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Let −∞ < a < b < +∞, I = [a, b], n be a natural number, and let f : C(I; R
n) →

L(I; R
n) and h : C(I; R

n) → R
n be continuous operators. Consider the boundary value

problem

dx(t)

dt
= f(x)(t), (1)

h(x) = 0, (2)

by a solution of which we mean an absolutely continuous vector function x : I → R
n

satisfying both the system (1.1) almost everywhere on I and the condition (1.2).
The well-posedness of this problem is more or less satisfactorily investigated only in

the cases when f is either the linear, or the Nemytski operator (see, e.g., [1]–[9] and
the references therein). In a general case to which we propose the present paper, the
well-posedness of the problem (1), (2) remains still little studied.

In what follows, the following notation will be used.
R is the set of real numbers, R+ = [0,+∞[ ;
R

n is the space of n-dimensional vectors x = (xi)n
i=1

with components xi ∈ R (i =
1, . . . , n) and the norm

‖x‖ =
n

∑

i=1

|xi|;

C(I; R
n) is the space of continuous vector functions x : I → R

n with the norm

‖x‖
C

= max
{

‖x(t)‖ : t ∈ I
}

;

L(I; R
n) is the space of vector functions x : I → R

n with Lebesgue integrable compo-
nents and the norm

‖x‖
C

=

b
∫

a

‖x(t)‖ dt;

L(I; R+) =
{

x ∈ L(I; R) : x(t) ≥ 0 for t ∈ I
}

;
M(I × R+; R+) is the set of nondecreasing in the second argument functions ω :

I × R+ → R+ such that ω(·, ρ) ∈ L(I; R+) for ρ ∈ R+ and ω(t, 0) = 0 for t ∈ I.
If x0 ∈ C(I; R

n), ρ ∈ ]0,+∞[ , η∗ ∈ L(I; R+) and η : C(I; R
n) → L(I; R

n), then we
put

U(x0; ρ) =
{

x ∈ C(I; R
n) : ‖x− x0‖ < ρ

}

and denote by Uη,η∗(x0; ρ) the set of absolutely continuous vector functions x ∈ U(x0; ρ)
such that

∥

∥x′(t) − η(x0)(t)
∥

∥ ≤ η∗(t) for almost all t ∈ I.
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Along with (1), (2) we will consider the perturbed problem

dx(t)

dt
= f(x)(t) + η(x)(t), (3)

h(x) + γ(x) = 0, (4)

where η : C(I; R
n) → L(I; R

n) and γ : C(I; R
n) → R

n are continuous operators.
Let x0 be a solution of the problem (1), (2), and let ρ be a positive constant. Introduce

the following definitions.

Definition 1. The problem (1), (2) is said to be (x0; ρ)-well-posed if for any ε ∈ ]0, ρ[ ,
ρ∗ ∈ ]0,+∞[ , η∗ ∈ L(I; R+) and ω ∈ M(I × R+; R+) there exists δ > 0 such that no
matter how are the continuous operators η : C(I; R

n) → L(I; R
n) and γ : C(I; R

n) → R
n,

satisfying the conditions
∥

∥η(x)(t) − η(y)(t)
∥

∥ ≤ ω
(

t, ‖x− y‖
C

)

, ‖γ(x)‖ ≤ ρ for t ∈ I, x and y ∈ U(x0; ρ),

∥

∥

∥

∥

t
∫

a

η(x)(s) ds

∥

∥

∥

∥

≤ δ, ‖γ(x)‖ < δ for t ∈ I, x ∈ Uη,η∗(x0; ρ),

the perturbed problem (3), (4) has at least one solution contained in the ball U(x0; ρ),
and each of such solutions belongs also to the ball U(x0; ε).

Definition 2. The problem (1), (2) is said to be well-posed if it is (x0; ρ)-well-posed
for an arbitrary ρ > 0.

Definition 3. The pair (p, `) of continuous operators p : C(I; R
n) × C(I; R

n) →
L(I; R

n) and ` : C(I; R
n)× C(I; R

n) → R
n is said to be consistent if:

(i) for any x ∈ C(I; R
n), the operators p(x, ·) : C(I; R

n) → L(I; R
n) and `(x, ·) :

C(I; R
n) → R

n are linear;
(ii) there exist an integrable in the first argument and nondecreasing in the second

argument function α : I × R+ → R+ and a nondecreasing function α0 : R+ → R+ such
that for arbitrary x and y ∈ C(I; R

n) and for almost all t ∈ I the inequalities
∥

∥p(x, y)(t)
∥

∥ ≤ α
(

t, ‖x‖
C

)

‖y‖
C

, ‖`(x, y)‖ ≤ α0(‖x‖
C

)‖y‖
C

are fulfilled;
(iii) there exists a positive constant β such that for any x ∈ C(I; R

n), q ∈ L(I; R
n)

and c0 ∈ R
n, an arbitrary solution y of the boundary value problem

dy(t)

dt
= p(x, y)(t) + q(t), `(x, y) = c0

admits the estimate

‖y‖
C
≤ β

(

‖c0‖+ ‖q‖
L

)

.

Definition 4. A solution x0 of the problem (1), (2) is said to be strongly isolated
in radius ρ0, if there exist a consistent pair (p, `) of continuous operators p : C(I; R

n)×
C(I; R

n) → L(I; R
n) and ` : C(I; R

n) × C(I; R
n) → R

n and continuous operators q :
C(I; R

n) → L(I; R
n) and c0 : C(I; R

n) → R
n such that

sup
{

‖q(x)(·)‖ : x ∈ C(I; R
n)

}

∈ L(I; R+), sup
{

‖c0(x)‖ : x ∈ C(I; R
n)

}

< +∞, (5)

f(x)(t) = p(x, x)(t) + q(x)(t), h(x) = `(x, x)− c0(x) for x ∈ U(x0; ρ),

and the boundary value problem

dx(t)

dt
= p(x, x)(t) + q(x)(t), `(x, x) = c0(x) (6)

has no solution, different from x0.

Theorem 1. If the problem (1), (2) has a solution x0 which is strongly isolated in

radius ρ > 0, then this problem is (x0; ρ)-well-posed.
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Corollary 1. Let there exist a solution x0 of the problem (1), (2), constants ρ0 > 0,
α0 > 0, a function α ∈ L(I; R+) and continuous operators p : U(x0; ρ0) × C(I; R

n) →
L(I; R

n) and ` : U(x0; ρ0) × C(I; R
n) → R

n such that for arbitrary x ∈ U(x0; ρ0),
y ∈ C(I; R

n) and for almost all t ∈ I the conditions

∥

∥p(x, y)(t)
∥

∥ ≤ α(t)‖y‖
C

, ‖`(x, y)‖ ≤ α0‖y‖C
,

f(x)(t) − f(x0)(t) = p(x, x− x0)(t), h(x)− h(x0) = `(x, x− x0)

are fulfilled. Let, moreover, for an arbitrary x∈U(x0; ρ) the operators p(x, ·) : C(I; R
n) →

L(I; R
n) and `(x, ·) : C(I; R

n) → R
n be linear and the homogeneous problem

dy(t)

dt
= p(x0, y)(t), `(x0, y) = 0

have only a trivial solution. Then for sufficiently small ρ > 0 the problem (1), (2) is

(x0; ρ)-well-posed.

Corollary 2. Let p : C(I; R
n) × C(I; R

n) → L(I; R
n), q : C(I; R

n) → L(I; R
n),

` : C(I; R
n) × C(I; R

n) → R
n and c0 : C(I; R

n) → R
n be continuous operators such

that the pair (p, `) is consistent and the conditions (5) are fulfilled. Then the unique

solvability of the problem (6) guarantees its well-posedness.

For an arbitrary natural number k, we consider now the boundary value problem

dx(t)

dt
= f(x)(t) + ηk

(

t, ζ(x)(t)
)

, (7k)

h(x) + γk(x) = 0, (8k)

where ηk : I×R
m → R

n is a vector function satisfying the local Carathéodory conditions,
while ζ : C(I; R

n) → C(I; R
m) and γk : C(I; R

n) → R
n are continuous operators, and ζ

and m are independent of k.
By Xk(x0; ρ) we denote the set of solutions of the problem (7k), (8k) contained in the

ball U(x0; ρ).

Theorem 2. Let the problem (1), (2) have a solution x0 which is strongly isolated in

radius ρ > 0, and let there exist ρ0 > 0, ω ∈ M(I × R+; R+) and a continuous function

ω0 : R+ → R+ such that ω0(0) = 0,

‖ζ(x)‖
C
≤ ρ0,

∥

∥ζ(x)− ζ(x)
∥

∥

C

≤ ω0

(

‖x− x‖
C

)

,
∥

∥γk(x)− γk(x)
∥

∥ ≤ ω0

(

‖x− x‖
C

)

for x and x ∈ U(x0; ρ)

and
∥

∥ηk(t, z)− ηk(t, z)
∥

∥ ≤ ω
(

t, ‖z − z‖
)

for t ∈ I, ‖z‖ ≤ ρ0, ‖z0‖ ≤ ρ0.

Let, moreover,

lim
k→+∞

γk(x) = 0 for x ∈ U(x0; ρ),

sup

{
∥

∥

∥

∥

t
∫

a

ηk(s, z) ds

∥

∥

∥

∥

: t ∈ I, z ∈ R
m, ‖z‖ ≤ ρ0

}

→ 0 as k → +∞.

Then there exists a natural number k0 such that Xk(x0; ρ) 6= ∅ for k ≥ k0 and

sup
{

‖x− x0‖ : x ∈ Xk(x0; ρ)
}

→ 0 as k → +∞.
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