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NONUNIFORM NONRESONANCE
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Abstract. In this paper, general existence theorems are presented for
the singular equation

—(pp (W) = ftiuu/), 0<t<1,
u(0) =u (1) =0.
Throughout, our nonlinearity is allowed to change sign. The singularity

may occur at u =0,¢t =0,¢t =1 and f may be nonuniform nonresonant at
the first eigenvalue.
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1. INTRODUCTION

In this paper, we study the singular boundary value problem

—((pp(u’))lzf(t,u,u’), 0<t<1, (1.1)
u(0)=u(1)=0, '

where ¢, (s) = |s|p72 s, p > 1. The singularity may occur at ©u =0, t = 0
and t = 1, and the function f is allowed to change sign and is nonuniform
nonresonant at the first eigenvalue. Note that f may not be a Carathéodory
function because of the singular behavior of the u variable. In the literature
[8,9,12], (1.1) has been discussed extensively when f (¢t,u,v) = f (¢t,u) and
f is positive, i.e., f:(0,1) x (0,00) — (0,00). Recently [1], [13] (1.1) was
discussed when f (t,u,v) = f (¢t,u) and f : (0,1) x (0,00) — R. The case
when f depends on the v’ variable has received very little attention in the
literature, see [2], [3], [7] and references therein. In [14], the author studied
nonuniform nonresonance at the first eigenvalue of the p—Laplacian when
the function f is not singular. This paper presents a new and very general
result for (1.1) when f : (0,1) x (0,00) x R — R and f is nonuniform
nonresonant at the first eigenvalue.
The nonlinear eigenvalue problem associated with the problem (1.1) is

{— (op (W) = Agpp (u), 0<t<1,

u(0)=u (1) =0. (1-2)

It is well-known (see [14]) that (1.2) has eigenvalues
D<A <A< <Ay <--- as n— oo.

In what follows, we will use ||-[|,, to denote the LP-norm defined by

lull, = (/1|u(t)|pdt>;.

[ull oo = sup [u(t)].
0<t<1

The C [0, 1]-norm is

We present some results from literature which will be needed in Section
2. Let W = Wy?([0,1], R) be the Sobolev space. The following lemma is
a result of embedding inequalities.

Lemma 1.1 ([14]). (1) We have

Jull, < A7 [u'll,  for VueW. (1.3)

Moreover, the equality in (1.3) holds if and only if u is an eigenfunction
corresponding to the eigenvalue 1.

(2)

1 1/q
o< (3) Wl for vuew (1.4
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1,1 __
where st 1= 1.
Lemma 1.2 ([14]). Suppose that a € C'[0,1] satisfies the condition:
a(t) <llallo

on a subset of [0,1] of positive measure. Then there exists € > 0 such that
1
/a(t) lu ()P dt < (lal] A" — <) ||u’|\5 for all uweW. (1.5)
0

Lemma 1.3 ([7]). Let e, = [z57,1] (n>1), eg = @. If there eists
a sequence {en} | 0 and €, > 0 for n > 1, then there exists a function
A € C10,1] such that

(1) ¢p (X) € C1[0,1] and max [(gp (N (1)))'] > 0, and
2) A(0)=A(1)=0and 0 < A(t) <en, t € en\en1,n > 1.

2. MAIN EXISTENCE THEOREM

We present a general existence theorem for the BVP (1.1).

Theorem 2.1. Let ng € {1,2,...} be fized and suppose the following
conditions are satisfied:

f:(0,1) x (0,00) Xx R — R is continuous, (2.1)

let n € {ng,no + 1,---} = Np and associated with each n € Ny
we have a constant p, such that {p,} is a nondecreasing
sequence with lim,_. p, =0 and

for 2,1% <t <1 we have f (¢, pn,0) >0,

(2.2)

there exists a € C'[0,1], a(0)=0=a (1), a>0o0n (0,1),

such that if h: (0,1) x (0,00) x R — R

s any continuous function with

h(t,u,v) > f (t,u,v), V(t,u,v) € (0,1] x (0,00) X R (2.3)
and if u € C*0,1], p(u’) € C1(0,1), u(t) >0 for t € [0,1],

is any solution of

— (op (W)) = h(t,u,), then u(t) > a(t) fort € [0,1],

for any € > 0 there existy, 7 with1 <y <p, 0<7<p—1,
functions a,b € C'[0,1] with a >0, b>0, on [0,1],
functions c € L' [0,1], d € L= [0,1], he € L' [0,1]

withc >0, d >0, he >0 a.e. on [0,1], such that

wf (tu,v) < a(t)u? +b @) ulv’ " + e )+

+d (t)u|v|” + uhe (t) fort € (0,1), u>¢e and v € R,

(2.4)
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either
(i) a(t) < |a|, on a subset of [0,1] of positive measure
1
and a (2n0+1) <lall» (2.5)
or
(i) b(t) < |b|,, on a subset of [0,1] of positive measure
and b (2%“) < [|b]| o
1
A lallg + 207 fBll <1 (2.6)

and

for any e > 0, there exist 6,3, with1 <d <p, 0 < 3 < p,
functions ag € L'[0,1], by € L75 and 1. € L*[0,1] with
ap >0, by >0, n. >0 a.e. on [0,1], such that (2.7)

£ (t,u,0)] < ag () ul + bo () [0]” + ne (¢)
forte (0,1), u>¢eandv € R.

Then (1.1) has a solution u € C'[0,1] with u(t) > «(t) for t € [0,1] (here
a is given in (2.3)).

Proof. For n =ng,ng+1,... let

en = [271%,1} and 6, (t) = maX{Qn—lﬂ,t}, 0<t<1,
and
fo (t2,y) = max {f (0 (t) 2, y), [ (£, 2,9)} -
Next we define inductively
Gno (82, Y) = [, (t,2,9)
and
gn (tz,y) =min{ fn, (¢, 2,y),..., o (t,2,y)}, n=no+1, no+2,....
Notice
fltoy) < S gnpa(ta,y) Sgn(tz,y) <0 < gn (E2,)
for (¢,z,y) € (0,1] x (0,00) X R and
gn (t,x,y) = f (t,x,y) for (t,z,y) € e, X (0,00) X R.
We begin with the boundary value problem
{— (op (W) = g5, (Lusu'), 0<t<1,
u(0) = u (1) = pn,,
where

* _ gno (t7pnoav)+r(pno_u)a USPnoa
gno (tvu ’l)) -
gno (t7 U’a U) 9 Pno S ’LL,
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with 7 : R — [—1, 1] the radial retraction defined by
) < 17
r (U) — U’u |’U,| >
To show that (2.8) has a solution, we consider [7, 11] the family of problems
—(pp (W) = Agi, (t,u,u!), 0<t<1,
u(0) = u (1) = pno,

where 0 < A < 1. Let u be any solution of (2.9), for some 0 < A < 1. We
first show

(2.9)x

u(t) = pnys  t€[0,1]. (2.10)

Suppose (2.10) is not true. Then there exists a to € (0,1) with u (t9) < png,
u’ (tp) = 0 and

(p () (to) > 0.
However note

(2p (1) (t0) = =Algng (t0, Prg» ' (t0)) + 7 (Png — u (t0))] =
= =A[gn, (to, Pno, 0) + 7 (pne — u (t0))] -
We need to discuss two cases, namely tg € [20%, 1) and ¢ € (0, 20%) .

Case 1. tg € [2,10%, 1).
Then since gp, (to,u,v) = f (to, u,v) for (u,v) € (0,00) x R (note ty €
€ny ), We have

(SDP (u;m))l (to) = _)‘f (th pno’o) =T (pno —u (to)) <0,
a contradiction.

Case 2. tg € (O, ?’Tl‘*'l) .
Then since

1
9no (to,u,v) = maX{f (W7U’av) ’ f(t07uav)}a
we have
1
Gno (to,u,v) > f (to,u,v) and gn, (to,u,v) > f (W,u,v)
for (u,v) € (0,00) x R. Thus
(20 (1)) (t0) = =2 [gng (t0: gy 0) + 7 (g — u (t0))] <
1
<A [f (vanmo) + 7 (pno — U(to))} <0,

a contradiction.
Consequently (2.10) is true. Next we show

Uy (£) < My, for te]0,1], (2.11)
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where M, (> pn,) is a predetermined constant (see (2.15)). Notice that
(2.7) (with € = p,,) guarantees the existence of ag, bo, 7., 0 and S (as
described in (2.7)) with

|5 (L (8) 0 ()] < 61 (8) [u (O + 62 () [/ ) + 05 (1) (212)

for t € (0,1); here

¢1 () = max{ag () , a0 (On, (£))}, 2 (t) = max{bo (t) ,bo (6n, (1))}
and

¢3 (t) = max {ne () ;- (On, (1))}

notice that (2.12) is immediate since for ¢ € (0,1) we have

Gno (£ () ' (1)) = max{f (Ony (1)), u (t),u' (&), f (t,u(t),u (1)}
Next notice that (2.4) (with € = p,,) guarantees the existence of a, b, ¢, d,
he, v and 7 (as described in (2.4)) with

u(t) gn, (tu(t),u' (1) < éa () [u ()] + ¢5 () [u (@) [u ()] +
+ 6 (8) [ul” + o7 (&) ul [u']” + us (t)
for t € (0,1); here
¢4 (t) = max{a(t),a(On, (1)}, b5 (t) = max{b(t),b(0n, ()},
¢6 (t) = max{c(t),c(On, (1))}, ¢7 (1) = max{d(t),d(0n, ()}

and

¢ (t) = max {he (t) , he (O, (1))} -
Let v = u — pp,, SOU(O) :v(l) 0 and
—v (|v P2y )I = Augy, (t,u,u') — Npnogp, (tu,u’) for te(0,1).

As a result, we have

Il < / SO0+ pasldt + [ 65010 (0) o ! (OF "+
0

1

+/¢6< ) 06)+ puy ]t + [ 60 [0 (0) + pug] 0 O dtt

0 0
1 1

+ [ SO0 @)+ pualdtt oy 61 @10 (0) + pus e

¥ oy [ b2 ()1 ) dt+ pny | ¢3(t)dt <
/ f
1

< [o b @ +puldes / 05 (1) [o ()] 10" (DIt

0
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+ lower order terms.

Note that
1

1
/¢4 (t) [v () + pno )P dt < /¢4 (t) (v (t))? dt + lower order terms,
0 0

and so (note also (1.4) and Holder inequality)

1

1
Wip< [or@ @y [ ol @l op

0 0

+ lower order terms. (2.13)

Case A. Suppose a (t) < |a|,, on a subset of [0,1] of positive measure
and a (gmsr) < laly -

This of course implies ¢4 (t) < ||¢4] = |lall,, on a subset of [0,1] of
positive measure. From (1.5), there exists € > 0 with

1

/¢4 (t) (v ()" dt < (AT dalloe =€) IVl = (AT lall =€) 12717,

0
where \; is defined as in Lemma 1.1. Also

1

-1 -1 -3
/¢5(t)|v(t)||v'(t)|p dt < sl o V[l 10115 < X0 7 [1bllog 10115 -

0

Thus, we have

_1
1l < (A llallg =) 1Vl + Ax ™ l1Bll 17115 +

+ lower order terms,

S0
-1 ~3 e ne
L=X7 lall = A1 7 1l ) 1[I, + € []0]], < lower order terms.

As a result (see (2.6)),
e|[v'|[? < lower order terms.
Thus there exists K, (independent of A) such that K,, > pn, and
Il = 1v'll,, < K- (2.14)

Case B. Suppose that b (t) < [b[,, on asubset of [0, 1] of positive measure
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This of course implies ¢5 (t) < [|¢s|l., = [|b]l, on a subset of [0,1] of
positive measure. From (1.5), there exists € > 0 with
1

/[d)s @) o (1) dt < (A llgslize =€) o'l = (A 1BIIE, — &) 11l
0
Also there exists a 6 > 0 with

(AT (Bl — &) <A77 [[bloc 5,
SO
1
/ b5 (8) [o ()] [o (O dt < (AT I%, —€) 7 /I <
0
< (A7 Dblloo = 8) 111
Also

1
/¢4 (t) (v ()" dt < ||9all o« 0]} < AT llallog [10]15 -
0
Now (2.13) yields
<1 = P bll = AT ||a||oo) [0"1I5 + & [|v'[[}, < lower order terms.

As a result (see (2.6)),
§||v'[[? < lower order terms.
Thus there exists K,,, (independent of A) such that K,, > p,, and
[u'll, = 10"l < Kno-

In both cases (2.14) holds, and now since [[v]|, < 5773 [v'[l,,» we have
[v]lo < 517 Kn, and as a result we have

1
177 Ko + png = My, and [[u']], < Ky, (2.15)

p—B

1 P 1
< MP, / o (1) di + / o770 e+ / b (1) dt <
0 0

p=B8
P

1 1 1
<M [edit | [ o7 70| K+ [ és()di = La,
[l /
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and so since u (0) = u (1) = pn,, we have
1
_ -2 5\ _
ol <t | [ (WP 0) dt) < 67 (Eu) = Ry
0

Now a standard existence principle from the literature [7,11] guarantees
that (2.9), has a solution un, with p,, < up, (t) < M,, for t € [0,1] and

Remark 2.1. In [11] we assumed that ¢, ! is continuously differentiable
on (—00,00), so 1 < p < 2. However, this assumption is only needed in [11]
to show that N is equicontinuous on [0, 1] (here Ny and 2 are defined
in [11]). It is well known that this assumption can be removed once one

notices that ¢, N Q is equicontinuous on [0, 1] and uses also the fact that

@, ! is continuous.

Also notice that if we take h (t,u,v) = gn, (t,u,v) in (2.3), then since
Gno > [ and uy,, satisfies — (o, (u')) = gn, (t,u,u') on (0,1) with w,, () >
Pn, for ¢ €]0,1], we have

Ung (t) > () for te]0,1].

Next we consider the boundary value problem

{ (0 (W) = g (B, 0 <t <1, (216)
u(0) = u (1) = pnot1, '
where
Iro+1 (t Prg+1, ™) + 7 (Ang41 () —u) s U < pgta,
Inot1 (Eu,0) = S Grgr1 (6,1,07) gyt S u < g, (1),
Ino+1 (Eytng (8),0%) + 7 (Ung () —u), u > up, (t),
with
Ryg+1, v> Rpgt1,
v =1¢v, —Rpy+1 <v< Ry,
—Rpgt1, v < —Rygq1s

here Ry, +1 > Ry, is a predetermined constant (see (2.20)). Now Schauder’s
fixed point theorem guarantees that there exists a solution wu,,+1 € C*0,1]
with ¢, (ul,,11) € C*(0,1) to (2.16). We first show

Ung+1 (t) > Pro+15 te [Oa 1] . (2'17>

Suppose (2.17) is not true. Then there exists a 1 € (0,1) with up,+1 (t1) <
Pro+1, u;z[)Jrl (tl) =0 and

(‘Pp (u;LoJrl))/ (t1) > 0.

We need to discuss two cases, namely t; € [2,10%, 1) and t1 € (07 2,10%) .
Case (1). t1 € [gmrs,1) .
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Then since gny+1 (t1,u,v) = f(t1,u,v) for (u,v) € (0,00) X R (note
t1 € eny+1), We have

(‘PP (u;mﬂ))l (t1) =
=— [gnoﬂ (tl, Pro+1, (Ulno+1 (h))*) + 7 (Pro+1 — Ung+1 (t1))
= - [f (tla Pro+1s 0) +r (pno+1 — Ung+1 (tl))] <0

from (2.2), a contradiction.
Case (2). t1 € (0, 5rarz) -
Then since gp,+1 (t1,u,v) equals

min{max{f <2no%,u,’0> ,f(tl,u,v)},
mx{ f (g wo) S (u }

gng—i-l (tla ’U/,’U) Z f (tla ’U,,’U)

. 1 1
Ino+1 (tlvuav) > mln{f (Wauvv) ) f (Wauvv)}

for (u,v) € (0,00) x R. Thus we have

(0p ltn41)) (1) =
= - [9n0+1 (tlapno+17 (Ungs1 (tl))*> + 7 (Pro+1 = Ung+1 (tl))} <

we have

and

. 1 1
< —qmin g F Lo Prot1, 0 ) F o o1, 0 ) o+
+ 7 (Pro+1 — Ung+1 (t1)) } <0,
since
1 1
F\ GrogzoPro+1,0 ) 20 and f{ oo no+1,0 ) 20
because

1
f (t,pn0+1,0) Z 0 fOI' t e {W, ].:|
and groer € [grerr, 1 -
Consequently (2.18) is true. Next we show
Ungt1 (B) <up, (t) for t€[0,1]. (2.18)

If (2.18) is not true, then w,,+1 — uy, would have a positive absolute max-
imum at say 7o € (0,1), in which case (tny41 — Un,) (70) = 0 and

(#p (tg+1)) " (70) = (2p () (70) < 0; (2.19)
the proof is contained in [7].
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Then tn,4+1 (7o) > Un, (7o) together with gy, (To,u v) > Gno+1 (To,u v)

for (u,v) € (0,00) x R gives (note (ul,, 4 (TO)) (ul, ) =
since Rpo+1 > Ry, and HunOH < R,,)

(0 (g 1)) (70) = (p (t1,)) (70) =

(gm0t (70100 (70) (W41 (70)) ) 7 (i (70) = g1 ()] =

(u,
- (QDp (u;lo))l( ) > — { ( )), + Ino (TOvuno (7-0)’ U, (TO))}
=7 (Ung (10) = Ung+1 (70))
= —1 (Ung (T0) = Uno+1 (10)) >0,

a contradiction. Thus (2.18) holds. In addition, since ||tng41|| o < [[tng o <
M,,,, then (2.7) (with € = pp,+1) guarantees the existence of ag, bo, 7, d and
f (as described in (2.7)) with (we only need to note that g . (t, un,+1(t),

W41 (8) = Gno41 (£ ting11(8), (1 (£)")
(901 (6 g1, U 1) | < o () [t 11 (1)) +
+ 10 (8) | (o1 (1)7| + na (8) <
< o (£) M2, + 610 () [ty 11 (8)]” + 611 (2)
for t € (0,1) (note that [v*| < |v]); here

b9 (t) = max {ao (t) » @0 (9710 (t)) » @0 ( no+1 (t))} )
10 (t) = max {bo (t), bo (6n, (£)), bo (Bne+1 (1))}

«|B

and
$11 (t) = max{ne (t), e (Ono (1)), Ne (Ono+1 (1))}

As a result,

IN

1
_ 1
a2 = | [ (im0 = i) ([t OF i1 0)
0

1
SN@AMm+meJ/¢ﬂﬂﬁ+
0

1 p—

p=B
4 Oy o) i) | [0 )+
0

=

+ (Mno +pno+1)/¢11dta

so there exists a constant Ky 11 > pny+1 with

g1l < Bt
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Also since Ungt1 (0) = Ung+1 (1) = prg+1, we have
1

_ /
il < 65" [ (s OF 2t ) | <
0

]

1 1
<, [on @+ K5, | [ i) de|
0

0
1
+ [ o1 (t)dt,
/

so there exists a constant R,,11 > Rp, with
[l < B 220
As a result, if we take h (t,u,v) = gny+1 (t,u,v) in (2.3), then since gp,4+1 >
f and w41 satisfies — (¢, (v')) = gng+1 (t,u,u’) on (0, 1) with w41 (£) >
Pno+1 for t € [0,1], we have
Uny () > a(t) for te]0,1].

Now proceed inductively to construct wn,+2, Ung+3, ... as follows. Suppose
we have uy, for some k € {ng + 1,n0 + 2, } with « (t) < ug (t) < ug_1 (t) for
tel0,1].

Then consider the boundary value problem

- ((pp (U’I))I = gl:Jrl (t’ uvul) , 0<t <, (2 21)
uw(0) =u (1) = pri1, '

where

Grt1 (8 prs1,0°) + 7 (k1 —w) s u < prya,
Gr1 (G u,0) = § g1 (B, v*), pryr < u < g,
ge+1 (t up, v*) +r (ug —uw), u > ug,
with
Mk+1, v > Mk+1,
vt =4, —Myp11 < v < Mgy,
_Mk—i-l; v < _Mk—i-l;
here Myy1 > My is a predetermined constant. Now Schauder’s fixed

point theorem guarantees that (2.21) has a solution ugy+1 € C1[0,1] with
op (u},) € C1(0,1) and essentially the same reasoning as above yields

pr1 < g (8) Sug(t),  |uppy ()] < My for te(0,1]  (2.22)
with
ups1 (8) > a(t) for te€]0,1]
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and
— (p (u;€+1))/ = gr+1 (b ups1,Upyq) for 0<t <1

Now let us look at the interval [2,10%, 1- 2%0%] . We claim

. o0
{uﬁf)} , 7 =0,1, is a bounded, equicontinuous
n=nop+1 (2.23)

family on [20%, 1-— 2,10%] .
Firstly note
[unllo < Jtinglloy < My, for te€[0,1] and n >mng+ 1. (2.24)
Let

€= min a(t).

1 1
te[2”0+1 ’1_2n0+1}

Then (2.7) guarantees the existence of ag, bo, 7, 0 and 3 (as described in
(2.7)) with

|gn (, un (£) , ur, (£))]

1f (e (2) 22, ()] <
ao (£) M2, + bo (t) [uly ()] + e (¢)

IN

for t € [a,b] = [2”0%,172%%] Cep, and n > ng + 1. Let

1 = un )~ fun (0 + L0 =20 )

so for n > ng + 1 we have

b b
Up, (b) — un (a)

[ o @ (o) t| = - / P 2O [ )

a a

Now since 7, (t) < 2M,, for ¢ € [a,b], we have for any n > ng + 1 that

b b b
2M _
[ty ae < 52 [ un=" at 201, [ o0 ) dt <

a
b

2M,, _
< 21 g |2 4+ 20, [M,‘io [ty

(b—a)™ J

p— b

+ (/blbo(t)lp’ﬁ dt) o (4l +/775 (t) dt],

a

so there exists @, with

[unlly < @no for n>mng+1, (2.25)
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Also there exists t, € (a,b) with u, (¢t,) = W, soforn > ng+1 we
have (using (2.25))

b

o OF ™ <l (1) ()] + / (o () dt <
€la,

b
2M,, 17"
< [b_a"} +M;§D/a0(t)dt+

S)

ie.,
_1
sup |ul,(t)| < Liyt for n>mng+ 1. (2.26)
te(a,b]

Now (2.24), (2.25) and (2.26) guarantee that (2.23) holds. The Arzela—
Ascoli theorem guarantees the existence of a subsequence Ny, of integers
and a function z,, € C* [20;“, 1-— 20%} with uﬁf), 7 = 0,1, converging
uniformly to z,(f[')) on [2,10%, 1- 2%%] as n — oo through N,,,. Similarly

. o0

{uﬁf)} , j =0,1, is a bounded, equicontinuous
n=ng+2

family on |[ziz,1— 20%] )

so there is a subsequence N, 11 of N,, and a function

1 1
1
Zno+1 € C ono+2’ " 9no+2
with uSZ), j = 0,1, converging uniformly to szgﬂ on [2,10%, 1-— 2,10;”]

as n — oo through N, 11. Note zp,+1 = 2, On [Wv 1— W] since
Npy+1 € Ny,. Proceed inductively to obtain subsequences of integers

Npog 2 Npgy1 2 -+ 2 Ng 2 -+

1 1
1
2z € C |:_2k+1’1_2k+1:|

and the function

with

) ; 1 1
ugg), j = 0,1, converging uniformly to z,(g) on Lkﬂ , 1= W}

as n — oo through Ng, and

1 1
2k = Zk—1 oOn 2—k,1—2—k .
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Define a function u : [0,1] — [0,00) by u (t) = 2 (t) on |55, 1 — 5277 and
1 (0) = u (1) = 0. Notice that u is well defined and

a(t) <u(t) <up, () for te(0,1).

Now let [a,b] C (0,1) be a compact interval. There is an index n* such that
[a,b] C [#, 1-— 2,1%} for all n > n* and therefore, for all n > n*

—(pp (ul)) = f (t,un,ul) for a<t<b.
A standard argument [7, 11] guarantees that
—(pp (W) = f(t,u,u) for a<t<b.
Since [a,b] C (0,1) is arbitrary, we find that
(p(u') € C(0,1) and — (¢, (u) = f(t,u,u’) for 0<t<1.

It remains to show that w is continuous at 0 and 1. Let € > 0 be
given. Now since lim,, o uy, (0) = 0, there exists n1 € {ng,no +1,...}
with uy,, (0) < §. Next since u,, € C'[0, 1], there exists 6,, > 0 with

€
Un, (t) < 3 for ¢t€[0,0n,].
Now for n > n; we have, since {u, (t)}, ¢y, is nonincreasing for each t €
[0,1],

a(t) <up (t) <up, (t) < = for t€]0,0,,].

N ™

Consequently,
a(t) <u(t) < % <e for te(0,0,,]

and so u is continuous at 0. Similarly u is continuous at 1. As a result,
uwe C[0,1].

Remark 2.2. In (2.2) it is possible to replace mpr <t < 1 with either
(1) 0 <t <1— 5k, (ii) 5o <t < 1— 55, or (ili) 0 < ¢ < 1. This is clear
once one changes the definition of e,, and 6,,. For example, in case (ii) take

1 1 LR !
en = |:2n+171W:| and gn(t)max{ﬁ,mm{t,lﬁ}}

Finally we discuss the condition (2.3). Suppose the following condition
is satisfied:
let n € {no,no + 1,...} and associated with each n we
have a constant p,, such that {p,} is a decreasing
sequence with lim,, . pn = 0 and for any r > 0 (2.27)
there exists a constant k,. > 0 such that for QW% <t<l1,
0 <u<p,and v € [—rr] we have f(t,u,v) > k,.

A slight modification of the argument in [7, Proposition 4] guarantees that
(2.3) is true.

Remark 2.3. In (2.27) if 77 < ¢ < 1 is replaced by (i), (ii), or (iii) in
Remark 2.2, then (2.3) is also true.
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Theorem 2.2. Letng € {1,2,...} be fized and suppose (2.1), (2.4)—(2.7)

and (2.27) hold. Then (1.1) has a solution v € C'[0,1] with w(t) > 0 for
te(0,1).

10.

11.

12.

13.

14.
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