, y;h2)−G
+(I)
k2

(x, y;h1)]}ϕ(y) ds (4.23)

is well-defined for arbitrary ϕ ∈ BC(Γ).
The kernel function of the integral operator (4)

L(x, y) := ∂n(x)∂n(y)[G
−(I)
k1

(x, y;h2)−G
+(I)
k2

(x, y;h1)] (4.24)

admits the bounds

|L(x, y)| ≤ c′ (1 + | log |x− y| |) for |x− y| ≤ 1,

|L(x, y)| ≤ c′ |x− y|−3/2 for |x− y| ≥ 1,
(4.25)

with some constant c′ > 0, due to (2.14).
The estimate

‖Lϕ‖∞ ≤ c′′‖ϕ‖∞ for ϕ ∈ BC(Γ)

with a positive constant c′′ independent of ϕ, can be obtained by standard
arguments (see the proof of Lemma 4.2 in [6]). �

The regularity properties of the aforementioned potential type and inte-
gral operators are described by the following lemmas.

Lemma 4.3. Let f ∈ B(1, 1, a, b,M). The operators

Hj ,Kj ,K∗j ,L : BC(Γf ) → BC0,β(Γf ) ∀β ∈ (0, 1), (4.26)

Hj ,K∗j : BC0,α(Γf ) → BC1,α(Γf ) ∀α ∈ (0, 1),
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are uniformly bounded with respect to f , i.e., there hold the uniform esti-
mates

‖S0ϕ‖0,β,Γf
≤ c0 ‖ϕ‖∞,Γf

, (4.27)

‖S1ϕ‖1,α,Γf
≤ c0‖ϕ‖0,α,Γf

, (4.28)

where S0 ∈ {Hj ,Kj ,K∗j ,L}, S1 ∈ {Hj ,K∗j}, c0 and c1 are positive constants
depending on a, b, M, h1 and h2.

Proof. It is verbatim the proofs of Theorems A28, A43, A50 in [15] and
Theorems 3.11, 3.12 in [1]. �

Lemma 4.4. Let f ∈ B(1, 1, a, b,M).
(i) For ϕ ∈ BC0,α(Γf ), α ∈ (0, 1) the first order derivatives of the single

layer potential V f
j (ϕ) in Ωf

1,h1
and Ωf

2,h2
have BC0,α-extensions to Ωf

1,h1
∪Γf

and Ωf
2,h2

∪ Γf , and

‖V f
j (ϕ)‖1,α,Ωf

1,h1
∪Γf∪Γh1

, ‖V f
j (ϕ)‖1,α,Ωf

2,h2
∪Γf∪Γh2

≤ c′j ‖ϕ‖0,α,Γf
,

where the constant c′j depends only on α, a, b,M, h1, and h2.

(ii) For ϕ ∈ BC1,α(Γf ), α ∈ (0, 1), the double layer potential W f
j (ϕ) and

its first order derivatives in Ωf
1,h1

and Ωf
2,h2

have continuous extensions to

Ωf
1,h1

∪ Γf and Ωf
2,h2

∪ Γf , and

‖W f
j (ϕ)‖1,Ωf

1,h1
∪Γf∪Γh1

, ‖W f
j (ϕ)‖1,Ωf

2,h2
∪Γf∪Γh2

≤ c′′j ‖ϕ‖1,α,Γf
,

where the constant c′′j depends only on α, a, b,M, h1, and h2. (Note, that we
keep the same notations for the aforementioned extensions).

Proof. The proof of the item (i) is verbatim the proof of Theorem 3.11.(b)
in [1].

To prove the item (ii) we proceed as follows.

Let, for definiteness, x ∈ Ωf
2,h2

, and consider the first order derivative of

the double layer potential W f
2 (ϕ):

∂

∂xp
W f

2 (ϕ)(x) =

∫

Γf

[
∂

∂xp

∂

∂n(y)
G

+(I)
k2

(x, y;h1)

]
ϕ(y) ds, p = 1, 2. (4.29)

Here we have changed the order of differentiation and integration as the
kernel function is infinitely smooth for x 6∈ Γf and admits the bounds (2.14).
Let δ > 0 be a sufficiently small fixed number such that h2 − b ≥ δ.

For dist(x,Γf ) ≥ δ we have
∣∣∣∣
∂

∂xp
W f

2 (ϕ)(x)

∣∣∣∣ ≤ c ‖ϕ‖∞,Γf

∫

Γf

ds

|x− y|3/2
≤ c1(δ) ‖ϕ‖∞,Γf

(4.30)

due to the bounds (2.14). Here c1(δ) does not depend on f (it depends on
δ, a, b,M, h1, and h2).
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Now, let dist(x,Γf ) < δ and

Γf (x1 − 4δ, x1 + 4δ) = {y ∈ Γf | x1 − 4δ < y1 < x1 + 4δ}.

Rewrite (4.29) as

∂

∂xp
W f

2 (ϕ)(x) = I
(1)
δ,p (x) + I

(2)
δ,p (x) + I

(3)
δ,p (x), p = 1, 2, (4.31)

where (see (4.20))

I
(1)
δ,p (x) =

∫

Γf\Γf (x1−4δ,x1+4δ)

[
∂

∂xp

∂

∂n(y)
G

+(I)
k2

(x, y;h1)

]
ϕ(y) ds,

I
(2)
δ,p (x) =

∫

Γf (x1−4δ,x1+4δ)

[
∂

∂xp

∂

∂n(y)
Φk2(x, y)

]
ϕ(y) ds,

I
(3)
δ,p (x) =

∫

Γf (x1−4δ,x1+4δ)

[
∂

∂xp

∂

∂n(y)
R+

k2
(x, y;h1)

]
ϕ(y) ds.

Taking into consideration that |x−y| ≥ 4δ for y ∈ Γf \Γf (x1−4δ, x1+4δ)

and applying the bounds (2.14) we get that I
(1)
δ,p (·) is continuous in Ωf

1,h1
∪

Γf ∪ Ωf
2,h2

and

|I(1)
δ,p (x)| < c2(δ) ‖ϕ‖∞,Γf

, p = 1, 2, (4.32)

where c2(δ) does not depend on f (it depends on δ, a, b,M, h1, and h2).
Since all the derivatives of R+

k2
(x, y;h1) are C∞-regular bounded kernels

in the δ-vicinity of the curve Γf , we have that I
(3)
δ,p (·) is continuous in Ωf

1,h1
∪

Γf ∪ Ωf
2,h2

and

|I(3)
δ,p (x)| ≤ c3(δ) ‖ϕ‖∞,Γf

, p = 1, 2, (4.33)

where c3(δ) does not depend on f (it depends on δ, a, b,M, h1, and h2).
With the help of the identities

∂

∂xp
Φk2(x, y) = − ∂

∂yp
Φk2(x, y),

∂

∂x1

∂

∂n(y)
Φk2(x, y) = k2

2n1(y)Φk2(x, y)− ∂τ(y)
∂Φk2(x, y)

∂y2
,

∂

∂x2

∂

∂n(y)
Φk2(x, y) = k2

2n2(y)Φk2(x, y) + ∂τ(y)
∂Φk2(x, y)

∂y1
,
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where ∂τ(y) = n2(y)∂1 − n1(y)∂2, as above, denotes the tangent derivative,
and applying the integration by parts formula we arrive at the equality

I
(2)
δ,p (x) = k2

2

∫

Γf (x1−4δ,x1+4δ)

np(y)Φk2(x, y)ϕ(y) ds−

−
∫

Γf (x1−4δ,x1+4δ)

[(
δ2p

∂

∂y1
− δ1p

∂

∂y2

)
Φk2(x, y)

]
∂τ(y)ϕ(y) ds+

+

[(
δ2p

∂

∂y1
− δ1p

∂

∂y2

)
Φk2(x, y

∗∗)

]
ϕ(y∗∗)−

−
[(
δ2p

∂

∂y1
− δ1p

∂

∂y2

)
Φk2(x, y

∗)

]
ϕ(y∗), (4.34)

where y∗ = (x1 − 4δ, f(x1− 4δ)), y∗∗ = (x1 + 4δ, f(x1 + 4δ)), and δkp is the
Kronecker’s delta.

It is evident that the first, the third and the forth summands in the right-
hand side of (4.34) are continuous in Ω1,h1 ∪ Γf ∪Ω2,h2 and there holds the
inequality

∣∣∣∣∣k
2
2

∫

Γf (x1−4δ,x1+4δ)

np(y)Φk2(x, y)ϕ(y) ds

∣∣∣∣∣+

+

∣∣∣∣
[(
δ2p

∂

∂y1
− δ1p

∂

∂y2

)
Φk2(x, y

∗)

]
ϕ(y∗)

∣∣∣∣+

+

∣∣∣∣
[(
δ2p

∂

∂y1
−δ1p

∂

∂y2

)
Φk2(x, y

∗∗)

]
ϕ(y∗∗)

∣∣∣∣≤c
′
4(δ)‖ϕ‖∞,Γf

, p=1, 2, (4.35)

since |x− y∗| ≥ 4δ, |x− y∗∗| ≥ 4δ, and
∫

Γf (x1−4δ,x1+4δ)

|np(y)Φk2(x, y)| ds < c′′4(δ),

where c′4(δ) and c′′4(δ) depend only on δ, a, b, M , h1, and h2.
For the second term in the right-hand side of (4.34) we have (see (4.22))

J(x) :=

∫

Γf (x1−4δ,x1+4δ)

[(
δ2p

∂

∂y1
− δ1p

∂

∂y2

)
Φk2(x, y)

]
∂τ(y)ϕ(y) ds =

= J1(x) + J2(x) (4.36)

with

J1(x)=
2i

π

∫

Γf (x1−4δ,x1+4δ)

(
δ2p

y1 − x1

|x− y|2 − δ1p
y2 − x2

|x− y|2
)
∂τ(y)ϕ(y) ds,

J2(x) =

∫

Γf (x1−4δ,x1+4δ)

Q(x, y) ∂τ(y)ϕ(y) ds,

(4.37)



UNIQUENESS, EXISTENCE, AND INTEGRAL EQUATION FORMULATIONS 133

where Q(·, ·) is C0,β-regular (∀β ∈ (0, 1)) and can be estimated by some
constant independent of Γf . Therefore,

|J2(x)|=
∣∣∣∣∣

∫

Γf (x1−4δ,x1+4δ)

Q(x, y)∂τ(y)ϕ(y) ds

∣∣∣∣∣≤c
′
5(δ) ‖∂τ(y)ϕ‖∞,Γf

. (4.38)

The function J1(x) given by (4.37) represents a Cauchy type integral in
Ω1.h1 and Ω2.h2 with the Hölder continuous density ∂τ(y)ϕ ∈ BC0,α(Γf )

(0 < α < 1), and, therefore, it has C0,α-continuous bounded extensions to
Ω1,h1 ∪ Γf and Ω2,h2 ∪ Γf (see, e.g., [22], §§15,16,17; [15], Theorem A46).

As a consequence, we have

|J1(x)| ≤ c′′5(δ) ‖∂τ(y)ϕ‖0,α,Γf
, (4.39)

where c′′5(δ) does not depend on f .
Further, (4.36), (4.38), and (4.39) imply

|J(x)| ≤ c5(δ) ‖ϕ‖1,α,Γf
, (4.40)

where c5(δ) depends only on δ, a, b, M , h1, and h2 (and does not depend
on f).

Applying the estimates (4.35) and (4.40) to (4.34) we obtain

|I(2)
δ,p (x)| ≤ c6(δ) ‖ϕ‖1,α,Γf

, (4.41)

with c6(δ) depending on δ, a, b, M , h1, h2 (and independent on f).
Now, (4.30), (4.31), (4.32), (4.33), and (4.41) complete the proof. �

4.2. Reduction to integral equations. Applying the representations
(4.1) and (4.2), and with the help of Lemmas 4.1, 4.2, and 4.3 we reduce
the interface Problem (P) to the system of integral equations on Γ:

µ−1
(
−2−1I +K∗1

)
ϕ−

(
2−1I +K∗2

)
ϕ+ µ−1H1ψ −H2ψ = f1, (4.42)

Lϕ+
(
2−1I +K1

)
ψ −

(
−2−1I +K2

)
ψ = f2, (4.43)

where K∗j ,Kj ,Hj , and L are determined by (4.3)–(4.5) and (4), ϕ and ψ are
unknown densities from the space BC(Γf ) and

f1 ∈ BC1,α(Γ), f2 ∈ BC0,α(Γ), 0 < α < 1, (4.44)

are given functions.
Rewrite (4.42) and (4.43) in the matrix form

Mχ = F (4.45)

with

M =


 −(1 + µ)(2µ)−1I + µ−1K∗1 −K∗2 µ−1H1 −H2

L I +K1 −K2


 ,

χ =


 ϕ

ψ


 = [ϕ, ψ]>, F =


 f1

f2


 = [f1, f2]

>,
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where > denotes transposition.
Now, we prove the following

Lemma 4.5. Let conditions (4.44) be fulfilled, f ∈ B(1, 1, a, b,M), and
χ = [ϕ, ψ]> ∈ [BC(Γf )]2 be a solution of the equation (4.45). Then ϕ ∈
BC1,α(Γf ) and ψ ∈ BC0,α(Γf ) with the same α as in (4.44).

Proof. First we show that ϕ ∈ BC0,α(Γ). From equation (4.42) we have

−(µ+ 1)µ−1ϕ = f1 − µ−1K∗1ϕ+K∗2ϕ− µ−1H1ψ +H2ψ. (4.46)

Since (µ + 1)/µ 6= 0, by Lemma 4.3 it follows that the right-hand side
function in (4.46) is BC0,α-smooth, thus ϕ ∈ BC0,α(Γf ) and

‖ϕ‖0,α,Γf
≤ ‖f‖0,α,Γf

+ c0 (‖ϕ‖∞,Γf
+ ‖f‖∞,Γf

), (4.47)

where the constant c0 > 0 is the same as in (4.27).
Applying again Lemma 4.3 we then get (cf. (4.26), (4.27))

Lϕ ∈ BC0,α(Γf ) and ‖Lϕ‖0,α,Γf
≤ c0‖ϕ‖∞,Γf

.

Further, since (see (4.43))

ψ = f2 −Lϕ−K1ψ +K2ψ,

we have ψ ∈ BC0,α(Γf ) and

‖ψ‖0,α,Γf
≤ ‖f2‖0,α,Γf

+ c0(‖ϕ‖∞,Γf
+ ‖ψ‖∞,Γf

). (4.48)

Now, with the help of (4.46), (4.47), (4.48), and Lemma 4.3 (see also
(4.28)) finally we obtain ϕ ∈ BC1,α(Γf ) and

‖ϕ‖1,α,Γf
≤ c̃0(‖f1‖1,α,Γf

+ ‖f2‖0,α,Γf
+ ‖ϕ‖∞,Γf

+ ‖ψ‖∞,Γf
),

where c̃0 is a positive constant depending on a, b,M, h1, and h2. �

Investigation of the solvability of equation (4.45) we start with the unique-
ness question.

Lemma 4.6. The homogeneous version of the equation (4.45) (F = 0)
has only the trivial solution, i.e., the operator M is injective.

Proof. Let χ = [ϕ, ψ]> ∈ [BC(Γ)]2 solve the homogeneous equation

Mχ = 0 on Γ, (4.49)

and u1(x) and u2(x) be determined by (4.1) and (4.2) with the density
functions ϕ and ψ.

Lemma 4.5 and equation (4.49) yield ϕ ∈ BC1,β(Γ) and ψ ∈ BC0,β(Γ)
for all β ∈ (0, 1). By Lemma 4.4 and equation (4.49) we conclude that u1

and u2 satisfy the conditions of the uniqueness Theorem 3.1. Therefore,

uj(x) = 0, x ∈ Ωj , j = 1, 2. (4.50)

In what follows we will show that (4.50) implies ϕ = ψ = 0. To this end
consider the same functions u1 and u2, i.e., the potentials (4.1) and (4.2),
in the domains Ω2,h2 and Ω1,h1 , respectively. Our goal is to show that u1

and u2 vanish in Ω2,h2 and Ω1,h1 as well.
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With the help of Lemma 4.1 we have (see (4.14)–(4.17)) for x ∈ Γf

[u1(x)]
+ − [u1(x)]

−=µ−1ϕ(x), [∂nu1(x)]
+−[∂nu1(x)]

−=−µ−1ψ(x), (4.51)

[u2(x)]
+−[u2(x)]

−=ϕ(x), [∂nu2(x)]
+−[∂nu2(x)]

−=−ψ(x). (4.52)

From (4.51)–(4.52) by (4.50) it follows that for x ∈ Γf

−ϕ(x)=[u2(x)]
−=−µ[u1(x)]

+, ψ(x)=[∂nu2(x)]
−=−µ[∂nu1(x)]

+. (4.53)

Introduce the following notation:

Ω∗1 := Ω2,h2 , Ω∗2 := Ω1,h1 ,

v1(x) := −µu1(x) in Ω∗1, v2(x) := u2(x) in Ω∗2.
(4.54)

It is easy to see that v1 and v2 solve the following interface problem (see
(4.53), (4.54), (2.13))

∆vj(x) + k2
j vj(x) = 0 in Ω∗j , j = 1, 2, (4.55)

[v1]
+ = [v2]

−, [∂nv1]
+ = [∂nv2]

− on Γ, (4.56)

∂x2v1 = ik1v1 on Γh2 , (4.57)

∂x2v2 = −ik2v2 on Γh1 , (4.58)

where n is the unit normal vector to Γ directed out of Ω∗2, the symbols [·]+
and [·]− denote the limits from Ω∗1 and Ω∗2, respectively. Moreover, due to
(4.54) and Lemma 4.4

v1 ∈ BC1(Ω∗1) and v2 ∈ BC1(Ω∗2). (4.59)

Let

Ω∗j (A,B) := {x ∈ Ω∗j | A < x1 < B}, `j(A) = {x ∈ Ω∗j | x2 = A}.
From the Green’s identities and conditions (4.55)–(4.58) we obtain (cf.

(3.4), (3.5), (2.5))

2λ1λ2

∫

Ω∗

1(A,B)

|v1|2 dx+ λ1

∫

Γh2
(A,B)

|v1|2 ds+ k2

∫

Γh1
(A,B)

|v2|2 ds =

= Im[R(1)(A)−R(1)(B) +R(2)(A) −R(2)(B)], (4.60)

where

R(j)(P ) =

∫

`j(P )

∂vj

∂x1
vj ds, P = A,B, j = 1, 2.

Since λ1 > 0, λ2 > 0, k2 > 0, and |R(j)(P )| are uniformly bounded for
P ∈ (−∞,+∞), j = 1, 2, we conclude from (4.59) and (4)

v1 ∈ L2(Ω
∗
1), v1|Γh2

∈ L2(Γh2), v2|Γh1
∈ L2(Γh1).

In turn, these inclusions imply

v1(x) → 0 as |x1| → +∞ (uniformly in Ω∗1) (4.61)

v2(x1, h1) → 0 as |x1| → +∞ (4.62)
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due to the uniform continuity of vj in Ω∗j .
In particular,

v1(x1, h2) → 0 as |x1| → +∞, (4.63)

−ϕ(x) = v1(x)|Γ = v2(x)|Γ → 0 as |x1| → +∞, (4.64)

due to (4.53), (4.54), (4.56), and (4.61).
From the relations (4.59) and (4.63) it follows that

R(1)(P ) → 0 as |P | → +∞,

whence from (4) we get that the limits of R(2)(A) as A→ ±∞ exist and

2λ1λ2

∫

Ω∗

1

|v1|2 dx+ λ1

∫

Γh2

|v1|2 ds+ k2

∫

Γh1

|v2|2 ds = r
(2)
− − r

(2)
+ , (4.65)

where

r
(2)
± = lim

A→±∞
ImR(2)(A) = lim

A→±∞
Im

∫

`2(A)

∂v2
∂x1

v2 ds. (4.66)

As a next step we will show that

v2(x) → 0 as |x| → +∞
uniformly in Ω∗2.

Note that (see (4.54))

v2(x) = W2(ϕ)(x) + V2(ψ)(x), x ∈ Ω∗2,

where χ = [ϕ, ψ]> solves equation (4.49).
By the same arguments as in [8] (see the proof of Theorem 5.1, Step III,

p. 3779) and applying the decay condition (4.64) we can prove that

Wj(ϕ)(x) → 0 as |x1| → +∞, j = 1, 2,

uniformly in Ω∗j .
To show that the similar decay property holds also for the single layer po-

tential Vj(ψ)(x) we need that the density function ψ vanishes as |x| → +∞,
which we will establish below by contradiction (cf. the proof of Theorem
5.1 in [8]).

Let there exist a number ε > 0 and a sequence {xn := (an, f(an))} ⊂ Γ
such that |an| → ∞ as n→∞ and |ψ(xn)| ≥ ε.

Define a translation operator

(Tag)(s) = g(s− a) for s ∈ R

and let

fn :=T−an
f, ϕ̃n :=T−an

ϕ̃, ψ̃n :=T−an
ψ̃, g(j)

n :=T−an
g(j), j=1, 2, (4.67)

where χ = [ϕ, ψ]> is a solution pair of equation (4.49), ϕ̃(s) = ϕ(s, f(s)),

ψ̃(s) = ψ(s, f(s)),

g(1) := u1(·, h2) = −µ−1v1(·, h2), g(2) := u2(·, h1) = v2(·, h1), (4.68)
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and uj(x) are given by formulas (4.1) and (4.2). It is evident that fn ∈
B(1, 1, a, b,M) for f ∈ B(1, 1, a, b,M).

Note that

|ψ̃n(0)| = |ψ(an, f(an))| = |ψ(xn)| ≥ ε > 0. (4.69)

From (4.62)–(4.64) it follows that g
(1)
n , g

(2)
n , ϕ̃n ∈ BC(R) and

g(1)
n

s→ 0, g(2)
n

s→ 0, ϕ̃n
s→ 0, as n→∞, (4.70)

where the symbol
s→ denotes the strict convergence (see Subsection 2.4).

Equalities (4.68) imply (see (4.1) and (4.2))

g(1)(x1) = u1(x1, h2) = µ−1P(1)∗∗
f (ϕ̃)(x1) + µ−1P(1)∗

f (ψ̃)(x1), (4.71)

g(2)(x1) = P(2)∗∗
f (ϕ̃)(x1) + P(2)∗

f (ψ̃)(x1), (4.72)

where

P(j)∗∗
f (ϕ̃)(x1) :=

+∞∫

−∞

P
(j)∗∗
f (x1, t)ϕ̃(t) dt, x1 ∈ R, j = 1, 2, (4.73)

P(j)∗
f (ψ̃)(x1) :=

+∞∫

−∞

P
(j)∗
f (x1, t)ψ̃(t)dt, x1 ∈ R, j = 1, 2, (4.74)

P
(1)∗∗
f (x1, t)=%(t)

[
∂n(y)G

−(I)
k1

(x, y;h2)
]
, x=(x1, h2), y=(t, f(t)), (4.75)

P
(1)∗
f (x1, t) = %(t)

[
G
−(I)
k1

(x, y;h2)
]
, x = (x1, h2), y = (t, f(t)), (4.76)

P
(2)∗∗
f (x1, t)=%(t)

[
∂n(y)G

+(I)
k2

(x, y;h1)
]
, x=(x1, h1), y=(t, f(t)), (4.77)

P
(2)∗
f (x1, t) = %(t)

[
G

+(I)
k2

(x, y;h1)
]
, x = (x1, h1), y = (t, f(t)); (4.78)

here %(t) =
√

1 + [f ′(t)]2.
From these formulas with the help of (2.12) we get

g(1)
n = T−an

g(1) = µ−1P(1)∗∗
fn

(ϕ̃n) + µ−1P(1)∗
fn

(ψ̃n), (4.79)

g(2)
n = T−an

g(2) = P(2)∗∗
fn

(ϕ̃n) + P(2)∗
fn

(ψ̃n). (4.80)

The relations (4.70) then imply

P(j)∗∗
fn

(ϕ̃n) + P(j)∗
fn

(ψ̃n)
s→ 0, j = 1, 2. (4.81)

From equations (4.49) we have

−(µ+ 1)(2µ)−1ϕ̃n+µ
−1K̃∗1,fn

ϕ̃n−K̃∗2,fn
ϕ̃n+µ

−1H̃∗
1,fn

ψ̃n−H̃∗
2,fn

ψ̃n=0, (4.82)

L̃fn
ϕ̃n + ψ̃n + K̃1,fn

ψ̃n − K̃2,fn
ψ̃n = 0, (4.83)
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where the operators K̃∗j,fn
, K̃j,fn

, H̃j,fn
are defined by (4.11)–(4.13), and in

accordance with (4)–(4.24)

(L̃fϕ)(x1) : =

+∞∫

−∞

L̃f (x1, y1)ϕ̃(y1)dy1, x1 ∈ R, (4.84)

L̃f (x1, y1) : = %(t)L(x, y) with x = (x1, f(x1)), y = (y1, f(y1)). (4.85)

By Lemma 4.6.(i) in [8] there exists a subsequence of {fn} (for simplicity,
we rename it again by fn) and f∗ ∈ B(1, 1, a, b,M) such that

fn
s→ f∗ and f ′n

s→ (f∗)′. (4.86)

By Lemmas 4.6.(ii) and 4.1 in [8] we conclude

K̃∗j,fn
ϕ̃n

s→ 0, L̃fn
ϕ̃n

s→ 0, (4.87)

since ϕ̃n
s→ 0, K̃∗

j,fn

σ→ K̃∗
j,f∗ , and L̃fn

σ→ L̃f∗ , where the symbol
σ→ de-

notes the σ-convergence (see Subsection 2.4). Since the sequence {ψ̃n} is

uniformly bounded, by Corollary 4.5 in [8] there exist ψ̃∗∗ and ψ̃∗ in BC(R)

and subsequences of (µ−1H̃1,fn
−H̃2,fn

)ψ̃n and (K̃1,fn
−K̃2,fn

)ψ̃n (renamed
by the same symbols) such that

(µ−1H̃1,fn
− H̃2,fn

)ψ̃n
s→ ψ̃∗∗, (4.88)

(K̃1,fn
− K̃2,fn

)ψ̃n
s→ ψ̃∗. (4.89)

After the above manipulations, it is evident that we may assume that all the
relations (4.67)–(4.89) hold for one and the same discrete parameter n ∈ N.

From (4.70), (4.82), (4.83), and (4.87) along with (4.88) and (4.89) it
follows that

ψ̃∗∗ = 0 and ψ̃n
s→ ψ̃∗. (4.90)

Further, by (4.90) and since H̃j,fn

σ→ H̃j,f∗ we have (see Lemmas 4.1 and
4.6 in [8])

H̃j,fn
ψ̃n

s→ H̃j,f∗ψ̃∗, K̃j,fn
ψ̃n

s→ K̃j,f∗ψ̃∗. (4.91)

As a result, from (4.82)–(4.83) with the help of (4.70), (4.87), and (4.91) we
then get

µ−1H̃1,f∗ψ̃∗ − H̃2,f∗ψ̃∗ = 0,

ψ̃∗ + K̃1,f∗ψ̃∗ − K̃2,f∗ψ̃∗ = 0.
(4.92)

Using the bounds (2.14) and since fn ∈ B(1, 1, a, b,M) and fn
s→ f∗,

f ′n
s→ (f∗)′, it is easy to see that

P
(j)∗
fn

σ→ P
(j)∗
f∗ and P

(j)∗∗
fn

σ→ P
(j)∗∗
f∗ .

Consequently,

P(j)∗
fn

(ψ̃n)
s→ P(j)∗

f∗ (ψ̃∗), P(j)∗∗
fn

(ϕ̃n)
s→ 0.



UNIQUENESS, EXISTENCE, AND INTEGRAL EQUATION FORMULATIONS 139

Therefore,

(1)
g n= µ−1P(1)∗∗

fn
(ϕ̃n) + µ−1P(1)∗

fn
(ψ̃n)

s→ µ−1P(1)∗
f∗ (ψ̃∗) = 0,

(2)
g n= P(2)∗

fn
(ϕ̃n) + P(2)∗

fn
(ψ̃n)

s→ P(2)∗
f∗ (ψ̃∗) = 0,

due to (4.70).
Thus,

P(1)∗
f∗ (ψ̃) = 0, P(2)∗

f∗ (ψ̃∗) = 0. (4.93)

Now, let us introduce the functions

w1(x) := µ−1V1,f∗(ψ∗)(x), x ∈ U−h2
\ Γf∗ , (4.94)

w2(x) := V2,f∗(ψ∗)(x), x ∈ U+
h1
\ Γf∗ , (4.95)

where

ψ∗(y) := ψ̃∗(y1), y = (y1, f
∗(y1)) ∈ Γf∗ . (4.96)

Since ψ̃∗ solves the system of integral equations (4.92), it follows that

(∆ + k2
j )w∗j (x) = 0 in Ωf∗

j ,

[w1(x)]
−
Γf∗

= [w2(x)]
+
Γf∗

,

µ [∂nw1(x)]
−
Γf∗

= [∂nw2(x)]
+
Γf∗

,



 x ∈ Γf∗ = {x ∈ R2 | x2 = f∗(x1)},

where Ωf∗

1 = {x ∈ R2 | x2 < f∗(x1)}, Ωf∗

2 = {x ∈ R2 | x2 > f∗(x1)}, and
w1 and w2 satisfy the UPRC and DPRC, respectively.

Moreover, due to the second equation in (4.92) and Lemmas 4.3 and
4.4, we conclude that wj (j = 1, 2) have bounded continuous first order

derivatives in U
+

h1
\ Ωf∗

2 and U
−

h2
\ Ωf∗

1 . Therefore, due to the uniqueness
Theorem 3.1

w1(x) = 0 in Ωf∗

1 , w2(x) = 0 in Ωf∗

2 .

Further, the equations (4.93) show that

w1(x)|x∈Γh2
= 0, w2(x)|x∈Γh1

= 0. (4.97)

Applying the impedance conditions (2.13) and the representations (4.94)
and (4.95) we get

∂w1(x)

∂x2

∣∣∣∣
x2=h2

= 0,
∂w2(x)

∂x2

∣∣∣∣
x2=h1

= 0.

By Holmgren’s uniqueness theorem we then conclude that

w1(x) = 0 for x ∈ U−h2
\ Ωf∗

1 , w2(x) = 0 for x ∈ U+
h1
\ Ωf∗

2 .

The equations (4.97), (4.94) and (4.95), and Lemma 4.1 then imply

ψ∗ = 0 on Γf∗ , (4.98)
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since (∂nw1)
−
Γf∗

− (∂nw1)
+
Γf∗

= µ−1ψ∗. The equality (4.98) contradicts to

(4.69) since (see (4.90) and (4.96))

|ψ∗(0, f∗(0))| = |ψ̃∗(0)| = lim
n→+∞

|ψ∗n(0)| ≥ ε > 0.

Thus, we have proven that

lim
|x1|→∞

ψ(x) = 0. (4.99)

Now, from (4.99) it follows that

Vj(ψ)(x) → 0 as |x1| → +∞, j = 1, 2, (4.100)

uniformly in Ω
∗

j (cf. the proof of Theorem 5.1, Step III in [8], p. 3779).

In turn, (4.100) then implies (see (4.66)): r
(2)
± = 0.

Applying (4.65) and (4.54) we get

v1(x) = −µu1(x) = 0 for x ∈ Ω∗1. (4.101)

Consequently, we have obtained that u1, which is represented by (4.1),
vanishes in Ω1 and in Ω∗1 = U−h2

\ Ω1 (see (4.50) and (4.101)). This yields
ϕ = ψ = 0 on Γ, which completes the proof. �

4.3. Existence results. Now we are in the position to prove the unique
solvability of the non-homogeneous system (4.42), (4.43) (i.e., the matrix
equation (4.45)) which can be equivalently rewritten as the following system
of integral equations on R:

(
−(µ+ 1)(2µ)−1 I + µ−1 K̃∗1,f − K̃∗2,f

)
ϕ̃(x1)+

+
(
µ−1 H̃1,f − H̃2,f

)
ψ̃(x1) = f̃1(x1), (4.102)

L̃f ϕ̃(x1) +
(
I + K̃1,f − K̃2,f

)
ψ̃(x1) = f̃2(x1), (4.103)

where K̃∗j,f , K̃j,f , H̃j,f , and L̃f are integral operators given by (4.11)–(4.13)

and (4.84), respectively, f ∈ B(1, 1, a, b,M), and

ϕ̃(x1) := ϕ(x1, f(x1)), ψ̃(x1) := ψ(x1, f(x1)), f̃j(x1) := fj(x1, f(x1)).

The corresponding matrix operator we denote by M̃f :

M̃f :=


 −(µ+ 1)(2µ)−1I + µ−1 K̃∗1,f − K̃∗2,f µ−1H̃1,f − H̃2,f

L̃f I + K̃1,f − K̃2,f


 (4.104)

and let

χ̃ := [ϕ̃, ϕ̃]>, F̃ := [f̃1, f̃2]
>.

The equations (4.102)–(4.103) then can be written as

M̃f χ̃(x1) = F̃ (x1), x1 ∈ R. (4.105)
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Now we formulate the properties of the integral operators involved in
(4.104) needed to apply the theory developed in [11] and [1] for a class of
systems of second kind integral equations on unbounded domains.

Lemma 4.7. Let K̃ denote any of the integral operators K̃∗j,f , K̃j,f , H̃j,f ,

or L̃f , and let K̃(s, t) denote the corresponding kernel, such that

K̃ ν(s) =

+∞∫

−∞

K̃(s, t) ν(t) dt for s ∈ R.

(a) There exists a function k(·) ∈ L1(R) such that

|K̃(s, t)| ≤ k(s− t) for s, t ∈ R, s 6= t,

where k(s) = O(|s|−3/2) as |s| → +∞.

(b) The kernel K̃ satisfies the properties

sup
s∈R

+∞∫

−∞

|K̃(s, t)| dt < +∞,

and for all s, s′ ∈ R,

lim
s′→s

+∞∫

−∞

|K̃(s′, t)− K̃(s, t)| dt = 0.

(c) K̃ is a bounded mapping from L∞(R) to BC(R) and from Lp(R) to
Lp(R) for any p ∈ [1,+∞).

Proof. It is verbatim the proof of Lemma 5.1 in [1] due to the bounds (2.14)
and equalities (4.10) and (4.24) (see also (4.25)). �

Let

M̃(0)
f :=


 µ−1 K̃∗1,f − K̃∗2,f µ−1 H̃1,f − H̃2,f

L̃f K̃1,f − K̃2,f


 (4.106)

and denote by M̃
(0)
f (·, ·) the matrix kernel corresponding to the operator

M̃(0)
f .

By (4.104) then

M̃f = I(0) + M̃(0)
f (4.107)

with

I(0) :=


 −(1 + µ)(2µ)−1 0

0 1


 . (4.108)

Further, let

Λ̃ :=
{
M̃(0)

f | f ∈ B(1, 1, a, b,M)
}
.
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Lemma 4.8. Let M̃(0)
f ∈ Λ̃. Then M̃(0)

f is continuous and sequentially
compact with respect to the σ-topology.

Proof. It is verbatim the proof of Corollary 5.14 in [1] due to Lemma 4.7. �

Lemma 4.9. Assume that {χ̃n} ⊂ [BC(R)]2 is a bounded sequence and

that there are a sequence {M̃(0)
fn
} ⊂ Λ̃ and an operator M̃(0)

f ∈ Λ̃ such that

fn
s→ f , f ′n

s→ f ′.

Then
(
M̃(0)

fn
− M̃(0)

f

)
χ̃n

s→ 0 as n→ +∞.

Proof. It is verbatim the proof of Lemma 5.16 in [1] and Lemma 4.6 in
[8]. �

Lemma 4.10. The set Λ̃ is collectively sequentially compact with respect

to the σ-topology. Furthermore, for every {M̃(0)
fn
} ⊂ Λ̃, there exist a subse-

quence {M̃(0)
fnp
} and M̃(0)

f ∈ Λ̃ such that M̃(0)
fnp

χ̃p
s→ M̃(0)

f χ̃ for arbitrary

χ̃p
s→ χ̃ as p→ +∞.

Proof. It is verbatim the proof of Theorem 5.17 in [1]. �

As above (see the proof of Lemma 4.6), let Ta be a translation operator
and

T :=
{
Ta | [BC(R)]2 → [BC(R)]2, χ̃(·) 7→ χ̃(· − a), a ∈ R

}
. (4.109)

Obviously, T forms a sufficient subgroup of the group of isometries on
[BC(R)]2, that is, for some j ∈ N and for each χ̃ ∈ [BC(R)]2 there holds

sup
|s|≤j

Taχ̃(s) ≥ 2−1‖χ̃‖∞, a ∈ R.

Furthermore, since for f ∈ B(1, 1, a, b,M) there also holds f(· − a) ∈
B(1, 1, a, b,M), it is not difficult to see that for M̃(0)

f ∈ Λ̃, Ta ∈ T , there

holds T−aM̃(0)
f Ta ∈ Λ̃, due to the structure of the kernels of the operators

involved in (4.106).

Let now M̃(0)
f ∈ Λ̃ and denote by κ a C∞(R) function with |κ| ≤ 1 on R,

κ = 0 for t ≤ 0 and κ = 1 for t ≥ m, where m is a positive number. Denote

κn(t) :=





κ(n+m+ t) for t < 0,

κ(n+m− t) for t ≥ 0,
n ∈ N,

f := 2−1[ sup
R

f + inf
R

f ].

We construct the sequence

fn(t) := κn(t) f(t) + [1− κn(t)] f (4.110)

and choose m such that {fn} ⊂ B(1, 1, a, b,M).

It is easy to see that fn
s→ f , f ′n

s→ f ′ and by Lemma 4.9 also M̃(0)
fn

σ→
M̃(0)

f .
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Note that

M̃(0)
fn

= M̃(0)

f
+ M̃(1)

fn
, (4.111)

where

M̃(1)
fn
χ̃(s) : = M̃(0)

fn
χ̃(s)− M̃(0)

f
χ̃(s) =

=

+∞∫

−∞

[
M̃

(0)
fn

(s, t)− M̃
(0)

f
(s, t)

]
χ̃(t) dt.

Lemma 4.11. The operators M̃(1)
fn

, n ∈ N, are compact.

Proof. Represent M̃(1)
fn

in the form

M̃(1)
fn

= M̃(2)
fn

+ M̃(3)
fn
,

where

M̃(2)
fn
χ̃(s) :=

(n+m)∫

−(n+m)

[
M̃

(0)
fn

(s, t)− M̃
(0)

f
(s, t)

]
χ̃(t) dt,

M̃(3)
fn
χ̃(s) :=

∫

R\[−(n+m),(n+m)]

[
M̃

(0)
fn

(s, t)− M̃
(0)

f
(s, t)

]
χ̃(t) dt,

The compactness of the operator M̃(2)
fn

can be shown by the word for

word arguments given in the proof of Lemma 5.18 in [1].

It remains to show that M̃(3)
fn

is compact.

Taking into account that the kernel M̃
(0)
fn

(·, ·) depends on f in the fol-

lowing way (see (4.106) and (4.7)–(4.13))

M̃
(0)
f (s, t) = M (0)(s, f(s), t, f(t)),

we easily conclude

M̃
(0)
fn

(s, t)− M̃
(0)

f
(s, t) = 0 for |s| ≥ n+m and |t| ≥ n+m

due to the equality (4.110). Therefore,

M̃(3)
fn
χ̃(s) = 0 for |s| ≥ n+m.

Now the compactness of the operator M̃(3)
fn

follows from Lemma 4.7 and the
Arzela–Ascoli theorem. �

Lemma 4.12. The operator I (0) +M̃(0)

f
is bijective (and thus a Fredholm

operator of index zero) on [BC(R)]2.

Proof. Since M̃(0)

f
is a convolution operator with a matrix kernel in

[L1(R)]2×2, the proof follows from Theorem A.2 in [26]. �
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Lemma 4.13. The operators M̃fn
= I(0) + M̃(0)

fn
are bijective on

[BC(R)]2.

Proof. Note that due to the equation (4.111) and Lemmas 4.11 and 4.12

the operator M̃fn
is Fredholm and its index equals to 0. Thus, by Lemma

4.6, M̃fn
is bijective. �

Now we can prove the main existence result for the system of integral
equations (4.102)–(4.103) which can be written as (see (4.105) and (4.107))

M̃f χ̃ = F̃ or
[
I(0) + M̃(0)

f

]
χ̃ = F̃ on R

(see (4.105), (4.107), (4.108)).

Theorem 4.14. For all f ∈ B(1, 1, a, b,M) the integral operator

M̃f = I(0) + M̃(0)
f : [BC(R)]2 → [BC(R)]2

is bijective (and so boundedly invertible) with

sup
f∈B(1,1,a,b,M)

‖M̃−1
f ‖ <∞.

Thus the equations (4.102)–(4.103) have exactly one solution for every f ∈
B(1, 1, a, b,M) and F ∈ [BC(Γf )]2, with

‖χ‖[BC(Γf )]2 = ‖χ̃‖[BC(R)]2 ≤ C ‖F̃‖[BC(R)]2 = C ‖F‖[BC(Γf )]2

for some constant C > 0 depending on B(1, 1, a, b,M) and wave numbers kj

(j = 1, 2).

Proof. Due to Lemmas 4.6–4.13 it is easy to see that the following conditions
are satisfied:

(a) The set Λ̃ is collectively sequentially compact with respect to the

σ-topology and for every sequence {M̃(0)
fn
} ⊂ Λ̃ there exists a subsequence

{M̃(0)
fnp
} and M̃(0)

f ∈ Λ̃ such that M̃(0)
fnp

σ→ M̃(0)
f as p → +∞ (see Lemma

4.10).
(b) The set of translation operators (4.109) forms a sufficient subgroup

of the group of isometries on [BC(R)]2 and for an arbitrary translation

operator Ta ∈ T there holds T−aΛ̃Ta ⊂ Λ̃.

(c) M̃f = I(0) + M̃(0)
f is injective for M̃(0)

f ∈ Λ̃ (see Lemma 4.6).

(d) For every M̃(0)
f ∈ Λ̃ there exists a sequence {M̃(0)

fn
} ⊂ Λ̃ such that

I(0) + M̃(0)
fn

is bijective and M̃(0)
fn

σ→ M̃(0)
f as n→ +∞ (see Lemma 4.13).

By Theorems 5.12 and 5.13 in [1] we then conclude that all the assertions
of the theorem are valid. �

The above theorem along with Lemmas 4.4 and 4.5 leads to the following
existence results for the original interface problem.
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Theorem 4.15. Interface Problem (P) has exactly one solution for
arbitrary data f1 and f2 with f1 ∈ BC1,α(Γ) and f2 ∈ BC0,α(Γ), and

uj ∈ C2(Ωj) ∩ C1(Ωj) ∩ BC1(Ωj,hj
), j = 1, 2.

Moreover, in Ωj,hj
the solution depends continuously on ‖f1‖∞,Γ and

‖f2‖∞,Γ, while ∇uj depends continuously on ‖f1‖1,α,Γ and ‖f2‖0,α,Γ.
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