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Abstract. Very general boundary data for which boundary value prob-
lems are solvable, belong to fractional order spaces. Suppose, e.g., that the
boundary data g belongs to the fractional order spaceWs

p(∂Ω), where p > 2,

s = 1− 1
p

and ∂Ω is sufficiently smooth. Then the solution of the boundary

value problem

∆u = 0 in Ω, u = g on ∂Ω

belongs to W1
p (Ω). On the other hand, piecewise Hölder continuous func-

tions do not belong to a fractional order space, in general. However, suffi-
ciently general boundary data g can be split up into the sum g = g̃+ĝ, where
g̃ belongs to a fractional order space and ĝ is piecewise Hölder continuous.

The paper constructs the solution of the Dirichlet boundary value prob-
lem with such boundary data for non-linear partial complex differential
equations of the type ∂w

∂z
= F

(

z, w, ∂w
∂z

)

provided the right hand side sat-

isfies the global Lipschitz condition with respect to w and ∂w
∂z

, and the
Lipschitz constants are small enough.

The method which will be applied to the Dirichlet boundary value prob-
lem can also be used in order to solve the modified Dirichlet boundary value
problem and the Riemann–Hilbert boundary value problem with Hölder
continuous coefficients.
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1. Goal of the Paper∗

Solving boundary value problems for non-linear partial differential equa-
tions using fixed-point methods entails the construction of an associated
operator. This construction often involves the use of the solution of an
auxiliary boundary value problem for a linear partial differential equation.
For instance, if w = w(z) is a solution of the partial complex differential
equation

∂w

∂z
= F (z, w, ∂w/∂z), (1)

then (w, h) is a fixed point of the operator

W = Ψ + Φ(w,h) + TΩF (·, w, h), (2)

H = Ψ′ + Φ′(w,h) + ΠΩF (·, w, h), (3)

where h = ∂w/∂z. The operators TΩ and ΠΩ are the well-known integral
operators defined by

(TΩf) [z] = −
1

π

∫∫

Ω

f(ζ)

ζ − z
dξdη, (ΠΩf) [z] = −

1

π

∫∫

Ω

f(ζ)

(ζ − z)2
dξdη,

where ζ = ξ + iη. Further, Ψ is the holomorphic solution of the bound-
ary value problem under consideration, and Φ(w,h) is another holomorphic
function such that the functor Φ(w,h) + TΩF (·, w, ∂w/∂z) has zero bound-
ary values. Since the definition of the operator (2), (3) contains first order
derivatives, one has to ensure that the auxiliary functions Ψ and Φ(w,h) have
integrable first order derivatives Ψ′ and Φ′(w,h).

In the sequel the boundary values are understood as the traces of the
desired solutions. If, for instance, the real part of a holomorphic function has
a trace belonging to the fractional order space Ws

p(∂Ω), s = 1− 1
p
, p > 1,

then the complex derivative of the holomorphic function belongs to Lp(Ω).
The boundary value problems with boundary data belonging to fractional

order spaces are quite general. However, they do not contain the cases where
the boundary values are piecewise Hölder continuous. In what follows, we
will consider boundary value problems for the differential equation (1) with
boundary data piecewise belonging to fractional order spaces. This will
cover the cases where the boundary data for the differential equation (1) is
piecewise Hölder continuous.

The Dirichlet boundary value problem for the differential equation (1) is
the problem of finding a solution satisfying the condition

Re w = g on Γ, (4)

Im w [z0] = c, (5)

where z0 is a given point in Ω.

∗ The statement of the problem and first approaches to its solution were outlined in
1997 when G. F. Manjavidze and H. L. Vasudeva visited Graz University of Technology
as visiting professors.
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The right-hand side F (z, w, h) of the differential equation (1) is supposed
to satisfy a global Lipschitz condition of the type

|F (z, w1, h1)− F (z, w2, h2)| ≤ L1|w1 − w2|+ L2|h1 − h2| (6)

for each z ∈ Ω. Further, F (z, 0, 0) is supposed to be integrable. Since

F (z, w(z), h(z)) = F (z, 0, 0) +
(

F (z, w(z), h(z))− F (z, 0, 0)
)

,

we have

|F (z, w(z), h(z))| ≤ |F (z, 0, 0)|+
∣

∣

∣F (z, w(z), h(z))− F (z, 0, 0)
∣

∣

∣ ≤

≤ |F (z, 0, 0)|+ L1|w(z)|+ L2|h(z)|.

Thus the composition F (z, w(z), h(z)) turns out to be integrable provided
w(z) and h(z) are integrable.

2. Statement of the Problem

To be specific, we will restrict the consideration of boundary value prob-
lems in Ω, where Ω is the unit disk in the complex plane. Moreover, the
given boundary data g can be split up into the sum g̃+ ĝ, where g̃ belongs to
the fractional order space Ws

p(∂Ω) while ĝ is piecewise Hölder continuous.
Denote the (oriented) boundary ∂Ω by Γ. Suppose Γ can be decomposed

into finitely many arcs Γj whose initial [resp. end] points will be denoted by
cj [resp. cj+1], j = 1, . . . , r, cr+1 = c1. As usual, denote byHµ(Γ; c1, . . . , cr)
the class of boundary data whose restrictions to Γj belong to Hµ(Γj), that
is, they are Hölder continuous on Γj with exponent µ.

Definition 1. A boundary data g belongs to Ws
p(Γ; µ; c1, . . . , cr) in

case g can be decomposed into the sum g̃ + ĝ, where g̃ ∈ Ws
p(Γ) and ĝ ∈

Hµ(Γ; c1, . . . , cr).

Since a piecewise Hölder continuous function can be represented as a sum
of a Hölder continuous function and a piecewise linear function, we get the
following statement:

Lemma 1. Suppose g belongs to Ws
p(Γ; µ; c1, . . . , cr). Then g = g1 +

g2 + g3, where

g1 ∈ W
s
p(Γ), g2 ∈ H

µ(Γ) and g3 is piecewise linear.

Note that the boundary data g1 belongs to Ws
p(Γ) with s = 1− 1

p
if

∫

Γ

∫

Γ

|g1(x) − g1(y)|p

|x− y|p+1
dxdy < +∞.

Now suppose g2 is Hölder continuous with exponent µ, i.e.,

|g2(x)− g2(y)| ≤ H · |x− y|µ.
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Then
|g2(x) − g2(y)|p

|x− y|p+1
≤ H · |x− y|µp−p−1

and, consequently, g2 belongs to Ws
p(Γ) if

µ > 1−
1

p
. (7)

In particular, piecewise linear functions (without any jumps) belong to
Ws

p(∂Ω).
The following lemma formulates a sufficient condition under which the

boundary data g belong to Ws
p(Γ; c1, . . . , cr).

Lemma 2. Let g be defined on Γ. Suppose

a) the restriction of g to Γj belongs to Ws
p(Γj), j = 1, . . . , r, and

b) g has one-sided limits l at each cj such that

|g(x) − l| ≤ C · |x− cj |
η

with η > 1− 1
p
.

Then g has the form g = g1 + g3, where g1 ∈ W
s
p(Γ) and g3 is piecewise

linear.

Proof. Choose a piecewise linear function g3 such that g1 = g − g3 has
two-sided limits (which are again denoted by l) at cj . It remains to prove
that g1 ∈ W

s
p(Γ). For this purpose consider a pair of points x and y in a

neighbourhood of cj which are located on different sides of cj . Then one
has

|g1(x) − g1(y)|p ≤ (|g1(x) − l|+ |g1(y)− l|)
p
≤

≤ 2p (|g1(x) − l|p + |g1(y)− l|p) ≤

≤ 2pCp (|x− cj |
ηp + |y − cj |

ηp) ≤

≤ 2p+1CpMηp · |x− y|ηp

because |x− cj |, |y− cj | ≤ M · |x− y| for smooth curves (M = 1 in case of
the unit circle). Since

|g1(x)− g1(y)|p

|x− y|p+1
≤ 2p+1CpMηp · |x− y|ηp−p−1,

we see, finally, that g1 belongs to Ws
p(Γ). �

3. An Application of Sobolev’s Imbedding Theorem

Let Ω be a bounded domain in the plane whose boundary curve has
locally Lipschitz-continuous representations. Then the general Sobolev Im-
bedding Theorem (see [1], pp. 97-98) contains as a special case the following
statement (Part II, case C ′ on p. 98 of [1], see also C. B. Morrey [6]):

The Sobolev space W1
p (Ω) is imbedded into Hλ(Ω) with

λ =
p− 2

p
. (8)
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Later on (see Section 7) we will give a new proof of the above special
case of Sobolev’s imbedding theorem using methods of Complex Analysis.
This proof can also be used in order to estimate the imbedding constant by
the norm of the TΩ-operator.

4. The Holomorphic Solution of the Dirichlet Boundary

Value Problem

Again suppose that Ω is the unit disk. Note first that a holomorphic
function Ψ in Ω whose real part has the boundary values g is given by the
Schwarz Integral Formula

Φ(z) =
1

2πi

∫

Γ

g(ζ)dζ

ζ − z
−

1

4πi

∫

Γ

g(ζ)dζ

ζ
+ iC, (9)

where C is an arbitrary real constant.
Now let g be a given boundary data belonging to Ws

p(Γ; µ; c1, . . . , cr). In
view of Lemma 1 the given g can be split up into the sum g1 + g2 + g3. Let
Ψj , j = 1, 2, 3, be a holomorphic function whose real part has the boundary
values gj . Note that Ψj is uniquely determined up to a constant which can
be chosen in accordance with (5).

First we show that Ψ1 belongs to W1
p (Ω). Indeed, since the boundary

values g1 of Re Ψ1 belong to the fractional order space Ws
p(Γ), the real part

Re Ψ1 belongs to this space in view of the following lemma (see H. Triebel
[10]; cf. also A. S. A. Mshimba [7]):

Lemma 3. In case the boundary values g1 belong to Ws
p(Γ), the solution

u of the boundary value problem

∆u = 0 in Ω,

u = g1 on Γ

belongs to W1
p (Ω), and its norm can be estimated by an estimate of the form

‖u‖W1
p(Ω) ≤ K ‖g1‖Ws

p(∂Ω) .

The above imbedding theorem (see Section 3) implies that Re Ψ1 and
thus Im Ψ1, too, belongs to Hλ(Ω). Lemma 3 shows, especially, that the
first order derivatives of Re Ψ1 belong to Lp(Ω). Using Cauchy-Riemann
equations, we see that the same is true for the first order derivatives of
Im Ψ1. To sum up, we have proved the following statement:

The pair (Ψ1, Ψ
′
1) belongs to

(

Hλ(Ω), Lp(Ω)
)

.
By the way, the above Lemma 3 can also be used in order to give a new

proof of the Hardy-Littlewood Theorem. The Hardy-Littlewood Theorem
is the following statement:

Suppose the boundary values of the real part of a holomorphic function Φ
are Hölder continuous with exponent µ. Then Φ′ belongs to Lp(Ω) in case

p < 1
1−µ

.
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This statement can be proved as follows:
Using (7), we see that the boundary values under consideration belong

to Ws
p(Γ) provided p < 1/(1 − µ). In view of Lemma 3 the holomorphic

function Φ belongs to Ws
p(Ω), i.e., in particular, Φ′ belongs to Lp(Ω).

Next we consider the holomorphic function Ψ2 with Hölder continuous
boundary values g2. If g2 is Hölder continuous with exponent µ, then Ψ2

belongs to Hµ(Ω), and in view of Hardy-Littlewood’s Theorem its derivative
Ψ′

2 belongs to Lp(Ω) provided p < 1
1−µ

. Hence µ has to satisfy the inequal-

ity µ > 1 − 1
p
. Then the pair (Ψ2, Ψ

′
2) belongs to

(

Hµ(Ω), Lp(Ω)
)

. Since

λ = 1− 2
p

< 1− 1
p

< µ, the pair (Ψ2, Ψ
′
2) belongs also to

(

Hλ(Ω), Lp(Ω)
)

.

Consider, finally, the holomorphic function Ψ3 whose real part has piece-
wise linear boundary values g3. The Schwarz Integral Formula (9) shows
that Ψ3 has logarithmic singularities of the type log(z − cj) at the jump
discontinuities cj of the given boundary data. Consequently, Ψ′

3 has singu-
larities of the type

1

z − cj

at those points and thus |Ψ′
3|

p is not integrable if p > 2. However,

1

|z − cj |p
· |z − cj |

γ

is integrable provided
γ − p > −2. (10)

Let %(z) =
∏

j |z − cj |. A function f is said to belong to the weighted

Lp-space with the weight %γ in case |f |p ·%γ is integrable. The totality of all
such functions is denoted by Lp (Ω, %γ) . The space Lp (Ω, %γ) is a Banach
space equipped with the norm

‖f‖Lp(Ω,%γ ) =

( ∫∫

Ω

|f |p · %γdxdy

)
1

p

.

In view of (10) Ψ3 belongs to Lp(Ω, %γ) if

γ > p− 2. (11)

Since Ψ3 has logarithmic singularities at the jump discontinuities cj , Ψ3

belongs to the weighted Hölder space Hκ(Ω, %β), where both exponents κ
and β are arbitrary positive numbers. Choose κ = λ and β = γ/p. This
choice of β implies that f belongs to Lp(Ω, %γ) if f belongs to Hλ(Ω, %β).
Indeed, since f ∈ Hλ(Ω, %β), we have

f =
f1

%β
,

where f1 ∈ H
λ(Ω) and therefore

|f |p · %γ = |f1|
p

is integrable.
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Note that the norm of f in the weighted Hölder space Hλ(Ω, %β) is noth-
ing but the ordinary Hölder norm of f · %β .

Summarizing the considerations concerning Ψ3, we see that the pair
(Ψ3, Ψ

′
3) belongs to

(

Hλ(Ω, %β), Lp(Ω, %γ)
)

, where

β =
γ

p
. (12)

5. Boundary Data Defined by the TΩ-Operator

The construction of the operator (2), (3) requires the calculation of a
holomorphic function Φ such that the real part of Φ + TΩf has boundary
values zero. If f(z) = F (z, w(z), h(z)), then the desired Φ will be denoted
by Φ(w,h). In case Γ is the boundary of the unit disk Ω, the function Φ
can be represented explicitly by a modified TΩ -operator. Indeed, the above
boundary condition can be rewritten in the form

Re Φ = −Re [TΩf ] = −Re
[

TΩf
]

. (13)

On Γ we have z = 1
z
, i.e.,

(TΩf) [z] = −
1

π

∫ ∫

|ζ|<1

f(ζ)

ζ − 1
z

dξdη = +
z

π

∫ ∫

|ζ|<1

f(ζ)

1− ζz
dξdη.

Consequently,

Φ(z) = −
z

π

∫ ∫

|ζ|<1

f(ζ)

1− ζz
dξdη (14)

is a holomorphic function in the unit disk satisfying the boundary condition
(13).

Obviously, the derivative of Φ has the integral representation

Φ(z) = −
z

π

∫ ∫

|ζ|<1

f(ζ)

(1− ζz)2
dξdη. (15)

The integral operators in (13) and (14) have similar properties as the TΩ-
and the ΠΩ -operators (see B. Bojarski [2]). The next section proves some
lemmas describing the behaviour of these operators in weighted function
spaces.

6. Some Lemmas

In order to estimate the operator (2), (3), we have to investigate map-
ping properties of the operators TΩ and ΠΩ and of their modifications in the
weighted spaces Hλ(Ω, %β) and Lp(Ω, %γ). For this purpose we need the fol-
lowing lemmas. To be short, consider, without any restriction of generality,
only one jump discontinuity c, i.e., %(z) is supposed to have the form

%(z) = |z − c|.
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Lemma 4. Let

ϕ(u, z) =

∫∫

Ω

K(u, ζ)f(ζ)

|ζ − z|α
dξdη,

where 0 < α < 1 and Ω is a finite domain, f ∈ Lp(Ω), the function K =
K(u, ζ) is defined on Ω × Ω,

|K(u1, ζ)−K(u2, ζ)| ≤ A|u1 − u2|
µ,

A and µ are positive constants. If p > 2
2−α

, then

|ϕ(u1, z)− ϕ(u2, z)| ≤ A1|u1 − u2|
µ,

|ϕ(u, z1)− ϕ(u, z2)| ≤ A2|z1 − z2|
β ,

where A1, A2 are positive constants and β = min

(

1, 2− α−
2

p

)

.

Proof. Using Hölder’s inequality, one gets

|ϕ(u1, z)− ϕ(u2, z)| ≤ A|u1 − u2|
µ

∫∫

Ω

|f(ζ)|

|ζ − z|α
dξdη ≤

≤ A|u1 − u2|
µ

( ∫∫

Ω

|ζ − z|−αδdξdη

)
1

δ
(∫∫

Ω

|f(ζ)|
δ

δ−1 dξdη

)
δ−1

δ

.

Choosing
p

p− 1
≤ δ <

2

α
, (16)

one has

−αδ > −2 and
δ

δ − 1
≤ p

and, therefore, one gets an estimate of the type

|ϕ(u1, z)− ϕ(u2, z)| ≤ A1|u1 − u2|
µ,

where A1 is a positive constant. Notice that the choice (16) implies

p >
2

2− α
. (17)

One has, further,

|ϕ(u, z1)− ϕ(u, z2)| ≤

∫∫

Ω

∣

∣

∣|ζ − z1|
α − |ζ − z2|

α
∣

∣

∣

|ζ − z1|α|ζ − z2|α
|f(ζ)|dξdη ≤

≤ |z1 − z2|
α

∫∫

Ω

|f(ζ)|
1

|ζ − z1|α|ζ − z2|α
dξdη ≤

≤ |z1 − z2|
α

( ∫∫

Ω

|f(ζ)|pdξdη

)
1

p
( ∫∫

Ω

1

|ζ − z1|αq |ζ − z2|αq
dξdη

)
1

q

,
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where 1
p

+ 1
q

= 1. Since (16) implies αq < 2, the above inequality yields

|ϕ(u, z1)− ϕ(u, z2)| ≤ B|z1 − z2|
α |z1 − z2|

2−2αq
q ≤ B |z1 − z2|

2

q
−α .

Once more taking into account the estimate (17), we see that

2

q
− α = 2

(

1−
1

p

)

− α > 2− (2− α)− α > 0

and thus Lemma 4 has been proved. �

Lemma 5. Suppose f ∈ Lp(Ω, |z− c|γ), where p > 2 and 1− γ
p

< α < 1,

where α is any number with 0 < α < 1. Then TΩf belongs to Hλ(Ω, |z−c|β),
where

λ = min

(

p− 2

p
,

γ

p
+ α− 1

)

and β =
γ

p
.

Proof. Consider the function ϕ defined by

ϕ(z) = %β

∫∫

Ω

f(ζ)

ζ − z
dξdη.

In order to prove Lemma 5, we have to show that ϕ belongs to Hλ(Ω). We
have

ϕ(z) =

∫∫

Ω

|z − c|β − |ζ − c|β

ζ − z
f(ζ)dξdη +

∫∫

Ω

|ζ − c|β

ζ − z
f(ζ)dξdη =

=

∫∫

Ω

K(z, ζ)

|ζ − z|α
f(ζ)dξdη +

∫∫

Ω

f1(ζ)

ζ − z
dξdη, (18)

where

f1(ζ) = |ζ − c|βf(ζ) ∈ Lp(D) and

K(z, ζ) ∈ Hδ(D ×D), δ =
γ

p
+ α− 1.

One has δ > 0 because 1− γ
p

< α < 1. The second term in (18) belongs to

Hν(D) with ν = p−2
p

, while in view of Lemma 4 the first term belongs to

Hs(D) with s = min

(

γ

p
+ α− 1, 2− α−

2

p

)

.

This proves Lemma 5. �

Next we investigate the behaviour of the TΩ- and the ΠΩ - operators in
weighted Lebesgue spaces.

Lemma 6. The TΩ - and the ΠΩ -operators are bounded operators mapping

Lp(Ω, |z − c|γ) into itself provided γ = σ(p− 1) and 0 < σ < 1.
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Proof. The following proof is a modification of the proof of a theorem on
the behaviour of Cauchy type integrals in weighted Lebesgue spaces (see
the proof of Theorem 4 in Section 3 of Chapter I in B. V. Khedelidze’s
trend-setting book [3]).

Denote by Ωz and Ωζ the domain Ω as domains in the z- and the ζ-planes,
respectively. Then

(Skϕ)[z] = −
1

π

∫

Ωζ

∫

ϕ(ζ)

(ζ − z)1+k
dξdη

defines the TΩ - and the ΠΩ -operators for k = 0 and k = 1, respectively.
One has to show the existence of a constant C such that

∫

Ωz

∫

|Skϕ|p|z − c|σ(p−1)dxdy ≤ C

∫

Ωz

∫

|ϕ|p|z − c|σ(p−1)dxdy

for each ϕ ∈ Lp(Ω, |z − c|σ(p−1)).
The elements ϕ under consideration can be represented in the form

ϕ(z) = f(z)|z − c|−
σ
q , (19)

where f belongs to Lp(Ω) and q means again the exponent conjugate to p,

that is, 1
p

+ 1
q

= 1 and thus p−1
p

= 1
q
. Note that

|z − c|
σ
q =

(

|z − c|
σ
q − |ζ − c|

σ
q

)

+ |ζ − c|
σ
q .

Since

ϕ(ζ)|ζ − c|
σ
q = f(ζ),

in view of (19) we get

|Skϕ|p|z − c|σ(p−1) = |Jkϕ + Skf |p ≤ 2p−1
(

|Jkϕ|p + |Skf |p
)

,

where

(Jkϕ)[z] = −
1

π

∫

Ωζ

∫

|z − c|
σ
q − |ζ − c|

σ
q

(ζ − z)1+k
ϕ(ζ)dξdη.

Hence it follows
∫

Ωz

∫

|Skϕ|p|z − c|σ(p−1)dxdy ≤

≤ 2p−1

∫

Ωz

∫

|Jkϕ|pdxdy + 2p−1

∫

Ωz

∫

|Skf |pdxdy. (20)

Since the operators Sk are bounded in Lp(Ω), the second integral on the
right-hand side of (20) can (up to a constant factor) be estimated by

∫

Ωz

∫

|f |pdxdy =

∫

Ωz

∫

|ϕ|p|ζ − c|σ(p−1)dxdy.
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It remains to verify an analogous estimate for the first integral on the right-
hand side of (20). Since

∣

∣

∣
|z − c|

σ
q − |ζ − c|

σ
q

∣

∣

∣
≤ |ζ − z|

σ
q ,

it follows

|Jkϕ| ≤
1

π

∫

Ωζ

∫

|ϕ(ζ)|

|ζ − z|ν+k
dξdη,

where ν = 1− σ
q
. Choose ε > 0 such that σ0 = σ+ε < 1. Hölder’s inequality

implies

|Jkϕ|p ≤
1

πp

( ∫

Ωζ

∫

|ϕ(ζ)| · |ζ − c|
σ0

q

|ζ − z|(ν+k) 1

p

·
1

|ζ − z|(ν+k) 1

q · |ζ − c|
σ0

q

dξdη

)p

≤

≤

∫

Ωζ

∫

|ϕ(ζ)|p · |ζ − c|σ0(p−1)

|ζ − z|ν+k
dξdη ·

(∫

Ωζ

∫

dξdη

|ζ − z|ν+k · |ζ − c|σ0

)p−1

. (21)

Note that
∫

Ω

∫

dξdη

|ζ − z1|s · |ζ − z2|t
≤

{

C1 + C2|z1 − z2|
2−s−t if s + t 6= 2

C3 + 4π
∣

∣

∣ ln |z1 − z2|
∣

∣

∣ if s + t = 2

provided Ω is a domain of finite measure and s and t are less than 2. If Ω is
bounded, denote its diameter by d0. Then |z1− z2| ≤ d0 for any two points
in Ω and thus

1 ≤ ds+t−2
0 in case s + t > 2.

This implies for any two points z1, z2 of the bounded domain Ω the estimate

∫

Ω

∫

dξdη

|ζ − z1|s · |ζ − z2|t
≤











C4|z1 − z2|
2−s−t if s + t > 2

C3 + 4π
∣

∣

∣ ln |z1 − z2|
∣

∣

∣ if s + t = 2

C5 if s + t < 2

(where C5 = C1 + C2d
2−s−t
0 and so on).

Since ν + k = 1 − α
q

+ k < 2 and σ0 < 1, this estimate is applicable to

the second integral in (21). Suppose, first, that ν + k + σ0 > 2. Then the
second factor in (21) can be estimated by

Cp−1
4 |z − c|(2−ν−k−σ0)(p−1).

The exponent of |z − c| equals
(

2− 1 +
σ

q
− k − σ − ε0

)

(p− 1) = (1− k)(p− 1)− ε0(p− 1)−
σ

q
.

Interchanging the order of integration, the estimate (21) leads to
∫

Ωz

∫

|Jkϕ|pdxdy ≤
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≤ C6

∫

Ωζ

∫

|ϕ(ζ)|p · |ζ − c|σ0(p−1)





∫

Ωz

∫

dxdy

|z − ζ|ν+k · |z − c|n



 dξdη, (22)

where the exponent

n = ε0(p− 1) +
σ

q
− (1− k)(p− 1)

is less than 2 provided ε0 is small enough.
Additionally assume now that also

ν + k + ε0(p− 1) +
σ

q
− (1− k)(p− 1) > 2.

Then the second integral in (22) can be estimated by

C4|ζ − c|−ε0(p−1)+p(1−k) ≤ C4|ζ − c|−ε0(p−1)d
p(1−k)
0 . (23)

Finally, since σ0 − ε0 = σ, we get the desired estimate
∫

Ωz

∫

|Jkϕ|pdxdy ≤ C7

∫

Ωζ

∫

|ϕ(ζ)|p · |ζ − c|σ0(p−1)dξdη. (24)

If ν + k + ε0(p− 1) + σ
q
− (1− k)(p− 1) = 2, then the bound (23) is to be

replaced by C3 + 4π
∣

∣

∣
ln |z1 − z2|

∣

∣

∣
, and we obtain

∫

Ωz

∫

|Jkϕ|pdxdy ≤

≤ C6

∫

Ωζ

∫

|ϕ(ζ)|p · |ζ−c|σ(p−1) · |ζ−c|ε0(p−1) ·

(

C3 +4π
∣

∣

∣
ln |z1−z2|

∣

∣

∣

)

dξdη.

Since |ζ−c|ε0(p−1) ·(C3 + 4π |ln |z1 − z2|| ) is bounded, it follows an estimate
of the type (24) in this case too. Similar arguments lead to analogous
estimates in the remaining cases. This completes the proof of Lemma 6. �

The integral operators in (13) and (14) are modifications of the TΩ- and
the ΠΩ -operators. They will be denoted by T ∗Ω and Π∗Ω , respectively.

Analogously to Lemma 5, the following statement is true:

Lemma 7. The T ∗Ω-operator is a bounded operator mapping Lp(Ω, |z−c|γ)

into Hλ(Ω, %β).

By analogy with Lemma 6, one has

Lemma 8. The T ∗Ω- and the Π∗Ω -operators map Lp(Ω, |z− c|γ) into itself

and are bounded (γ = σ(p− 1) and 0 < σ < 1).

Remark. Sobolev’s imbedding theorem led to the choice λ = p−2
p

for

the Hölder exponent. Lemma 5 gives the same value for λ if γ satisfies the
inequality γ

p
+α−1 > p−2

p
, i.e., γ has to satisfy the condition γ > p(2−α)−2.
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In order to obtain a small γ we choose α near to 1, i.e., we take α = 1− ε,
where ε is small, 0 < ε < 1. This gives γ > (p − 2) + pε. This condition is
satisfied if we choose

γ = (p− 2) + (p + 1)ε. (25)

Note that the choice (25) for γ implies that (11) is also satisfied. Moreover,
this choice of γ allows to apply Lemma 6.

7. Proof of an Embedding Theorem for Weighted Sobolev

Spaces Using Complex Analysis

The weighted Sobolev space W1
p (Ω, %γ) is the set of all functions which

together with their first order derivatives belong to the weighted Lebesgue
space Lp(Ω, %). As a side result of the above considerations, we show that
W1

p (Ω, %) is imbedded in the weighted Hölder space Hλ(Ω, %β) (p > 2, λ =

(p− 2)/p, β = γ/p). In particular, W1
p (Ω) is imbedded in Hλ(Ω) (γ = β =

0). The proof which will be given below is based on the boundedness of the
TΩ- and ΠΩ -operators, and the imbedding constants can be estimated by
the norms of the latter operators.

Suppose w = w(z) belongs to W1
p (Ω, %γ). Define

Φ = w − TΩ

[

∂w

∂z

]

. (26)

Since ∂Φ
∂z

= 0, the complex version of the Weyl Lemma shows that Φ is
holomorphic. Rewriting (26) in the form

w = Φ + TΩ

[

∂w

∂z

]

, (27)

and taking into account that TΩ maps W1
p (Ω, %γ) into Hλ(Ω, %β), it follows

that w = w(z) is Hölder continuous. Although the values w(z) are defined
only almost everywhere, the representation (27) implies, in particular, that
w = w(z) has a continuous representative.

In order to estimate the imbedding constant, we need the following
lemma:

Lemma 9. If Φ is holomorphic in the unit disk Ω and Φ′ ∈ Lp (Ω, %γ) ,
then

Φ = TΩΦ′ + c, (28)

where c is a suitably chosen constant.

Proof. Denote TΩΦ′ by h and h− Φ by h0. Then one has

∂h0

∂z
= Φ′ − Φ′ = 0,

i.e., h0, too, turns out to be holomorphic. Expanding Φ and h0 into power
series, we have

Φ(z) =
∞
∑

k=0

akzk, h0(z) =
∞
∑

k=0

bkzk, h(z) =
∞
∑

k=0

akzk +
∞
∑

k=0

bkzk. (29)
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Let Cr be the circumference with radius r represented by

z = r exp(iϑ), 0 ≤ ϑ ≤ 2π.

Multiplying (29) by z−s, s = 2, 3, . . . , and integrating over Cr, one gets
∫

Cr

z−sh(z)dz =

∞
∑

k=0

ak

∫

Cr

zkz−sdz +

∞
∑

k=0

bk

∫

Cr

zk−sdz. (30)

Since dz = ri exp(iϑ)dϑ on Cr and since

2πi
∫

0

exp(imϑ)dϑ =

{

2π if m = 0
0 if m 6= 0

,

we obtain
∫

Cr

z−sh(z)dz = 2πi · bs−1 for s = 2, 3, . . . .

On the other hand, one has
∫

Cr

z−sh(z)dz → 0 as r → 1

because h is holomorphic outside the unit disk and vanishes at ∞. This
shows bs−1 = 0 for s = 2, 3, . . . and Lemma 9 has been proved. �

Let Φ be holomorphic in the unit disk and Φ′ ∈ Lp (Ω, %γ). Then the
representation (28) is true with

c = Φ(0)−
(

TΩΦ′
)

[0]. (31)

Since TΩ is a bounded operator mappingW1
p (Ω, %γ) intoHλ(Ω, %β). Lemma

9 yields the following statement:

Proposition 1. If Φ′ belongs to W1
p (Ω, %γ), then Φ belongs to Hλ(Ω, %β)

and the estimate

‖Φ− c‖Hλ(Ω,%β) ≤ K ‖Φ′‖W1
p(Ω,%γ)

is true, where c = Φ(0)−
(

TΩΦ′
)

[0] and K is the norm of the TΩ-operator

as operator mapping W1
p (Ω, %γ) into Hλ(Ω, %β).

Next suppose that w = w(z) is a given element belonging to W1
p (Ω, %γ).

Define

Φ = w − TΩ

[

∂w

∂z

]

. (32)

Then Φ is holomorphic, and one has

Φ′ =
∂w

∂z
−ΠΩ

[

∂w

∂z

]

. (33)

The formula (33) shows that Φ′ belongs to L1
p(Ω, %γ) because the Π-operator

maps this space into itself. Moreover, (33) leads to an estimate of the
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L1
p(Ω, %γ)-norm of Φ′ by theW1

p (Ω, %γ)-norm of the given element w = w(z).
Rewriting (32) in the form

w = (Φ− c) + c + TΩ

[

∂w

∂z

]

,

where c is again given by (31), and applying Proposition 1 we get the fol-
lowing statement:

Proposition 2. The weighted Sobolev space W1
p (Ω, %γ) is imbedded in the

weighted Hölder space Hλ(Ω), where λ = (p−2)/p and β = γ/p. The imbed-

ding constant can be estimated by the norms of the TΩ- and TΩ-operators.

The above method for solving the Dirichlet boundary value problem for
holomorphic functions leads also to imbedding theorems for fractional or-
der spaces and, in addition, the corresponding imbedding constant can be
estimated by the norm of the TΩ-operator.

Suppose g belongs to Ws
p(Γ). Then in view of Lemma 3 the solution u

of the Dirichlet boundary value problem

∆u = 0 in Ω,

u = g on Γ

belongs to W1
p (Ω) and its W1

p -norm can be estimated by ‖g‖Ws
p(Γ). This

leads, in particular, to an estimate of the Lp-norm of the first order deriva-
tives. Introduce

Φ′ =
∂u

∂x
− i

∂u

∂y
.

Then one has also an estimate of the Lp-norm of Φ′ by the Ws
p(Γ)-norm

of the boundary data g. Applying the above Proposition 1, one gets an
analogous estimate of the Hλ-norm of Φ. Since g are the boundary values
of the real part of Φ, we see that g is Hölder continuous with exponent λ
and, further, that the Hλ-norm of the boundary values g can be estimated
by ‖g‖Ws

p(Γ).

8. Main Result

In order to solve the Dirichlet boundary value problem (4), (5) for the
partial complex differential equation (1), we construct fixed points (w, h) of
the operator (2), (3). This will be done using contraction-mapping principle
in

(

Hλ(Ω, %β), Lp(Ω, %γ)
)

. (34)

The norm in this space is defined by

‖(w, h)‖∗ = max
(

‖w‖Hλ(Ω,%β) , ‖h‖Lp(Ω,%γ )

)

.
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Let (Wj , Hj), j = 1, 2, be the image of (wj , hj) defined by the operator (2),
(3). Then we have

W1 −W2 =
(

Φ(w1,h1) − Φ(w2,h2)

)

+ TΩ

(

F (·, w1, h1)− F (·, w2, h2)
)

,

H1 −H2 =
(

Φ′(w1,h1)
− Φ′(w2,h2)

)

+ ΠΩ

(

F (·, w1, h1)− F (·, w2, h2)
)

.

Notice that both differences W1 −W2 and H1 −H2 do not depend on the
holomorphic solution Ψ and its derivative Ψ′ resp. According to the above
definition of the norm in the space (34), we see

‖(W1, H1)− (W2, H2)‖∗=max
(

‖W1 −W2‖Hλ(Ω,%β) , ‖H1 −H2‖Lp(Ω,%γ )

)

.

Choosing λ, γ and β according to the relations (8), (25) and (12), and taking
into consideration the Lipschitz condition (6), the lemmas of Section 6 lead
to an estimate of the type

‖(W1, H1)− (W2, H2)‖∗ ≤ (K1L1 + K2L2) ‖(w1, h1)− (w2, h2)‖∗ ,

where the constants K1 and K2 can be expressed by the norms of the
operators TΩ , ΠΩ and their modifications whose properties are described
by Lemmas 7 and 8.

Summarizing these arguments, the following theorem has been proved:

Theorem 1. Suppose the right-hand side of the differential equation

is Lipschitz continuous with sufficiently small Lipschitz constants. Choose

an arbitrary ε, 0 < ε < 1. Suppose the given boundary values can piece-

wise be decomposed into a part belonging to a fractional order space W s
p ,

s = 1−
1

p
, and a Hölder continuous part with Hölder exponent µ, where

µ > 1 − 1
p

. Then the boundary value problem under consideration can be

solved in
(

Hλ(Ω, %β), Lp(Ω, %γ)
)

, where

γ = (p− 2) + (p + 1)ε, β =
p− 2

p
+

p + 1

p
· ε and %(z) =

∏

j

|z − cj |.

Notice that both β and γ are arbitrarily small if ε is sufficiently small
and, at the same time, p is close enough to 2.

In the special case of Hölder continuous boundary data g, the decompo-
sition g = g1 + g2 + g3 existing in view of Lemma 1 is true with g1 ≡ 0
and g3 ≡ 0. Under this assumption the Dirichlet boundary value problem
for the differential equation (1) has been solved already in the papers [4, 5].
In accordance with the above theorem, in this case (w, ∂w/∂z) belongs to
(

Hµ(Ω), Lp(Ω)
)

where µ is the Hölder exponent of the given boundary

data and p <
1

1− µ
.
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