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Abstract. Two-dimensional Yang–Mills equations on Riemann sur-
faces and Bogomol’ny equation are studied using methods of the theory
of Riemann–Hilbert problem. In particular, representations of solutions in
terms of connections are given and solvability conditions of arising Riemann–
Hilbert problems are established.
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1. Motivation of the Problem

Applications of methods of the theory of Riemann–Hilbert problems in
modern mathematical and theoretical physics are well known. To mention
only the latest spectacular example, A. Connes and D. Kreimer [14] suc-
cessfully applied those methods to the investigation of the renormalization
problem which is of fundamental importance in theoretical physics.

In this paper, we give another example of application of Riemann–Hilbert
problems to the investigation of two-dimensional Yang–Mills equations [5].
To this end, we use the methods based on the results of Georgian mathe-
maticians presented in the monographs of N.Mushkhelishvili [40], I. Vekua
[53], N. Vekua [54], G. Manjavidze [38], E. Obolashvili [44], G. Khimshi-
ashvili [30], as well as some results of the author [23].

Under the Riemann–Hilbert monodromy problem it will be understood
the following problem: a compact Riemann surface X is given together with
its discrete finite subset S. Moreover, a representation % : π1(X \ S, z0) →
GLn(C) is given. The problem consists in constructing such a system df =
ωf of differential equations on X whose singular set coincides with S, while
the group of monodromy induced by this system is G = im % ⊂ GLn(C).
One might require of the sought for system of differential equations to have
regular singular points, be of the Fuchs type, or just some of the singular
points to be regular, or the system to have apparent singular points.

Systems of equations of Fuchs type have always been object of special in-
terest. The reason was probably that by the I. Lappo-Danilevsky theorem
such a system can be explicitly constructed from the monodromy matri-
ces M1, M2, . . . , Mm ∈ GLn(C). Riemann–Hilbert problem for Fuchsian
systems is also called Hilbert’s 21st problem.

The monodromy representation % enables one also to construct a holo-
morphic bundle E′ → X \S on the noncompact Riemann surface X \S for
which ∇′ = d − ω will be a holomorphic connection. There exists a con-
struction (which we will present in Section 3) which permits to extend the
bundle (E′,∇′) to a holomorphic bundle (E,∇) with a regular connection.
Extension is not unique, but there exists a so-called canonical extension
(E◦,∇◦) whose holomorphic triviality for X ∼= CP

1 is a sufficient condition
for the solvability of Hilbert’s 21st problem [9]. Irreducibility of the rep-
resentation % is also a sufficient condition for the existence of a system of
Fuchs type [9].

Holomorphic classification of holomorphic bundles on compact Riemann
surfaces has a long history. It arose in several contexts and after the works
of G. Birkhoff, A. Grothendieck, M. Atiyah, D. Mumford, M. Narasimhan
and T. Seshadri comprises a finalized theory. A synthesis of the theorems by
G. Birkhoff and A.Grothendieck is known in the literature as the Birkhoff–
Grothendieck theorem and amounts to the following:
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Each holomorphic vector bundle E → CP
1 on the Riemann sphere CP

1

decomposes into the sum of line bundles: O(k1)⊕ · · · ⊕O(kn), the integers

k1 ≥ · · · ≥ kn being the Chern numbers of the line bundles.

Classification of holomorphic vector bundles on Riemann surfaces of
genus g ≥ 1 has been accomplished with the aid of holomorphic connec-
tions by M. Atiyah [4], who assigned to each bundle E → X an element
b(E) ∈ H1(X ; Ω1) of the cohomology group H1(X ; Ω1) whose triviality is
necessary and sufficient for the existence of a holomorphic connection on
E → X .

D. Mumford [39] determined an important subclass of holomorphic bun-
dles E → X , g ≥ 2, the so-called semistable bundles, while Narasimhan
and Seshadri showed that a bundle is semistable if and only if it is induced
by an irreducible unitary representation % : π1(X \ {x0}; z0) → U(n) of the
fundamental group of the surface X \{x0}, where x0 ∈ X is some point. Let
us reproduce here a formulation of this theorem due to S.Donaldson [16]:

An indecomposable holomorphic bundle E → X is stable if and only

if there is a unitary connection ∇ on E having constant central curvature

∗F∇ = −2πiµ(E)1, where µ(E) = degree(E)/rank(E), ∗ is a Hodge opera-

tor, and 1 is the identity matrix.

This result relates to the Riemann–Hilbert monodromy problem as fol-
lows: for a representation % : π1(X \ {x0}, z0) → U(n) there exists a system
df = ωf of differential equations on X for which x0 is a regular singular
point and its monodromy coincides with %. Thus ∇ = d − ω will be a
connection with a regular singularity on the holomorphic bundle E% → X ,
and since ∗F∇ is constant, one has D∇ ∗ F∇ = 0, which means that ∇ is a
Yang–Mills connection [4]. A wider class of Yang–Mills connections can be
obtained from the linear elliptic system ∂

∂z̄ f(x) = A(z)f(z) [6], where ∂
∂z̄

is the derivative in the Sobolev sense, A(z) is a square matrix function of
rank n with entries of the class Lp. This system is interesting in relation
with the following linear conjugation problem which can be formulated as
follows.

Suppose we are given a matrix function g : Γ → GLn(C) of the Hölder

class. One must find a piecewise holomorphic vector function ϕ(t) on U+ ∪
U− which extends continuously to Γ, satisfies the boundary condition ϕ+(t)=
g(t)ϕ−(t) for all t ∈ Γ, and is of finite order at infinity.

This problem is solved with the aid of the so-called Wiener–Hopf fac-

torization (which is also often called the Birkhoff factorization [46]) of
the Hölder class matrix function g(t), which means that g(t) can be rep-
resented in the form g(t) = g−(t)dK(t)g+(t), where g±(t) are holomor-
phic, respectively, on U± and satisfy a finiteness condition at ∞, dK(t) =
diag(tk1 , . . . , tkn), with integers k1 ≥ k2 ≥ · · · ≥ kn [40].

To relate the linear conjugation problem and the Riemann–Hilbert mon-
odromy problem, one must take for g(t) a piecewise constant function
which relates to the monodromy matrices M1, . . . , Mm via the equality
g(t) = Mj · · ·M1 for t belonging to the arc 〈sj , sj+1〉, where sj ∈ S,
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j = 1, . . . , m. Traditionally such a problem is reduced to a problem of the
Hölder class and is then solved using the Wiener-Hopf factorization. We
will consider the monodromy problem for the system ∂

∂z̄ f(x) = A(z)f(z),
and replace the Wiener-Hopf factorization by the so-called Φ-factorization
[51].

A particular case of the aforementioned elliptic system is the Beltrami

equation, used for investigation of deformations of the holomorphic struc-
tures of Riemann surfaces [31]. In our case deformation of holomorphic
structure occurs via perturbation of the singular point of the system of
equations, whose isomonodromy condition is realized by the Schlesinger

equation.
We have noted above that according to Lappo-Danilevsky it is possi-

ble to express analytically the coefficients of a Fuchs type system by the
monodromy matrices, provided these matrices satisfy certain conditions.
Lappo-Danilevsky [34] showed that if the monodromy matrices M1, . . . , Mm

are close to 1, then the coefficients Aj of the system of differential equations

of the Fuchs type df
dz =

(∑m
j=1

Aj

z−sj

)
f are expressed by the singular points

sj and monodromy matrices Mj via the noncommutative power series

Aj =
1

2πi
M̃j +

∑

1≤k,l≤n

ξkl(s)M̃kM̃l + · · · ,

where ξkl are functions depending on the singular points which can be given
as explicit functions of s, s ∈ S, and M̃j = Mj−1. Algebraic version of the
Riemann–Hilbert monodromy problem is known in the differential Galois
theory under the name of inverse problem.

In this context the Riemann–Hilbert monodromy problem in the class
of Yang–Mills connections takes the following form: for a prescribed mon-
odromy and a fixed finite set of points on a given Riemann surface, construct
a Yang–Mills connections whose monodromy representation and singular
points coincide with the given data.

2. Monodromy Problem for Generalized Analytic Vector

In this section we present some results on Lp-connections which owe
much to numerous helpful discussions with B.Bojarski which the author
had in last five years. Our approach and results are based on the theory
of generalized analytic functions [53] and vectors [8]. A part of this section
was already presented in [24].

Let Lp(Γ) be the space of Lebesgue measurable functions satisfying the

condition that the norm ||f ||Lp(Γ) =
(∫

Γ |f(τ)|p|dτ |
) 1

p < ∞, is finite. It is
well known that Lp(Γ) is a Banach space with the above norm.

Consider the singular integral operator (SΓf)(t) = 1
πi

∫
Γ

f(τ)
τ−t dt, t ∈ Γ.

This operator is bounded on Lp(Γ) and S2
Γ = 1. Let us introduce the

following projectors: PΓ = 1+SΓ

2 , QΓ = 1−SΓ

2 .
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Functions f ∈ Lp
+(Γ) can be identified with functions f̂ holomorphic in

U+ so that f̂ is an analytic continuation of f to U+. Here Lp
+(Γ) denotes

the space of those holomorphic functions on U+ whose boundary values
are functions from Lp(Γ); similarly let Lp

−(Γ) denote the space of those
holomorphic functions on U− whose extension to Γ gives an element of
Lp(Γ). Let also L∞(Γ) be the Banach space of Lebesgue measurable and
essentially bounded functions.

Definition 2.1 ([51]). Factorization of a matrix-function G ∈ L∞(U)n×n

in the space Lp(Γ) is its representation in the form

G(t) = G+(t)Λ(t)G−(t), t ∈ Γ, (2.1)

where Λ(t) = diag(tk1 , . . . , tkn), ki ∈ Z, i = 1, . . . , n, G+ ∈ L+(Γ)n×n and
G−1

+ ∈ Lq
+(Γ)n×n, G− ∈ Lq

−(Γ)n×n, and G−1
− ∈ Lp

−(Γ)n×n, 1
p + 1

q = 1.

We say that G admits the canonical factorization in Lp(Γ) if k1 = · · · =
kn = 0. This definition implies that the operator G−1

− QΓG−1
+ is defined on

the dense subspace of the space Lp(Γ)n consisting of those rational vector-
functions which are allowed to have poles on Γ, and maps this subspace
onto L1(Γ)n. If this operator is bounded in the Lp norm, then it can be
extended to the whole Lp(Γ)n and the obtained operator is still bounded,
in which case the representation (2.1) from Definition 2.1 will be called the
Φ-factorization of G(t). It is known that a matrix-function G ∈ L∞(Γ)n×n

is Φ-factorizable in the space Lp(Γ) if and only if the operator PΓ + GQΓ is
Fredholm on the space Lp(Γ)n [17].

Let us consider the particular case concerned with the subspace PC(Γ)n×n

of piecewise continuous matrix-functions. For the elements of this subspace
there exist one-sided limits G(t + 0) and G(t − 0) for each t ∈ Γ. For such
matrix-functions a necessary and sufficient condition for the existence of
Φ-factorization is given by the following theorem.

Theorem 2.1 ([17]). A matrix-function G ∈ PC(Γ)n×n is Φ-factorizable

in the space Lp(Γ) if and only if

a) the matrices G(t + 0) and G(t− 0) are invertible for each t ∈ Γ;

b) for each j = 1, . . . , n and t ∈ Γ one has 1
2π arg λj(t) + 1

p /∈ Z.

Here λ1(t), . . . , λn(t) are eigenvalues of the matrix-function G(t − 0)G(t +
0)−1.

If a matrix-function G is Φ-factorizable, then ξj(τ) = 1
2π arg λj(τ) is a

single-valued function taking its values in the interval
(

1
p − 1, 1

p

)
.

Suppose G has m singular points s1, . . . , sm ∈ Γ. Then

κ =

m∑

k=1

[
1

2π
arg det G(t)

]ak+1−0

t=ak+0

+

m∑

k=1

n∑

j=1

ξj(sk). (2.2)
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It can be seen from (2.2) that κ depends on Lp(Γ). If the λj(τ) are positive
real numbers, then ξj(τ) = 0 and consequently κ does not depend on the
space Lp(Γ).

Suppose now that G ∈ PC(Γ)n×n is a piecewise constant matrix function
with the singular points s1, . . . , sm ∈ Γ occurring in this order on Γ. Suppose
G is factorizable in the space Lp(Γ). Let us denote Mk = G(sk − 0)G(sk +
0)−1, k = 1, . . . , m. Thus G is constant on the arc (sk, sk+1), and clearly
M1M2 · · ·Mk = 1. Suppose that the monodromy matrices are similar to
the matrices exp(−2πiEk) and the eigenvalues of Ek belong to the interval(

1
p − 1, 1

p

)
, where the matrices Ek are determined uniquely up to similarity

since the length of that interval is 1. The numbers ξ1(sk), . . . , ξn(sk) are
equal to real parts of the eigenvalues of Ek. This implies that for the
index κ one has the formula κ =

∑m
k=1 trEk. Thus the matrices E1, . . . , Ek

depend on the space Lp(Γ). They also depend on the choice of the branches
of logarithms for eigenvalues of the matrices Mj . Thus G ∈ PC(Γ)n×n

produces two m-tuples (M1, . . . , Mm) and (E1, . . . , Em) of matrices.
Let

df

dz
= Ω(z)f(z) (2.3)

be a system of differential equations with regular singularities, having
s1, . . . , sm as singular points, and ∞ as an apparent singular point. It is
known that such a system has n linearly independent solutions in a neigh-
borhood of any regular point.

Let us denote such a fundamental system of solutions by F (z̃). It is possi-
ble to characterize F (z̃) by its behavior near the singular points s1, . . . , sm,
using the monodromy matrices M1, . . . , Mm which are determined by the
matrices E1, . . . , Em, and by the behavior at ∞ which is characterized
by partial indices k1, . . . , km. Therefore it is said that the system (2.3)
has the standard form with respect to the matrices (M1, . . . , Mm) and
(E1, . . . , Em) satisfying the condition M1 · · ·Mm = 1 such that Mk are sim-
ilar to exp(−2πiEk), k = 1, . . . , m, and Ej are not resonant, with singular
points s1, . . . , sm and partial indices k1 ≥ · · · ≥ kn, if

i) s1, . . . , sm are the only singular points of (2.3), with ∞ as an ap-
parent singular point;

ii) the monodromy group of (2.3) is conjugate to the subgroup of
GLn(C) generated by the matrices M1, . . . , Mm;

iii) in a neighborhood Uj of the point sj the solution has the form
F (z̃) = Zj(z)(z̃ − sj)

Ej C, where Zj(z) is an analytic and invertible
matrix-function on Uj ∪ {sj} and C is a nondegenerate matrix;

iv) the solution of the system in a neighborhood U∞ of ∞ has the form
F (z) = diag(zk1 , . . . , zkn)Z∞(z)C, z ∈ U∞, with Z∞(z) holomor-
phic and invertible on U∞.

Theorem 2.2 ([17]). Suppose G ∈ PC(Γ )n×n is a piecewise constant

function with jump points s1, . . . , sm. Suppose G has a Φ-factorization in
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the space Lp(Γ), 1 < p < ∞, and (M1, . . . , Mm), (E1, . . . , Em) are matrices

associated to G on Lp(Γ).
Suppose that there exists a system of differential equations in the standard

form (2.3) with the singular points s1, . . . , sm and partial indices κ1, . . . , κm.

Let F1(z), F2(z) be a fundamental system of its solutions in U+ and U− \
{∞}.

Then there exist nondegenerate n × n-matrices C1 and C2 such that

G(t) = G+(t)Λ(t)G−(t) is a Φ-factorization of G in Lp(Γ), where Λ(t) =

diag(tk1 , . . . , tkn), G+(z) = C−1
1 F−1

1 (z), z ∈ U+, G−(z) = Λ−1(z)F2(z)C2,
z ∈ U− \ {∞}.

Let Γ be a simple closed contour, s1, . . . , sm ∈ Γ and M1, . . . , Mm ∈
GLn(C). We say that the piecewise constant matrix function G(t) is induced
by the collections s = {s1, . . . , sm}, M = {M1, . . . , Mm} if it is constructed
in the following manner: G(t) = Mj · · · · ·M1, if t ∈ [sj , sj+1), where Mj is
the monodromy matrice corresponding to going along a small loop around
singular point sj .

Theorem 2.3. Let

ρ : π1(CP
1 \ {s1, . . . , sm}) → GLn(C) (2.4)

be a representation such that (ρ(γ1)=M1, . . . , ρ(γm)=Mm) and (E1, . . . ,Em)
is admissible.

Then the Riemann–Hilbert monodromy problem for the representation

(2.4) is solvable if G(t) admits a canonical factorization in Lα(Γ) for some

α > 1 sufficiently close to 1.

Proof. It is known that for the given monodromy matrices M1, . . . , Mm and
singular points s1, . . . , sm there exists a system of differential equations of
the form

df = ωf (2.5)

such that s1, . . . , sm are the poles of first order for (2.5) and∞ is an apparent
singular point, the matrices M1, . . . , Mm are monodromy matrices of (2.5),
and the solution of (2.5) in the neighborhood of the singular point sj has
the form: Φj(z̃) = Uj(z)(z̃ − sj)

Ej C, where the matrix function Uj(z) is
invertible and analytic in the neighborhood of sj and C is a non-degenerate
matrix; in the neighborhood of ∞ the solution has the form:

Φ∞(z̃) = diag(k1, . . . , kn)U∞(z)C, (2.6)

where U∞(z) is analytic and invertible at ∞ [17]. By theorem 2.1, the
piecewise constant matrix function G(t) admits a Φ-factorization, therefore
ξj(τ) = 1

2π argλj(τ) is a single-valued function taking values in the interval(
1
p − 1, 1

p

)
. From the factorization condition G(t) = G+(t)Λ(t)G−(t) and

by Theorem 2.2 we have

G+(z) = C−1
1 F−1

1 (z), z ∈ U+, G−(z) = Λ−1(z)F2(z)C2, z ∈ U− \ {∞}.



Riemann–Hilbert Problems and Yang–Mills Theory 65

By assumption G(t) admits a canonical factorization, i.e., k1 = · · · = kn =
0. From this it follows that ∞ is a regular point of the system (2.5). �

The global theory of generalized analytic functions, both in one-dimen-
sional [53] and multi-dimensional cases [8], involves studying the space of
horizontal sections of a holomorphic line bundle with connection on a com-
plex manifold with singular divisor. In this context one needs to require that
a connection is complex analytic. An interesting class of such connections is
given by Lp-connections, and their moduli spaces have many applications.
Such connections and their moduli spaces are the object of intensive study
[52], [19].

We study the holomorphic vector bundles with Lp-connections from the
viewpoint of the theory of generalized analytic vectors [8]. To this end, we
consider a matrix elliptic system of the form:

∂−
z
Φ(z) = A(z)Φ(z). (2.7)

The system (2.7) is a particular case of the Carleman–Bers–Vekua system

[53]

∂−
z
f(z) = A(z)f(z) + B(z)f(z), (2.8)

where A(z), B(z) are bounded matrix functions on a domain U ⊂ C and
f(z) = (f1(z), . . . , fn(z)) is unknown vector function. The solutions of
the system (2.8) are called generalized analytic vectors by analogy with the
one-dimensional case [53], [8].

Along with similarities between the one-dimensional and multi-dimen-
sional cases, there also exist essential differences. One of them, as noticed by
B.Bojarski [8], is that there can exist solutions of the system (2.7) for which
there is no analog of the Liouville theorem on the constancy of bounded
entire functions.

We present first some necessary fundamental results of the theory of
generalized analytic functions [53], [6], [7], [8] in the form convenient for
our purposes. A modern consistent exposition of this theory was given by
A.Soldatov [48], [49], [50].

Let us define two differential operators on Wp(U)

∂z̄ : Wp(U) → Lp(U), ∂z : Wp(U) → Lp(U),

by setting ∂z̄f = θ1, ∂zf = θ2. The functions θ1 and θ2 are called the
generalized partial derivatives of f with respect to z̄ and z respectively.
Sometimes we will use a shorthand notation fz̄ = θ1 and fz = θ2. It is clear
that ∂z and ∂z̄ are linear operators satisfying the Leibniz equality.

Define the following singular integral operator in the Banach space Lp(U):

T : Lp(U) → Wp(U), T (ω) = −
1

π

∫∫

U

ω(t)

t− z
dU, ω ∈ Lp(U). (2.9)
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It is known [53] that in one-dimensional case a solution of (2.7) can be
represented as

Φ(z) = F (z) exp(ω(z)), (2.10)

where F is a holomorphic function in U , and ω = − 1
π

∫ ∫
U

A(z)
ξ−z dU . In

multi-dimensional case an analog of the factorization (2.10) is given by the
following result.

Theorem 2.4 ([6]). Each solution of the matrix equation (2.7) in U can

be represented as

Φ(z) = F (z)V (z), (2.11)

where F (z) is an invertible holomorphic matrix function in U , and V (z) is

a single-valued matrix function invertible outside U .

The above representation of solutions to (2.7) will be used for construct-
ing a holomorphic vector bundle on the Riemann sphere and for computing
the monodromy matrices of the elliptic system (2.7). We recall some prop-
erties of solutions to (2.7). The product of two solutions is again a solution.
From Theorem 2.4 it follows (see also [20]) that the solutions constitute an
algebra and the invertible solutions are a subfield of this algebra.

Proposition 2.1. Let C(z) be a holomorphic matrix function. Then

[C(z), ∂z] = 0.

Proof. Indeed,

[C(z), ∂z]Φ(z) = C(z)∂zΦ(z)−∂zC(z)Φ(z) = C(z)∂zΦ(z)−C(z)∂zΦ(z) = 0.

Here we have used that ∂zC(z) = 0. �

Definition 2.2. Two systems ∂zΦ(z) = A(z)Φ(z) and ∂zΦ(z) = B(z)Φ(z)
are called gauge equivalent if there exists a non-degenerate holomorphic ma-
trix function C(z) such that B(z) = C(z)A(z)C(z)−1.

Proposition 2.2. Let the matrix function Ψ(z) be a solution of the system

∂zΦ(z) = A(z)Φ(z) and let Φ1(z) = C(z)Φ(z), where C(z) is a nonsingular

holomorphic matrix function. Then Φ(z) and Φ1(z) are solutions of the

gauge equivalent systems. The converse is also true: if Φ(z) and Φ1(z)
satisfy systems of equations

∂zΦ(z) = A(z)Φ(z), ∂zΦ1(z) = B(z)Φ1(z)

and A(z) = C−1(z)B(z)C(z), then Φ1 = D(z)Φ(z) for some holomorphic

matrix function D(z).

Proof. By Proposition 2.1 we have C(z)∂zΦ1(z) = A(z)C(z)Φ1(z), and
therefore Φ1(z) satisfies the equation ∂zΦ1(z) = C−1(z)A(z)C(z)Φ1(z).
To prove the converse, let us substitute in ∂zΦ(z) = A(z)Φ(z) in place
of A(z) the expression of the form C−1B(z)C(z) and consider ∂zΦ1(z) =
C−1B(z)C(z)Φ(z). Hence C(z)∂zΦ(z) = B(z)C(z)Φ(z). But for the left
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hand side of the latter equation we have C(z)∂zΦ(z) = ∂zC(z)Φ(z). There-
fore

∂z(C(z)Φ(z)) = B(z)(C(z)Φ(z)).

From this it follows that Φ and CΦ are solutions of equivalent systems,
which means that Φ1 = DΦ. �

The above arguments for solutions of (2.7) are of a local nature, so they
are applicable for an arbitrary compact Riemann surface X , which enables
us to construct a holomorphic vector bundle on X . Moreover, using the so-
lutions of the system (2.7) one can construct a matrix 1-form Ω = DzFF−1

on X which is analogous to holomorphic 1-forms on Riemann surfaces.
Let X be a Riemann surface. Denote by Lα,β

p (X) the space of Lp-forms
of the type (α, β), α, β = 0, 1, with the norm ‖ω‖Lα,β

p (X) =
∑

j ‖ω‖Lα,β
p (Uj)

,

where {Uj} is an open covering of X , and denote by Wp(U) ⊂ Lp(U) the
subspace of the functions which have generalized derivatives.

We define the operators

Dz =
∂

∂z
: Wp(U) → L1,0

p (U), f 7→ ω1dz = ∂zfdz,

Dz =
∂

∂ z
: Wp(U) → L0,1

p (U), f 7→ ω2d z= ∂zfdz.

It is clear that D2
z

= 0 and hence the operator Dz can be used to construct
the de Rham cohomology.

Let us denote by CL1
p(X) the complexification of L1

p(X), i.e., CL1
p(X) =

L1
p(X)⊗ C. Then we have the natural decomposition

CL1
p(X) = L1,0

p (X)⊕ L0,1
p (X) (2.12)

according to the eigenspaces of the Hodge operator ∗ : L1
p(X) → L1

p(X),

∗ = −ı on L1,0
p (X) and ∗ = ı on L0,1

p (X). The decomposition (2.12) splits

the operator d : L0
p(X) → L0

p(X) into the sum d = Dz + D−

z
.

Next, let as above, E → X be a C∞-vector bundle on X, Lp(X, E) be the
sheaf of the Lp-sections of E and let Ω ∈ L1

p(X, E) ⊗ GLn(C) be a matrix
valued 1-form on X . If the above arguments are applied to the complex
L∗p(X, E) with covariant derivative 5Ω, we obtain again the decompositions

of the space CL1
p(X, E) and the operator 5Ω :

CL1
p(X, E) = L1,0

p (X, E)⊕ L0,1
p (X, E), 5Ω = 5′

Ω +5′′
Ω.

Locally, on the domain U, we have 5U
Ω = dU + Ω, where Ω ∈ L1

p(X, U) ⊗

GLn(C) is a 1-form. Therefore 5U
Ω = (Dz +Ω1)+(D−

z
+Ω2), where Ω1 and

Ω2 are, respectively, holomorphic and anti-holomorphic part of the matrix-
valued 1-form on U. We say that a Wp-section f of the bundle E with
Lp-connection is holomorphic if it satisfies the system of equations

∂−
z
f(z) = A(z)f(z), (2.13)
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where A(z) is an n×n matrix-function with entries in L0
p(X)⊗GLn(C) and

f(z) is a vector function f(z) = (f1(z), f2(z), . . . , fn(z)), or in equivalent
form (2.13) reads: Dzf = Ωf, where Ω ∈ L1

p(X)⊗GLn(C).
We now use the above arguments for constructing a holomorphic vector

bundle over the Riemann sphere CP
1 by means of the system (2.7). Let

{Uj}, j=1,2, be an open covering of CP
1. Then in any domain Uj , a solution

Φ(z) can be represented as Φ(z) = Vj(z)F (z), where Vj(z) is a holomorphic
non-degenerate matrix function on U c

j −Sj where Sj is a finite set of points.

Restrict Φ(z) on (UC
1 ∩ UC

2 ) − S = (U1 ∪ U2)
C − S, S = S1 ∪ S2 and

consider the holomorphic matrix-function ϕ12 = V1(z)V2(z)−1 on (U1 ∪
U2)

C −S. It is a cocycle and therefore defines a holomorphic vector bundle

E
′

on CP
1 − S. From the Proposition 2.2 it follows that E

′

→ CP
1 − S is

independent of the choice of solutions in the same gauge equivalence class.
The extension of this bundle to a holomorphic vector bundle E → CP

1

can be done by a well-known construction (see Section 3) and the obtained
bundle is holomorphically nontrivial.

It is now possible to verify that the operator ∂
∂z

+ Ω(z, z) is a Lp-
connection of this bundle. It turns out that its index coincides with the
index of Cauchy–Riemann operator on X . This follows since the index of
Cauchy–Riemann operator is equal to the Euler characteristic of the sheaf
of holomorphic sections of the holomorphic vector bundle E .

Consider now a related problem. For a given loop G : Γ → GLn(C), find
a piecewise continuous generalized analytic vector f(z) with the jump on
the contour Γ such that on Γ it satisfies the conditions

a) f+(t) = G(t)f−(t), t ∈ Γ, b) |f(t)| ≤ c|z|−1, |z| → ∞.

It is known that for G there exists a Birkhoff factorization, i.e., G(t) =
G+(t)dK(t)G−(t). Setting this equality in a) we obtain the following bound-
ary problem G−1

+ (t)f+(t) = dK(t)G−(t)f−(t). Since G−1
+ (t)f+(t), f+(t)

and G−(t)f−(t), f−(t) are solutions of the gauge equivalent systems, the
holomorphic type of the corresponding vector bundle on the Riemann sphere
is defined by K = (k1, . . . , kn).

Proposition 2.3. The cohomology groups H i(CP
1,O(E)), H i(CP

1,G(E))
are isomorphic for i = 0, 1, where O(E) and G(E), respectively, are the

sheaves of holomorphic and generalized analytic sections of E.

From this proposition it follows that the number of linearly independent
solutions of the Riemann–Hilbert boundary problem is equal to

∑
kj<0 kj .

Its holomorphic type is determined by an integer vector. In terms of co-
homology groups H i(CP

1,O(E)) and H i(CP
1,G(E)) one can describe the

number of solutions and stability of the Riemann–Hilbert problem [8]. The
topological constructions related with the sheaf O(E) can be extended to
the sheaf G(E) [23].
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Theorem 2.5. There exists a one-to-one correspondence between the

space of gauge equivalent Carleman–Bers–Vekua systems and the space of

holomorphic structures on the bundle E → X.

For the investigation of the monodromy problem for a Pfaff system, an
important role is played by a representation of solution of the system in
exponential form, which in one-dimensional case was studied by W.Magnus
in [36]. We use iterated path integrals and the theory of formal connections
(as a paralel transport operator) developed by K.-T.Chen [12].

Let Ω1, . . . , Ωr be m × m matrix forms with entries from L1
p(X). The

iterated integral of Ω1, . . . , Ωr is introduced as follows: consider the form
product of matrix forms Ω = Ω1, . . . , Ωr and define the iterated integral of
Ω element-wise.

Proposition 2.4. The parallel transport corresponding to the elliptic

system (2.7) has an exponential representation.

Since the elliptic system (2.7) defines a connection, the proof of the propo-
sition follows from the general theory of formal connections. From the iden-
tity ∂zΦΦ−1 = Ω it follows that the singular points of Ω are the zeros of
the matrix function Φ, in particular, this refers to ∞. This means that it
makes sense to speak of singular and apparent singular points of the system
(2.7).

From the integrability of (2.7) it follows that for the iterated integral∫
ΩΩ . . .Ω we have d

∫
ΩΩ . . . Ω = 0 and therefore we have a representation

of the fundamental group π1(X −S, z0). We can say that zi ∈ {z1, . . . , zm}
is a regular singular point of (2.7) if any element of F (z) has at most poly-
nomial growth as z → zi. If the solution Φ(z) at any singular point zi,
i = 1, . . . , m, has a regular singularity, then we call the system (2.7) a
regular system.

In case n = 1 the singular integral (2.10) is well studied. In particular, it

is known that ω(z) is holomorphic in Cm\
−

Uz0 and equal to zero at infinity.
Here Cm = CP

1\ {z1, . . . , zm}.
Let z̃ ∈ Uz0 be any point and let γ1, γ2, . . . , γm be loops at z̃ such that γi

goes around zi without going around any zj 6= zi. Consider the holomorphic
continuation of the function F (z) around γi. Then we obtain an analytic

element F̃ (z) of the holomorphic function F (z) related to the latter by the

equality F̃i(z) = miF (z), where mi ∈ C∗. It is independent of the choice of
the homotopy type of the loop γi. Therefore, we obtain a representation of
the fundamental group π1(CP

1\{z1, . . . , zm}, z̃) → C∗, which is defined by
the correspondence γi → mi. Let us sum up all what was said above.

Proposition 2.5. Let the system (2.7) have regular singularities at

the points z1, . . . , zm. Then it defines a monodromy representation of the

fundamental group

ρ : π1(C\{z1, . . . , zm}, z̃) → GLn(C).
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In this situation the monodromy matrices are given by Chen’s iterated

integrals

ρ(γj) = 1 +

∫

γj

Ω +

∫

γj

ΩΩ +

∫

γj

ΩΩΩ + · · ·+ · · · (2.14)

The convergence properties of the series (2.14) can be described as fol-
lows. Let a 1-form Ω be smooth except the points s1, . . . , sm ∈ X . Let, as
above, S = {s1, s2, . . . , sm} and Xm = X − S. Thus, for every γ ∈ PXm,
there exists a constant C > 0 such that

∣∣∣∣
∫

γj

︷ ︸︸ ︷
Ω . . .Ω

r∣∣∣∣ = O
(Cr

r!

)

and the series (2.14) converges absolutely [27].

3. G-Systems of Differential Equations

The concept of G-system of differential equations emerged in relation
with investigation of connections with regular singularities on principal bun-
dles over Riemann surfaces. It is well-known that in the classical case there
exists a direct connection between the Riemann–Hilbert boundary problem
and the Riemann–Hilbert monodromy problem. An analog of this connec-
tion exists in the context of Lie groups and G-bundles (see [23], [30]) and
we describe it below.

Let G be a connected complex Lie group, M a complex manifold and P
a holomorphic principal G-bundle on M . Then there is an exact sequence
of vector bundles on M

0 → ad P → Q(P ) → TM, (3.1)

where TM is the tangent bundle of M , adP is the vector bundle associated
to P and Q(P ) is the bundle of G-invariant tangent vector fields on P . Here
and in the sequel P also denotes the total space of the bundle.

Definition 3.1 ([5]). A holomorphic connection on a principal bundle
P → M is called integrable if the splitting of (3.1) is G-invariant.

The following proposition was established by M. Atiyah.

Proposition 3.1 ([5]). A holomorphic principal bundle P → M with

the structure group G possesses an integrable connection if and only if it is

induced by a representation of the fundamental group % : π1(M) → G.

Let G = GLn(C) and let E → M be a vector bundle. If E is induced
by a representation % : π1(M) → G, then there is a system of differential
equations with holomorphic coefficients df = ωf whose monodromy coin-
cides with the given representation, moreover, ω will be a connection of this
bundle, and its holomorphy implies its complete integrability. Proposition
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3.1 and the Birkhoff–Grothendieck theorem imply that a holomorphic vec-
tor bundle E → CP

1 possesses a holomorphic connection if and only if the
type of the splitting has the form κ = (0, . . . , 0), i.e., iff the bundle is trivial.

Let G be a compact connected Lie group of rank r and let GC be the
complexification of G, so that GC is a reductive group. Let us denote by g

and gC the Lie algebras of the groups G and GC respectively. Note that any
Lie algebra can be complexified: gC = g⊗R C. If G is a Lie group and g its
Lie algebra, then under the complexification of G is understood a complex
Lie group GC whose Lie algebra is gC. Such a complexification need not
exist in general. If G is isomorphic to a subgroup of a unitary group U(n)
for sufficiently large n, then GC can be considered as a subgroup of the
complexification of the unitary group U(n)C = GLn(C). Thus for compact
groups there always exists a complexification, unique up to isomorphism.

Denote by LanG the group of real analytic loops. If G is embedded in the
unitary group Un, so that a loop γ in G is a matrix-valued function and can
be expanded in Fourier series γ(z) =

∑∞
j=−∞ γjz

j , then the real-analytic

loops are those for which this series converges in some annulus r ≤ |z| ≤ r−1

with r < 1, i.e., such that ||γjr
−|j||| is bounded for all j for some r < 1.

The natural topology on LanG is got by regarding it as the direct limit of
the Banach Lie groups Lan,rG consisting of the functions holomorphic in
r ≤ |z| ≤ r−1; the group Lan,rG has the topology of uniform convergence.
LanG is a Lie group with the Lie algebra Lang.

Denote by LratG the subgroup of rational loops, i.e., loops which, when
regarded as matrix-valued functions, have entries which are rational func-
tions of z with no poles on |z| = 1. Denote by L±GC the subgroups
of LGC which consist of the loops from LGC, which are boundary val-
ues of holomorphic GC-valued functions defined on U±, respectively. Here
U+ = {z : |z| ≤ 1} and U− = {z : |z| ≥ 1} as above. Analogously, denote
by PCL±GC the group of piecewise continuous loops S1 → G. Suppose
there exist the one-side limits g(t + 0) and g(t− 0) for each t ∈ S1.

We say that a loop g ∈ L∞(Γ, G) is Φ-factorizable in the space Lp(Γ, G)
if and only if the operator PΓ + GQΓ is Fredholm on the space Lp(Γ, G)
[28],[29]. Then we have the following sufficient condition of solvability of
the Riemann–Hilbert monodromy problem for G-systems.

Theorem 3.1. If a loop g(t) ∈ ΩG has the factorization g(t)=g+(t)g−(t),
then the Riemann–Hilbert problem is solvable.

Thus to establish solvability it is sufficient to check that all partial G-
indices vanish which can be done using formulae from [1].

As it was remarked in the previous chapter, for any vector bundle there
exists a connection which has regular singularities in the given points. This
result can be generalized for holomorphic principal G-bundles. For this
purpose a system of the form Df = α is considered in this section, where
α is a g-valued 1-form defined on the manifold M , and f : M → G is a
G-valued unknown function.
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Let rg : G → G be the right shift on the group G, let C(X, G) be the
group of all smooth functions f : X → G and let Λp(X, G), p = 0, 1, 2, be
the space of all g-valued p-forms on X . We define now the operator

D : Λ0(X, g) → Λ1(X, g) (3.2)

by the formula Dx(f)(u) = dr−1
f(x)(df)x(u).

Definition 3.2. An expression of the form

Df = α, (3.3)

where α is a gC-valued 1-form on X and f : X → GC is an unknown smooth
function, is called a G-system of differential equations.

For G-systems, it is possible to formulate the Riemann–Hilbert problem
as follows: whether for a given homomorphism ρ : π1(M) → G there exists
a G-system whose monodromy coincides with ρ. It is known that solution
of this problem depends on the group G.

If G = U(n), then Df = df · f−1 and α is a matrix of 1-forms on X ,
so that one obtains a usual system of the form df = ωf . If n = 1, then
GC = C∗ and Df = d log f , the logarithmic derivative of the function f .

Let ∗ : Λ1(X ; g) → Λ1(X ; g) be the Hodge operator. Then the complex-
ification of the de Rham complex Λp

C
(X ; g), p = 0, 1, 2, decomposes into

the direct sum Λ1
C

(X ; g) = Λ1,0(X ; g)⊕Λ0,1(X ; g) by the requirement that
∗ = −i on Λ1,0(X ; g) and ∗ = i on Λ0,1(X ; g). The operator D decomposes
into the direct sum D = D′ ⊕D′′, where

D′ : Λ0(X ; g) → Λ1,0(X ; g), D′′ : Λ0(X ; g) → Λ0,1(X ; g)

are determined by the formulae

D′
x(f)(u) = d′

r−1
f(x)

(d′f)x(u), D′′
x(f)(u) = d′′r−1

f(x)(d
′′f)x(u).

A GC-valued function f : X → GC is called holomorphic (resp. antiholo-
morphic) if D′′f = 0 (resp. D′f = 0).

The operator D has the following properties:

1) it is a crossed homomorphism, i.e., D(f · g) = (Df)x + (ad f(x)) ◦
(Dg)x for any f, g ∈ C(X, G). Note that the operator D′′ is also a
crossed homomorphism.

2) the kernel kerD consists of constant functions.

Definition 3.3. We will say that the system (3.3) is completely integrable
if for any x0 ∈ X and g0 ∈ G there exists in a neighborhood of x0 a solution
f of this system with f(x0) = g0. A point x0 is called isolated singular
point of a map f : U → GC if there is a punctured neighborhood Ux0 such
that the map f is analytic along any path γ ⊂ Ux0 circling around x0.

The properties 1), 2) of the operator D imply that if f0 is some solution
of the system (3.3), then f = f0h is also a solution for any h ∈ kerD, i.e.,
the solution is uniquely determined up to multiplication by a constant.
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Definition 3.4. We will say that a GC-valued function f ∈ Ω(Uε(x0))
is of polynomial growth if for each sector

S = {z | θ0 ≤ arg z ≤ θ1, 0 ≤ |z| < ε} ,

where z denotes a local coordinate system on X , there exist, for suffi-
ciently small ε, an integer k > 0 and a constant c such that the inequality
d(f(z),1) < c|z|−k is valid, where d( ,1) denotes the distance from the unit
of the group GC.

Under integration of GC-valued functions is understood the multiplicative
integral for Lie groups and algebras. Let γ ⊂ U be a smooth arc with the
parameterizing map z : [a, b] → U . Multiplicative integral along the arc γ

is by definition
∫
γ

(1 + f(z))dz :=
b∫
a

(1 + f(z))z′(t)dt, where 1 denotes the

unit element of GC. If γ is a closed arc, then Mf (γ) =
∮
γ

(1 + f(z))dz is an

invertible element of g called the holonomy of the map f with respect to γ.
Consider the system (3.3) on CP

1. Let f0 be a solution of the G-system

(3.3) in the neighborhood U ⊂ CP
1 of the point z0 having polynomial

growth at the points from the set S = {z1, . . . , zm}. After continuation of
f0 along a path γi ∈ π1(CP

1 \ S, z0) starting and ending in z0 and circling
around a singular point zi, the solution f0 transforms into another solution
f1. As noted before, γ∗i f0 = gif1 for some gi ∈ G. Thus f0 determines a
representation

% : π1(CP
1 \ S) → GC. (3.4)

The image im % ⊂ GC is called the monodromy group of the G-system (3.3)
and the representation (3.4) induces a principal GC-bundle P ′

% → CP
1 \ S,

the form α being a holomorphic connection for this bundle.
Let us extend the bundle P ′

% → CP
1\S to a holomorphic principal bundle

P% → CP
1. Let γ1, . . . , γm ∈ π1(CP

1 \ S, z0) be generators satisfying the
relation γ1 · · · γm = e. Let us denote Bi = %(γi) and let Ai be elements of

GC with Bi = exp Ai, i = 1, . . . , m. To extend the bundle P ′
% → CP

1 \ S

into some point zi ∈ S, let us cover CP
1 \ S in the same way as in Section

2, with transition functions on Vj ∩ Ui1 , for zj ∈ Vj , chosen to be g01 :=
exp(Aj ln(z−zj)). Then on the intersections Vj ∩Uik∩Ui1 one will have the
equality g0k = g01 ·Bi = g01 · g1k. In such a way one obtains a holomorphic
GC-bundle P% → CP

1 with connection α, i.e., P% → CP
1 is induced by

a system of the form (3.3) and the Atiyah class a(P%) is nontrivial. This

means that P% → CP
1 does not admit holomorphic connections and hence

the system (3.3) must have singular points. Here and in the sequel under
singular points will be meant critical singular points, i.e., ramification points
of the solution.

The Birkhoff stratum Ωκ consists of the loops from L GC with fixed partial
indices K = (k1, . . . , kr). Topology of ΩK is investigated in [29]. Existence
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of a one-to-one correspondence between the Birkhoff strata ΩK and holo-
morphic equivalence classes of principal bundles on CP

1 is a straightforward
generalization of the analogous theorem for holomorphic vector bundles.
More precisely, the following theorem holds.

Theorem 3.2 ([46]). Each loop f ∈ ΩG determines a pair (P, τ), where

P is a holomorphic principal GC-bundle on CP
1 and τ is a smooth sec-

tion of the bundle P |X̄∞ holomorphic in X∞, and if (P ′, τ ′) and (P, τ) are

holomorphically equivalent bundles, then f ′ and f lie in the same Birkhoff

stratum.

The theorem implies that to each principal bundle with a fixed trivial-
ization there corresponds a tuple of integers (k1, . . . , kr) which completely
determine the holomorphic type of the principal bundle and hence if a holo-
morphic principal G-bundle is induced by a system of the form (3.3) without
singular points, then this bundle is trivial.

Suppose G is a connected compact Lie group and GC is its complexifica-
tion; g and gC are the Lie algebras of the groups G and GC, respectively; Z
is the centrum of the group GC, and Z0 is the connected component of the
unit; X is a compact connected Riemann surface of genus g ≥ 2. If X̃ → X
is a universal covering and % : π1(X) → GC is a representation, then the
corresponding principal bundle will be denoted by P%.

Let x0 ∈ X be a fixed point and p : X̃ → X \ {x0} be a universal cover.

Then the triple (X̃, p, X \{x0}) is a principal bundle whose structure group
Γ is a free group on 2g generators, and if γ is a loop circling around x0,
then γ =

∏g
i=1[ai, bi], where ai, bi are generators of Γ ∼= π1(X \ {x0}) and

[ , ] denotes the commutator.
Let P ′

% → X\{x0} be the principal bundle corresponding to the represen-

tation % : π1(X \ {x0}) → GC. Since by Theorem 3.2 each loop f : S1
X → G

determines a holomorphic principal GC-bundle, using f one can extend the
bundle P ′

% → X \ {X0} to X in the following way: let Ux0 be a neighbor-
hood of x0 homeomorphic to a unit disc and consider the trivial bundles
Ux0 × GC → Ux0 and P ′

% → X \ {x0}. Let us glue these bundles over the
intersection (X \{x0})∩Ux0 = Ux0 \{x0} using the loop f . We thus obtain
an extended bundle P% → X .

Consider the homomorphism of fundamental groups f∗ : π1(S
1
X) →

π1(GC) induced by f and suppose that γ is a generator of π1(S
1
X ) mapped

to +1 under the isomorphism π1(S
1
X) ∼= Z. If f ′ : S1

X → GC is homotopic
to f , then f ′∗ = f∗, and f and f ′ correspond to topologically equivalent
GC-bundles on X . Conversely, for any element c ∈ π1(GC) there exists
f∗ : π1(S

1
X) → π1(GC) with f∗(γ) = c.

Let P → X be a principal bundle and f the corresponding loop.

Definition 3.5. The element χ(P ) := f∗(γ) ∈ π1(GC) of the fundamental
group is called the characteristic class of the bundle P .
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It is easy to see that the map χ : H1(X ; C∞(GC)) → π1(GC) determined
by the formula χ(P ) = c for each P ∈ H1(X ; C∞(GC)) is surjective. Here
C∞(GC) denotes the sheaf of germs of continuous maps X → GC.

Let % : π1(X \ {x0}) → GC be a representation such that %(S1
X) = c ∈

Z0. If Z̃0 is the Lie algebra of the group Z0, then exp : Z̃0 → Z0 is a
universal covering. Let us choose an element α ∈ Z̃0 such that expα = c.
Extend the bundle P ′

% → X \ {x0} to X using the loop f : S1
X → G with

f(z) = exp(α ln(z − x0)) on S1
X . Denote the obtained principal bundle by

P%,α → X .

Definition 3.6. The space H ⊂ G is called irreducible if

{Y ∈ g | ∀h ∈ H ad h(Y ) = Y } = centerg.

The representation % : Γ → GC is called unitary if %(Γ) ⊂ G, and % : Γ → G
is called irreducible if %(Γ) is irreducible.

The following theorem holds.

Theorem 3.3 ([47]). Let % and %′ be unitary representations of the group

Γ ∼= π1(X \ {x0}) in G. The bundles P%,β and P%′,β′ are holomorphically

equivalent if and only if % and %′ are equivalent in K and β = β′.

Let M be any connected Riemann surface (compact or not) an let % :
π1(M) → GC be any homomorphism. The following theorem from [45] is
important for our considerations.

Theorem 3.4 ([45]). 1) If π1(M) is a free group and GC is connected,

then % is the monodromy homomorphism for the system (3.3).
2) If π1(M) is a free abelian group and G is a connected compact Lie group

with torsion free cohomology, and if im % ⊂ G, then % is the monodromy

homomorphism for some system of the type (3.3).

Theorem 3.4 is a solution of the Riemann–Hilbert problem for holomor-
phic systems of the type (3.3). In particular, 1) implies that if M = X\{x0},
then for any representation % : π1(X \ {x0}) → GC there exists a G-system
with the monodromy homomorphism %. We also need some concepts and
constructions used in [45].

Lemma 3.1 ([23]). If there is a lifting of % to %̃ : π1(M) → G̃C, then %
is the monodromy homomorphism of the G-system (3.3).

Definition 3.7. A holomorphic principal GC-bundle P → X is called
stable (resp. semistable) if for any reduction σ : X → P/B the degree of the
vector bundle TG/B is positive (resp. nonnegative), where B is a maximal
parabolic subgroup of G and TG/B is the tangent bundle along the fibres of
the bundle P/B → X .

The following theorem gives a criterion of stability of holomorphic prin-
cipal bundles on X .
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Theorem 3.5. A holomorphic GC-bundle P → X is stable if and only

if it is of the form P%,α for some irreducible unitary representation % :

π1(X \ {x0}) → G such that %(γ) = c ∈ Z0, α ∈ Z̃0 and exp α = c.

The theorem implies that if G is a semisimple group, then a G-bundle is
stable if and only if it is induced by some irreducible unitary representation
of the fundamental group π1(X).

Consider on a Riemann surface X a G-system of differential equations

Df = ω (3.5)

which has a regular singularity at the point x0 and the monodromy homo-
morphism of the system (3.5) is such that %(γ) = c ∈ Z0. Let P% be the
principal G-bundle over the noncompact Riemann surface X \ {x0}. Let us

extend this bundle to the whole X in the following way: let α ∈ Z̃0 be an
element with exp α = c, and let %̃(γ) = β, where %̃ : π1(X \ {x0}) → G̃C is
a lifting of % to the covering of GC. As the transition function, let us take
the GC-valued function g12(z) = exp(−zβ). After gluing trivial GC-bundles
over U and X \ {x0} using the function g12(z), one obtains a GC-bundle
P%,α → X which is an extension of P% → X \ {x0}.

Theorem 3.6. A stable holomorphic principal GC-bundle has a connec-

tion θ with regular singularity at the given point x0.

Proof. Indeed, let H = {z ∈ C | Im z > 0} be the upper half-plane and
H → X be a covering with the single ramification point x0 ∈ X with
ramification index m. Then the Fuchsian group Γ realizing X as a quotient
X = H/Γ is generated by elements α1, β1, . . . , αg, βg , γ with the relations

(
g∏

i=1

αiβiα
−1
i β−1

i

)
γ = 1, γm = 1. (3.6)

It is clear that Γ ∼= π1(X\{x0}), and by Theorem 3.5 the bundle P → X has
the form P%,α. By Lemma 3.1, for the representation % : π1(X \{x0}) → GC

there exists a G-system Df = θ with a singularity at the point x0 whose
monodromy representation coincides with %. The form θ is Γ-invariant and
thus is a connection for the bundle P . The relations (3.6) imply that x0 is
a regular singular point of the equation Df = θ. �

Proposition 3.2. Let the monodromy representation of a G-system

Df = ω with one regular singular point x0 be unitary, irreducible and %(γ) =
c ∈ Z0, where γ is a loop circling around x0. Then the characteristic class

of the principal bundle P%,α corresponding to this G-system equals β − α.

Proof. We apply the following fact which is well known in algebraic geome-
try. If G is a reductive group with connected center Z(G), then G1 = [G, G]
is a semisimple group and the homomorphism Z(G)×G1 → G has a finite

kernel. Let G̃1 be the universal cover of G1 and Z̃0 be the universal cover
of Z(G). Then G̃ = Z̃0 × G̃1 → G is the universal cover of G.
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The embedding Z0 ↪→ G canonically induces an embedding Z̃0 ⊂ Z̃0 ×
G̃1, and Z̃0 can be identified with its image. Since S1

X =
∏g

i=1[ai, bi] and
π1(X \ {x0}) is a free group, there exists a lifting of the homomorphism
% : π1(X \ {x0}) → G, i.e., the diagram

G̃
%̃ ↗

π1(X \ {x0}) ↓%̃

% ↘
G

commutes. Since %(S1
X) lies in the center of the group G and π%̃ = %, it

follows that %̃(γ) = β lies in the kernel of p, i.e., in π1(G). The element β
does not depend on the lifting of the homomorphism % and by the definition
of the characteristic class one obtains χ(P%,α) = β − α. �

The action of the gauge group G(P ) is defined as A 7→ ad(g)A + dgg−1.
The tangent space to the space of equivalence classes of G-representations
of the group π1(X) is TρHom(π1(X), G)/G = H1(π1(X), adρ).

Definition 3.8. The logarithmic connection of the holomorphic principal
bundle P → X is the first order differential operator

∇ : Ω0(adP ) → Ω0(adP )⊗ Ω1
X(log S).

We say that a connection ∇ on a principal bundle P is Fuchsian if
(adP,∇) is a holomorphic vector bundle with connection. Let GC = GLn(C)
and let the system df = ωf be Fuchsian. Transform the monodromy ma-
trices Mj , j = 1, 2, . . . , m, to upper-triangular form by some matrices Cj .
Assume that Ψj , j = 1, 2, . . . , m, are diagonal integer matrices whose entries
ϕi

j satisfy the inequalities ϕ1
j ≥ ϕ2

j ≥ · · · ≥ ϕn
j .

Consider the local section Uj(z) of the principal GLn(C)-bundle Pρ → X
over Vj\sj such that the corresponding Φj(z) has the form

Φj (z̃) = Uj(z)(z − sj)
Ψj (z̃ − sj)

Ej . (3.7)

The following proposition describes extensions of Pρ.

Proposition 3.3. Every extension of P′
ρ → Xm to the points sj which

is induced by a connection ∇ with at most logarithmic singularities at sj is

determined by matrices Cj and Ψj such that

1) C−1
j GjCj is upper triangular,

2) Ψj = diag(ϕ1
j , ϕ

2
j , . . . , ϕ

n
j ), ϕi

j ∈ Z,ϕ1
j ≥ ϕ2

j ≥ · · · ≥ ϕn
j .

Extend P′
ρ → Xm in a similar way to all singular points. Denote by C the

collection (C1, C2, . . . , Cm) and by Ψ the collection (Ψ1, Ψ2, . . . , Ψm), where
Ψj = (ϕ1

j , ϕ
2
j , . . . , ϕ

n
j ). Denote by PC,Ψ

ρ → X the corresponding extension

of the bundle P′
ρ → Xm, and denote by EC,Ψ

ρ → Xthe vector bundle

associated with the principal bundle P C,Ψ
ρ . The collection C, Ψ is said to

be admissible, if Cj , Ψ
j satisfy 1), 2) for every j.
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Proposition 3.4. There is a one-to-one correspondence between the

set of all Fuchsian systems of ordinary differential equations on the Rie-

mann surface with prescribed monodromy and the set
{
H0(X,O(PC,Ψ

ρ )
}

of holomorphic sections of all admissible extensions of the principal bundle

P′
ρ → Xm.

Theorem 3.7. Let ρ be the monodromy representation of a stable holo-

morphic principal bundle with connection (P,∇) and with Chern number 0.
Then there exists a G-valued 1-form ω with poles of first order at the points

from S such that the monodromy of the G-valued system Df = ω coincides

with ρ.

The fundamental groups π1(CP
1 \ {s1, . . . sm}) and π1(X \ {s1, . . . , sm)

are free with m − 1 and 2g + m − 1 generators correspondingly. From
this it follows the following condition of solvability of the Riemann–Hilbert
problem.

Theorem 3.8. If Im ρ is connected, then the Riemann–Hilbert problem

is solvable for any m points s1, . . . , sm.

Proof. Let γ1, . . . , γm be the generators of π1(M). Put ρ1 = ρ(γ1), . . . , ρm =
ρ(γm). If Im ρ is a connected subgroup, then there exists a continuous path
ρα(t) such that ρα(0) = I and ρα(1) = ρα. From this it follows that there
exists a homomorphism χt : π1(M) → G such that χt(γα) = ρα(t). We use
the following general result from homological algebra: if G is connected,
then the homomorphism h : π1(M) → G is the monodromy homomorphism
of a G-system if and only if it is possible to connect h to I by a continuous
path in Z1(π1(M), G). �

Proposition 3.5. Suppose ρ(γj) ∈ T for some j. Then ρ : π1(X\S) → G
is monodromy of Fuchsian system.

Proof. Let Df = α be a G-system of equations with singular points s1, . . . ,
sm. Let M1, . . . , Mm be the monodromy matrices. We reduce the problem
to a G-valued linear conjugation problem. To this end, we construct the
curves Γj , (z0, sj), Γ = ∪m

j=1Γj , where z0 is an arbitrary point, and consider
the boundary problem

Φ+ = G(t)f−(t), G(t) = Mj if t ∈ Γ.

Notice that G(t) has a jump at the given points. This makes it necessary
to study the G-valued linear conjugation problem. Consider the contour
Γ0 such that t-plane is decomposed into two domains U+ and U−, where
s1, . . . , sm ∈ U+, ∞ ∈ U−. Cover the domain U+ by simply connected
domains Uj , j = 1, . . . , m, such that sj ∈ Uj , Uj contains no other points
sj . In every domain Uj we represent some solution of Df = α by

f+ = exp(Ej log(t− sj))Φj(t), t ∈ Uj ,

Mj = exp(2πiEj), j = 1, . . . , m,
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where Φj ∈ L+GC. The coboundary of the cochain {Φj} is

Φjk = ΦjΦ
−1
k = exp(Ej log(t− sj)) exp(−Ek log(t− sk)), t ∈ Uj ∩ Uk.

It means that we can define a principal bundle with transition functions
Φk over U+. The domain U+ being a Stein manifold, this bundle is trivial
and there exist elements hj : Uj → GC such that Φjk = h−1

j hk and hence

V +(t) = hj(t)Φk(t) = hk(t)Φk(t) is holomorphic in U+ and

f+(t) = exp(Ej log(t− sj))h
−1
j (t)V +(t) = exp(Ej log(t− sj)Wj(t), t ∈ Uj .

The G-valued function f+(t) satisfies the G-system Df+ = α. On the t-
plane the solution has the form

f(t) = f+(t)V (+)(t), t ∈ U+,

f(t) = (
1

t
)Mm+1V −(t), t ∈ U−,

exp(2πiMm+1) = (M1 · · · · ·Mm)−1.

If the point t moves along Γ0 encircling infinity, then we see that it passes
around all points s1, . . . , sm in the negative direction. We have V ±(t) :
U± → GC and obtain

V +(t) = (f+)−1(t)(exp(Em+1 log(−t))V −(t), t ∈ Γ0.

In the domain U−, the function V −(t) is represented in the form f(t) =
exp(D log(t))W (t)P (t), where D ∈ T and P (t) is a polynomial loop. Then

f̃(t) = f(t)P−1(t) has only first order poles at the points s1, . . . , sm. If

Mm+1 ∈ T, then f̃(t) = exp(Mm+1 − D) log(−t))W (t), and hence infinity
is a first order pole. �

In general, α may have a pole at infinity whose order is greater than 1.
For example, see [3].

4. Yang–Mills Equations on Riemann Surfaces

The objects of investigation in Yang–Mills–Higgs theory are a connection
ω on a principal bundle P → X with the structure group G, and a scalar
field φ. In n-dimensional Yang–Mills–Higgs theory the connection has the
form ω =

∑
ωidxi, and the scalar field is just a scalar function φ = φ(x).

The components of the connection ωi(x) are G-valued functions, where G
is the gauge group. The Higgs field is a complex function φ = φ1 + iφ2,
where φ1 and φ2 are real functions. More generally, φ is a global section
of a Hermitian line bundle L over Rn. The curvature of the Yang–Mills
connection ω has the form F (ω) = dω + ω ∧ ω = 1

2Fijdxi ∧ dxj with the
components Fij(x) = ∂jωj(x)− ∂jωi(x) + [ωi(x), ωj(x)].

Denote by A(P ) the space of smooth connections of P and by Γ(L) the
space of Higgs fields. In Euclidean Yang–Mills–Higgs theory (in this case



80 G. Giorgadze

the metric is flat, i.e., the components of the metric q satisfy the condition
qij = δij) the Yang–Mills–Higgs action is of the form

IMH : A(P )× Γ(L) → R

and it is defined by the formula

IMH(ω, φ) =
1

2

∫

Rn

((F (ω), F (ω)) + (Dωφ, Dωφ) +
λ

4
? (|φ|2 − 1)2), (4.1)

where λ is a real parameter, ? is the Hodge star operator, (, ) denotes scalar
product in ad-representation of Lie group, ω ∈ A(P ) and φ ∈ Γ(L).

If IMH(ω, φ) < ∞, then (4.1) is called a finite action. From the finite-
ness it follows that ω and φ satisfy the conditions: |φ| → 1, |Dωφ| =
|dφ − iωφ| → 0, and F (ω) → 0 as x → ∞. The Euler-Lagrange equations
for the action (4.1) have the form

Dω ? F (ω) = ?J, (4.2)

Dω ? Dωφ =
λ

2
φ(|φ|2 − 1). (4.3)

In case λ = 0, φ ≡ 0, n = 4, the action IMH is called the Yang–Mills
action and is denoted by IM. Thus the Yang–Mills action has the form:

IM(ω) =
1

2

∫

Rn

(F (ω, F (ω)). (4.4)

From (4.3) it follows that for the Yang–Mills action the Euler-Lagrange
equations have the form

Dω ? F (ω) = 0 (4.5)

called the Yang–Mills equation. The Yang–Mills equation together with the
Bianchi identity DωF (ω) = 0 means that the connection is closed and co-
closed. From this it follows that Yang–Mills theory is a nonlinear generaliza-
tion of the Hodge theory. Nonlinearity is caused by the non-commutativity
of G. The Yang–Mills equation from the partial differential equations theory
viewpoint was considered in [13].

If n > 4, for the finite action there exist no nontrivial solutions of the
equation (4.3). In the case where n = 4, avtodual solutions are called in-
stantons. In the case where n = 3, nontrivial solution are called monopoles.
For n = 2, nontrivial solutions always exist, they are called vortices, and the
two-dimensional version of the equation (4.3) is called the vortex equation.

In abelian Yang–Mills–Higgs theory in case n = 2 the structural group
G is U(1) and the action has the form:

IMH(ω, φ) =
1

2

∫

Rn

(Dωφ ∧ ?Dωφ) + F (ω) ∧ ?F (ω)) +
λ

4
? (φφ− 1)2. (4.6)

The Euler-Lagrange equations for this action have the form

d ? F (ω) =
i

2
? (φDωφ− φDωφ), (4.7)
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Dω ? Dωφ =
λ

2
? (φφ− 1)φ. (4.8)

The number N = 1
2π

∫
Rn F (ω) is integer and it is called the vortex num-

ber. Its four-dimensional analog N = − 1
8π2

∫
R4 tr(F (ω) ∧ F (ω)) is called

the topological charge.
If N ≥ 0, then the relation IMH(ω, φ) = πN takes place if and only if

the following system of differential equations is satisfied by (ω, φ):

(∂1φ1 + ω1φ2)∓ (∂2φ2 − ω2φ1) = 0, (4.9)

(∂2φ1 + ω2φ2)± (∂1φ2 − ω1φ1) = 0, (4.10)

F12(ω)±
1

2
(|ϕ1|

2 + |φ2|
2 − 1) = 0. (4.11)

It is known [32] that, given an integer N > 0 and a set {z1, . . . , zm} ⊂ C,
for a finite action (4.6) there exists the unique class of gauge equivalent
solutions of the system (4.9-4.11) which satisfy the conditions:

1. φ is smooth;
2. the zeros of φ are {z1, . . . , zn} and when z → zj one has φ(z, z) ∼

cj(z − zj)
nj , cj 6= 0, where nj are multiplicities of zj .

3. N = 1
2πi

∫
R2 F (ω) =

∑
nj .

The action (4.6) in case λ = 1 has an absolute minimum if and only if a
pair (ω, φ) satisfies the following system of equations:

Dωφ = ∓ ? Dωφ, (4.12)

?F (ω) = ±
1

2
(|φ|2 − 1). (4.13)

The equations (4.12-4.13) are called Bogomol’ny equations. It turns
out that solutions to this system can be constructed using the Riemann–
Hilbert boundary problem with the coefficients in a loop group considered
by G.Khimshiashvili in [28] (cf. also [46]).

Theorem 4.1. On a Riemann surface X, the space of smooth solutions

φ to the equation

Dωφ− i ? Dωφ = 0 (4.14)

coincides with the space of solutions to a certain Riemann–Hilbert boundary

problem on X.

Before explaining the proof of this theorem, we present some general
remarks. Let π : E → M be a holomorphic vector bundle over the complex
manifold M with canonical connection ω. Fix a local basis {ei} in the fibres
of bundle and consider the following objects defined with respect to this
basis: 〈, 〉 which is a metric in E, ωij which is the matrix of connection,
F (ω)ij which is the matrix of curvature F (ω). Then we have:

1. ω ∈ Γ(Λ1,0M) and if Hij = (〈ei, ej〉) then ωij = H−1
ij ∂Hij ;

2. F (ω)ij = ∂ωij , F (ω)ij ∈ Γ(Λ1,1M).
Let (E, π, M, 〈, 〉) be an Hermitian vector bundle and ω an Hermitian

connection in E such that the curvature F (ω) lies in Γ(Λ1,1M)⊗ E. Then
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there exists a holomorphic structure on (E, π, M) such that ω is the canon-
ical connection with respect to this structure. Suppose ω and ω1 are gauge
equivalent connections on E, then there exist holomorphic structures Jω1

and Jω2 such that ω1 and ω2 are their canonical connections. A simple cal-
culation shows that Jω1 and Jω2 will be equivalent holomorphic structures.

Lemma 4.1 ([43]). Let p : L → X be an Hermitian line bundle over a

compact Riemann surface X, ω be the canonical Hermitian connection of L
and Jω be the corresponding complex structure on L. The smooth sections

φ ∈ H0(X, C∞(L)) are holomorphic with respect to the complex structure

Jω if and only if the pair (ω, φ) satisfies the Bogomol’ny equation (4.14).

Two important conclusions follow from this lemma:
1. there exists a one-to-one correspondence between the Hermitian con-

nections and holomorphic structures on the line bundles;
2. the Bogomol’ny equation (4.14) can be considered as a criterion of

holomorphicity of sections with respect to the holomorphic structure in-
duced from a fixed Hermitian connection (thus, in a sense, Bogomol’ny
equations are non-Euclidean analogs of Cauchy–Riemann equations).

Now we are prepared to prove the theorem. It is known [46] that for
a holomorphic line bundle L there exists a loop γ ∈ L−C∗ \ LC∗/L+

XC∗

which defines the equivalence class of L in the moduli space of holomorphic
line bundles on X , which means that the loop γ defines the holomorphic
structure J on the line bundle L. From the lemma it follows that there
exists a connection ω on L such that the complex structure Jω induced
from ω is equivalent to J . According to [28], with the loop γ one can
associate the Riemann–Hilbert problem Pγ for sections of L. From 2) above
it follows that φ ∈ H0(X,O(L)) if and only if the pair (ω, φ) satisfies the
equation (4.14). On the other hand, from the construction of L by the loop
γ it follows that the space of solutions to the Riemann–Hilbert boundary
problem Pγ coincides with the space H0(X,O(L)). The two preceding
conclusions obviously prove the statement of the theorem.

Let us now describe some related algebraic constructions. If a connection
ω is flat, then ω is a solution to (4.5) and the given G-bundle is induced from
a representation of the fundamental group ρ : π1(X) → G. Of course the
equation (4.5) may also have nontrivial solutions. These nontrivial solutions
are obtained from the central extension of the fundamental group π1(x). Let
ΓR be the central extension of the fundamental group obtained by extending
the center of Γ by the additive group of real numbers R. In other words,
we have the exact sequence:

1 → R → ΓR → π1(X) → 1. (4.15)

One also has another central extension described by the exact sequence

1 → Z → Γ → π1(X) → 1. (4.16)
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The exact sequences (4.15) and (4.16) yield the third exact sequence
needed in the proof of Theorem 4.2 below:

1 → Z → ΓR → U(1)× π1(X) → 1. (4.17)

Let X̃ → X and P → X be principal bundles with structural groups
π1(X) and U(1) correspondingly. Suppose P → X is topologically nontriv-

ial with the Chern number equal to 1. Then X̃ ×X P → X is a principal
bundle with the structural group π1(X)× U(1) and after normalization of
the metric on X the connection ω has a constant curvature equal to −2πiµ,
where µ is the volume form on X.

The representation ρ : ΓR → G induces a principal GC-bundle on X with
connection ωρ. From the functoriality of the Yang–Mills equations it follows
that ωρ will be a solution of (4.5). By Atiyah–Bott theorem [4], there exists a
bijective homomorphism between the equivalence classes of homomorphisms
ρ : ΓR → G and the gauge equivalence classes of Yang–Mills connections,
which is merely a consequence of the results due to M. Narasimhan with
T. Seshadri [42] and a theorem of S. Donaldson [16]. We are now in position
to establish an analytic property of connections having only one singular
point provided by Theorem 3.6.

Theorem 4.2. Let P be a stable holomorphic principal GC-bundle. Then

any connection θ on P having a single singular point is a Yang–Mills con-

nection.

Proof. Let Q → X be a U(1)-bundle with the Chern number 1. Suppose µ
is a normalized volume form on X . Then there exists a harmonic connection
ω on Q with a constant curvature equal to −2πiµ1, where 1 is the identity

automorphism of Q. Let P ' Q×X X̃ → X be the associated U(1)×π1(X)-
bundle. From the Atyah–Bott theorem it follows that for the representation
ρ : ΓR → G there exists a connection ωρ on P such that ωρ satisfies the
Yang–Mills equation and the correspondence ρ → ω is one-to-one. Let
ρ̃ : Γ → GC be the representation induced from the G-system Df = α with
one regular singular point and let i : Γ → ΓR be an embedding. Then the
representation ρ̃ = ρ ◦ i corresponds to the Yang–Mills connection ωρ◦i. On
the other hand ρ̃ is the monodromy representation of the above G-system
with one regular singular point. Therefore connection θ satisfies the Yang–
Mills equation, as was claimed. �

The both theorems of this section give examples of nontrivial applications
of Riemann–Hilbert problems to Yang–Mills equations. The author hopes
that the interplay between these two topics may lead to further results in
the Yang–Mills theory.
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