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T. KIGURADZE

ON LIDSTONE BOUNDARY VALUE PROBLEM FOR HIGHER ORDER
NONLINEAR HYPERBOLIC EQUATIONS WITH TWO
INDEPENDENT VARIABLES

(Reported on July 20, 2005)

Let m and n be positive integers, a > 0, b > 0 and D = [0, a] x [0,b]. In the rectangle
D consider the nonlinear hyperbolic equation

u(2m,2n) .7u(2m71,0)7“. 7u(0,2'n,71)7...7,U/(2'rr7,71,2'n,71)) (1)

= f(z,y,u,..

with the boundary conditions

u(Qi,O) (07 y) = ‘pli(y)v u(Qi,O) (avy) = ¥2i (y) (Z =0,...,m— 1)7

2
u®m ) (2,0) = Yrp (@), u®™ (2,0) = dor(@) (=0,...,n 1),
where
. 8i+k
uwBF) (z,y) = M (i=0,...,2m; k=0,...,2n).
Oxtoy*
Moreover, below it will be assumed that the function f : D xR*™" — R is continuous, the
functions @2, : [0,0] — R, ¢2; : [0,0] = R (s =0,...,m — 1) are 2n—times continuously

differentiable, and the functions o : [0,a] — R, o : [0,a] > R (i =0,...,n — 1) are
continuous.

By C?™27(D) denote the space of continuous functions u : D — R having the
continuous partial derivatives w(@k) (j=0,...,2m; kK =0,...,2n). By a solution of
problem (1),(2) we will understand a classical solution, i.e., a function u € C?™27(D)
satisfying equation (1) and boundary conditions (2) everywhere in D.

By analogy with the problem

Z(gm) =g(:r,z,..‘,z(2m_1)), (3)
2200) = cpy, 2% (a) =co (i=1,...,n), (4)

problem (1),(2) will be called the Lidstone problem.

Problem (3),(4) and its various generalizations were investigated by many authors
(see, e.g., [1-8], [12]). As for the problem (1),(2), it was studied in the case, where
m=mn=1and (1) is a linear equation (see [9-11]).

The given below sufficient conditions of solvability and unique solvability of problem
(1),(2) concern the case, where on the set D x R™ the function f on satisfies either of the
conditions

|f(2,9, 200, -+ s 22m—105- - -5 202n—15 - - -, 22m—12n—1)|
2m—12n—1 2m—12n—1
<Y pa@land+a(oy Yo Y lzul)  ©)
i=0 k=0 i=0 k=0
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and
|f(z,y, 200, - -+ 55 22m—12n—1) — f(@, Y, 200, - - -, Z2m—12n—1)|
2m—12n—1
<D0 pik(@ )z — Zikl, (6)
i=0 k=0
where p;, : D — [0,+00) (1 =0,...,2m—1; k=0,...,2n — 1) are continuous functions,

and ¢ : D x [0,400) — [0,+00) is a continuous function that is nondecreasing in the
second argument and

1 ra rb
lim */ / q(z,y, p) dzdy = 0. (7)
p—=toopJo Jo
Along with (1),(2) we will consider the differential inequality
2m—12n—1 ]
|2 () < >0 pi(, ) |[ulF) ()| (8)
i=0 k=0

with the homogeneous boundary conditions
u9(0,y) =0, u®(a,y)=0 (i=0,...,m—1),

9
u(2m,2k)(z70) =0, u(Qm’Qk)(:t,b) =0 (¢=0,...,n—1). )

By a solution of problem (8),(9) we will understand a function v € C?™27(D) satisfying
inequality (8) and boundary conditions (9) everywhere in D.

Theorem 1. Let conditions (5) and (7) (condition (6)) hold, and let problem (8), (9)
have only a trivial solution. Then problem (1),(2) has at least one (one and only one)
solution.

For arbitrary so > 0, s € [0, so] and a positive integer j set
s(so —s) (ﬁ)j—l

2s0 8 ’

2 2,2 i
A2(s;80) = ?, A2j42(s;80) = %(%)J 1.
Theorem 2. Let conditions (5) and (7) (condition (6)) hold, and

2n—12m—1

a b
>N / /pik(x,y)Aszi(x;a)Agnfk(y;b)dxdyS1~ (11)
k=0 i=0 Y0 JO

1
A1(s;s0) = o A2j4+1(s580) =
0 (10)
s(so — s)

Then problem (1), (2) has at least one (one and only one) solution.

Let

2 - 2 5

)= (BT sy = 2(BY =

pima(so) = () pls0)=2(L)" G=12...
Then by (10) we have

1

Ak(s;80) < —pg(so) for 0<s<s (k=1,2,...).
S0

Therefore Theorem 2 implies the

Corollary 1. Let conditions (5) and (7) (condition (6) hold, and let

2n—12m—1

ra b
kz::() ZZ:% ,ugm,i(a),ugn,k(b)/o /0 pik(z,y) drdy < ab. (12)

Then problem (1), (2) has at least one (one and only one) solution.
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Let us show that in Theorem 2 and Corollary 1, respectively, conditions (11) and (12)
are unimprovable from the viewpoint that they cannot be replaced by the conditions
2n—12m—1

ra b
>y / / Pk (%, Y) A2m—i (T3 @) A2n—k (y;0) drdy < 1 +e (1)
k=0 i=0 Y0 7O

and
2n—12m—1

~a b
S X pamei(@hn ) /O /O pir(e,y)dedy < (1 +e)ab, (120

no matter how small € > 0 is. Indeed, as it was shown in [6] (see Example 1.1), for an
arbitrary € > 0 there exist continuous functions g1 : [0,a] — [0,+00) and g2 : [0,b] —
[0, +00) such that

a b
4<a/ g1(z)dx < 4V1 + ¢, 4<b/ g2(y)dy < 4vV1+e,
0 0

and the boundary value problems
1"

w” = —g1(z)w, w(0)=w(a)=0

and
/

w"” = —ga(y)w, w(0) =w(b)=0
have nontrivial solutions wy and wz. If m > 1 (n > 1), then by v1 (by v2) denote the
solution of the problem

w2 — i (z), vV 0) =0 (@) =0 (=0,...,m—1)
(0(2"*@ —wa(y), v@)(0)=v@B)=0 (k=0,...,n— 1)).
For m =1 (n = 1) set v1(z) = w1 (z) (v2(y) = wa(y)). Then the function
u(z, y) = vi(z)v2(y)

is a nontrivial solution of the homogeneous equation

u(2m,2n) u(2m72,2n72)

=g(z,y)
subject to the boundary conditions (9), where
9(z,y) = g1(z)g2(y)
and
a b
16 < ab/ / g(z,y)drdy < 16(1 +¢). (13)
On the other hand, the function o
f(x,y, 200, - - -, 22m—12n—1) = g(, y)22m—22n—2
satisfies condition (6), where
pik(z,y) =0 for 1 #2m—2 or k #2n —2,
pik(z,y) = g(z,y) for i=2m—2, k=2n—2.

Moreover, as it follows from inequality (13), conditions (11) and (12) are violated, while
conditions (11¢) and (12¢) hold.

Theorem 3. Let conditions (5) and (7) (condition (6) hold, where
pik(z,y) =pir. (1=0,....2m—-1;k=0,...,2n— 1)

are nonnegative constants satisfying the inequality
2n—12m-—1

XL TR e "

™

Then problem (1), (2) has at least one (one and only one) solution.
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Let : € {0,...,m — 1}, k € {0,...,n — 1}. Then the differential equation

u@m2n>:(,1yn+wu+k<[)2m*%<ﬂ

) 2n—2k
a

1 (24:2k)
b
has a nontrivial solution
. ™ . ™
u(z,y) = sin (f :v) sin (f y).
a b
Consequently, in Theorem 3 the strict inequality (14) cannot be replaced by the unstrict

inequality
2n—12m-—1

Z Z (%)Qm—i(g>2n—kpik§1.
k=0 =0
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