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In R
n consider the linear hyperbolic equations

u(m) =
∑

α∈Em

pα(xα)u(α) +
∑

α∈Om

pα(xα)u(α) + q(x), (1)

and

u(m) = p0(x)u + q(x), (2)

where n ≥ 2, x = (x1, . . . , xn) ∈ R
n, m = (m1, . . . ,mn) ∈ Z

n
+ and α = (α1, . . . , αn) ∈

Z
n
+ are multi–indeces , and

u(α) =
∂α1+···+αnu

∂x
α1

1 . . . ∂x
αn
n

.

We make use of following notations and definitions.
Z+ is the set of all nonnegative integers; Z

n
+ is the set of all multiindices α =

(α1, . . . , αn); ‖α‖ = α1 + · · ·+ αn; 0 = (0, . . . , 0) ∈ Z
n
+.

The inequalities between the multiindices α = (α1 , . . . , αn) and β = (β1, . . . , βn) are
understood componentwise.

It will be assumed that m > 0.
If for some multiindex α = (α1, . . . , αn) we have αi1 = · · · = αik = 0 (i1 < · · · < ik),

and αj1 , . . . , αjn−k
> 0 (j1 < · · · < jn−k), {j1, . . . , jn−k} = {1, . . . , n} \ {i1, . . . , ik},

then by xα (by xα) denote the vector (xi1 , . . . , xik
) ∈ R

k (the vector (xj1 , . . . , xjn−k
) ∈

R
n−k). If α > 0, then in equation (1) by pα(xα) we understand a constant function.

A multiindex α ∈ Z
n
+ will be called even, if all its components are even.

A multiindex α ∈ Z
n
+ will be called odd, if ‖α‖ is odd.

By Em and Om, respectively, denote the sets of all even and odd multiindices not
exceeding m and different from m, i.e.,

Em =
{

α ∈ Z
n
+ \ {m} : α ≤ m, α1, . . . , αn are even

}

,

Om =
{

α ∈ Z
n
+ \ {m} : α ≤ m, α1 + · · ·+ αn is odd

}

.

By Sm denote the set of nonzero multiindices α = (α1, . . . , αn) whose components
either equal to the corresponding components of m, or equal to 0, i.e.,

Sm =
{

α 6= 0 : αi ∈ {0, mi} (i = 0, . . . , n)
}

.

Let ω = (ω1, . . . , ωn) ∈ R
n b a vector with positive components. Then by Ω denote

the rectangular box [0, ω1] × · · · × [0, ωn] in R
n. Moreover, for an arbitrary multiindex

α, similarly as we did above, introduce the vectors ωα = (ωi1 , . . . , ωik
) ∈ R

k and

ωα = (ωj1 , . . . , ωjn−k
) ∈ R

n−k, and the rectangular boxes Ωα = [0, ωi1 ]× · · · × [0, ωik
]

in R
k and Ωα = [0, ωj1 ]× · · · × [0, ωjn−k

] in R
n−k.
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We say that a function z : R
n → R is ω–periodic, if

z(x1, . . . , xj + ωj , . . . , xn) ≡ z(x1, . . . , xn) (j = 1, . . . , n).

It will be assumed that the functions pα (α ∈ Em ∪ Om) and q, respectively, are
ωα–periodic and ω–periodic continuous functions.

Let l = (l1, . . . , ln) ∈ Z
n
+. By Cl denote the space of continuous functions u : R

n → R,

having continuous partial derivatives u(α) (α ≤ l).
By a solution of equation (1) (equation (2)) we will understand a classical solution,

i.e., a function u ∈ Cm satisfying equation (1) (equation (2)) everywhere in R
n.

In the case, where n = 2, m1 = m2 = 1 (n = 2, m1 = m2 = 2) sufficient conditions for
existence and uniqueness of (ω1, ω2)–periodic solutions of equation (1) are given in [1–3,
6–8] (in [9, 10]). In the general case the problem on ω–periodic solutions to equations
(1) and (2) are little investigated. In the present paper optimal sufficient conditions of
existence and uniqueness of ω–periodic solutions to equation (1) (equation (2)) are given.
Similar results for higher order nonlinear ordinary differential equations were obtained
by I. Kiguradze and T. Kusano [5].

We consider equations (1) and (2) in two cases, where m is either even, or odd.
Also note that equations (1) and (2) do contain partial derivatives with even or odd
(according to the above definitions) multiindices only (e.g., neither of m and α can
equal to (1, 1, 1, 1)).

Theorem 1. Let m be even, and let

(−1)
‖m‖+‖α‖

2 pα(xα) ≤ 0 for x ∈ R
n α ∈ Em, (3)

Rn \ Ip0
= R

n, (4)

where Ip0
= {x ∈ R

n : p0(x) = 0}. Then equation (1) has at most one ω-periodic

solution.

Theorem 2. Let m be odd, and let there exist j ∈ {1, 2} such that along with (4) the

inequality

(−1)j+
‖α‖
2 pα(xα) ≤ 0 for x ∈ R

n α ∈ Em (5)

holds. Then equation (1) has at most one ω-periodic solution.

Theorems 1 and 2 almost immediately follow from the following lemma.

Lemma 1. Let u ∈ Cm be an ω–periodic function. Then
∫

Ωα

u(α)(x) u(x) dxα = (−1)
‖α‖
2

∫

Ωα

∣

∣u

(

α

2

)

(x)
∣

∣

2
dxα for α ∈ Em,

∫

Ωα

u(α)(x) u(x) dxα = 0 for α ∈ Om.

One can easily prove the lemma using integration by parts and taking into consider-
ation ω–periodicity of u.

Proof of Theorem 1. All we need to prove is that if q(x) ≡ 0, then equation (1) has only
a trivial ω–periodic solution. Indeed, let q(x) ≡ 0, and let u be an arbitrary ω–periodic
solution of equation (1). After multiplying equation (1) by u and integrating over the
rectangular box Ω, by Lemma 1 and condition (3), we get

∫

Ω

(

∣

∣u

(

m

2

)

(x)
∣

∣

2
+

∑

α∈Em

|pα(xα)|
∣

∣u

(

α

2

)

(x)
∣

∣

2
)

dx = 0. (6)

(4) and (6) immediately imply that u(x) ≡ 0. �

We omit the proof of Theorem 2, since it is similar to the proof of Theorem 1.
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Theorem 3. Let m be even, and let

0 ≤ (−1)
‖m‖

2 p0(x) <
(2π)‖m‖

ω
m1

1 · · ·ωmn
n

, Rn \ Ip0
= R

n. (7)

Then equation (2) has at most one ω-periodic solution.

To prove the theorem along with Lemma 1 we need the following

Lemma 2. Let m be even, and let u ∈ Cm be an ω–periodic function. Then

∫

Ω

∣

∣

∣
u

(

m

2

)

(x)
∣

∣

∣

2
dx ≤

ω
m1

1 · · ·ωmn
n

(2π)‖m‖

∫

Ω

∣

∣

∣
u(m)(x)

∣

∣

∣

2
dx. (8)

This lemma immediately follows from Wirtinger’s inequality ([4], Theorem 258).

Proof of Theorem 3. Assume the contrary: let q(x) ≡ 0 and equation (2) have a nontrivial
ω–periodic solution u. Then we have

u(m)(x) = p0(x)u(x) (9)

and

|u(m)(x)|2 = |p0(x)u(x)|2. (10)

Multiplying (9) by u, integrating over Ω, by Lemma 1, we get
∫

Ω
|p0(x)|

∣

∣u(x)
∣

∣

2
dx =

∫

Ω

∣

∣u

(

m

2

)

(x)
∣

∣

2
dx. (11)

Integrating (10) over Ω and assuming that u(x) 6≡ 0 , by condition (8), we get

∫

Ω

∣

∣u(m)(x)
∣

∣

2
dx=

∫

Ω

∣

∣p0(x)u(x)
∣

∣

2
dx<

(2π)‖m‖

ω
m1

1 · · ·ωmn
n

∫

Ω
|p0(x)|

∣

∣u(x)
∣

∣

2
dx. (12)

On the other hand, from (8) and (11) we get the inequality
∫

Ω
|p0(x)|

∣

∣u(x)
∣

∣

2
dx ≤

ω
m1

1 · · ·ωmn
n

(2π)‖m‖

∫

Ω

∣

∣

∣
u(m)(x)

∣

∣

∣

2
dx,

which contradicts to (12). The obtained contradiction completes the proof of the theorem.
�

Remark 1. In Theorem 3 condition (7) is optimal and it cannot we weakened: strict
inequality cannot be replaced by an unstrict one. Indeed, consider the equation

u(m) = l u, (13)

where l is a constant. If

0 < l < (−1)m (2π)‖m‖

ω
m1

1 · · ·ωmn
n

,

then by Theorem 3 equation (13) has only a trivial solution. However, if

l = (−1)m (2π)‖m‖

ω
m1
1 · · ·ωmn

n

(

l = 0
)

,

then it is obvious that the function

u(x) = sin
(2π

ω1
x1

)

· · · sin
( 2π

ωn

xn

)

(

u(x) = 1
)

is a nontrivial ω–solution of equation (13).

Below we formulate existence theorems.
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Theorem 4. Let m be even, and let along with (3) the inequalities

(−1)
‖m‖+‖α‖

2

∫

Ωα

pα(xα) dxα < 0 for α ∈ Sm, (14)

∫

Ω
p0(x) dx 6= 0

hold. Then equation (1) has one and only one ω-periodic solution.

Theorem 5. Let m1 be the only odd component of the the multiindex m, and let

there exist j ∈ {1, 2} such that along with (5) the inequalities

(−1)j+
‖α‖
2

∫

Ωα

pα(xα) dxα < 0 for α ∈ Sm, (15)

(−1)j

∫ ω2

0
. . .

∫ ωn

0
p0(x1, x2, . . . , xn) dx2 . . . dxn < 0 for x1 ∈ R

hold. Then equation (1) has one and only one ω-periodic solution.

Remark 2. In Theorems 4 (Theorem 5) condition (14) (condition (15)) is essential and
it cannot be weakened. If for at least one α ∈ Sm pα(xα) ≡ 0, then equation (1) may
not have an ω–periodic solution. To verify this, consider the equation

u(2,2,2) = u(2,2,0) + u(2,0,2) + u(0,2,2) − u(0,2,0) − u(0,0,2) + sin2(x1) u− 1. (16)

In the case, where n = 3, m1 = m2 = m3 = 2 and ω1 = ω2 = ω3 = π, this equation
satisfies all of the conditions of Theorem 4, except condition (14). For α = (2, 0, 0) we
have pα(x2, x3) ≡ 0. As a result equation (16) has no (π, π, π)–periodic solution. Assume
the contrary: let equation (16) have a (π, π, π)–periodic solution u. By Theorem 1, it is
unique, and therefore is independent of x2 and x3. Hence u satisfies the equation

sin2(x1) u− 1 = 0.

But the latter equation has only a discontinuous solution. The obtained contradiction
proves that equation (16) has no (π, π, π)–periodic solution.

Theorem 6. Let m be even, and let

0 < (−1)
‖m‖

2 p0(x) <
(2π)‖m‖

ω
m1

1 · · ·ωmn
n

. (17)

Moreover, let p0 and q ∈ Cm. Then equation (2) has one and only one ω-periodic

solution.

Theorem 7. Let m be even, and let

(−1)
‖m‖

2 p0(x) < 0 for x ∈ R
n. (18)

Moreover, let p0 and q ∈ Cm. Then equation (2) has one and only one ω-periodic

solution.

Theorem 8. Let m be odd, and let there exist a number j ∈ {1, 2} such that

(−1)jp0(x) < 0 for x ∈ R
n. (19)

Moreover, let p0 and q ∈ Cm. Then equation (2) has one and only one ω-periodic

solution.

Remark 3. In Theorems 6, 7 and 8 the requirement of additional regularity of functions
p0 and q is sharp. If this condition is violated, then equation (2) may not have a ω–
periodic classical solution. Indeed, consider the equation

u(m) = p0(x2, . . . , xn) u− p2
0
(x2, . . . , xn),
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where m is even, and p0(x2, . . . , xn) is an arbitrary continuous (ω2, . . . , ωn)–periodic
function satisfying (18). By Theorem 3, this equation has at most one solution. Hence

u(x) = p0(x2, . . . , xn).

But u is a classical solution if and only if p0 ∈ Cm.

Remark 4. In Theorems 6, 7 and 8, respectively, the strict inequalities (17), (18) and
(19) cannot be replaced by unstrict ones. To verify this, consider the equation

u(m) = p0(x2, . . . , xn) u− 1,

where m is odd and p0(x2, . . . , xn) is an smooth (ω2, . . . , ωn)–periodic function such that
p0(x2, . . . , xn) ≥ 0, p0(x2, . . . , xn) 6= 0. By Theorem 2, this equation has at most one
solution. Therefore u is a solution of the equation

p0(x2, . . . , xn) u− 1 = 0.

But the latter equation has a continuous solution if and only if

p0(x2, . . . , xn) > 0 for (x2, . . . , xn) ∈ R
n−1.
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