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Abstract. Boundary value problems with discontinuous coefficients for
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with a special emphasis on conditions of normal solvability and index for-
mulae.
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Introduction

The aim of the present work is to investigate certain boundary value
problems of Riemann–Hilbert type on a plane cut along several regular arcs,
find conditions of normal solvability, and obtain index formulae. Despite
this topic is conceptually related to the well-developed classical theories of
boundary value problems for analytic functions and singular integral equa-
tions [60], [22], [70], boundary value problems on a plane with curvilinear
cuts remain insufficiently explored up to present time, which is directly indi-
cated in such sources as [59] and [28]. In particular, this refers to Riemann–
Hilbert problems on a plane with curvilinear cuts .

For example, in [28] it is explicitly stated that investigation of such prob-
lems is important for the theory of cracks and singular problems of the
plane elasticity theory but there is a lack of general results applicable to
problems of such type. One of the reasons for such situation is that, mathe-
matically, boundary value problems on a plane with curvilinear cuts reduce
to boundary value problems in multiply connected domains which present
substantial difficulties and require using some deep and technically compli-
cated technical tools such as conformal mappings [27] and function theory
on Riemann surfaces [73]. In particular, the results available for bound-
ary value problems in multiply connected domains as a rule do not lead
to explicit solvability conditions (cf. [73]). So it does not seem possible
to develop solvability theory for boundary value problems on a plane with
curvilinear cuts by merely interpreting them as boundary value problems in
multiply connected domains. Thus one needs to develop some specific direct
methods to circumvent this difficulty.

The approach adopted in the present paper is based on reduction of
boundary value problems on a plane with curvilinear cuts to analogous clas-
sical problems with discontinuous coefficients in a simply-connected domain.
This method has its roots in the works of B. Khvedelidze and G. Manjavidze
(see [33], [44], [45], [49]). Further important contributions belong to I. Simo-
nenko [67], G. Litvinchuk (see [42] and references therein), I. Gohberg and
N. Krupnik [26], V. Kokilashvili [37], [38], V. Paatashvili [63], R. Duduchava
[17], [18], [43] and other authors (see references in [43] and [38]). Applica-
tions of those results in elasticity theory are discussed, e.g., in [5], [28].

For a simply connected domain, a powerful tool for investigating bound-
ary values of such type is provided by Birkhoff (or Wiener-Hopf) factor-
ization of matrix functions on closed contours [60], [70]. As is well-known,
analogs of Birkhoff factorization can be developed for discontinuous matrix
functions [33], [45], [43], [38], so we suggest some constructions which enable
us to use those analogs for investigation of boundary value problems on a
plane with curvilinear cuts . For brevity and convenience, instead of writ-
ing plane cut along several smooth arcs or plane with curvilinear cuts we
write simply cut plane (cf. [47], [51], [52]). Let us add some historical and
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methodological remarks clarifying the concepts and approach used in the
paper.

At present there are numerous papers on the theory of boundary value
problems in the plane. In particular, the classical problems of linear conju-
gation, Riemann–Hilbert type problems, differential boundary value prob-
lems , one-dimensional singular integral equations, and their applications in
mathematical physics were thoroughly studied in [60], [69], [70], [22], [58]
to mention just a few fundamental sources.

Later on, there appeared many modifications and generalizations of those
classical studies (see, e.g., [10], [24], [43], [33], [35]). We concentrate here
on recent developments concerning problems on a cut plane and problems
with displacement (shift) which appeared very useful in many applied prob-
lems (see, e.g., [44], [49], [58]). We basically follow the analytic approach
developed by G.Manjavidze [44], [45], [46], [49], [2], [3] and at several places
combine it with geometric methods from [35], [21].

Systematic research in the theory of linear conjugation problems with
shift for analytic functions has been started after the appearance of the
works [40], [41]. In the years to follow many papers concerned with various
aspects of this theory were published (see, e.g., [33], [70], [44], [10], [73],
[49], [67], [56], and references in [42]). Moreover, it turned out that certain
aspects of the classical theory can be generalized to similar problems for
hyperanalytic and generalized analytic functions [16], [24], [2]. Applications
of the problems of linear conjugation with displacement (shift) in the theory
of elasticity can be found in [4], [44], [68].

Much less was known about such problems on a cut plane. In the present
paper we aim at showing that certain important results of the classical
theory such as solvability conditions and index formulae can be generalized
to boundary value problems on a cut plane [51], [52], [53]. We also indicate
some applications of the main results which confirm that the main results
are applicable to practically important problems. According to this aim,
the structure of the paper is as follows.

We begin with introducing some classes of analytic functions in multiply
connected domains and cut plane which are used throughout the text. In
particular, we present basic concepts and facts about generalized analytic
functions [11], [12] which are needed in the sequel.

Sections 2 and 3 contain the main results. Here we develop Fredholm
theory for Riemann–Hilbert problems and linear conjugation problems on
a cut plane. It appeared convenient and logically more consistent to begin
with considering linear conjugation problems on a cut plane. Such problems
are studied in Section 2. To this end, we begin with considering the problem
of linear conjugation with piecewise continuous coefficient on a smooth con-
tour and reduce it to factorization of a discontinuous matrix-function. We
obtain solvability conditions and index formula for linear conjugation prob-
lems on a cut plane (Theorems 2.2 and 2.3) and relate them to analogous
results for systems of singular integral equations.
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Riemann–Hilbert problems on a cut plane are considered in Section 3.
We first establish their relation to singular integral equations , which enables
us to use the results obtained in the previous section. Finally, we obtain
solvability conditions and index formula for Riemann–Hilbert problems on
a cut plane.

In conclusion, as a sort of personal touch, the author wishes to dedicate
this paper to the memory of her father Giorgi Manjavidze who introduced
her to mathematical research and majority of the concepts and ideas used
in this paper.

1. Preliminary Remarks

1.1. Classical boundary value problems for analytic functions. We
briefly describe the main classical boundary value problems and establish the
terminology to be used throughout the text. First of all, the word “plane”
always means the plane C of complex variable canonically identified with
the real plane R2 by setting z = x+ ıy. Under plane domain we understand
a connected open subset of C. The term “extended complex plane” C

means the same as “Riemann sphere”, i.e. one adds to C an ideal point at
infinity and introduces a topology by claiming that neighbourhoods of ∞
are complements to closed circles in C.

The word “smooth” is used as an equivalent of “continuously differen-
tiable”. In most cases we explicitly indicate the classes of smoothness of the
objects with which we deal at the moment. Analytic functions in a plane
domain D are defined as those smooth functions which satisfy Cauchy–
Riemann equations at every point of D. A mapping f = (f1, . . . , fm) : D →
Cm is called analytic if all of its components are analytic functions in D.
Under a smooth arc (open curve) we mean the image of a smooth map-
ping of an interval into C while under a smooth contour (or closed curve)
is meant the image of a smooth mapping of the circle S1 into C.

In many modern papers the word “contour” is substituted by the word
“loop” borrowed from topology (cf. [35], [36]). This terminology is rather
flexible and convenient and we will use it sometimes. Strictly speaking,
the contour is just a particular case of the loop which is used to denote
the loop in the plane. The term “loop” can be used with respect to an
arbitrary topological space X (e.g., X can be a matrix group or a function
space) and means exactly a subset C ⊂ X which is the image of some
continuous mapping F : S1 → X . This is especially convenient when one
deals with functions or matrix functions on a contour. For example, one
can say “matrix loop” instead of “matrix-function on the contour”, which
is obviously much more short and flexible. Correspondingly, one can speak
of analytic, smooth, continuous (Hölder, Lp, etc.) loops.

An arc or a contour is called simple if it does not have self-intersections.
The complement to a finite collection of nonintersecting simple smooth arcs
is called plane with curvilinear cuts or simply cut plane. Notice that this set
is always connected so this is an example of the plane domain. If the cuts
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are oriented, then one can obviously define left and right boundary values
of functions defined on the cut plane.

A domain D is called simply connected if each smooth loop in it can be
continuously contracted (homotoped) to a point without leaving D. If it
is not the case, i.e. if there exist loops which cannot be contracted within
D, then D is called multiply connected. One can define the (degree of)
connectivity of D as the number of non-homotopic classes of loops in D.
Thus simply connected domains have connectivity zero. If there is only one
nontrivial homotopy class of loops, then the domain is called 1-connected.
Such are, for example, any annulus, the complement to any point in C (the
punctured plane), and the plane cut along a simple smooth arc. Notice
that the punctured plane becomes connected if considered as the subset of
the extended complex plane C. The same refers to the plane cut along one
smooth arc. For this reason, boundary value problems in domains of the
two latter types are easier to investigate than for an arbitrary cut plane.

We make now a few remarks concerning the terminology related with
boundary value problems, which is really important because there exist
various traditions in interpreting terms like linear conjugation problem or
Riemann–Hilbert problem . First of all, by the classical boundary value
problem of certain type we always mean the linear boundary value prob-
lem of the corresponding type.

Second and most important, we adopt a broader meaning of the key term
Riemann–Hilbert problem . Namely, according to a modern geometric ap-
proach to boundary value problems in the plane (see, e.g., [36]) the general
(nonlinear) Riemann–Hilbert problem for analytic functions in a plane do-
main is formulated as follows.

Riemann–Hilbert problem . Let D be a bounded plane domain with
the smooth boundary Γ and let M be a real surface in Γ × Cm. The
Riemann–Hilbert problem requires to find out if there exists a continuous
mapping f : D → Cm which is analytic in D and satisfies

(z, f(z)) ∈M, ∀z ∈ Γ. (1.1)

Usually one is also asked to describe the totality of such mappings called
solutions to a given Riemann–Hilbert problem . For z ∈ Γ, put Mz = {w ∈
Cm : (z, w) ∈M}. We say that the above Riemann–Hilbert problem is linear
if, for each z ∈ Γ, Mz is a real affine plane in Cm. We are basically interested
in linear Riemann–Hilbert problems but we need this general definition to
describe some applications in Section 12.

As is well known (see, e.g., [36]), this formulation includes as particular
cases both the classical Riemann problem (the problem of linear conjuga-
tion) and the Hilbert problem [22], [60]. This explains the name chosen for
the above problem in this paper. In fact, practically everything what we will
do in the sequel can be interpreted in terms of Riemann–Hilbert problems in
the above sense.
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Recall that the Hilbert problem consists in finding an analytic vector func-
tion X in D with prescribed real part g on the boundary Γ, i.e. satisfying

ReX(z) = g(z), ∀z ∈ Γ. (1.2)

To formulate the Riemann problem (the linear conjugation problem), one
assumes that the plane is decomposed into the inner domain D+ and the
outer domain D− defined by Γ and one is given an n×n matrix-function G
on Γ. Then the Riemann problem consists in finding two n-vector-functions
X± which are analytic in D± respectively and satisfy on Γ the famous con-
jugation (transmission) condition

X+(z) = G(z)X−(z), ∀z ∈ Γ. (1.3)

Certain regularity of X− at infinity is also supposed, for example, one
may require that it is vanishing at ∞ or has finite order there [60], [22]. In
this paper, for the Riemann problem we use another standard term, “linear
conjugation problem ”, which seems more convenient in our context.

As is well known, each linear conjugation problem for n-vector-functions
can be reduced to the Hilbert problem for 2n-vector-functions so in prin-
ciple it suffices to investigate only Hilbert problems or Riemann–Hilbert
problems . However, linear conjugation problems have strong specifics and
especially nice geometric interpretation so it is convenient to investigate
them separately under their own name “linear conjugation problem” and
we will do so in the sequel. As will be explained below, similar problems
can be formulated not only for analytic functions but also for hyperanalytic
functions and generalized analytic functions .

The famous Birkhoff factorization theorem [60] states that a sufficiently
regular non-degenerate matrix function on S1 = T can be represented in
the form

G(t) = G+(t)diag(zk)G−(t), (1.4)

where the matrix functions G±(t) are regular, non-degenerate and holomor-
phic in the domains D± respectively, G−(∞) is the identity matrix, and

diag(zk) = diag(zk1 , . . . , zkn), k1, . . . , kn ∈ Z,

is a diagonal matrix function on T [60], [70].
The integer numbers ki are called (left) partial indices [60], [70] of the

matrix function G(t). For a given matrix function G(t), there can exist dif-
ferent factorizations of the form (1.4) but (left) partial indices are uniquely
defined up to the order [70]. Analogously one can define a right Birkhoff
factorization of G(t) and right partial indices. We will only deal with the
left factorizations because they are well-suited for investigation of linear
conjugation problems of the form (1.3).

Partial indices exhibit quite non-trivial behaviour. The right partial in-
dices need not be equal to the left ones. However, for sufficiently regular
(rational, Hölder) matrix functions the sum of all left partial indices (left
total index) is equal to the analogously defined right total index. Actually,
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both the left and right total indices are equal to the Fredholm index of the
corresponding linear conjugation problem (1.3).

In fact, even for very regular (smooth, rational) matrix functions their
collections of left and right partial indices are practically independent of
each other (except the restriction that both total indices should be equal).
For example, it was proved in [43] that for each two integer vectors k, l ∈ Z

with
∑
ki =

∑
li there exists a non-degenerate rational matrix-function on

the unit circle whose vectors of left and right partial indices are k and l
respectively.

The problem of computing (left or right) partial indices of a concrete
matrix function is far from trivial because in most cases they are not topo-
logical invariants and one has to take into account the analytic properties
of a given matrix function. After several decades of gradual progress, this
problem was eventually solved for several important classes of matrix func-
tions [15], [43]. Recently these results were simplified and generalized in [1].
Thus the problem of computing partial indices nowadays can be considered
as an algorithmically solvable one.

1.2. Function classes. We introduce now the basic function classes needed
in the sequel. We use the terms and notation basically from [22], [60], [69],
[70], [44], [8], [57], [43], [24], [72]. Let S be a subset of the plane of complex
variable z = x+ iy. The function f = f(z) is said to satisfy H(µ)-condition
(i.e. the Hölder condition with the exponent µ) on S if f is defined on S
and satisfies the inequality

|f(z1)− f(z2)| ≤ A|z1 − z2|
µ, ∀z1, z2 ∈ S, (H)

where A and µ are constants not depending on z1, z2 (with A≥0, 0<µ≤1).
Denote by Hµ(S) the class of the functions satisfying the condition (H)

(the constant A is not fixed). The union of the classes Hµ(S), 0 < µ ≤ 1,
is denoted by H(S). It is evident that the functions of the class H(S) are
continuous; therefore sometimes the functions from this class will be referred
to as Hölder-continuous.

If S is a domain, then denote by Cm(S)[Hm
µ (S)] the class of all functions

satisfying the following conditions

f ∈ C(S̄)[f ∈ H(S)],
∂mf

∂xm−k∂yk
∈ C(S)[Hµ(S)], k = 0, . . . ,m.

Consider, moreover, the class of functions f(z) = f(x, y) defined and
measurable in S and satisfying the condition

∫∫

S

|f(z)|pdxdy <∞, p ≥ 1.
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The class of all functions satisfying this condition is denoted by Lp(S̄);
by Lp(S̄) we denote also the Banach space with the norm

‖f‖Lp
=

(∫∫

S

|f(z)|pdxdy

)1/p

.

Denote by Lp(S) the class of all functions f for which the p−th power
of the absolute value |f | is summable (integrable) on every closed subset of
the domain S. Let Γ be a simple rectifiable curve z = z(s), where s is the
arc abscissa, 0 ≤ s ≤ `, and ` is the length of Γ.

A curve Γ ∈ Cm if the derivatives of the function z(s) with respect to
s up to and including the order m are continuous on the segment [0, `] (it
is assumed that if Γ is closed, then z(k)(0) = z(k)(`), k = 1, . . . ,m); if in
addition the derivative z(m) ∈ Hµ([0, `]), then Γ ∈ Hm

µ . The curves of the

class C1 are called the smooth ones.
The curves consisting of a finite number of smooth curves are called the

piecewise smooth ones. We write D ∈ Cm[D ∈ Hm
µ ] if the boundary of the

domain D consists of a finite number of simple closed curves of the class
Cm[Hm

µ ].
Let Γ be a simple curve, c1, c2, . . . , cr be points of Γ ordered according

to the orientation of Γ. Denote by C0(Γ, c1, . . . , cr) the class of functions
which are continuous on Γ except perhaps the points ck where they may
have discontinuities of the first kind; such functions are called the piecewise
continuous functions.

A function f(t) belongs to the classHµ
0 (Γ, c1, . . . , cr) if f ∈C0(Γ, c1, . . ., cr)

and f satisfies the H(µ)-condition on each closed arc ckck+1 provided the
limits f(ck + 0) and f(ck+1 − 0) are interpreted as the values of f at the
points ck and ck+1, where k = 1, . . . , r and cr+1 = c1.

Denote by C0(Γ) [resp. H0(Γ)] the union of the classes C0(Γ, c1, . . . , cr)
[resp. Hµ

0 (Γ, c1, . . . , cr)], 0 < µ ≤ 1. We say that f(t) ∈ H∗(Γ) if the
function f(t) given on Γ admits the representation

f(t) = f0(t)

r∏

k=1

|t− ck|
−α, ck ∈ Γ, f0(t) ∈ H0(Γ), α < 1.

If
r∏

k=1

|t − ck|
εf(t) ∈ H(Γ) for arbitrarily small ε > 0, then we write

f(t) ∈ H∗
ε (Γ).

Let Γ be a rectifiable curve t = t(s), 0 ≤ s ≤ `, and f(t) be a function
defined on Γ. We say that f(t) is measurable (respectively, summable) on
Γ if the function f(t(s)) of the real variable s is measurable (respectively,
summable) on the segment [0, `]; if f(t) is summable, we define

∫

Γ

f(t)dt =

`∫

0

f(t(s))t′(s)ds.
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Let ρ(t) ≥ 0, f(t) be measurable functions defined on Γ. We say that
f(t) ∈ Lp(Γ, ρ) if ρ(t)|f(t)|p (p ≥ 1) is a summable function on Γ; we write
Lp(Γ) instead of Lp(Γ, 1). By Lp(Γ, ρ) denote the corresponding Banach
space with the norm

‖f‖Lp(Γ,ρ) =

(∫

Γ

ρ(t)|f(t)p|dt

)1/p

.

The spaces Lp(Γ, ρ) and Lq(Γ, ρ1−q), are called conjugate spaces if 1
p + 1

q = 1,

i.e. q = p/(p− 1).
As a rule, we assume that the weight function has the form

ρ(t) =

r∏

k=1

|t− tk|
νk , tk ∈ Γ, −1 < νk < p− 1, p > 1. (W )

It is clear that in this case Lp(Γ, ρ) ⊂ Lλ(Γ) for some λ > 1.
Let Γ be the union of simple smooth curves in the complex z-plane. Let

φ(z) be a function defined and continuous in a neighborhood of Γ except
perhaps at the points of Γ themselves. Let t be some point of Γ different
from the end points and the points of self-intersection (if there are any). We
say that the function φ(z) is continuously extendable in the point t from
the left (respectively, from the right) if φ(z) tends to a definite limit φ+(t)
(respectively, φ−(t)) as z tends to t along any path remaining on the left
(respectively, on the right) of Γ. If the mentioned limit exists when z tends
to t on along some non-tangential path remaining on the left (respectively,
on the right) from Γ, then we say that φ(z) has the angular boundary value
φ+(t)[φ−(t)].

A piecewise-holomorphic function φ is a holomorphic function in the
plane cut along Γ (except perhaps at infinity) continuously extendable on
Γ from both sides everywhere except perhaps the finite set of points ck;
near these points ck the function φ(z) is supposed to satisfy the following
estimate

|φ(z)| ≤
const

|z − ck|α
, 0 ≤ α < 1.

At the point z = ∞ the function may have a pole.
The notation A ∈ K, where A is a matrix and K is some class of func-

tions, means that every element Aαβ of A belongs to K. If K is some linear
normed space with the norm ‖ · ‖K , then ‖A‖K = max

α,β
‖Aαβ‖K . Sometimes

an (n×1)-matrix A is called a vector, and it is convenient to write it as the
row A = (A1, . . . , An).

Let D be a simply connected domain in the extended complex plane
bounded by a rectifiable Jordan curve Γ. By definition the class Ep(D), p >
0, is the set of all analytic functions in D for which there exists a sequence
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of domains Dk with rectifiable boundaries Γk satisfying the conditions:

Dk ⊂ D, Dk ⊂ Dk+1, ∪
k
Dk = D, sup

∫

Γk

|f(z)|p|dz| <∞.

Let Γ be a simple closed rectifiable curve bounding the finite domain
D+ and the infinite domain D− (the domain D+ remains on the left when
passing along Γ in the positive direction); the Cauchy type integral

φ(z) =
1

2πi

∫

Γ

f(t)dt

t− z
, f(t) ∈ L1(Γ), (C)

has the angular boundary values φ+(t) and φ−(t) from D+ and D− (from
both sides of Γ) almost everywhere on Γ.

Denote by E±p (Γ), p ≥ 1, (E±p (Γ, ρ), where ρ is a function of the form
(W )), the class of the functions φ(z) representable in the form

φ(z) =
1

2πi

∫

Γ

f(t)dt

t− z
+ P (z), f ∈ Lp(Γ) (Lp(Γ, ρ)), (E)

where Γ is a simple closed rectifiable curve and P (z) is some polynomial.
Denote also by E±p,0(Γ) (E±p,0(Γ, ρ)) the class of functions of the form (E)

with P (z) = 0. By E±∞(Γ) (E±
∞,0(Γ)) we denote the intersection

∩
p>1

E±p (Γ) ( ∩
p>1

E±p,0(Γ)).

For the functions of the class E±p (Γ) the following propositions are valid:

a)E±p (Γ) ⊂ E±r (Γ), p > r.

b) If φ(z) ∈ E±1 (Γ) and φ+(t) = φ−(t) almost everywhere on Γ, then
φ(z) is some polynomial.

c) If φ(z) ∈ E±p (Γ) p > 1, Γ ∈ R, then φ(z) ∈ Ep(D+), φ(z) − P (z) ∈

Ep(D−).
It is evident that if

φ1(z) ∈ Ep(D+), φ2(z) ∈ Ep(D−), p ≥ 1,

then the function

φ(z) =

{
φ1(z), z ∈ D+,
φ2(z), z ∈ D−,

belongs to E±p (Γ).

d) Let φ1(z) ∈ E±p (Γ, ρ), φ2(z) ∈ E±q (Γ, ρ1−q). Then φ1(z)φ2(z) ∈

E±1 (Γ).
e) If φ(z) ∈ E±1 (Γ), then φ(z) ∈ E1−ε(D+), φ(z) ∈ E1−ε(D−) for arbi-

trary small positive ε [44].
Let X and Y be Banach spaces and A be a linear bounded operator

mapping X into Y . Recall that the operator A is said to be Fredholm if
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a) the image of the operator A in Y is closed (i.e. the operator A is
normally solvable in the sense of Hausdorff);

b) the null spaces (kernels) N = {x ∈ X, Ax = 0} and N ∗{f ∈ Y ∗ :
A∗f = 0} are finite dimensional subspaces (A∗ is the conjugate operator,
X∗ and Y ∗ are the conjugate spaces).

The difference `− `∗, where ` and `∗ denote the dimensions of the sub-
spaces N and N∗, respectively, is called the index indA of the Fredholm
operator A.

1.3. Generalized analytic functions. In the theory of generalized ana-
lytic functions the following integral operators

(Tf)[z] = −
1

π

∫∫

D

f(ζ)dσζ

ζ − z
, (Πf)[z] = −

1

π

∫∫

D

f(ζ)dσζ

(ζ − z)2

play an important role, where D is some domain in the z-plane, z = x+ iy,
and f(ζ) is a function of the class Lp(D̄), p ≥ 1. The main properties of the
operators T,Π are the following.

The generalized derivatives satisfy

∂z̄Tf = f, ∂zTf = Πf.

If D is a bounded domain, then Tf is a linear completely continuous
operator from the space Lp(D̄), p > 2 , into the space Hα(D), α = (p−2)/p.

If the boundary Γ of D is the union of a finite number of piecewise-
smooth contours, then the operator T is a linear bounded operator from
Lp(D̄), 1 < p ≤ 2, into Lj(Γ), 1 < j < p/(2− p).

Let D ∈ Hm+1
α , f(z) ∈ Hm

α (D), 0 < α < 1,m ≥ 0. Then Tf ∈
Hm+1

α (D), ∂zTf = Πf ∈ Hm
α (D). Πf is a linear bounded operator in

the spaces Hα(D) and Lp(D̄), p > 1.
Let q(z) be a measurable bounded function in the whole plane C, |q(z)| ≤

q0 < 1, q(z) = 0 in a neighborhood of z = ∞, and let f be a solution of the
equation

f − qΠf = q

belonging to the class Lp(C), p > 2. Then the function

ω(z) = z + Tf

is a fundamental homeomorphism of the Beltrami equation

∂z̄ω − q(z)∂zω = 0.

These and other properties of the operators T and Π are formulated and
proved in [46], [47].

A vector w(z) = (w1, . . . , wn) is called generalized analytic vector in the
domain D if it is a solution of an elliptic system of the form

∂z̄w −Q(z)∂zw +A(z)w +B(z)w̄ = 0, (1.5)

where A(z), B(z) are given square matrices of order n of the class Lp0(D),
p0 > 2, and Q(z) is a matrix of the following special form: it is quasidiagonal



Boundary Value Problems on a Cut Plane 133

and every block Qr = (qr
ik) is a lower (upper) triangular matrix satisfying

the conditions

qr
11 = · · · = qr

mr ,ms
= qr, |qr| ≤ q0 < 1,

qr
ik = qr

i+s,k+s (i+ s ≤ n, k + s ≤ n).

Moreover, we suppose Q(z) ∈ W 1
p (C), p > 2, and Q(z) = 0 outside of

some circle.
The equation

∂z̄w − ∂z(Q′w) −A′(z)w −B′(z)w = 0 (1.5′)

is called conjugate to the equation (1.5), the accent ′ denotes transposition
of matrix.

If A(z) ≡ B(z) ≡ 0, then the equations (1.5) and (1.5′) pass into

∂z̄w −Q(z)wz = 0, (1.6)

∂z̄w − ∂z(Q′w) = 0. (1.6′)

Solutions of the equation (1.2) are called Q-holomorplic vectors.
The equation (1.6) has a solution of the form

ζ(z) = zI + Tω, (1.7)

where I is the unit matrix and ω(z) is a solution of the equation

ω(z) +Q(z)Πω = Q(z)

belonging to Lp(C), p > 2.
The solution (1.7) of the equation (1.6) is analogous to the fundamental

homeomorphism of the Beltrami equation.
The matrix

V (t, z) = ∂tζ(t)[ζ(t) − ζ(z)]−1 (1.8)

is called the generalized Cauchy kernel for the equation (1.6) and the fol-
lowing assertions are true [13], [76]:

V (t, z) =
1

t− z

[
I +Q(z)

t̄− z̄

t− z

]−1

+
R1(t, z)

|t− z|α
,

V (t, z) =
1

t− z

[
I +Q(z)

t̄− z̄

t− z

]−1

+
R2(t, z)

|t− z|α
, α ≤ 1,

R1(t, z), R2(t, z) ∈ H(C× C), R − 1(z, z) = 0,

|Vik(t, z)| ≤
const

|t− z|
.

Next consider the generalized Cauchy-type integral defined by the matrix
(1.8)

Φ(z) =
1

2πi

∫

Γ

V (t, z)dQtµ(t), (1.9)
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where Γ is a closed simple smooth curve, µ(t) ∈ L1(Γ) and

dQt = Idt+Q(t)dt̄.

If the density µ(t) in (1.9) is Hölder-continuous on Γ, the integral (1.9)
is Hölder-continuous in D̄+ and D̄− (D+ and D− are the domains bounded
by Γ); the boundary values of Φ on Γ are given by

Φ±(t) = ±
1

2
µ(t) +

1

2πi

∫

Γ

V (τ, t)dQτµ(τ). (1.10)

If µ(t) ∈ Lp(Γ), p > 1, then the formulas (1.10) are fulfilled almost every-
where on Γ, provided Φ± are now understood as angular boundary values
of the vector Φ(z). The analogues of the integral operators T and Π,

(T̃ f)[z] = −
1

π

∫∫

D

V (t, z)f(t)dσt,

(Π̃f)[z] = −
1

π

∫∫

D

∂zV (t, z)f(t)dσt

(1.11)

play an important role while studying generalized analytic vectors.
Let Q ∈ Hα0(C). Then (T̃ f)is a completely continuous operator from

Lp(D̄), p > 2, into Hα(D), α = min{α0, (p−2)/p}. Moreover, the operator

Π̃ is a linear bounded operator from Lp(D̄) into Lp(D̄), and the relations

(∂z̄ −Q∂z)T̃ f = f, ∂zT̃ f = Π̃f (1.12)

are true.
Using Q-holomorphic vectors, generalized analytic vectors w(z) can be

represented as follows

w(z) = Φ(z) +

∫∫

D

Γ1(z, t)Φ(t)dσt+

+

∫∫

D

Γ2(z, t)Φ(t)dσt +

N∑

k=1

ckwk(z), (1.13)

where Φ(z) is a Q− holomorphic vector, and wk(z)(k = 1, . . . , N) is a
complete system of linearly independent solutions of the Fredholm equation

Kw ≡ w(t − z)−
1

π

∫∫

D

V (t, z)[A(t)w(t) +B(t)w(t)]dσt = 0.

The wk(z) turn out to be continuous vectors in the whole plane vanishing
at infinity, and the ck’s are arbitrary real constants; the kernels Γ1(z, t) and
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Γ2(z, t), finally, satisfy the system of the integral equations

Γ1(z, t) +
1

π
V (t, z)A(t) +

1

π

∫∫

D

V (τ, z)[A(τ)Γ1(τ, t)+

+B(τ)Γ2(τ, t)dσt = −
1

2

N∑

k=1

{vk(z), v̄k(t)},

Γ2(z, t) +
1

π
V (t, z)A(t) +

1

π

∫∫

D

V (τ, z)[A(τ)Γ2(τ, t)+

+B(τ)Γ1(τ, t)dσt = −
1

2

N∑

k=1

{vk(z), v̄k(t)},

(1.14)

where the vk(z) ∈ Lp(D̄)(k = 1, . . . , N) form a system of linearly indepen-
dent solutions of the Fredholm integral equation

v(z) +
A′(z)

π

∫∫

D

V (z, t)v(t)dσt +
B′(z)

π

∫∫

D

V ′(z, t)v(t)dσt = 0.

In the formulas (1.14) the curly bracket {v, w} means the diagonal product
of the vectors v and w: {v, w} is the quadratic matrix of order n, whose
elements {v, w}ik are defined by {v, w}ik = viwk , i, k = 1, . . . , n.

Notice that in the formula (1.13) Φ(z) is not an arbitrary Q-holomorphic
vector. It has to satisfy the conditions

Re

∫∫

D

Φ(z)vk(z)dσz = 0, k = 1, . . . , N. (1.15)

Finally it should be mentioned that, generally speaking, the Liouville
theorem is not true for solutions of (1.5). This explains the appearance of
the constants ck in the representation formula (1.13) and the fact that the
condition (1.15) has to be satisfied (cf. [11], [44] and [33]).

2. Linear Conjugation Problems on a Cut Plane

2.1. Factorization of matrix functions and solvability conditions.

Let Γ be a simple closed piecewise-smooth curve Γ, a(t) and b(t) be given
(n×n) and (n×l) matrices respectively on Γ; a(t) be a piecewise continuous
matrix, inf | det a(t)| > 0, b(t) ∈ Lp(Γ, ρ), p > 1, the weight function ρ have
the form

ρ(t) =
r∏

k=1

|t− tk|
νk , tk ∈ Γ, −1 < νk < p− 1. (2.1)

The set {tk} contains all discontinuity points of the matrix a(t), it may
contain also other points of Γ. In many applications one needs to consider
analogs of the Hilbert problem (1.2) or the linear conjugation problem (1.3)
with discontinuous coefficient where one does not require that the boundary
condition (1.2) or (1.3) is fulfilled everywhere [33], [49], [43].
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In line with this, in this section by the boundary value problem of linear
conjugation is understood the following problem: find an (n × l)-matrix
Φ(z) ∈ E±p (Γ, ρ) satisfying the boundary condition

Φ+(t) = a(t)Φ−(t) + b(t) (2.2)

almost everywhere on Γ.
It is convenient to introduce a version of Birkhoff factorization adjusted

to the above problem.

Definition 2.1. A square matrix χ(z) of order n is said to be a normal
matrix of the boundary value problem (2.2) (or for the matrix a(t)) if it
satisfies the following conditions:

χ(z) ∈ E±q (Γ, ρ), χ−1(z) ∈ E±p (Γ, ρ1−q), q =
p

p− 1
,

χ+(t) = a(t)χ−(t)

almost everywhere on Γ.

A normal matrix χ(z) is called canonical if it has normal form at infinity,
i.e. lim

z→∞
(z−σ detχ(z)) (σ is the sum of columns orders of χ(z)) is finite and

nonzero.
Since it is possible to consider various classes E±p (Γ, ρ), we speak about

the canonical (normal) matrices of the class E±p (Γ, ρ). The matrix a(t) is

called factorizable in E±p (Γ, ρ), if for a(t) there exists a canonical matrix of

the same class E±p (Γ, ρ). It is easy to prove the following proposition.

Proposition 2.1 ([70]). If χ1(z) and χ2(z) are normal (in particular
canonical) matrices of the problem (2.2) of one and the same class, then
χ1(z) = χ2(z)P (z), where P (z) is a polynomial matrix with the constant
nonzero determinant.

Consequently, the determinants of all normal (canonical) matrices of the
given class of the boundary value problem (2.2) have the same orders at
infinity. This enables one to define the index (or total index) of the problem
(2.2) of class E±p (Γ, ρ) (or the index of class E±p (Γ, ρ) of the matrix a(t)) as
the order at infinity of the determinant of any normal (canonical) matrix of
the given class E±p (Γ, ρ) taken with the opposite sign [60].

Having a normal matrix χ(z) of some class, we may obtain a canonical
matrix by multiplying χ(z) from the right by the corresponding polynomial
matrix with constant nonzero determinant. Let χ(z) be a canonical matrix
(of the given class) for the matrix a(t). Denote by −Υ1, . . . ,−Υn the orders
of the columns of χ(z) at infinity. The integers Υ1, . . . ,Υn are called the
partial indices of the matrix a(t) or of the boundary value problem (2.2) (in
the given class) [70]. The sum of the partial indices Υ1 + Υ2 + · · ·+ Υn is
equal to the index of a(t) (or of the problem (2.2) in the given class).

Notice that if χ(z) is a canonical matrix of the class E±p (Γ, ρ) of the

matrix a(t), then the matrix [χ′(z)]−1 will be a canonical matrix of the class
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E±p (Γ, ρ1−q) of the matrix [a′(t)]−1. The following result is fundamental for
the whole theory.

Theorem 2.1 ([49], [46]; cf. [15], [43], [21]). Let a(t) be a piecewise
continuous nonsingular matrix with the points of discontinuity tk (k =
1, . . . , r, ), let λkj (k = 1, . . . , r, j = 1, . . . , n) be the roots of the character-
istic equation det(tI − a−1(tk − 0)a(tk + 0)) = 0 and put µkj = argλkj/2π
with 0 ≤ argλkj < 2π.

If the inequalities
1 + νk

p
6= µkj (2.3)

are fulfilled, then there exists a canonical matrix of the problem (2.2) of the
class E±p (Γ, ρ) and all solutions of the problem (2.2) in this class are given
by the formula

Φ(z) =
χ(z)

2πi

∫

Γ

[χ+(t)]−1b(t)dt

t− z
+ χ(z)P (z), (2.4)

where P (z) is an arbitrary polynomial (n × l)-matrix. The index of the
matrix a(t) is calculated by the formula

Υ =
1

2π

[
arg

det a(t)
r∏

k=1

(t− z0)σk

]

Γ

, (2.5)

where σk =
r∑

j=1

ρkj and

1 < Reρkj ≤ 0 if µkj <
1 + νk

p
,

0 ≤ Reρkj < 1 if µkj >
1 + νk

p
,

ρkj = −
1

2π
lnλkj .

Here (z − z0)σk is a single-valued branch defined on the whole plane
cut along the line lk connecting the point z0 ∈ D+ with the point tk and
then with the point at infinity; the symbol [ ]Γ denotes the increment of
the expression contained in the brackets while passing Γ in the positive
direction. Applying standard arguments of Fredholm theory, from Theorem
2.1 one derives the explicit solvability conditions.

Theorem 2.2. If the conditions (2.3) are fulfilled, then for the problem
(2.2) to be solvable in the class E±p,0(Γ, ρ) it is necessary and sufficient the
fulfillment of the conditions

∫

Γ

b(t)Ψ+(t)dt = 0, (2.6)

where Ψ(z) is an arbitrary solution of the adjoint homogeneous problem of
class E±q,0(Γ, ρ1−q).
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Notice that the index of this problem is also available by the formula
(2.4).

Remark 2.1. If a(t) ∈ C(Γ), det a(t) 6= 0, then a canonical matrix χ(z)
of any class E±p (Γ, ρ) exists and has the following properties χ(z) ∈ E±p (Γ),

χ−1(z) ∈ E±p (Γ) for any p. If a(t) ∈ H(Γ), then χ±(t) ∈ H(Γ), [χ±(t)]−1 ∈
H(Γ).

2.2. Connection with singular integral equations. We briefly describe
now the well-known connection between linear conjugation problems and
singular integral equations [60], [70]. Recall that the so-called characteristic
system of singular integral equations is defined as the following system:

n∑

β=1

[Aαβ(t0)ϕβ(to) +
Bαβ(t0)

πi

∫

Γ

ϕβ(t)dt

t− t0
] = fα(t0), α = 1, . . . , n, (2.7)

where Aαβ , Bαβ are given piecewise-continuous functions on Γ, fα are given
functions on Γ of the class Lp(Γ, ρ). We look for the solutions of the system
(2.7) in Lp(Γ, ρ).

Introducing the matrices and vectors

A = (Aαβ), B = (Bαβ), ϕ = (ϕ1, . . . , ϕn), f = (f1, . . . , fn),

we may rewrite (2.7) in the form

K0ϕ ≡ A(t0)ϕ(t0) +
B(t0)

πi

∫

Γ

ϕ(t)

t− t0
dt = f(t0). (2.8)

Let ϕ be a solution of the equation (2.7). Put

Φ(z) =
1

2πi

∫

Γ

ϕ(t)

t− z
dt. (2.9)

Then we have

ϕ(t) = Φ+(t)− Φ−(t),
1

πi

∫

Γ

ϕ(t)dt

t− t0
= Φ+(t0) + Φ−(t0). (2.10)

If we substitute these values in the equation (2.8), we get

S(t)Φ+(t) = D(t)Φ−(t) + f(t), (2.11)

where S = A+B, D = A−B.
Let

inf | det S(t)| > 0, inf | detD(t)| > 0, t ∈ Γ. (2.12)

Then
Φ+(t) = a(t)Φ−(t) + b(t), (2.13)

where a = S−1D, b = S−1f.
Therefore the equation (2.8) is reduced to the boundary value problem

(2.13): to every solution of (2.8) of the class  Lp(Γ, ρ) there corresponds a

solution of the problem (2.13) of class  L±p,0(Γ, ρ) given by formula (2.9),
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and to every such solution of (2.13) there corresponds a solution of the
equation (2.8) of the class Lp(Γ, ρ) given by the formula (2.10). This con-
nection between the equations and boundary value problems (2.2) gives us
the possibility to establish the following result [49], [43].

Theorem 2.3. Let the conditions (2.12), (2.3) be fulfilled. For the equa-
tion (2.8) to be solvable in the class Lp(Γ, ρ) it is necessary and sufficient
that ∫

Γ

f(t)ψ(t)dt = 0, (2.14)

where ψ is an arbitrary solution of the class Lq(Γ, ρ1−q) of the adjoint ho-
mogeneous equation

K0′ψ = A′(t0)ψ(t0)−
1

πi

∫

Γ

B′(t)ψ(t)

t− t0
dt = 0. (2.15)

If the conditions (2.14) are fulfilled, then all solutions of the equation
(2.8) of the class Lp(Γ, ρ) are given by the formula

ϕ(t0) = A∗(t0)f(t0)−
B∗(t0)Z(t0)

πi

∫

L

[Z(t)]−1f(t)

t− t0
dt+

+B∗(t0)Z(t0)P (t0),

A∗(t0) =
1

2
[S−1(t) +D−1(t)], B∗(t) = −

1

2
[S−1(t)−D−1(t)],

(2.16)

Z(t0) = S(t)χ+(t) = D(t)χ−(t),

where χ(z) is a canonical matrix of the class E±p (Γ, ρ) for the matrix a(t) =

S−1D, P (t) is the vector

P (t) = (PΥ1−1, . . . , PΥn−1),

where Pα(t) denotes arbitrary polynomials of order not exceeding α, Pα(t) =
0 when α < 0.

The difference between the number l of linearly independent solutions
of the homogeneous equation K0ϕ = 0 (in Lp(Γ, ρ)) and the number l′ of
linearly independent solutions of the adjoint homogeneous equation K0′ψ =
0 (in Lq(Γ, ρ1−q)) is equal to the index of the matrix a = S−1D in the class
E±p (Γ, ρ):

l − l′ = Υ.

This result is a cornerstone of solvability theory for singular integral
equations. It is also necessary in our approach because in the next section we
will reduce Riemann–Hilbert problems on a cut plane to systems of singular
integral equations.

Remark 2.2. Using the properties of the solutions of the boundary value
problem of linear conjugation, the following proposition can be proven:
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if the coefficients and free terms of the equations mentioned in this sec-
tion are Hölder-continuous, then the solutions of any class are also Hölder-
continuous, and if the coefficients and free terms belong to the class H0(Γ),
then the solutions of any class belong to the class H∗(Γ).

2.3. Linear conjugation problems with shift. Let Γk(k = 1, 2) be sim-
ple smooth curves bounding the finite and infinite domains D+

k and D−k in
the plane of complex variable z = x + iy. The problem considered in this
section is to find a vector ϕ(z) = (ϕ1, . . . , ϕn) ∈ E±p (Γ1,Γ2) satisfying the
boundary condition

ϕ+[a(t)] = a(t)ϕ−(t) + b(t) (2.17)

almost everywhere on Γ. Here a(t) is a given continuous non-singular square
matrix of order n, b(t) = (b1, . . . , bn) is a given vector-function on Γ of the
class Lp(Γ1), p > 1, α(t) is a function which maps Γ1 onto Γ2 in one-to-one
manner keeping the orientation, α(t) has the non-zero continuous derivative
α′(t). We call a square matrix of order n a canonical matrix of the boundary
problem (2.17) if the following properties hold:

1) χ(z), χ−1(z) ∈ E±∞(Γ1,Γ2);
2) χ satisfies the homogeneous boundary condition

χ+[α(t)] = χ−(t), t ∈ Γ1;

3) χ has a normal form at infinity with respect to columns.
The orders at infinity of the columns of the canonical matrix taken with

opposite sign are the partial indices and the sum of the partial indices is the
index of the problem (2.17). The following result is well-known [60], [70].

Theorem 2.4. For the boundary value problem (2.17) with an arbi-
trary continuous non-singular matrix a(t), there exists a canonical matrix
as above.

In case of piecewise-continuous coefficients an analog of Theorem 2.1
holds.

Theorem 2.5. Let a(t) be a piecewise continuous matrix with the discon-
tinuity points tk(k = 1, . . . , r), inf | det a(t)| > 0 and let λkj (k = 1, . . . , r,
j = 1, . . . , n) be the roots of the equation

det[a−1(tk − 0)a(tk + 0)− I ] = 0,

µkj = argλkj/2π, 0 ≤ argλkj < 2π.

If the inequalities
1 + νk

p
6= µkj

are valid, then there exists a canonical matrix of the problem (2.17) of the
class E±p (Γ1,Γ2, ρ) and the index in this class is calculated by the formula

Υ =
1

2π

{
arg[

r∏

k=1

(t− z0)−σk det a(t)]

}

Γ1

,
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where σk =
n∑

j=1

ρkj , ρkj = −
1

2πi
lnλkj ;

−1 < Re ρkj ≤ 0 when µkj < (1 + νk)/p,

0 ≤ Re ρkj < 1 when µkj > (1 + νk)/p.

All solutions of the class E±p (Γ1,Γ2, ρ) of the problem (2.17) are given by
the formula

Φ(z) = χ(z)[ϕ0(z) + P (ω(z))], (2.18)

where P is an arbitrary polynomial vector, ϕ0(z) is a solution of the class
E±1+ε,0(Γ1,Γ2) (ε is a sufficiently small positive number) of the problem

ϕ+
0 [α(t)] = ϕ−0 (t) + b0(t), t ∈ Γ1, b0(t) = {χ+[α(t)]}−1b(t). (2.19)

The solutions vanishing at infinity are given by the same formula (2.18)
in which P = (PΥ1−1, . . . , PΥn−1), Υ1 ≥ · · · ,≥ Υs are the positive indices
of the problem (2.17) of the class E±p (Γ1,Γ2, ρ), Pj(z) is an arbitrary polyno-
mial of order j (Pj = 0 if j < 0). If all partial indices are non-negative, then
vanishing solutions exist for any b(t) ∈ Lp(Γ1, ρ); if 0 > Υs+1 ≥ · · · ≥ Υn,
then the vector b(t) has to satisfy the following conditions:

∫

Γk

tkρ0
j (t)dt = 0, k = 0, . . . , |Υj | − 1, j = s+ 1, . . . , n, (2.20)

where the vector (ρ0
1, . . . , ρ

0
n) = ρ0 is a solution of the equation K(I)ρ0 = b̃0

of the class Lq(Γ, ρ1−q) or ρ0 = L1b0.

Remark 2.3. An analogous theorem holds in the case where the boundary
condition contains complex conjugate values of the desired functions.

2.4. Connection with generalized analytic functions . In the rest of
this section we set a relation between the problem of linear conjugation
with displacement and the theory of generalized analytic functions. This
will enable us to consider the problem of linear conjugation in somewhat
different formulation than above.

Let Γ1 and Γ2 be the Lyapunov curves, α(t) be a function mapping Γ1

onto Γ2 in one-to-one manner preserving the orientation, α(t(s)) be an ab-
solutely continuous function, M ≥ |α′(t)| ≥ m > 0 (M,m are constants),
a(t), b(t) be given matrices of the class Hµ(Γ1)(µ > 1

2 ), a(t) be a nonsin-
gular quadratic matrix of order n, b(t) be an (n × l)-matrix; we have to
find a piecewise-holomorphic matrix ϕ(z) having the finite order at infinity,
satisfying ϕ+(t), ϕ−(t) ∈ H(Γ) and the boundary condition

ϕ+[α(t)] = a(t)ϕ−(t) + b(t), t ∈ Γ1. (2.21)

We call the piecewise-holomorphic matrix χ(z) with a finite order at
infinity the canonical matrix of the problem (2.1) if detχ(z) 6= 0 everywhere
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except perhaps at the point z = ∞, χ(z) has a normal form at infinity with
respect to columns and

χ+[α(t)] = a(t)χ−(t), t ∈ Γ1.

Mapping conformally D+
2 and D−1 into interior and exterior parts of the

unit circle Γ respectively we get the same problem as (2.1), where α(t) has
to map Γ onto Γ; the matrices a(t), b(t) and the function have the same
properties. We will consider the problem in the case Γ1 = Γ2 = Γ.

First prove the following lemmas.

Lemma 2.1. Let α(t) be a function satisfying the same conditions as
mentioned above and ω(z) be a piecewise holomorphic function (bounded at
infinity) ω+[α(t)] = ω−(t) on Γ, ω−(t) ∈ H∗(Γ). Then ω(z) is a constant
function.

Proof. Consider the following function which is continuous on the whole
plane

Ω(z) =

{
ω(α(z)), z ∈ D

+
,

ω(z), z ∈ D−,

where

α(z) = |z|α

(
z

|z|

)
. (2.22)

On the basis of the Hardy–Littlewood theorem (see [40], [27]) we have

|ω′(z)| ≤ A(1− |z|)µ−1, z ∈ D+,

|ω′(z)| ≤ A(|z| − 1)µ−1, z ∈ D−,

A is a constant.
Therefore,

∂zΩ, ∂z̄Ω ∈ Lp(C), 1 < p < (1− µ)−1.

Denoting by w0(z) the fundamental homeomorphism of the Beltrami
equation

∂z̄w − q(z)∂zw = 0,

q(z) = ∂z̄α/∂zα, z ∈ D+, q = 0, z ∈ D−,
(2.23)

we obtain

Ω(z) = Φ(w0(z)),

where Φ(z) is a holomorphic function on the whole finite plane. Ω(z) is a
bounded function, that’s why Φ(z) = const, Ω(z) = const and the lemma is
proved. In fact, if we replace the boundedness condition at infinity by the
condition ω(z) = z+O(z−1), then we get a piecewise holomorphic function
univalent in the domains D+ and D−. �
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Lemma 2.2. Let Γ be a simple closed smooth curve, a(t) be a nonsingular
quadratic matrix of order n, a(t) ∈ Hµ(Γ), µ < 1. If a(t) is sufficiently close
to the unit matrix I, i.e. if

‖ak‖Hµ ≤ ε <
1

n(1 + sµ)
, k = 1, 2, a1 =

1

2
(a− I), a2 =

1

2
(a′

−1
− I),

where sµ is a norm of the operator 1
πi

∫
γ

ϕ(t)(t− t0)−1dt in the space Hµ(Γ),

then for a(t) there exists a canonical matrix χ(z) close to the unit matrix:

χ+(t) = a(t)χ−(t), χ(z) = I + ζ1(z), χ−1(z) = I + ζ2(z),

ζ1(∞) = ζ2(∞) = 0, |ζ+
k (t)|µ ≤ Cε,

where the constant C depends only on n, µ and the curve Γ.
Proof. Consider the singular integral equations in Hµ(Γ):

(I + ak)ϕk − akSϕk = I + 2ak, k = 1, 2.

It is easy to see that these equations are solvable and also

ϕk = I + ϕk , ‖ϕk‖Hµ ≤ ε+
nε(1 + ε)(1 + Sµ)

2− nε(1 + Sµ)
= η.

Introduce the piecewise holomorphic matrices

χk(z) =

{
ρk(z), z ∈ D+,
ρk(z) + I, z ∈ D−,

ρk =
1

2πi

∫

Γ

ϕk(t)dt

t− z
, k = 1, 2,

where D+, D− are finite and infinite domains, bounded by Γ.
We have

χ+
1 (t) = a(t)χ−1 (t), χ+

2 (t) = [a′(t)]−1χ−2 (t),

detχ+
1 χ

+
2 = detχ−1 χ

−

2 , det[χ1χ2] ≡ 1, χ−1
1 = χ1

2.

Hence χ1(z) is a canonical matrix for a(t). Assuming

χ1 − I = ζ1, χ−1
1 − I = ζ2,

we obtain

|ζ±k (t)| ≤
1

2
(1 + Sµ). �

Corollary. In the particular case where γ is a unit circle, in virtue of
the Hardy–Littlewood theorem, under the conditions of Lemma 2.2 for the
canonical matrix χ(z) = χik(z) constructed above we have

∣∣∣∣
dχik(z)

dz

∣∣∣∣ ≤
M1ε

(1− |z|)1−µ
, z ∈ D+,

∫∫

D+

∣∣∣∣
dχik(z)

dz

∣∣∣∣ dxdy ≤M2ε
p,

1 < p < (1− µ)−1, i, k = 1, . . . , n,

where the constants Mk depend only on n and µ.
Lemma 2.3. If the matrix a(t) is sufficiently close to the unit matrix,

then there exists a canonical matrix for the problem (2.1).



144 N. Manjavidze

Proof. First show that we may construct one of the canonical matrices χα(z)
by the formulas

χα[α(z)] = χ(z)[If + I ], z ∈ D+, χα(z) = χ(z)[If + I ], z ∈ D−,

where χ(z) is a canonical matrix when α(t) = t, χ(∞) = I and f is a
solution (unique) of the two-dimensional singular integral equation

f(z)− q(z)Πf −ATf = A, f ∈ Lp(D+); (2.24)

A = qχ−1 ∂χ

∂z
, α(z) and q(z) are defined by the formulas (2.2) and (2.3).

If ‖a − I‖Hµ = ε is small, then there exists a matrix χ(z) with the
properties from Lemma 3.2. Since µ > 1

2 , we may take p from the interval

(2, (1− µ)−1).
The operator ATf is a linear bounded operator transforming Lp(D) into

itself and also its norm is not greater than Mε, the constant M depends
only on n and µ.

If we take ε sufficiently small, then the equation (2.4) has a unique solu-
tion f ∈ Lp(D).

The matrix w(z) = Tf is Hölder-continuous on the whole plane, vanishes
at infinity and satisfies the following equation

∂z̄w − q(z)∂zw −A(z)w = A(z).

Assuming w1(z) = χ(z)[w(z)+ I ], z ∈ D+, we obtain that w1(z) satisfies
the equation

∂z̄w1 − q(z)∂zw1 = 0

in D+ and therefore

w1(z) = ϕ1[α(z)], z ∈ D+,

where ϕ1(z) is a holomorphic matrix in D+.
If we define the holomorphic matrix in D− by the formula

ϕ1(z) = χ(z)[w(z) + I ],

then we have

ϕ+
1 [α(t)] = a(t)ϕ−1 (t), t ∈ Γ, ϕ1(∞) = I.

We are able to construct the solution of the boundary value problem

ϕ+
2 [α(t)] = a−1(t)ϕ−2 (t), t ∈ Γ, ϕ2(∞) = I

analogously since we have

det[ϕ+
1 (α(t))ϕ+

2 (α(t))] = det[ϕ−1 (t)ϕ−2 (t)], t ∈ Γ,

det[ϕ1(z)ϕ2(z)] ≡ 1,

and ϕ1(z) is a canonical matrix for the problem (2.1). �
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Lemma 2.4. There exists a canonical matrix of the problem (2.1) for
an arbitrary matrix a(t) (satisfying the above indicated conditions); it is
possible to construct one of them by the formulas

χα[α(z)] = χ0
α[α(z)]R(w0(z)), z ∈ D+,

χα(z) = r(z)χ0
α(z)R(w0(z)), z ∈ D−,

(2.25)

where r(z) and R(z) are appropriately chosen matrices, χ0(z) is a canonical
matrix of the boundary condition

ϕ+[α(t)] = a0(t)ϕ−(t), a0 = ar,

w0(z) is the fundamental homeomorphism of the Beltrami equation

∂z̄w − q(z)∂zw = 0.

Proof. Let us choose the rational matrix r(z) such that the matrix a0(t) =
a(t)r(t) is close to the unit matrix; denote by χ0(z) a canonical matrix of
the problem

ϕ+[α(t)] = a0(t)ϕ−(t), t ∈ Γ.

Consider the piecewise-meromorphic matrix defined in the form

χα[α(z)] = χ0
α[α(z)]R(w0(z)), z ∈ D+,

χα(z) = r(z)χ0
α(z)R(w0(z)), z ∈ D−,

(2.26)

where R(z) is a rational matrix.
The boundary values of this matrix satisfy the homogeneous boundary

condition; it is possible to choose the matrix R such that the matrix defined
by (2.26) has to be a canonical matrix of the problem (2.21). �

The following theorem holds from these propositions.

Theorem 2.6. All solutions of the problem (2.21) are given by the for-
mulas

ϕ[α(z)] = χα[α(z)][Tf + h(z) + P (w0(z))], z ∈ D+,

ϕ(z) = χα(z)[Tf + h(z) + P (w0(z))], z ∈ D−,
(2.27)

where P (z) is an arbitrary polynomial vector and the vector f ∈ Lp(D̄+),
(p > 2) is a solution (unique) of the equation

Kf =: f(z)− q(z)Πf = g(z);

h(z) =
1

2πi

∫

γ

[χ+
α (α(t))]−1b(t)

t− z
dt,

g(z) = (g1, . . . , gn) = q(z)h′(z) ∈ Lp(D̄+).

The solutions vanishing at infinity are given by the formulas (2.27) in
which

P (z) = (PΥ1−1, . . . , PΥn−1), Υ1 ≥ · · · ≥ Υn,
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are the partial indices of the problem (2.21), Pj(z) is an arbitrary polynomial
of order j (Pj(z) = 0 if j < 0); if 0 ≥ Υs+1 ≥ · · · ≥ Υn, then the vector b(t)
has to satisfy the following conditions:

2i

∫ ∫

D

gj(ζ)L(ζk)dζdη =

∫

γ

tk{[χ+
α (α(t))]−1b(t)}jdt,

j = s+ 1, . . . , n; k = 0, . . . , |Υj | − 1,

where L is the operator adjoint to K−1:

Lf = f(z)−Π(qf).

Along with the problem (2.21), consider the set of problems

ϕ+[αλ(t)] = a(t)ϕ−(t) + b(t), t ∈ Γ,

αλ(t) = exp[iVλ(θ)], Vλ(θ) = (1− λ)θ + λV (θ), 0 ≤ λ < 1,
(2.28)

where a(t), b(t) satisfy the conditions of the problem (2.21), V (θ) is a con-
tinuous strongly increasing function on [0, 2π] satisfying the conditions men-
tioned above.

Denote the partial indices of the problem (2.28) by

Υ1(λ) ≥ · · · ≥ Υα(λ),

the sum of non-negative (non-positive) partial indices by n+(λ)(−n−(λ))
and also by

δ1 ≥ · · · ≥ δs ≥ 0 > δs+1 ≥ · · · ≥ δn

the partial indices of the problem (2.28) in the case where λ = 0.
We obtain

n+(λ)− n−(λ) =
1

2π
[arg δ(t)]Γ.

Introduce the following vector

W (z) =

{
χ−1(z)ϕ[αλ(z)]− h(z), z ∈ D+,
χ−1(z)ϕ(z)− h(z), z ∈ D−,

where χ(z) denotes a canonical matrix of the problem (2.8) with λ = 0,

h(z) = (h1, . . . , hn) =
1

2πi

∫

γ

[χ+(t)]−1b(t)

t− z
dt,

αλ(z) = αλ(eiθ).
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The vector W (z) is continuous on the whole plane, is holomorphic in D−

and may have a pole at infinity; W (z) satisfies the equation

∂(z)w − q(z, λ)∂zw +A(z, λ)w = B(z, λ),

q(z, λ) = λe2πθ 1− V ′(θ)

2− λ+ λV (θ)
, z ∈ D+, q(z, λ) = 0, z ∈ D−,

A(z, λ) = −q(z, λ)χ−1(z)
dχ

dz
,

B(z, λ) = q(z, λ)[h′(z) + χ−1(z)
dχ

dz
h(z)].

(2.29)

We have to find a vanishing at infinity solution of the problem (2.9).
According to this, suppose the solution of the problem (2.9) has the form:

W (z) = P (z) + Tf,

where f = (f1, . . . , fn) ∈ Lp((D)), p > 2, P (z) = (P1, . . . , Pn), Pj(z) is an
arbitrary polynomial of order n (Pj(z) = 0, if j < 0).

With respect to f we obtain the equation

Kλf ≡ f(z)− q(z, λ)Πf +A(z, λ)Tf =

= B(z, λ) + q(z, λ)P (z)− A(z, λ)P (z), (2.30)

and the following conditions
∫∫

D+

ξkfj(ξ)dξdη + πajk = 0, j = s+ 1, . . . , ; k = 0, . . . , |δj | − 1, (2.31)

where ajk are the coefficients of the expansion of hj(z) in the neighborhood
of the point z = ∞:

hj(z) =
∞∑

k=0

ajkz
−k−1.

In the case where the partial indices δj are non-negative, the conditions
(2.11) are eliminated.

If for given λ the operator Kλ has the inverse operator K−1
λ , then one

may rewrite the conditions (2.11) in the following form:
∫∫

D+

ξkgj(ξ, λ)dξdη + πajk = 0, (2.32)

where gj(ζ, λ) denotes the j-th component of the vector K−1
λ [B+qP ′−AP ].

The equality (2.32) is a linear algebraic system with respect to the coef-
ficients of the polynomials Pj(z).

It is easy to see that there exists a domain Dλ of the plane λ containing
the segment [0, 1] of the real axis in which q(z, λ) is a holomorphic function
with respect to λ and in which the inequality

|q(z, λ)| ≤ q0 < 1
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is fulfilled. The operator Kλ analytically depends on λ in Dλ. As T is a
completely continuous operator, therefore Kλ has an inverse operator for
an arbitrary λ ∈ Dλ except may be the points of some isolated set D1

λ [36],
[75]. For λ ∈ Dλ\D

1
λ the coefficients of the linear system (2.12) are analytic

functions of λ; consequently the corresponding homogeneous system has
the same number of linear independent solutions for all λ ∈ Dλ\D

1
λ, except

possibly the points of some isolated set. Hence, the following result takes
place.

Theorem 2.7. n+(λ) and n−(λ) have the same values for all λ ∈ [0, 1]
except possibly the points of some finite set.

Corollary. The partial indices Υi(λ) are admitting constant values for
all λ ∈ [0, 1] and

δ1 ≥ Υ1(λ) ≥ · · · ≥ Υn(λ) ≥ δn.

If δ1 − δn ≤ 1, then for all λ ∈ [0, 1] except possibly the points of some
finite set there holds Υi(λ) = δi, i = 1, . . . , n.

Remark 2.4. As the following example shows, there exists an exceptional
set. Suppose a(t) has the form

a(t) =

(
1 + 2t2 + 4t 4t2

−2t 1− 2t

)
,

α1(t) = eiν(θ) is defined by the equality

ω[α1(t)] = t+ 1/4t,

where ω(z) conformally maps the circle |z| < 1 onto the interior of the
ellipse

x2

25
+
y2

9
=

1

16
.

It is easy to verify that

δ1 = δ2 = 0, Υ1(1) = 1, Υ2(1) = −1.

3. Riemann–Hilbert Problems on a Cut Plane

Let D denote the plane of complex variable z = x+iy cut along some non-
intersecting simple open Lyapunov-smooth arcs akbk, k = 1, . . . ,m. Denote

Γk = akbk and Γ =
m⋃

k=1

Γk.

Consider a function of the form

Φ(z) =
1

2πi

∫

Γ

f(t)dt

t− z
+ P (z), (3.1)
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where f(t) ∈ Lp(Γ, ρ), p > 1, the weight function

ρ(t) =

m∏

k=1

|t− ck|
αk , −1 < αk < p− 1, c2k−1 = ak,

c2k = bk (k = 1, . . . ,m),

(3.2)

P (z) is an arbitrary polynomial. Denote by E±p,0(Γ, ρ) (E±p,c(Γ, ρ)) the

subclass of this class containing the functions of the form (3.1) in case
P (z) ≡ 0 (P (z) ≡ const).

Consider the following version of the Hilbert problem (cf. Section 1).
Find a vector Φ(z) ∈ E±P,0(Γ, ρ) satisfying the boundary condition

Re[A±(t)Φ±(t)] = f±(t) (3.3)

almost everywhere on Γ; here A+(t), A−(t) are given continuous non-singu-
lar quadratic matrices of order n on Γ, f+(t) = (f+

1 , . . . , f
+
n ), f−(t) =

(f−1 , . . . , f
−
n ) are given real vectors on Γ belonging to the class Lp(Γ, ρ),

Φ+(t), Φ−(t) denotes the boundary values of the vector Φ(z) on Γ from the
left and from the right.

Along with this problem, let us consider the following homogeneous prob-
lem

Re[A∗±(t)Ψ±(t)] = 0, t ∈ Γ , (3.4)

where A∗±(t) = t ′(s)[A′±(t)]−1. The solution of this problem Ψ(z) will be

sought in the class E±q (Γ, ρ1−q), q = p
p−1 . We call the problem (3.4) the

conjugate problem to the problem (3.3). From the boundary condition we
have

Φ±(t) = [A±(t)]−1[f±(t) + iµ±(t)], (3.5)

where µ+(t), µ−(t) are real vectors of the class Lp(Γ, ρ) and

Φ(z) =
1

2π

∫

Γ

A−1
+ (t)µ+(t)−A−1

− (t)µ−(t)

t− z
dt+ F (z). (3.6)

Here

F (z) =
1

2πi

∫

Γ

A−1
+ (t)f+(t)−A−1

− (t)f−(t)

t− z
dt. (3.7)

Substituting the formulas (3.5), (3.6) in the boundary condition (3.3) and
introducing the vector with 2n components µ(t) = (µ+(t), µ−(t)), we get
the following system of singular integral equations

a(t0)µ(t0) +
1

πi

∫

Γ

K(t0, t)µ(t)

t− t0
dt = g(t0), (3.8)

where

a = Im

(
A−A

−1
+ 0

0 −A+A
−1
−

)
, K(t0, t) =

i

2

(
N1

+ N1
−

N2
+ N2

−

)
, (3.9)
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and the matrices N1
±, N

2
± are defined by the formulas:

N1
±(t0, t) = A−(t0)A−1

± (t) +A−(t0) A−1
± (t)h(t0, t),

N2
±(t0, t) = A+(t0)A−1

± (t) +A+(t0) A−1
± (t)h(t0, t),

g = (g+, g−), g± = 2 Re f± − 2 Re[A±F
±], h(t0, t) =

t− t0
t− t0

t 2.

(3.10)

We have

a(t) + b(t) = i

(
A− A

−1
+ I

I A+A
−1
−

)
,

a(t)− b(t) = −i

(
A−A

−1
+ I

I A+ A−1
−

)
.

Denote

Q(t) ≡ det(A− A−1
+ A+A

−1
− − I).

Then the following result takes place.

Theorem 3.1. If Q(t) 6= 0, then the index of the problem (3.3) in
the class E±p,o(Γ, ρ) is equal to the index of the equation (3.8) of the class

Lp(Γ, ρ) (under the condition that 1+αk 6= p µ
(k)
j , where µ

(k)
j =

arg λ
(k)
j

2π , 0 ≤

arg λ
(k)
j < 2π, λ

(k)
j are the roots of the equations det[H(ak) − λI ] = 0

or det[H−1(bk) − λI ] = 0, for odd and even k correspondingly; H(t) =
[a(t)+b(t)]−1[a(t)−b(t)]). The necessary and sufficient solvability conditions
for the problem (3.3) in the class Ep,o(Γ, ρ) have the form

Im

∫

Γ

[A−1
+ f+ω+

k (t)−A−1
− (t)f−ω−k (t)]dt = 0, k = 1, . . . , l′,

where ωk(z) is a complete system of linearly independent solutions of the
problem (3) in the class E±q,0(Γ, ρ1−q).

In the similar way one can treat some differential boundary value prob-
lem of the Riemann–Hilbert–Poincaré type [54], [55]. Let us add that the
Riemann–Hilbert problems in a cut plane appear in some problems of elas-
ticity theory [28], so our results can be applied, e.g., for explicating the
asymptotics of solutions to those problems.
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71. S. Warshavski, Über Randverhalten der Ableitung der Abbildungsfunktion bei kon-
former Abbildung, Math. Z. 35(1932), No. 3, 321–456.

72. W. Wendland, Elliptic systems in the plane. Monographs and Studies in Mathe-
matics, 3. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.

73. E. Zverovich, Boundary value problems with a shift on abstract Riemann surfaces.
(Russian) Sibirsk. Mat. Zh. 7(1966), 804–819.

(Received 9.10.2004)

Author’s address:

Department of General Mathematics No. 63
Georgian Technical University
77, M. Kostava St., Tbilisi 0175
Georgia
E-mail: ninomanjavidze@yahoo.com


