I. KIGURADZE AND B. PŮŽA

ON THE WELL-POSEDNESS OF NONLINEAR BOUNDARY VALUE PROBLEMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

(Reported on October 25, 2004)

Let $-\infty < a < b < +\infty$, I = [a, b], n be a natural number, and let $f : C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $h : C(I; \mathbb{R}^n) \to \mathbb{R}^n$ be continuous operators. Consider the boundary value problem

$$\frac{dx(t)}{dt} = f(x)(t),\tag{1}$$

$$h(x) = 0, (2)$$

by a solution of which we mean an absolutely continuous vector function $x : I \to \mathbb{R}^n$ satisfying both the system (1.1) almost everywhere on I and the condition (1.2).

The well-posedness of this problem is more or less satisfactorily investigated only in the cases when f is either the linear, or the Nemytski operator (see, e.g., [1]–[9] and the references therein). In a general case to which we propose the present paper, the well-posedness of the problem (1), (2) remains still little studied.

In what follows, the following notation will be used.

 \mathbb{R} is the set of real numbers, $\mathbb{R}_+ = [0, +\infty[;$

 \mathbb{R}^n is the space of *n*-dimensional vectors $x = (x_i)_{i=1}^n$ with components $x_i \in \mathbb{R}$ (i = 1, ..., n) and the norm

$$||x|| = \sum_{i=1}^{n} |x_i|;$$

 $C(I;\mathbb{R}^n)$ is the space of continuous vector functions $x: I \to \mathbb{R}^n$ with the norm

$$||x||_{C} = \max\{||x(t)||: t \in I\};\$$

 $L(I;\mathbb{R}^n)$ is the space of vector functions $x:I\to\mathbb{R}^n$ with Lebesgue integrable components and the norm

$$\|x\|_{C} = \int_{a}^{b} \|x(t)\| dt;$$

 $L(I;\mathbb{R}_+) = \left\{ x \in L(I;\mathbb{R}) : x(t) \ge 0 \text{ for } t \in I \right\};$

 $M(I \times \mathbb{R}_+; \mathbb{R}_+)$ is the set of nondecreasing in the second argument functions $\omega : I \times \mathbb{R}_+ \to \mathbb{R}_+$ such that $\omega(\cdot, \rho) \in L(I; \mathbb{R}_+)$ for $\rho \in \mathbb{R}_+$ and $\omega(t, 0) = 0$ for $t \in I$.

If $x^0 \in C(I; \mathbb{R}^n)$, $\rho \in]0, +\infty[, \eta^* \in L(I; \mathbb{R}_+) \text{ and } \eta : C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$, then we put

$$\mathcal{U}(x^{0};\rho) = \left\{ x \in C(I;\mathbb{R}^{n}) : \|x - x^{0}\| < \rho \right\}$$

and denote by $\mathcal{U}_{\eta,\eta^*}(x^0;\rho)$ the set of absolutely continuous vector functions $x \in \mathcal{U}(x^0;\rho)$ such that

$$\left\|x'(t) - \eta(x^0)(t)\right\| \le \eta^*(t)$$
 for almost all $t \in I$.

²⁰⁰⁰ Mathematics Subject Classification. 34K10.

 $Key\ words\ and\ phrases.$ Nonlinear functional differential equation, nonlinear boundary value problem, well-posedness.

Along with (1), (2) we will consider the perturbed problem dr(t)

$$\frac{dx(t)}{dt} = f(x)(t) + \eta(x)(t),$$
(3)
 $h(x) + \gamma(x) = 0,$
(4)

where $\eta: C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $\gamma: C(I; \mathbb{R}^n) \to \mathbb{R}^n$ are continuous operators.

Let x^0 be a solution of the problem (1), (2), and let ρ be a positive constant. Introduce the following definitions.

Definition 1. The problem (1), (2) is said to be $(x^0; \rho)$ -well-posed if for any $\varepsilon \in]0, \rho[$, $\rho^* \in]0, +\infty[, \eta^* \in L(I; \mathbb{R}_+)$ and $\omega \in M(I \times \mathbb{R}_+; \mathbb{R}_+)$ there exists $\delta > 0$ such that no matter how are the continuous operators $\eta : C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $\gamma : C(I; \mathbb{R}^n) \to \mathbb{R}^n$, satisfying the conditions

$$\begin{split} \left\| \eta(x)(t) - \eta(y)(t) \right\| &\leq \omega\left(t, \|x - y\|_{C}\right), \quad \|\gamma(x)\| \leq \rho \text{ for } t \in I, \ x \text{ and } y \in \mathcal{U}(x^{0}; \rho), \\ \\ \left\| \int_{a}^{t} \eta(x)(s) \, ds \right\| &\leq \delta, \quad \|\gamma(x)\| < \delta \text{ for } t \in I, \ x \in \mathcal{U}_{\eta, \eta^{*}}(x^{0}; \rho), \end{split}$$

the perturbed problem (3), (4) has at least one solution contained in the ball $\mathcal{U}(x^0; \rho)$, and each of such solutions belongs also to the ball $\mathcal{U}(x^0; \varepsilon)$.

Definition 2. The problem (1), (2) is said to be **well-posed** if it is $(x^0; \rho)$ -well-posed for an arbitrary $\rho > 0$.

Definition 3. The pair (p, ℓ) of continuous operators $p : C(I; \mathbb{R}^n) \times C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $\ell : C(I; \mathbb{R}^n) \times C(I; \mathbb{R}^n) \to \mathbb{R}^n$ is said to be **consistent** if:

(i) for any $x \in C(I; \mathbb{R}^n)$, the operators $p(x, \cdot) : C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $\ell(x, \cdot) : C(I; \mathbb{R}^n) \to \mathbb{R}^n$ are linear;

(ii) there exist an integrable in the first argument and nondecreasing in the second argument function $\alpha : I \times \mathbb{R}_+ \to \mathbb{R}_+$ and a nondecreasing function $\alpha_0 : \mathbb{R}_+ \to \mathbb{R}_+$ such that for arbitrary x and $y \in C(I; \mathbb{R}^n)$ and for almost all $t \in I$ the inequalities

$$\|p(x,y)(t)\| \le \alpha(t,\|x\|_{C})\|y\|_{C}, \quad \|\ell(x,y)\| \le \alpha_{0}(\|x\|_{C})\|y\|_{C}$$

are fulfilled;

(iii) there exists a positive constant β such that for any $x \in C(I; \mathbb{R}^n)$, $q \in L(I; \mathbb{R}^n)$ and $c_0 \in \mathbb{R}^n$, an arbitrary solution y of the boundary value problem

$$\frac{dy(t)}{dt} = p(x,y)(t) + q(t), \quad \ell(x,y) = c_0$$

admits the estimate

$$||y||_{C} \leq \beta (||c_{0}|| + ||q||_{L}).$$

Definition 4. A solution x^0 of the problem (1), (2) is said to be **strongly isolated** in radius ρ_0 , if there exist a consistent pair (p, ℓ) of continuous operators $p: C(I; \mathbb{R}^n) \times C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $\ell: C(I; \mathbb{R}^n) \to C(I; \mathbb{R}^n) \to \mathbb{R}^n$ and continuous operators $q: C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $c_0: C(I; \mathbb{R}^n) \to \mathbb{R}^n$ such that

$$\sup\left\{\|q(x)(\cdot)\|:\ x\in C(I;\mathbb{R}^n)\right\}\in L(I;\mathbb{R}_+),\ \ \sup\left\{\|c_0(x)\|:\ x\in C(I;\mathbb{R}^n)\right\}<+\infty,\ (5)$$

 $f(x)(t) = p(x,x)(t) + q(x)(t), \quad h(x) = \ell(x,x) - c_0(x) \text{ for } x \in \mathcal{U}(x^0;\rho),$

and the boundary value problem

$$\frac{dx(t)}{dt} = p(x,x)(t) + q(x)(t), \quad \ell(x,x) = c_0(x)$$
(6)

has no solution, different from x^0 .

Theorem 1. If the problem (1), (2) has a solution x^0 which is strongly isolated in radius $\rho > 0$, then this problem is $(x^0; \rho)$ -well-posed.

150

Corollary 1. Let there exist a solution x^0 of the problem (1), (2), constants $\rho_0 > 0$, $\alpha_0 > 0$, a function $\alpha \in L(I; \mathbb{R}_+)$ and continuous operators $p : \mathcal{U}(x^0; \rho_0) \times C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $\ell : \mathcal{U}(x^0; \rho_0) \times C(I; \mathbb{R}^n) \to \mathbb{R}^n$ such that for arbitrary $x \in \mathcal{U}(x^0; \rho_0)$, $y \in C(I; \mathbb{R}^n)$ and for almost all $t \in I$ the conditions

$$\begin{aligned} \left\| p(x,y)(t) \right\| &\leq \alpha(t) \|y\|_C, \quad \|\ell(x,y)\| \leq \alpha_0 \|y\|_C, \\ f(x)(t) - f(x^0)(t) &= p(x,x-x^0)(t), \quad h(x) - h(x^0) = \ell(x,x-x^0). \end{aligned}$$

are fulfilled. Let, moreover, for an arbitrary $x \in \mathcal{U}(x^0; \rho)$ the operators $p(x, \cdot) : C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $\ell(x, \cdot) : C(I; \mathbb{R}^n) \to \mathbb{R}^n$ be linear and the homogeneous problem

$$\frac{dy(t)}{dt} = p(x^0, y)(t), \quad \ell(x^0, y) = 0$$

have only a trivial solution. Then for sufficiently small $\rho > 0$ the problem (1), (2) is $(x^0; \rho)$ -well-posed.

Corollary 2. Let $p : C(I; \mathbb{R}^n) \times C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$, $q : C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$, $\ell : C(I; \mathbb{R}^n) \times C(I; \mathbb{R}^n) \to \mathbb{R}^n$ and $c_0 : C(I; \mathbb{R}^n) \to \mathbb{R}^n$ be continuous operators such that the pair (p, ℓ) is consistent and the conditions (5) are fulfilled. Then the unique solvability of the problem (6) guarantees its well-posedness.

For an arbitrary natural number k, we consider now the boundary value problem

$$\frac{dx(t)}{dt} = f(x)(t) + \eta_k \big(t, \zeta(x)(t) \big), \tag{7}_k$$

$$h(x) + \gamma_k(x) = 0, \tag{8k}$$

where $\eta_k : I \times \mathbb{R}^m \to \mathbb{R}^n$ is a vector function satisfying the local Carathéodory conditions, while $\zeta : C(I; \mathbb{R}^n) \to C(I; \mathbb{R}^m)$ and $\gamma_k : C(I; \mathbb{R}^n) \to \mathbb{R}^n$ are continuous operators, and ζ and m are independent of k.

By $X_k(x^0; \rho)$ we denote the set of solutions of the problem $(7_k), (8_k)$ contained in the ball $\mathcal{U}(x^0; \rho)$.

Theorem 2. Let the problem (1), (2) have a solution x^0 which is strongly isolated in radius $\rho > 0$, and let there exist $\rho_0 > 0$, $\omega \in M(I \times \mathbb{R}_+; \mathbb{R}_+)$ and a continuous function $\omega_0 : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\omega_0(0) = 0$,

$$\begin{aligned} \|\zeta(x)\|_{C} &\leq \rho_{0}, \quad \left\|\zeta(x) - \zeta(\overline{x})\right\|_{C} \leq \omega_{0}\left(\|x - \overline{x}\|_{C}\right), \\ \left\|\gamma_{k}(x) - \gamma_{k}(\overline{x})\right\| &\leq \omega_{0}\left(\|x - \overline{x}\|_{C}\right) \text{ for } x \text{ and } \overline{x} \in \mathcal{U}(x^{0}; \rho) \end{aligned}$$

and

$$\left\|\eta_k(t,z) - \eta_k(t,\overline{z})\right\| \le \omega(t, \|z - \overline{z}\|) \text{ for } t \in I, \ \|z\| \le \rho_0, \ \|\overline{z}_0\| \le \rho_0$$

 $Let,\ moreover,$

$$\lim_{k \to +\infty} \gamma_k(x) = 0 \text{ for } x \in \mathcal{U}(x^0; \rho),$$

$$\sup\left\{\left\|\int_{a}^{t}\eta_{k}(s,z)\,ds\right\|:\,t\in I,\;z\in\mathbb{R}^{m},\;\|z\|\leq\rho_{0}\right\}\rightarrow0\;\;as\;\;k\rightarrow+\infty$$

Then there exists a natural number k_0 such that $X_k(x^0; \rho) \neq \emptyset$ for $k \ge k_0$ and

$$\sup \{ \|x - x^0\| : x \in X_k(x^0; \rho) \} \to 0 \text{ as } k \to +\infty.$$

Acknowledgement

The work was supported by GRDF (Grant No. 3318).

References

1. N. V. AZBELEV, V. P. MAKSIMOV, AND L. F. RAKHMATULLINA, Introduction to the theory of functional differential equations. (Russian) *Nauka, Moscow*, 1991.

2. N. V. AZBELEV, V. P. MAKSIMOV, AND L. F. RAKHMATULLINA, Methods of modern theory of linear functional differential equations. (Russian) *R & C Dynamics, Moscow–Izhewsk*, 2000.

3. N. V. AZBELEV AND L. F. RAKHMATULLINA, Theory of linear abstract functional differential equations and applications. *Mem. Differential Equations Math. Phys.* $\mathbf{8}(1996)$, 1–102.

4. A. V. ANOKHIN AND L. F. RAKHMATULLINA, Continuous dependence of solutions to a linear boundary value problem on parameters, I. (Russian) *Izv. Vyssh. Uchebn. Zaved., Mat.*, 1996, No. 11(414), 27–36; English transl.: *Russ. Math.* **40**(1996), No. 11, 29–38.

5. M. ASHORDIA, On the stability of solutions of linear boundary value problems for a system of ordinary differential equations. *Georgian Math. J.* 1(1994), No. 2, 115–126.

6. I. T. KIGURADZE AND D. G. BITSADZE, On the stability of the set of solutions of nonlinear boundary value problems. (Russian) *Differentsial'nye Uravneniya* **20**(1984), No. 9, 1495–1501; English transl.: *Differ. Equations* **20**(1984), 1073–1078.

7. I. KIGURADZE, Boundary value problems for systems of ordinary differential equations. (Russian) Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. **30**(1987), 3–103; English transl.: J. Sov. Math. **43**(1988), No. 2, 2259–2339.

8. I. KIGURADZE, AND B. PŮŽA, On boundary value problems for systems of linear functional differential equations. *Czechoslovak Math. J.* **47**(1997), No. 2, 341–373.

9. I. KIGURADZE AND B. PŮŽA, Boundary value problems for systems of linear functional differential equations. *Masaryk University, Brno*, 2003.

Authors' addresses:

I. Kiguradze A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, Aleksidze St., Tbilisi 0193 Georgia E-mail: kig@rmi.acnet.ge

B. Půža
Masaryk University
Faculty of Science
Department of Mathematical Analysis
Janáčkovo nám. 2a, 662 95 Brno
Czech Republic
E-mail: puza@math.muni.cz