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ON THE GENERAL AND MULTIPOINT
BOUNDARY VALUE PROBLEMS FOR LINEAR
SYSTEMS OF GENERALIZED ORDINARY
DIFFERENTIAL EQUATIONS, LINEAR IMPULSE
AND LINEAR DIFFERENCE SYSTEMS



Abstract. The system of the generalized linear ordinary differential equations
dz(t) = dA(t) - z(t) + df (¢)

is considered with general {(x) = co, multipoint 3°7°, L;x(t;) = co, and Cauchy—

Nicoletti type zi(t;) = fi(x1,...,2n) + coi (¢ = 1,...,n) boundary value con-

ditions, where A : [a,b] — R™*™ and f : [a,b] — R" are, respectively, matrix-
and vector-functions with bounded total variation components on the closed in-

terval [a, b], co = (coi)j=1 € R", ¢; € [a,b] (i =1,...,n(no)), no is a fixed natural
number, L; € R™*™ (j = 1,...,n0), x; is the i-th component of x, and ¢ and ¢;
(i=1,...,n) are linear operators.

Effective sufficient, among them spectral, conditions are obtained for the unique
solvability of these problems. The obtained results are realized for the linear
impulsive system

dx
i Ptz +q(t), z(me+)—z(me—) = Grx(me) + g (k=1,2,...),

where P € L([a,b],R"*"), q¢ € L([a,b],R"), G, € R™*"™ gr € R" and 7} € [a,b]
(k=1,2,...), and linear difference system
Ay(k —1)=Gi(k — Dy(k — 1) + Ga(k)y(k) + Gs(k)y(k + 1) + go(k)
(k=1,...,mq), where G;(k) € R"™*", go(k) eR" (=1,2,3; k=1,...,m0).
2000 Mathematics Subject Classification. 34K06, 34A37, 34B05, 34B10.
Key words and phrases. Systems of linear generalized ordinary differential,

impulsive and difference equations, general linear and multipoint boundary value
problems, unique solvability, the Lebesgue—Stieltjes integral.
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1. STATEMENT OF THE PROBLEM AND BASIC NOTATION

Let A = (aik)i = : [a,b] = R™ ™ and f = (f;)iL; : [a,b] — R" be, re-
spectively, matrix- and vector-functions with bounded total variation com-
ponents on the closed interval [a, b].

Consider a linear system of generalized ordinary differential equations of
the form

dx(t) = dA(t) - x(t) + df (t) for tc[a,b]. (1.1)

We investigate the problem on existence of the solutions of the system

(1.1) satisfying the multipoint boundary condition

ZLjI(tj) = Cp, (1.2)

where t; € [a,b] (j =1,...,n0), L; e R™*™ (j =1,...,n9), ¢coc € R", and

ng is a fixed natural number.
A particular case of the condition (1.2) is the Cauchy—Nicoletti problem
Iz(tz) = Cp; (Z: ].,,Tl), (13)

where cp; € R and z; is the i-th component of the solution z.
Along with the problem (1.1), (1.2), we also consider the problem with
the boundary condition
xi(ti)ZKi(xla"'amn)+COi (7::17"%”)7 (14)

where ¢; € BV([a,b],R") — R (i = 1,...,n) are linear bounded function-
als satisfying some conditions of smallness, as well as with the boundary
condition

£(x) = co, (1.5)

where
b

Lz) = /dL(t) -z(t)

a

and L : [a,b] — R™™™, L(b) = Opxn, is a matrix-function with bounded
total variation components on [a, b].
We also consider the differential system

dx(t) = edA(t) - x(t) + df (¢) (1.6)

which depends on a small positive parameter .
Along with the system (1.1) and the boundary conditions (1.2)—(1.5), we
consider the corresponding homogeneous system

dx(t) = dA(t) - x(t) (1.1p)
and the corresponding homogeneous conditions

X[):le'(tj) = 0, (120)

.ﬁl(tl) =0 (i: 1,...,”), (1.30)
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.ﬁl(tl) :&(Jcl,...,xn) (i:l,...,n) (1.40)
and
0(z) = 0. (1.50)

In the present paper, we establish effective necessary and sufficient con-
ditions for unique solvability of the general problem (1.1), (1.5) (of the
problem (1.1), (1.2)). Such conditions differ from those given in [27], [7].
This result for linear systems of ordinary differential equations belongs to
T. Kiguradze [20], [18].

The boundary value problems with the condition (1.3) have, for the first
time, been considered by O. Nicoletti [24] for systems of ordinary differential
equations. The optimal conditions for the solvability and unique solvability
of the problem with the boundary condition (1.4) are established in [16],
[17], [18], [19], [23] for the linear and nonlinear cases.

The multipoint boundary value problems for functional differential equa-
tions are investigated in [13], and for systems of generalized ordinary differ-
ential equations in [2]-[6].

The results presented in the paper generalize the concrete definition for
the linear case of the results from [2]-[6].

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and dif-
ference equations from a unified point of view. In particular, the following
systems can be rewritten in the form (1.1):

(a) the impulsive system
Ccll_f = P(t)xz +q(t) for tE€|a,bl],
x(te+) —x(te—) = Gra(me) + g (k=1,2,...),

where P = (pi)i1—; : [a,b] — R™" and ¢ = ()i~ : [a,b] — R" are,
respectively, matrix- and vector-functions with Lebesgue integrable com-
ponents on [a,b], 7 € [a,b] (k = 1,2,...), and Gy, = (gkil)?,lﬂ € R™x»
(k=1,2,...) and g = (grs)"-; € R™ (k =1,2,...) are constant matrices
and vectors such that

(1.7)

> UGk + llgrll) < o0 (1.8)
=1

(b) the difference system

Ay(k —1) = Gi(k = Dy(k — 1) + Ga(k)y (k) +
+ Gs(k)y(k+1)+go(k) (k=1,...,mg), (1.9)
where mg is a fixed natural number, and C;j = (gju )i =, : {0,...,m0} —

R™ ™ (j =1,2,3) and go = (90i)7 : {0,...,mo} — R™ are, respectively,
matrix- and vector-functions.
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We consider both the impulse system (1.7) with each of the boundary con-
ditions (1.2)—(1.5) and the difference system (1.9) with each of the boundary

conditions
Nom

S Lunjy(ky +m—1) = com  (m =1,2), (1.10)
j=1
where k; + m —1 € {0,...,mo}, Lm; € R (m =1,2; j =1,...,n0m),
com = (Comi)i—y € R™ (m = 1,2), and n¢1 and ng2 are fixed natural num-
bers;

yilki+m—1)=comi (m=1,2; i=1,...,n) (1.11)

and
yilki+m—1)=lpmi(y1,. -y Un) +comi (Mm=1,2; i=1,...,n), (1.12)
where £,,,; (m =1,2;i=1,...,n) are linear bounded functionals, and y; is

the i-th component of the solution y.
Along with the systems (1.7) and (1.9) and the boundary conditions
(1.10)—(1.12), we consider the corresponding homogeneous systems

(jl_jf: = P(t)xz +q(t) for tE€|a,bl,

x(te+) — z(me—) = Gra(me) + g (k=1,2,...),

(1.70)

and
Ay(k —1) = Gi(k — Dy(k — 1) + G2(k)y(k)+
+Galk)y(k+1) (k=1,...,mo), (1.9)

and the homogeneous boundary conditions

nom

> Lyiy(ki+m—-1)=0 (m=1,2), (1.10)
i=1
yilkj +m—-1)=0 (m=1,2 i=1,...,n) (1.114)

and
yilkij +m—1)=Llni(y1,--.,yn) (m=1,2; i=1,...,n). (1.12¢)

Remark 1.1. Note that the results obtained for the difference problem
(1.9), (1.10) (see Section 4) do not permit to extend them automatically to
the particular case when G3(k) = Opxn. We note that this fact is natural
and hence we investigate separately the system

Ay(k—1) = Gy (k—)y(k—1)+ Ga(K)y(k) +go(k) (k= 1,...,mo) (1.13)

with each of the boundary conditions
no
Z Lijy(kj) = con, (1.14)
j=1

yi(ki) =cors (i=1,...,n) (1.15)
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and
yi(ks) = Cii(y1, .- yn) +core (i=1,...,n). (1.16)

Along with the system (1.13) and the boundary conditions (1.14)—(1.16),
we consider the homogeneous system

Ay(k —1) = Gi(k — )y(k — 1) + Go(k)y(k) (k=1,...,mo) (1.130)

and the homogeneous boundary conditions

S Liyyliy) = 0, (1L.14y)
yi(ki) =0 (i=1,...,n) (1.150)

and
yi(k’i)ZEU(yl;--wyn) (’L': 1,...,’17,). (1.160)

In the paper the use will be made of the following notation and definitions.

N={1,2,...}, Ng={0,1,...}, Z is the set of all integers.

R =]—o00, +o0[, Ry = [0, +o0]; [a,b] and ]a, b] (a,b € R) are, respectively,
closed and open intervals.

I is an arbitrary closed or open interval from R.

[t] is the integer part of t € R. y,, is the characteristic function of the
set M C R, i.e.

1 for t € M,
XM(t){

0 for t¢ M.

R™*™ is the space of all real n x m matrices X = (zi;);;; with the
norm

n
X = max > |ayl.
Jj=1,...m -

R = {(Jcl])Z’JZl x>0 (i=1,...,n; j=1,....,m)}.
Opnxm (or O) is the zero n X m matrix.

If X = (z5);72, € R, then
1 X] = (Jzij )72, -
If X € R?"%2" then by X;,,, (I,m = 1,2) we denote n x n matrices such
that
X1 X2
X = .
(X21 X22)

Sometimes, by [X];; we denote the element x;; in the i-th row and in

the j-th column of the matrix X = (z45); 72, i.e. x5 = [X]i; (i =1,...,m;
j=1,...,m).

R"™ = R™"*! is the space of all real column n-vectors x = (z;)"_; R} =
Rnxl

gl

If X € R™™ then X1, det X and r(X) are, respectively, the matrix
inverse to X, the determinant of X and the spectral radius of X; I,, is the
identity n x n-matrix; diag(A1, ..., A,) is the diagonal matrix with diagonal
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elements A1, ..., Ay; 6;; is the Kroneker symbol, i.e. §;; =1 and d;; = 0 for
i£76,5=1...).

The inequalities between the real matrices are understood component-
wise.

A matrix-function is said to be continuous, integrable, nondecreasing,
etc., if each of its component is such.

b
If X : [a,b] - R™™ is a matrix-function, then V(X) is the sum of
a
total variations on [a, b] of its components x;; (i =1,...,n; j =1,...,m);
¢
VX)(#) = (V(y)(1))ijZ,, where V(wy)(a) = 0, V(wi;)(t) = V(wy;) for
a<t<b; X(t—) and X (t+) are, respectively, the left and the right limits
of X at the point ¢ (X (a—) = X(a), X(b+) = X (b)).
X)) =X(t)— X({t-), d2X(t) = X(t+) — X (¥).
1X|s = sup{[| X (D) : £ € [a,0]}, | X|s = (lwigls)i)Z5
BV([a, b],R™*™) is the normed space of all bounded variation matrix-

b
functions X : [a,b] — R™ ™ (i.e. such that V(X) < oo) with the norm
a

1X 1l
BV([a,b],R}*™) = {X € BV([a,b],R"*™) : X(t) > Opnxp, for t € [a,b]}.
C(I,R™*™) is the space of all continuous and bounded matrix-functions

X :[a,b] = R™™ with the norm || X||s,r = sup{|| X ()| : ¢t € I}.

C(I,D), where D C R™ ™  is the set of all continuous and bounded

matrix-functions X : I — D.

Cloc(I, D) is the set of all continuous matrix-functions X : I — D.
C([a,b], D) is the set of all absolutely continuous matrix-functions X :

[a,b] — D.
aloc (I, D) is the set of all matrix-functions X : I — D whose restrictions

to an arbitrary closed interval [a,b] from I belong to C([a, b], D).

Cloe(I \ {m:}52,, D) is the set of all matrix-functions X : I — D whose
restrictions to an arbitrary closed interval [a, b] from I\ {7;}72, belong to

C(la,b], D).
If By and Bs are normed spaces, then an operator g : By — Bs (nonlin-
ear, in general) is positive homogeneous if

g(\r) = Ag(z)

for every A € R, and z € B;.

An operator ¢ : BV([a,b],R") — R™ is called nondecreasing if for every
z,y € BV([a,b],R™) such that z(t) < y(t) for t € [a,b] the inequality
w(x) () < o(y)(¢) holds for ¢ € [a, b].

If &« € BV([a,b],R) has no more than a finite number of points of dis-
continuity, and m € {1, 2}, then Dam = {tami,- - tamnan, | Fam1 < - <
tamna., ) 1S the set of all points from [a, b] for which d,,,a(t) # 0.

fom = max{dmna(t) : t € Dam} (m=1,2).
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If 8 € BV([a,b],R), then

Vamgj = Max {djﬂ(taml) + Z d;ip(r):1=1,... ,nam}

tam i+1—m <T<tami4+2—m

(j,m =1,2); here tao0 = a — 1, tain,,+1 = b+ 1.
S; : BV([a,b],R) — BV([a,b],R) (j = 0,1,2) are the operators defined,
respectively, by

Si(z)(a) = Sz(z)(a) =0,
Si(z)(t) = > diz(r) and Sap(x)(t) = Y doa(r) for a <t <b,
and . .
So(z)(t) = z(t) — S1(x)(t) — Sa(z)(t) for t € [a,b].

If g : [a,b] — R is a nondecreasing function, z : [a,b] —» R and a < s <
t < b, then

t
[amrdgn = [amasi@m+ 3 srdgr) + 3 a(rdag(o).
S I s<t<t s<T<t

where [ z(7)dSo(g)(7) is the Lebesgue-Stieltjes integral over the open
Is,tl
interval ]s, ¢[ with respect to the measure 10(So(g)) corresponding to the
function Sp(g).
If a = b, then we assume

and if a > b, then we assume

b a

[aterdge) = [ att)dgte)
a b

LP([a,b],R; g) (1 < p < +00) is the space of all u(g)-measurable functions
b

z : [a,b] — R such that [ |z(t)|Pdg(t) < +oo with the norm

mmy(iu@W@@>;

L*%°([a,b],R; g) is the space of all u(g)-measurable and u(g)-essentially
bounded functions x : [a,b] — R with the norm

]l 400 = esssup{la(®)] < ¢ € [a,b]}.
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If g(t) = g1(t) — g2(¢), where g1 and g2 are nondecreasing functions, then
t t t

[20rasn = [e@rant) - [a@rdni) o st

S S S

L([a,b],R; g) is the set of all functions z : [a,b
integrable with respect to the measures p(g;) (i =

| — R, measurable and
1,2), i.e. such that

b
/Ix(t)ldgi(t) <+oo (i=1,2).

If G = (gi)_, € BV([a, b, R>") and X = (2}, « a,b] — R™™,
then
Si(G)(t) = (S;(gan) ()i r_, (G =0,1,2)
and

L,m

/b dG(7)- X (1) = (kzij /b 1 (7) dgik(T))

LP([a,b],R""™; G) is the space of all matrix-functions X = (wx;),7~, :
[a,b] — R™*™ sitisfying xx; € LP([a,b], Rig;x) with the norm

,j=1

n

IXIne= D lleksllp.gu-

ik,j=1

If G(t) = diag(t, . .., t), then we assume || X||zr = || X||p,¢ and omit G in
the notations containing G.
L?([a,b], D; G), where D C R™*™, is the set of all matrix-functions X €
L¥([a,b],R™™; G) such that X (t) € D for t € [a,b].
For every matrix-function X € BV([a,b],R™"*") such that det(I, —
d1 X (t)) # 0 for t € [a,b] we put
[X()]o = (In — d1 X (1)),
¢
[X(#)]i = (In — diX (1)) /de(T) X (M)
a

for tela,b (i=1,2,...), (1.17,)

(X(#)o = Onxn, (X)) = X(t), (X(8))it1 = /de(T) (X(7))i

for te€a,b (i=1,2,...), (1.18y)
and

VI(X)(t) = [(In — di X (1) TV (X2)(1),



10 M. Ashordia

Vit () = (T — di X (1) / 4V (X_)(r) - Vi(X)(r)

for t €[a,b] (i=1,2,...), (1.19,)

where X_(t) = X(¢t—); and for every X € BV([a,b],R"*"™) such that
det(I, +d2 X (t)) # 0 for t € [a,b] we put

(X ()]0 = (In + d2X (1)),

for te€a,b (1=1,2,...) (1.185)
and

Vi(X)(t) = [(In + d2 X (1)) 7H(V(X ) (£) (b) — V(X4 (1),

t

Vg1 (X)(8) = [(In + d2 X () ' /dV(X+)(T)~Vz'(X)(T)

for t € la,b] (i=1,2,...), (1.19,)

where X, (t) = X (t+).

Ifl €N, then N, = {1,...,1}, N, = {0,1,...,1}.

E(J,R"*™), where J C Z, is the space of all matrix-functions ¥ =
(ym)?’]"il :J — R™™ with the norm

Yl =max{|[Y(k)|: k€ T}, [V]s=(lyillo);2

ij=1"
If « € E(J,R,), then
1Y e = (Za@)nwmv) i 1< v < oo, and [¥seea = Y]l
keJ

(if a(k) =1, then we omit « in these notations).
A is the difference operator of the first order, i.e.

AY(k—=1)=Y(k)—Y(k—1) for Y € E(N,R™™), keN,

If a function Y is defined on N; or ﬁh_l, then we assume Y (0) = Oy xm,
or Y (1) = Opnxm, respectively, if it is necessary.

We say that the matrix-function X € BV([a, b],R™*™) satisfies the Lap-
po-Danilevskii condition if the matrices So(X)(t), S1(X)(t) and S2(X)(¢)
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are pairwise permutable for every t € [a, b], and there exists to € [a,b] such
that
t

/ So(X)(7) dSo(X)(r) = / dSo(X)(7) - So(X)(r) for ¢ € [ab. (1.20)

to

A vector-function z € BV([a, b], R™) is said to be a solution of the system
(1.1) if

t
x(t) = z(s) + /dA(T) cx(t)+ f(t) — f(s) for a<s<t<h.
By a solution of the system of generalized ordinary differential inequalities
da(t) < dA(t) - =(t) + f(t) (=)
we mean a vector-function « € BV([a, b], R™) such that

t

x(t) < z(s) + /dA(T) cx(T) 4+ f(t) — f(s) (=) for a<s<t<b.

We assume that A(0) = Opxn, f(0) =0 and
det(I, + (—=1)7d;A(t)) #0 for t€[a,b] (j=1,2). (1.21)

The above inequalities guarantee the unique solvability of the Cauchy
problem for the corresponding systems (see [28, Theorem II1.1.4]).
If s € R and 8 € BVJa,b],R) are such that

L (“1/dB(0) A0 for (—1)(t—s5)<0 (j=1,2),
then by v3(-, s) we denote the unique solution of the Cauchy problem
dy(t) =~(t)dB(t), ~(s)=1.
It is known (see [14], [15]) that

(S0~ (e T (1 dsir)”
x I (14 daf(n) or t > s,
15(0,5) = L exp(So( (1) — 503 o) T (A-dpr)x 122)
[T (1+dyf(r))~ ;fst<s,
e 1 for t = s.

Definition 1.1. Let ¢1,...,t, € [a,b]. We say that a pair (C, )
consisting of a matrix-function C' = (ci1)7;—; € BV([a,b],R"*") and a
positive homogeneous nondecreasing continuous operator £ = (fo;); :
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BV ([a,b], R*™) — R belongs to the set U(ti,...,t,) if the functions ¢;
(¢ #£1; 4,1 =1,...,n) are nondecreasing on [a, b], and the system

segn(t — t;)dx; (t <Z:L’l ) deq (t
for t € [a, b] t£t (i=1,...,n), (1.23)
(—1)7djz;(t; <le Ydjca(t;) (j=1,2; i=1,...,n)

has no nontrivial, nonnegatlve solution satisfying the condition

.ﬁl(tl) SEOi(ml,...,xn) (i:l,...,n). (1.24)

The above definition of the set U(ty,...,t,) differs from that given in

[3], [6 ], where it is, in particular, required that the functions c¢; (i # I;
i,l= ,m) be continuous at the point ¢; and the condition

djcm-(t) >0 for te€fa,b] (j=1,2; i=1,...,n)
be satisfied.
The set Ul(ty,...,t,) has been introduced by I. Kiguradze for ordinary
differential equations (see [17], [18]).
Here we quote some general results from [7], [27] on the solvability of the
problem (1.1), (1.5).
Let Y € BV([a, b],R"*™) be a fundamental matrix of the system (1.1¢)

under the condition
Y(a) = I,.

Definition 1.2. A matrix-function G : [a,b] X [a,b] — R™*" is said to
be the Green matrix of the problem (1.1), (1.5¢) if:
(a) for every s €]a, b] the matrix-function G(-, s) satisfies the matrix equa-
tion
dX(t) = dA(R) - X (t)
both on [a, s[ and ]s, b];
¢
(b) G(t, t+) —g(t,t—):Y(t)D_l{ /dL(T)~X(T)X_l(t)(ln—dlA(t))_l—i—
a
b

+ / AL(r) - X (1) X (1) (I + daA(t)) " —

—d1 L(t) - (I, — dyA(t)) " — do L(t) - (I, + dQA(t))_l} for t €la,b],

where

b
D= /dL(t) Y (8); (1.25)
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b
(c) the vector-function z(t) = [dsG(t,s) - f(s) satisfies the condition

(1.50). ‘

The Green matrix of the problem (1.1p), (1.5¢) exists, and

_X(O)D [dL(t) - X(1)X1(s) for a<s<t<b,

a

G(t:5) =3 X()D [dL(t)- X(NX1(s) for a<t<s<b (1:20)

Onxn for aStZSSb.

Note that we can choose an arbitrary value for G(t,t) (a <t < b) instead
of that given above.

The Green matrix is unique in the following sense. If Gy (¢, s) is a matrix-
function satisfying the conditions (a)—(c), then

G(t,s) —Gi(t,s) =Y (t)H(s),
where H € BV([a, b], R"*™) is a matrix-function such that
H(s+)=H(s—)=C =const for s¢€ la,b],
where C' € R™*" is a constant matrix.

Theorem 1.1. The boundary value problem (1.1), (1.5) has a unique
solution if and only if the corresponding homogeneous problem (1.1¢), (1.5¢)
has only the trivial solution. If the latter condition holds, then the solution
x of the problem (1.1), (1.5) admits the representation

b

z(t) = xo(t) + /dsg(t,s) - f(s) for t€a,b], (1.27)

where xq is a solution of the problem (1.1p), (1.5), and G is the Green matriz
of the problem (1.1p), (1.5¢).

We note that the problem (1.1), (1.5) is uniquely solvable if and only if
det D # 0, (1.28)
where the matrix D is defined by (1.25).

Corollary 1.1. Let the matriz-function A satisfy the Lappo—Danilevskii
condition. Then the problem (1.1), (1.5) is uniquely solvable if and only if

b
det ( / AK (1) - exp(So(A)1) [ (o + daA())x

a<lt<t

< II dlA(T))l) #0. (1.29)

a<t<t

a
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This corollary follows from Theorem 1.1 and (1.28), since by Lemma 2.3
from [8] the matrix-function Y defined by Y (a) = I,, and

Y(t) = exp(So(A)(t)) [ (Tn + d2A(r))x
i X H (I, — diA(T))™" for a <t <b (1.30)

a<t<t
is the fundamental matrix of the system (1.1).

Remark 1.2. If the homogeneous problem (1.1p) (1.50) has a nontrivial
solution, then for every f € BV([a, b],R"™) there exists a vector ¢y € R™ such
that the problem (1.1), (1.5) has no solution.

In general, it is quite difficult to verify the condition (1.28) directly even
in the case when one is able to write out the fundamental matrix of the
system (1.1g) explicitly. Therefore it is important to seek for effective con-
ditions which would guarantee the absence of nontrivial solutions of the
homogeneous problem (1.1y), (1.5¢). Such results can be found in Section
2. Analogous results have been obtained by T. Kiguradze for ordinary dif-
ferential equations [18], [20].

Here the use will be made of the following formulas:

b b
/ £(t)dg(t) = / F() dg(t—) + F(b)drg(b).
¢ ab (1.31)

/ £(t) dg(t) = / £(t)dg(t+) + f(a)dag(a),

b b

/f(t) dg(t) +/g(t) df (t) = f(b)g(b) — f(a)g(a)+

a

+ > dif(t) dig(t) = Y daf(t) - dag(t)

a<t<b a<t<b
(integration-by-parts formula), (1.32)
/ F£)dSi(g)(t) = Y f(t)dig(t)
a<t<b

(1.33)

/f ) dSa(g Zf dag(t)

a<t<b

(see [28, Theorems 1.4.25, 1.4.33, Lemma 1.4.23]) and
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b

[0 = e - e
+ Z ( DO () di (-
m=0 “a<t<b
= Y ) daf(t) dgfkm(t))] (k=1,2,...) (1.34)
a<t<b
(see [7, Lemma 1.1]) for f,g € BV([a,b],R).
If (1.21) holds and X (X (a) = I,,) is the fundamental matrix of the

system (1.1), then

X’l(t):I+A(0)—X’l(t)A(t)—&—/dX’l(T)-A(T) for ¢ € [a,8] (1.35)

2(t) = £(t) — f(to) + X(t){x%mco—

= [dX7H6)- (79 - St} for t€ ol
to
(variation-of-constants formula), (1.36)

where ty € [a,b] and ¢y € R™ are arbitrary, and x is the solution of the
system (1.1) satisfying the Cauchy condition z(ag) = ¢y (see [28, p. 120]).

2. FORMULATION OF THE RESULTS

2.1. Theorems on the Solvability of the General Linear Problem
(1.1), (1.5).

Theorem 2.1. The boundary value problem (1.1), (1.5) has a unique
solution if and only if there exist natural numbers k and m such that the
matrix

k-1 b
-3 [z e 2.1)

is monsingular and '
r(Mpm) <1, (2.2)

where

1=0

m—1 b
My = Vin(A)(0) + < 3 I[A(')]z-ls) [t ne v, @
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[A®)]; (i =0,1,...) and V;(A)(t) (i =0,1,...) are defined, respectively, by
(1.17;) and (1.19;) for somel € {1,2}, andc=b+ (a —b)(I = 1).

Theorem 2.1’. Let there exist natural numbers k and m such that the
matrix

k-1 0
My = L)~ Y [ L) () (2.4)

is nonsingular and the inequality (2.2) holds, where

Min = (VD + (1 + T 146D

b
< [avos D V@ 29

(A(t); (1 =0,1,...) and (V(A)(t)): (i =0,1,...) are defined by (1.18;) for
some l € {1,2}, and ¢ = b+ (a — b)(I — 1). Then the problem (1.1), (1.5)
has one and only one solution.

Corollary 2.1. Let either

det(L(a)) £ 0 (2.6)
. L(a) = O, (2.7)
and the conditions
b
Ao (A0 = 0 (120,005 - 1) (2.8)
and ' ,
det (/dL(t) - (A(t))j) £0 (2.9)

hold for some natural j, where (A(t)); (i =0,...,1) are defined by (1.181)
or (1.182). Then there exists g > 0 such that the problem (1.6), (1.5) has
one and only one solution for every e €]0,eg|.

Theorem 2.2. Let a matriz-function Ay € BV([a,b], R"*"™) be such that
the homogeneous system

d(t) = dAo(t) - z(t) (2.10)

has only the trivial solution satisfying the boundary condition (1.5¢), and let
the matriz-function A € BV ([a,b],R"*™) admit the estimate

b
/Igo(t,T)ldV(So(A —A))(7) + Y 1Go(t, =) - di(A(T) = Ao(7)) |+

a<t<b
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+ Z |Go(t, 7+) - da(A(T) — Ao(7))| < M for t € [a,b], (2.11)

a<t<b
where Go(t,T) is the Green matriz of the problem (2.10), (1.5¢), and M €
R*™ is a constant matriz such that
r(M) <1. (2.12)
Then the problem (1.1), (1.5) has one and only one solution.

2.2. Theorems on the Solvability of the General Multi-Point Bo-
undary Value Problem (1.1), (1.2).

Theorem 2.3. The boundary value problem (1.1), (1.2) has a unique
solution if and only if the corresponding homogeneous problem (1.1g), (1.20)
has only the trivial solution, i.e. if and only if

det (2 L; Y(tj)) #0, (2.13)

where Y is a fundamental matriz of the system (1.1g). If the latter condition
holds, then the solution x of the problem (1.1), (1.2) admits the representa-
tion (1.27), where xq is a solution of the problem (1.1¢), (1.2), and G is the
Green matriz of the problem (1.1p), (1.20).

It is not difficult to verify that the Green matrix of the problem (1.19),
(1.2¢) has the following form:

V() Yo (1= Xjau, () Z;Y " 2(s) for a<s<t<bh,
i=1
G(t,s) = =Y (¢) ZO: X(art,;1(5)Z;Y ~1(s) for a <t <s<b, (2.14)
j=1
Onxn for a <t=1s5<b,
where

0 -1
Zj = <ZL1Y(t1)> Lj Y(t]) (j:1>"'an0)a
i=1
and X[q,¢,) is the characteristic function of the closed interval [a, ¢].

Corollary 2.2. Let the matriz-function A satisfy the Lappo—Danilevskit
condition. Then the problem (1.1), (1.2) is uniquely solvable if and only if

det (zo:Lj exp(So(A)(t;)) - H (In, + da A(T)) %

j=1 a<t<t;

< ] Un- dlA(T))l) #0.

a<t<t;
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Theorem 2.4. The boundary value problem (1.1), (1.2) is uniquely
solvable if and only if there exist natural numbers k and m such that the

matrixc
no k—1

M= " L[A(t)]

j=1i=0
is nonsingular and the inequality (2.2) holds, where

no
Mp.m = V(4 (Z (A S) Z|Mk_1[’j|Vk(A)(tj)a
j=1
[A®)]; (i =0,1,...) and V;(A)(t) (i =0,1,...) are defined, respectively, by
(1.17;) and (1.19;) for somel € {1,2}, and c=b+ (a —b)(I — 1).
Theorem 2.4'. Let there exist natural numbers k and m such that the

matrix

k—1

My = Z L; (Z )i — 1>

1=0

is nonsingular and the mequahty (2.2) holds, where

Miows = (V(A)(e))m + (In S |<A<->>z-|s) S MLV (A) ()
i=0 j=1

(A(); i=0,1...) and (V(A)(t)); (i =0,1,...) are defined by (1.18;) for
somel € {1,2}, and ¢ = b+ (a —b)(I — 1). Then the problem (1.1), (1.2)
has one and only one solution.

Corollary 2.3. Let

det (i:: Lj) #0 (2.15)

and
r (LoV(A)(b)) < 1,
where )
L0:In+‘(ZLj) Z|Lj|.
j=1 =1

Then the problem (1.1), (1.2) has one and only one solution.

Corollary 2.4. Let either the condition (2.15) hold, or there exist a
natural number k such that the conditions

ZLJ‘:Oan, det(ZLJ(A(tJ))Z) =0 (i:07...,]€—1)
j=1 j=1
and

det<ZL >7A0
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hold. Then there exists g > 0 such that the problem (1.6), (1.2) has one
and only one solution for every e €]0,&q].

2.3. Theorems on the Solvability of the Problems (1.1), (1.3) and
(1.1), (1.4).

Theorem 2.5. Let there exist a matriz-function C = (ca)j)—; €
BV([a,b],R™"*™) and an operator Ly = (Lo;)_, satisfying the condition
(C,go) S U(tl,...,tn) (2.16)
such that

So(aii)(t) — So(aii)(s) < (So(cii)(t) — So(cii)(s)) sgn(t — s)
for t—s)(s—1t;)>0, s,t€a,b] (i=1,...,n), (2.17)
(1) (J1+ (1) dmaii(t)] — 1) < dimcii(t)

for (=17 (t—t;)>0 (j,m=1,2; i=1,...,n), (2.18)
1So(ai)(t) — Solai)(s)| < Solcu)(t) — So(ci)(s)
for a<s<t<b (i#l; i,l=1,...,n) (2.19)

and
djaq(t)] < djeq(t) for t€la,b] (j=1,2; i#1 i,0=1,...,n). (2.20)
Let, moreover,
[Ci(2z1,. .. zn)| < Loi(|za], .-y |zn])
for (x1)j, € BV([a,b,R™) (i=1,...,n). (2.21)
Then the problem (1.1), (1.4) has one and only one solution.

Theorem 2.6. Let the conditions
t

So(aii)(t) — So(aii)(s) < sgn(t — s) / hii (1) dSo(a)(7)
for (t—s)(s—t;) > 0,5 s,t€fa,b] (i=1,...,n), (2.22)
for (=17t —t;)>0 (jym=1,2; i=1,...,n), (2.23)

[So(ai)(t) — So(ai)(s)| < /hz‘l(T) dSo(cu)(T)

for a<s<t<b (i#l; i,l=1,...,n) (2.24)
and

|djau(t)] < ha(t)d;jou(t)
for tefa,b) (j=1,2; i#1l; i,l=1,...,n) (2.25)
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hold, where aq (I = 1,...,n) are functions nondecreasing on [a,b] and

having not more than a finite number of points of discontinuity, h; €
L“([aa b]aR;ai); hi € LM([avb]vRJr;al) (Z 7£ l; l= 1,.. wn)} 1< u < +oo.
Let, moreover,

n

2
iy, n) <Y ikl s, (en)
m=0%k

=1
for (xp)i_, € BV([a,b],R") (i=1,...,n) (2.26)
and
r(H) <1, (2.27)
where by, € Ry (m=0,1,2;4,k=1,...,n), - + % =1, and the 3n x 3n-
matric H = (Hj+1m+1)?,m:o is defined by

1
m

HjJrl m+1 — (gzjgmzk + Alcmij”hik||LL,Sm(ozi))Zkzl (Jam =0,1, 2)3
§ij = (9j()(b) — Sj(ai)(a))¥  (j=0,1,2,; i=1,...,n);
oy — 4 (72) 7 &lo i Sol@i)(t) = Solaw)(?),
€k0€i0 Zf So(ai)(t) §é So(ak)(t) (’L', k= 17 .. .,n);
)\kmij :fkmfij Zf m2+j2 >0, mj=0 (jam:()al’Q; Zak: ]-a"'an)a

N

1 . o ™ . .
Akmij = (Zﬂakml/akmaij sin m) (]am:L?; Zak: ].,...,T‘L)~

Then the problem (1.1), (1.4) has one and only one solution.

Remark 2.1. The 3n x 3n-matrix H appearing in Theorem 2.6 can be
replaced by the n x n-matrix

2
(maX { Z (&ij&m‘k + )‘kminhikHu,Sm(ak)) :m=0,1, 2})

n

Jj=0 i,k=1
Corollary 2.5. Let the conditions (2.22)—(2.25) hold, where oy (I =
1,...,n) are functions nondecreasing on [a,b] and having not more than « fi-

nite number of point of discontinuity, hy; € LF([a,b],R;ay), hy €
L*([a,b], Ry50q) (i #£ 1 4,0=1,...,n), 1 <p < +oo. Let, moreover,

T(Ho) <1,

2
where Hg = (()‘kmij||hik||u,Sm(ai))?k=1) s a 3n X 3n-matriz, and
’ m,j=0

Memijs & (J,m =0,1,2;4,k=1,...,n) and v are defined as in Theorem
2.6. Then the problem (1.1), (1.3) has one and only one solution.

Remark 2.2. The 3n x 3n-matrix Hy appearing in Corollary 2.5 can be
replaced by the n x n-matrix

2 n
<max { Z )\kmij”hik”;t,sm(ak) tm= 03 17 2})

j=0 i,k=1
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By Remark 2.2, Corollary 2.5 has the following form for h;(t) = hy =
const (i, =1,...,n) and u = +o0.
Corollary 2.6. Let the conditions
So(aii)(t) — So(aii)(s) < sgn(t — s)hii| So(a)(t) — So(a)(s)|
for (t—s)(s—1t;) >0, s,t€a,b] (i=1,...,n), (2.28)
(_1)j+m (|1 + (—1)mdmaii(t)| - 1) < hj; dma(t)

for (=1 (t—t;)>0 (jym=1,2; i=1,...,n), (2.29)
[So(ai)(t) — Solai)(s)| < ha(So(a)(t) — So(a)(s))
for a<s<t<b (1#£1l i,l=1,...)) (2.30)

and
|djay(t)| < hadja(t) for t€la,b] (j=1,2; i#1; i,1=1,...,n) (2.31)

hold, where a a is function nondecreasing on [a,b] and having not more
than a finite number of points of discontinuity, hy; € R, hy € Ry (i # I;
i,l=1,...,n). Let, moreover,

por(H) <1, (2.32)
where
2
H = (hik)i k=1, po=max { > Amjim =0, 1,2},
7=0

Noo = = (So(@)(b) — Sof)(@)),

Xoj = Ajo = (So(@)(b) = So(@)(a)) * (Sj(a)(b) — Sj(a)(a)* (j=1,2),
1 Lo T

Ami = 5 (ambemeg)* st s

Then the problem (1.1), (1.3) has one and only one solution.

Remark 2.3. The condition (2.32) is optimal in the sense that it cannot
be replaced by the nonstrict inequality

por(H) < 1.

The corresponding example is constructed for ordinary differential equa-
tions in [18]. For the sake of completeness we present here this example.
Consider the problem

dzq dzo 2

B = 2.

at T Tdt T Ab—ap 't (2:33)
xz1(a) =0, z2(b) =0, (2.34)

In this case

n = 2, tl =a, tg = b, an(t) = agg(t) = 0,
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™
t) =1 t) = ———t
a12( ) ) a21( ) 4(b—a)2 ’
and the conditions (2.28)—(2.31) are fulfilled for
2
hi1=ha =0, hig=1, hyy = — t) =t.
11 ="he2=0, hig=1, ha b—ap’ a(t)
Moreover,
2(b—a
Po = ( ) )
™
and - -
A= d A=-—
T (s W S (A

are the eigenvalues of the matrix

I 0 1
= 7_[_2 .
4(b—a)? 0

por(H) = 1. (2.35)

Thus for the problem (2.33) and (2.34) all the conditions of Corollary

2.6 are fulfilled, with exclusion of the condition (2.32) instead of which the

equality (2.35) holds. On the other hand, the problem (2.33), (2.34) is not
uniquely solvable because it has a nontrivial solution

Therefore

7w(t — a) ™ w(t — a)
2(b—a)’ 2(b—a) 2(b—a)
along with the trivial one.
Below, we will give a general theorem (see Theorem 2.8) on the unsolv-

ability of the problem (1.1), (1.4) in the case where the condition (2.16) is
violated.

x1(t) = sin

Theorem 2.7. Let the conditions
So(aii)(t) = So(aii)(s) < [hai(So(as)(t) — Solai)(s))+
+ So(evi)(t) — So(vii)(s)] sgn(t — s)
for (t—s)(s—1t;) >0, s,t€la,b] (1=1,...,n);
(=17 (14 (—=1)"dymaii ()] — 1) < his dmoi(t) + dpai (t)
for (=12t —t;)>0 (j,m=1,2; i=1,...,n);
|So(air)(t) = So(ai)(s)| < hi(So(e)(t) — So(ai)(s))+
+ So(air)(t) — So(vir)(s)
for a<s<t<b (i#l; i,l=1,...,n),
|djau(t)| < hadjoi(t) + djoa(t)
for tela,b] (j=1,2; i £l i,l=1,...,n);
(i, -y an)| < Jpal |2i(si)
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for x = (x;)}-; € BV([a,b],R") (i=1,...,n); (2.36)
djai(ti) S 0, 0 S djOéi(t) < |7]i|71

for (=1 (t—t;)<0 (j=1,2; i=1,...,n) (2.37)

and
|pilvi(si ti) <1 (i=1,...,n) (2.38)
hold, where hy; < 0, hyy > 0 (¢ # 1; i,1 = 1,...,n), p; € R, 5, < 0,
si € [a,b], si #t; (i =1,...,n); az; (i = 1,...,n) are functions nonde-
creasing on [a,b]; «;,q; € BV([a b,R) (¢ 7é l i, =1,...,n) are func-

tions nondecreasing on every interval [a,t;] and ]tl,b] %(t S) = Ya,(t,8)
(i =1,...,n), the function ~y,, is defined according to (1.22), and a;(t) =
(i (t) — a;(t;)) sen(t — t;) (i =1,...,n). Let, moreover,

g <1 (i=1,...,n) (2.39)
and the real part of every characteristic value of the matriz (gil)zlﬂ be
negative, where

§i = ha (0a + (1 — 0a)hi) — hiiga (i,1=1,...,n),
gir = sl (1= |palyi(si, £) ™" yar(se) + max{a(a), ya ()} (6,1 =1,...,n),
Yir(ti) = 0, ya(t) = |aar(t) — aar(ts)| — (1 = dar)djeva(t:)
for (=1 (t—t;)>0 (j=1,2; i,l=1,...,n),
hi =1 if | <1, and hi =1+ (|| = 1)(1 = |palvilsi, )~
if |psl >1 (i=1,...,n).
Then the problem (1.1), (1.5) has one and only one solution.
Theorem 2.8. Let lo; : BV([a,b],R"}) — Ry (i =1,...,n) be linear con-
tinuous functionals, the matriz-function C' = (cq)?;—, € BV([a,b],R"*")
be such that the functions ¢y (i # 1; i,1 = 1,...,n) are nondecreasing on

[a,b] and the problem (1.23), (1.24) has a nontrivial nonnegative solution
x = (x;)_q, i.e. the condition (2.16) is violated. Let, moreover,

djcii(t) >0 for t€fa,b] (j=1,2; i=1,...,n). (2.40)
Then there exist a matriz-function A = (aq);—,; € BV([a,b],R"*"), linear
continuous functionals £; : BV([a,b],R™) — R (i = 1,...,n) and numbers

coi €R (i =1,...,n) such that the conditions (2.17)~(2.21) are fulfilled,but
the problem (1.1¢), (1.4) is unsolvable. In addition, if the matriz-function
C = (cit)i=, is such that

dﬁ(h+Qﬂﬂdmg%Mtth”W%Mtf%»@C®x

degawuﬁm)#o for telab (j=1,2), (2.41)
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where £; € [0,1] (i = 1,...,n), then the matriz-function A = (ai)}
satisfies the condition (1.21).

Remark 2.4. The condition (2.41) holds, for example, if either

D ldjea(t)] <1 for te€a,b] (j=1,2 i=1,...,n) (2.42)
=1
or
djci(t) <1 for (=1)7(t—t;)<0 (j=1,2; i=1,...,n) (2.43)

and
n

Z |djcil(t)| < |1 + (—1)j sgn(t — ti)djcii(t)‘
1=1, 1
for t€a,b] (j=1,2; i=1,...,n) (2.44)

( Z |djcii(t)] < |1+ (—1)7 sgu(t — t;)d;cii(t)|

=1, I#i

for t€a,b] (j=1,2; il,...,n)).

3. BOUNDARY VALUE PROBLEMS FOR IMPULSIVE SYSTEMS

In this section we will realize the results of Section 2 for the impulsive
systems (1.7), (1.2)-(1.7), (1.5).

We will assume that P € L([a,b],R"*"), ¢ € L([a,b],R"™), G} € R"*",
g ER™, 7, € [a, 0] (E=1,2,...).

By a solution of the impulsive system (1.7) we understand a continuous
from the left vector-function z € Cioc([a,b] \ {71521, R™) N BV([a, b]R™)
satisfying both the system

dx(t)
dt
and the relation

= P(t)x(t) + q(t) for a.e. t € [a,b] \ {7k} ooy

x(tit) — 2(m—) = Gra(Tk) + gk
for every k € {1,2,...}.

Quite a number of issues of the theory of systems of differential equa-
tions with impulsive effect (both linear and nonlinear) have been studied
sufficiently well (for survey of the results on impulsive systems see, e.g.,
[21], [25], [26], [29], [30], and references therein). But the above-mentioned
works do not contain the results analogous to those obtained in [17], [18]
for ordinary differential equations. Using the theory of generalized ordinary
differential equations, we extend these results to the systems of impulsive
equations.

Here we assume that the conditions (1.8) and

det(Iy + Gr) £0 (k=1,2,..) (3.1)
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hold.

By v(t) (a <t < b) we denote the number of the points 74, (k =1,2,...)
belonging to [a,t[, v(a) = 1.

To establish the results dealing with the boundary value problems for the
impulsive system (1.7), we use the following concept.

It is easy to show that the vector-function z is a solution of the impulsive
system (1.7) if and only if it is a solution of the system (1.1), where

A(a) = Onxn, f(a) =0,
At) = /P(T) dr+ Y Gy,
a a<T<t
t

f(t):/q(T)dTJr Z gr for a <t <b

a a<Tp<t

(by (1.8), we have A € BV ([a,b],R™*") and f € BV([a,b],R™)). Therefore
the system (1.7) is a particular case of the system (1.1). In addition, in this
case the condition (3.1) is equivalent to the condition (1.21), since A and f
are continuous from the left.

We will need the forms of operators defined by means of (1.17,)—(1.19,)
( = 1,2). First of all, we note that the operators defined by (1.171) ((1.173))
and (1.181) ((1.182)) coincide among themselves if X is a continuous from
the left (from the right) matrix-function.

For every matrix-function X € L([a, b], R™*™) and a sequence of constant
matrices Y, € R**™ (k =0,1,...) we put

(XY} ) ()], =In for a<t<b,
(X AVi}321)(@)], = Onxn (i=1,2,...),

[(Xv{yk}l?;l)(t)h-i-l - /X(T)' (X AV }RZ)(7)], dr+

+ > Ve (XY (m)], for a<t<b (i=1,2,..). (32)
a<Tp<t
Note that in this case for the operators V; (i = 1,2,...) defined by (1.19;),
we have

Vi(X AV }220) () = [(IXOLAIYRR2) @],
for a<t<b (i=1,2,...).
The definition of the set U(t1, ..., t,) has in this case the following form.
Definition 3.1. Let ¢1,...,t, € [a,b] and 7 € [a,b] (k = 1,2,...).
We say that the triple (Q,{Hx}72,,%) consisting of a matrix-function

Q = (Qil)zn,l=1 € L([a,b],R™*™), a sequence of constant matrices H) =
(Prit)f 1=y € R™*™ (k= 1,2,...) and a positive homogeneous nondecreasing
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continuous operator £y = (lo;)

Uty,...,tn;T1,72,...) if qu(t)
hii >0 (i7él; il=1,...,n; k

BV([a,b],R}) — R’} belongs to the set
(i #1;4,0=1,...,n) for a.e. t € [a,b],
1,2,...), and the system

Zi(t)ysgn(t —t:) <> qu(m(t) (i=1,...,n),
=1

l‘i(Tk+ —xz Tk— <thzlxl Tk Z—].,...,n; kil,?,...)

has no nontrivial nonnegatlve solution satisfying the condition
xi(t) < loi(x1,...,2n) (i=1,...,n). (3.4)
3.1. Solvability of the Problem (1.7), (1.5).
Theorem 3.1. The boundary value problem (1.7),(1.5) has a unique
solution if and only if the corresponding homogeneous problem (1.74), (1.5¢)

has only the trivial solution. If the latter condition holds, then the solution
x of the problem (1.7),(1.5) admits the representation

) = ot /Q (t.m)g(r)dr — > G(t,7)gk,

a<T<b
where xg s a solution of the problem (1.7¢),(1.5), and G(t,T) defined by
(1.26) is the Green matriz of the problem (1.79), (1.5¢).

Theorem 3.2. The boundary value problem (1.7),(1.5) has a unique
solution if and only if there exist natural numbers k and m such that the
matrix

Z/dL (P AGHE) )],

is nonsingular and the mequalzty (2.2) holds, where the operators
(PAGEIZ @) (1=0,1,...) are defined by (3.2),

My = [(I1P]A{IGk}2Z1) )], +
m—1 b
+ Z [(|P|7{|Gk|}i"=1)(b)]i-/dV(M;ZlL)(t)- [P AIGKRZ) ()] -

a

Corollary 3.1. Let either the condition (2.6), or the conditions (2.7),
b

/dL(t) (PACKZ) (D], = Onen (i =0,...j— 1)

a

and

b
det. /dL [(PAGKYEW],) #0
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hold for some natural j. Then there exists €9 > 0 such that the impulsive

system
d
= = eP(t)r +q(t),
a(mpt) — (k=) = eGra(m) + gr (h=1,2,...)
has one and only one solution satisfying the condition (1.5) for every e €
]O, 50[.

Theorem 3.3. Let a matriz-function Py € L([a,b],R™*™) and constant
matrices Go, € R™ "™ (k=1,2,...) be such that

o0
> IGok] < oo
k=1

and the homogeneous system

(3.5)

dx
_— = P
dt O(t)x7

l‘(Tk+) — x(ka) = GOkCL'(Tk) (k =1,2,.. )

has only the trivial solution satisfying the condition (1.5¢). Let, moreover,
the matriz-function P € L([a,b],R™*™) and the constant matrices Gy, €
R™ " (k=1,2,...) admit the estimate

(3.6)

b )
/|g0(t,7')| . ‘P(T) - PO(T)‘ dr + Z |g0(t,7'k+) . (Gk — Gok)‘ < ]\47
a k=1

where Go is the Green matriz of the problem (3.6), (1.59), and M € R}*"
is a constant matrix satisfying the inequality (2.12). Then the problem
(1.7), (1.5) has one and only one solution.

3.2. Solvability of the Problem (1.7), (1.2).
Theorem 3.4. Let the function P € L([a,b],R™"*"™) satisfy the Lappo—
Danilevskii condition, and
P(t)Gy = G P(t) for a.e. t€la,b] (k=1,2,...).
Then the problem (1.7), (1.2) is uniquely solvable if and only if

det (zoij exp(P(t;) - ] (In+ Gk)> #0.
j=1

a<Ti<t;

Theorem 3.5. The boundary value problem (1.7), (1.2) is uniquely solv-
able if and only if there exist natural numbers k and m such that the matriz
nog k—1

M, = Z Z L; [(P, {Gl}?il)(tj)h

j=1i=0
is nonsingular and the inequality (2.2) holds, where
My = [(IP]{IG1}E,) (0)],,+
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[

m—

(X [IPLAGDE) ®)],) - D2 M Ll [(1PLAIGHE) ()],

1=

Corollary 3.2. Let the condition (2.15) hold and

T’(L()Ao) <1,
where
no 1 no
Lo=5L+|(3 ) [ 2L
j=1 j=1
and

b oo
Ao= [ IP@)]de+ Y (Gl
M k=1

Then the problem (1.7),(1.2) has one and only one solution.

Corollary 3.3. Let either the condition (2.15) hold, or there exist a
natural number m such that

no
E Lj = Onxrm
Jj=1

tj

det(iLj{/P(T)dT+ 3 GkL) —0 (i=0,...,m—1)

a a<T<t;

and

3 Gk}m) £0.

a<Ty <t;

det(iLj{/tjP(T)dT-‘r

Then there exists eg > 0 such that the problem (3.5), (1.2) has one and only
one solution for every e €]0,¢0].

3.3. Solvability of the problems (1.7), (1.3) and (1.7), (1.4).

Theorem 3.6. Let there exist a matriz-function Q = (qu)}—, €
L([a,b], R"*™), a sequence of constant matrices Hy = (hgu)7;—, € R™*"
(k=1,2,...) and a positive homogeneous nondecreasing continuous opera-
tor Lo = (€oi)i—y : BV([a,b],R"}) — R} satisfying the condition

(Q,{Hr}21,%) € U(t1,...,tn;T1,72,...) for a.e. t € [a,b] (3.7)
such that
pii(t)sgn(t —t;) < qii(t) (i=1,...,n), (3.8)
(=17 (|11 + gris| — 1) < hyig
for (=1 (1 —t;) >0 (j=1,2; i=1,...,n; k=1,2,...), (3.9)
lpa ()| < qu(t) for a.e. t€la,b] (1#1; i,l=1,...,n) (3.10)
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and
lgrir| < hgar (E#1 4,1=1,...,n; k=1,2,...). (3.11)

Let, moreover, the condition (2.21) hold. Then the problem (1.7),(1.4) has
one and only one solution.

Theorem 3.7. Let the impulsive system (1.7) have a finite number of

Jgump points (i.e. Tmg = Tmo+1 = -+ for some mgo € {1,2,...}), and the
conditions
pii(t)sgn(t — t;) < hyi(t) for a.e. t €a,b] (i=1,...,n), (3.12)

(1) (11 + gris| — 1) < his (i) i
for (=1 (mx —t;) >0 (j=1,2; i=1,...,n; k=1,...,mg), (3.13)

[pir ()| < hi(t) for ace. t€fa,b] (i#1; i,l=1,...,n) (3.14)
and

lgrir| < ha(m)am (£ i,l=1,...,n; k=1,...,mp) (3.15)
hold, where h;; € L*([a,b],R), hy € L*([a,b],Ry) (i #1; i,1=1,...,n),
1<pu<+oo,ai, €Ry (i=1,...,n; k=1,...,mg). Let, moreover,

i@y, )| <D (’Yukllﬂ?kHLv +'Y2ik[z |$k(7'z)|”} V)
k=1 =1
for © = (xx)i—1 € BV[a,b],R") (i=1,...,n)

and

r(Ho) < 1, (3.16)

where Y1k, Y2ik € Ry (i, k=1,...,n), %Jr % =1, and the 2n x 2n-matriz
Ho = (Hojm)3 m= is defined by

Hoi1 = <(b - a)%’)’uk + [;

1 n

) Malen)
ik=1

mo

2
H012—( —a) ,mk_y[ —ag } (§|hik(ﬂ)|u)‘l‘):k_l7

1
v

’Ylik‘f’{ Z }1”}%”“)" )

mo
Hoo1 = (( Zah)

=1 ik=1

mo 1 1
Hoze = <<;au) ’)’2ik+(1 fiifu sin > Iny +2) (Zlhm 7l |“) ) k=1;
here p; = max{oy; : 1 = 1,...,mo}, and ngp = ng,2 s the quantity
of nonzero numbers from the sequence aug,...,0mk. Then the problem

(1.7), (1.4) has one and only one solution.
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Remark 3.1. The 2n x 2n-matrix H appearing in Theorem 3.7 can be
replaced by the n x n-matrix

(max { [(b —a)¥ + (ian) %}'Ylik-i-

=1

+(E(b a)|"+|6-a Zah] )Hmknu, [(bfa)%Jr(gO:a”)%}kar
({b aZahF ( LLi fix, Sin 4nk+2> )(Z|hlk (7 |,t>u}>

Corollary 3.4. Let the impulsive system (1.7) have a finite number of
Jgump points (i.e. Tmg = Tmo+1 = -+ for some my € {1,2,...}) and the
conditions (3.12)—~(3.15) hold, where h;; € L*([a,b],R), hy € L*([a,b],Ry)
¢t #L4al=1,...,n), 1 < p < 400, ag; € Ry (¢ = 1,...,n; k =
1,...,mg). Let, moreover, the inequality (3.16) hold, where the 2n x 2n-
matriz Ho = (Hij)?,mﬂ 1s defined by

2
v

k=1

n

Hor = <E (ba)}iﬂhikhu) ,

i,k=1
1

Horz = <[(ba iah} (me ()" > =
o = ([0- 3] )
(

1=1 i,k=1
1 T PR A\
oz = ( (L =) (S ratr)?)
022 < 1 ik T 12 Z| ik (71)] )
=1 1L,R=
here 2 m —|— 2 =1, uy = max{ay; : L = 1,...,mo}, and ni = nq,2 is the
quantity of nonzero numbers from the sequence aug,...,0mek- Then the

problem (1.7), (1.3) has one and only one solution.

Remark 3.2. The 2n x 2n-matrix Hy appearing in Corollary 3.4 can be

replaced by the n x n-matrix
+[(b—a) Y an| ) s,

({20 +[0-05
([0 o]+ (Grmsin 225" )(Zlhw SOM)

By Remark 3.2, Corollary 3.4 has the following form for h;(t) = hy =
const (i,1=1,...,n) and u = 4o0.

2 o 1
v

k=1

Corollary 3.5. Let the impulsive system (1.7) have a finite number of
Jgump points (i.e. Tmg = Tmo+1 = -+ for some my € {0,1,...}) and the
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conditions
pii(t)sgn(t — ¢;) < hy; for a.e. t€la,b] (i =1,...,n),
(=17 (|1 + gris| — 1) < higo for (—1) (1 —t;) >0
(=12 i=1,....n; k=1,...,my),
lpi ()| < hi for a.e. t€a,b] ((#£1 i,l=1,...,n)
and
lgrit| < haar, (1#£1; i,1=1,...,n; k=1,...,mg)

hold, where hy;; € R, hy € Ry (i #1; 4,0l = 1,...,n), ar, € Ry (k =
1,...,mq). Let, moreover,

por(Ho) < 1,
where Ho = (hik)} p=1
o \3 2 1 ™
po = ((ba);al) +max{; (b —a), iuasin_1 e +2},
o =max{a;:l=1,...,mo}, n, is the quantity of nonzero numbers from

the sequence aq,...,Qm,. Then the problem (1.7),(1.3) has one and only
one solution.

Theorem 3.8. Let the conditions (2.36), (2.38) and
pii () sgn(t — t;) < hyifi(t) + Bui(t) for ae. t €la,b] (i=1,...,n),
(=17 (11 + gris| — 1) < hiiBri + Brii for (1) (1o — ;) >0
(G=1,2 i=1,....n; k=1,...,mo),
Ipi(t)| < haBi(t) + Bu(t) for a.e. t €la,b] (i #1; i,l=1,...,n),
|gk"il| Shilﬁki+ﬁkil (l#h Z7l:177na kzla"'amo)
hold, where hy; < 0, hy >0 (i #1; 4,0 =1,...,n); u; € R, s; € [a,],
S 75 t; (’L =1,.. .,n); Bii € L([a,b],R+) (’L =1,.. .,n); B, Bi € L([a, b],R)
(1 #1; 4,0 =1,...,n) are such that By(t) > 0 (i # 1) and B;(t) > 0 for
a.e. t € [a,ti[U]ti,b]; Brii € Ry (Z =1,...,n; k= 1,...,m0); Brit, Bri € R
(i £ 4l=1,....,n; k=1,...,mg) are such that Bxy > 0 and Pr; > 0 if

Th # ti, Bri <0 if i = ti, and 0 < B < |ni| ™" if 7 > ti; vi(t,t) = 1,
Yi(t,s) =, (s,t) fort < s and

t
~i(t,s) = exp (mi/ﬂi(T)dT) H (L +mufri) for t>s (1=1,...,n).

s<T <t

Let, moreover, the condition (2.39) hold and the real part of every charac-
teristic value of the matriz (i1)7,—, be negative, where

& = ha(0a + (1 = 6u)hi) — hiiga (i,1=1,...,n),
-1 .
gir =l (1—=|pilyi(sis i) () +max {ya(a), ya(b)} (i,1=1,...,n),
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’Yil(t) = |Oéil(t) —ail(ti)| for t >t; if t; ¢{T1,...,Tm},
or for t <t; (i,l=1,...,n),
Vit (t) = |aa(t) — aa(ti)| — (1 — i) Brs
for t>t; if ti=m1, (,1=1,....,n; k=1,...,mp),
hi=1if || <1, and

-1 . .
hi =1+ (Jpal = D)(1 = Jpal Xi(sis i) if el >1 (i=1,...,n),

Ozil(t)E/ﬁil(T)dT-‘r > B (,1=1,...,n).

a<Tp<t
Then the problem (1.7), (1.4) has one and only one solution.
Corollary 3.6. Let the conditions (2.36),
pii(t)sgn(t — t;) < hy; for ace. t €la,b] (i=1,...,n), (3.17)
(=17 (|1 + gis| — 1) < Brii for (=1) (7o — ;) > 0
(GG=1,2 i=1,....n; k=1,...,my),
[pir())| < hyp for a.e. t€a,b] (1 #£1; i,1=1,...,n), (3.18)
|9kl| Sﬁkil (l#lv Z7l: 1,...,TL; k= 1a"'7m0)
and
|ilexp (halsi —ti]) <1 (i=1,...,n) (3.19)
hold, where hy; < 0, hy >0 (i #1; 4,0 =1,...,n); u; € R, s; € [a,],
Sq 7é ti (7’ = 13"'7”); /Bkii >0 (Z =1,...,n; k = 17'~~7m0); 6kil €eR
(i £ 14,0l =1,...,n) are such that Bxy > 0 if t; # 7. Let, moreover, the

condition (2.39) hold and the real part of every characteristic value of the
matrix (&l)z’-fl:l be negative, where

& = ha(0a + (1 — 6u)hi) — haga (i,1=1,...,n),
-1
gir = |l (1 = il exp(hailsi — ti])) v (7) + max {~vi(a), vu(b) }
(i,l=1,...,n),
Yat) = |aa(t) — aa(t)] (i,1=1,...,n),
hi=1if || <1, and
1 ‘
hi =14+ (|l = D)1 = il exp(hiilsi — i) if |wal > 1 (i =1,...,n),
Oéil(t) = Z ﬁkil (’L,l = 1, T ,n).

a<T<t
Then the problem (1.7), (1.4) has one and only one solution.
The following corollary is a generalization of Theorem 4.5 from [18].

Corollary 3.7. Let the conditions (2.36), (3.17)—(3.19) hold, where
hii € R, hy > 0 (Z 7é l; i,l = ].,...,T‘L),’ Wi € R, s; € [a,b], S; 7é t;
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(¢ =1,...,n). Let, moreover, the real part of every characteristic value of
the matriz (§1); =, be negative, where

& =ha(6u + (1= 6a)hi) (i,1=1,...,n),
hi=1if || <1, and

-1 . .
hi =14 (Il = 1)(1 — |pil exp(hailsi — t]))  if el > 1 (i =1,...,n).

Then the system

fli—f = P(t)x + q(t) (3.20)

has one and only one solution satisfying (1.4).

Remark 3.3. In Corollary 3.7, unlike Theorem 3.8 and Corollary 3.6, we
do not require the condition

hii <0 (i=1,...,n). (3.21)

This condition holds if and only if the real part of every characteristic value
of the matrix (§;);;—; is negative (see Theorems 1.13 and 1.18 from [18]).
Thus the condition (3.21) holds automatically. Moreover, the inequality
(3.19) also holds automatically if |u;| < 1. Therefore Corollary 3.7 is a
generalization of Theorem 4.5 from [18] because in this theorem the case
|pil <1 (i =1,...,n) is considered. Note also that the condition (3.21) is
optimal and we cannot reject it. For the sake of completeness, we give here
an example from [18].
Let

pr =1, Jul<1 (i=2,...,n), ti=a<s;<b (i=1,...,n),
pzk(t E(liz)dzk (Zak:]-aan)

and
Co1 = 1, ql(l) =0.
Then the system (3.20) has no solution satisfying the condition

.ﬁi(ti) = uixi(si) + Co;i (’L =1,... ,n).
On the other hand, the conditions of Corollary 3.7 hold for
hi = (1 —i)éik (i,k’ = 1,...,77,).

Theorem 3.9. Let lo; : BV([a,b],R}) — Ry (i = 1,...,n) be linear
continuous functionals, a matriz-function @ = (qu)i;—; € L([a,b],R"™*")
and a sequence of constant matrices Hy = (hku)ﬁlzl eR™™ (k=1,2,...)
be such that ¢ (t) >0 (i #1; i,1 =1,...,n) for a.e. t € [a,b] and hy; >
0@ #£I;4l=1....,n; k =1,2,...), respectively, and let the problem
(3.3), (3.4) have a nontrivial nonnegative solution r = (x;)"_, i.e. the
condition (3.7) be violated. Let, moreover,

hk”ZO (2:1,,71, k:1,2,)
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Then there exist a matriz-function P = (pil):-flzl € L([a,b],R™), a sequence
of matrices Gy = (grir)i1=1 (k =1,2,...) and linear continuous functionals
¢; : BV([a,b],R™") = R (i = 1,...,n) for which the conditions (2.21), (3.8)—
(3.11) are fulfilled, but the problem (1.7¢), (1.4) is unsolvable. In addition,
if the matrices Hy, (k=1,2,...) are such that
det (In + diag (sgn(Tk —t1),...,8gn(7; — tk))Hk - diag(eq, ..., sn)> #0
(k=1,2,...), (3.22)

where €; € [0,1] (i = 1,...,n), then the matrices G (k =1,2,...) satisfy
the condition (3.1).

Remark 3.4. The condition (3.22) holds, for example, if either

n
Skl <1 (i=1,...,n; k=12,..)
=1

or
hrpis <1 if 7 <t (z:l,,n, k:1,2,)
and
n
Z |hkil|<|1—|—sgn(7'k—ti)h;m-i| (it=1,...,n; k=1,2,...)
I=1, i
n
( Z |hkli|<|1—|—sgn(7'k—ti)h;m-i| (i=1,...,n; k‘=1,2,...)).
I=1, I£i

4. BOUNDARY VALUE PROBLEMS FOR THE DIFFERENCE SYSTEM (1.9)

In this section we realize the results obtained in Section 2 for the differ-
ence problems (1.9), (1.10)—(1.9),(1.12) and (1.13),(1.14)—(1.13), (1.16).

Investigation of the theory of difference equations has been continuing
since long time. Many interesting and profound results have been obtained
recently (see, e.g., [1], [5], [9], [10], [11], [13], [22] and the references therein).
Some of the results obtained in the present paper are analogous to ones
for ordinary differential equations, but some of them differ. Therefore, to
explain this difference, it is important to investigate the equations from a
unified point of view.

In this direction, a unified concept has been used for investigation based
on the invariance principle of some quadratic forms (see, e.g., [10]). Unlike
this method, we use the theory of generalized ordinary differential equations
for investigation, from a unified point of view, of continuous and discrete
processes. In this way, some results, analogous to those for differential
equations, have been extended to the difference equations (see, e.g., [3], [7],
[8]). Moreover, the convergence conditions for the difference schemes corre-
sponding to the boundary value problems for systems of ordinary differential
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equations are obtained on the basis of the results of the appropriate bound-
ary value problems for systems of generalized ordinary differential equations
(3], [5])-

First, we consider the problems (1.9), (1.10)—(1.9),(1.12). To prove the
results dealing with the difference system (1.9), we construct a system of
the form (1.1) which corresponds to the system (1.9), in order to apply the
results of Section 2. B

In this section we assume that G; = (q1i;)7 ;=1 € E(No,R™") (I =

1,2,3), g0 = (90i)iy € E(Npm,, R") and
det(I, + Gi(k)) #0, detGs(k) #0 (k=0,...,mo). (4.1)
Let y € E(N,,,, R") be a solution of the difference system (1.9). Then

the vector-function 2z = (2;)%; € E(N,,,, R?"), where

z1(k) = (I + G1(k))y(k) (k=0,...,myp),

29(k) =y(k+1) (k=0,...,mo—1), 22(mo) = 22(mgy — 1), (42)
is a solution of the 2n x 2n-difference system
Az(k—1)=Gk)z(k) +g(k) (k=1,...,m0), (4.3)
where G(k) = ((77lm(k))12’m:1 (k=0,...,mp) is defined by
Gim(0) = Opxn (I,m=1,2),
Gi1(k) = (G1(k) + Ga(k)) (I, + G1(k)) ™", Gia(k) = G3(k), (4.4)

Go1(k) = —(In + G1(k)) ™', Gaa(k) =1, for k=1,...,my,
and g(k) = (g1(k))7_, (k=0,...,mp) is defined by
91(0) =0, gi1(k) = go(k), g2(k) =0 for k=1,...,mo. (4.5)

Conversely, if z(k) = (z,(k))? is a solution of the 2n x 2n-system (4.3),
then due to (4.1) the vector-function

y(k) = (I + G1(k))"t21(k) (k=0,...,mp)

is a solution of the system (1.9).
Indeed, by (4.3) we have

za(k) = (In+ Gi(k+ 1)) 21k +1) = y(k +1) (k=0,...,mo)
and
(In + G1(k)y(k) = (In + G1(k = 1)y(k — 1) =
= (G1(k) + Ga(k))y (k) + G3(k)z2(k) + y1 (k) (k=0,...,mo)
i.e., y satisfies the system (1.9).
On the other hand, the vector-function z € E(N,,,,R™) is a solution of
the difference system (4.3) if and only if the vector-function

x(t):z([H%D:(zl([t+%D)2 for t€[0,mo]  (4.6)

=1
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([t] is the integer part of t) is a solution of the system (1.1), where

[t+3] [t+3]
Aty =Y G(), f(t)y="Y_ g(i) for t € [0,mol, (4.7)
=0 =0

the matrix-function G (k) = (Gim(k))7,,—, and the vector-function g(k) =
(q1(k))?_, are defined by (4.4) and (4. 5) respectively. Note that the condi-
tion (1.21) is equivalent for that case to the condition (4.1).

Consider now the boundary value problems.

If y € E(Ny,,,R") is a solution of the problem (1.9),(1.10), then the
vector-function € BV([0, mg], R?") defined by (4.2), (4.6) is a solution of
the problem (1.1), (1.2), where

2
no = no1 + noz, ¢o = (Cot)i=1,

4.8
tj:k’j (jzl,...,’l’ml), t]:k']—i-l (j:nm—i—l,...,no), ( )
Lij(In +G1(k;))™" Onxn\ .
1y = (Pt G GBI Goen) (o1 )
(4.9)

 (Onxn Onxn \ .
L= (om Lunm) (j =no1+1,...,ng).

Conversely, if the vector-function z = (z;)%,, 2, € BV([0,mo], R ) (=
1,2) is a solution of the problem (1.1), (1.2), where A(t), g(t), no, co, t; (j =
1,...,n0) and L; (j = 1,...,n0) are defined by (4.7)-(4.9), respectlvely,
then the vector-function

y(k) = (I + G (k) "Lz1(k) (k=0,...,mo) (4.10)

will be a solution of the problem (1.9), (1.10).
Let now y € E(N,,,,R™) be a solution of the problem (1.9), (1.12), and

(I + G1(k:))],, #0 (j=-1,1; i=1,...,n)". (4.11)

Moreover, let z(k) = (z1(k))2,, z1(k) = (z1;(k))7~; (I = 1,2) be the
vector-functions defined by (4.2). Then

3

le Z I + Gl zlyl(k )
=1
= [In + Gi(ki)]ii (Giyr, - -+ yn) + cors) + Z (Lo + Gi(Ki)] (ki) =
1=1,1#1

= [In + G (k) (1 (v, -, yn) + coni) +

+ Z [In + Gl(ki)]il [(In + G1(ki))_1}li21i(ki)+

1) Under [X];; we mean the element in the i-th row and in the I-th column of the
matrix X.
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n

+ Z [In 4+ Ga1(ki)], [(In + Gl(k'i))_l]ljzll(ki) =
Lj=1, I#i, j#i

= [I +G1( )]u( (yla"';yn)+001i) +le(kz)7
—[In + G1(k))i [(In + G1(ki))_1]“21¢(ki)+

n

+ Z [In“i’Gl(kz)]ll[(In +G1(ki))_1]ljzll(ki) (7’ = 17"'3”)7
1,j=1, I#i, j#i

whence, by (4.11), we conclude that
z15(ki) = ([(In + Gl(kz‘))_l]“)il@u(yh e Yn) + coni)+

-1 n
+<(1 + guii(ki)) - [(In + G1(ki))7lhi) Z gt (ki) x
Lj=1, 1£i, j#i
x [(In + Gl(ki))il}ljzll(ki) (i=1,...,n). (4.12)
In view of (4.12), the vector-function x = (x)?_,, o = (z;), €
BV([0,mo],R™) (I = 1,2), is a solution of the 2n-problem (1.1), (1.4), where
ti=ki, thyi=ki (i=1,...,n),
- ( ) (4.13)
coi = (1 + guii(ki))cotis  Conti = cozi (i = S n);
éi(xn, ey XA, T2, -, L) = ([(In + Gl( 1)) 1] ) (yl, - ;yn)+
1
(U guiath) - [(L+ G k) Y],) - x
x Y gquak) - [T+ Gik) T jeu(k) (i=1,...,m)  (4.14)
1j=1, 11, j#i
(the vector-function y(k) = (y;(k))~, is defined by (4.10)) and
logi(T11y 0o T, T2ty e v oy Ton) = L2y (Y1, -« - 5 Yn) ( 1,...,n); (4.15)
here
yi(k) = @2i(k—1) (i=1,...,n).
If we take
ei($11, ey TIn, 21y - - - ,xgn) = mli(k'i) (’L = 1, e ,n),
and

eli(yla DR 7yn) = yl(kl) (’L = 17 e ,’I’L),
then from (4.14) we will get

w1 (ki) = ([(In + Gl(k'i))_l]ii)_lyi(k'i)‘f'
H( 4 gtk - [+ (k) 7],) >

n

X Z glil(k'i) . [(In-f—Gl(k'i))_l]lell(k'i) (Z = 1,...,n) (416)
l,j=1,1#1, j#i
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and
éi(xn, ey LIn, T21y - - .,Ign) — Ih‘(k'i) =
= ([ +Gi k) ™1),) " (G- yn) —wi(ki)) (i=1,....n), (4.17)

where y(k) = (y;(k))?_, is defined by (4.10).

On the other hand, if the vector-function z = ()%, =1 = (vu)?, €
BV([0,mo],R™) (I = 1,2) is a solution of the problem (1.1),(1.4), where
At), f@t), t; (i = 1,...,2n), ¢o; (i = 1,...,2n) and £ (i = 1,...,2n)
are defined by (4.7), (4.13)—(4.15), respectively, then in view of (4.17),
the vector-function y defined by (4.10) will be a solution of the problem
(1.9), (1.12).

As to the problem (1.9),(1.11), it is a particular case of the problem
(1.9),(1.12) and is equivalent to the problem (1.1),(1.3) in the above-des-
cribed sense.

Along with the difference system (4.3), we consider the corresponding
homogeneous difference system

Az(k—1)=G(k)z(k) (k=1,...,myg). (4.30)
By (1.30), (4.1) and the definitions of the matrix-functions G(k) and A(t),
the matrix-function Y (k) = (Yim(k))7,,—,, where Y, € E(N,,,, R"*")

(I,m = 1,2), are such that

(Yn(k?) Y12(’<?))_
Yoi1(k) Yaoo(k)) =

- 11 (—G?(i) Gy (i) (I — Gg(z’))) (k=0,...,mo) (4.18)

is a fundamental matrix of the system (4.3) satisfying the condition Y (0) =
Iy
From (4.18), we have the following formulas for calculation of Y, (k)
(I,m=1,2):
}flm(o) =1I, (lvm = 132)7

Yinz(k) = (In+G1(k))Yénz(k_l) (m: 1,25 k=1,..., m0)7
(4.19)
Yom (k) = _G?Tl(k)ylm(k’ — 1)+

+G3 k) (In—Ga(k)Yam(k — 1) (m=1,2; k=1,...,my).

Relying now on (2.14), we construct the Green matrix for the problem

(1.90), (1.10p). R
Let Gim € E(Nyy X Ny, R™*™) (I,m = 1,2) be such that G(k,i) =
(Gim (k, i))imzl, where in view of (2.14),

G(k,i) =
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E{l HNOm: kj<i—m+1}

(22: > Zj)Y‘l(z‘) for 0<i<k<mo,
V(3

_ 1 (4.20)
3 Zj)Y— (i) for 0<k<i<mo,
m=1je{l,...,nom: k;j >i—m+1}
O2nx2n for 0<k=i<myg
and Z; = (Zjim)i =1 (4 = 1,...,n0) are defined by
no1 no2
Z; = (Z LY (ki) + Y LoiY (ki + 1)1 - LY (j +m — 1)
=1 i=1
(m:1,2, j:1+n01(m—1),...,n01 +n02(m—1)). (421)

The matrix-function G(k, ) is called the augmented Green matrix of the
problem (1.9¢), (1.10¢).
Under the Green matrix of the problem (1.99), (1.10¢) we understand the
matrix-function
Gulk,i) = —(I, + G1(k)) ' Gr1(k,i — 1). (4.22)
Introduce the operator
[(G17G27G3)(k)]0 = In, [(GlaGQaG3)(k)}l =

= - ZO G(j)[(GhGQ,Gg)(j)L_l (i=1,2,..), (4.23)

j=k+1

and the operators

Vi(G1,Go Ga)W) = 3 IGG), Vis (G, Ga, Ga)(b) =

=k (4.24)
Z |G| - Vi(G1, G, G3)(5) (i =1,2,...),
j=k+1
where the matrix-function G(k) = (Gy;(k))7 ;—, is defined by (4.4).

Definition 4.1. Let k;, ki1 € Ny, (i = 1,...,n), and let Gy =
(g1a)}=1 € E(N,,,, R"*") be a matrix-function satisfying (4.1). We say
that the quadruple (Cy,C2, %01, {o2) consisting of matrix-functions C; =
(cjit)i=y € E(ﬁmO,R"X”) (j = 1,2) and positive homogeneous nondecreas-
ing continuous operators ¢o; = (Lo;i)iq : E(Iglmo,Rﬂ_) — R% (j =12
belongs to the set Ug, (k1,...,kn), if c1a(k) > 0 for k € Ny, (i #
i,l=1,...,n), cou(k) > 0 for k € Iglmo (i,l = 1,...,n), and the prob-
lem

(AyZ (k—1 +Zn: 9111 V—gru(k—1)yi(k— 1))) sgn (k—ki—%> <
=1
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< Z c1i (k) ((5j1 +gul(k))yl(k?)+
l,j=1
ZCQzl Yk +1) for ke{l,...,mo—1} (i=1,....,n)  (4.25)

has no nontrivial nonnegative solution satisfying the conditions

The definition of the set Ug, (k1,...,k,) is based on that of the set
U(t1,...,tn) (see Definition 1.1) for the corresponding generalized ordi-
nary differential system. In this case, i.e. under the definitions (4.2)—
(4.7), (4.13)—(4.15), the system (1.9) contains 2n inequalities, and as to
the matrix-function C' = (Cjm)3,,—, We take

[t+3] [t+3]
Cu(t ch » Cra(t 202 , Con(t) =Y (In+Gi(k) ™,
k=0
bl (4.27)
Caalt Z diag (sgn(k — k1 — 1),...,sgn(i — k, — 1)).
i=k

The definitions of the matrix-functions Go; and Gog differ from those
given in the proof of Theorem 4.7 (see 7.32).

4.1. Solvability of the Problem (1.9), (1.10).

Theorem 4.1. The boundary value problem (1.9),(1.10) has a unique
solution if and only if the corresponding homogeneous problem (1.9g), (1.100)
has only the trivial solution. If the latter condition holds, then the solution
y of the problem (1.9), (1.10) admits the representation

y(k) = yo(k) + XD: Gi(k,i)go(i) (k=0,...,mg), (4.28)

i=1

where yo is a solution of the problem (1.9¢), (1.10), and the matriz-function
G.(k,i) defined by (4.20)—(4.22) is the Green matriz of the problem (1.9g),
(1.100).

Remark 4.1. If the homogeneous problem (1.9¢), (1.109) has a nontrivial
solution, then for every gg € E(N,,,, R™) there exists a vector co = (com )2,_;
such that the problem (1.9),(1.10) has no solution.
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Corollary 4.1. The boundary value problem (1.9),(1.10) is uniquely
solvable if and only if

no1 no1
D LI+ Gaky) Vi (k) Y Laj(In+Ga(ky) ™ Yaa(ky)
det =t no2 =t no2 7é
D LojYau (kj+1) D LojYao(kj+1)
Jj=1 j=1
£0, (4.29)

where the n x n-matriz-functions Yy, € BNy R™™) (I,m = 1,2) are de-
fined by (4.19).

Theorem 4.2. The boundary value problem (1.9),(1.10) is uniquely
solvable if and only if there exist natural numbers k and m such that the
matriz My = (Mklj)ijzl is nonsingular, and

r(Mg,m) <1, (4.30)

where

no1 k—l

Mkll = ZZLlj(In +G1(k'])) [(G17G2;G3)(k )Lll’
7j=11i=0
no1 k—1

M2 = ZZLIJ(In +G1(k])) [(leGQaG3)( )nga
j=1i=0
noz k—1

Mo = Z Z ng [(Gh G2a G3)(kj + 1)]i21’
j=1 =0
nop2 k—l

Mgz =Y Y La;[(G1, G2, Gs)(kj + 1)]

j=1i=0
the n X n-matriz-functions [(G1, Gz, GL;)()] (l,j=1,2;i=0,....,k—1)
are such that [(G1, G2, G3)( )] ([(G1, Gs, Gg)(%)Llj)ij:l,

Mi,m = Vin(G1, G2, G3)(0)+

,_.

m— no1

( |[(G1,Ga,G3) ()], |5 )(Z|M L;|Vi(Gy, Ga, G3)(kj)+
=0 j=1
no1+n02
+ Z |M];1L]|Vk(G17G27G3)(kJ + 1)),
Jj=no1+1

Lj= (Lja) =y (G =1,...,n01 +no2); Ljnn = Lij(In + Gi(ky)) ™", Lj2 =
Lijoy = Ljoe = Opxn (5 = 1,...,n01); Lijnn = Lj12 = Ljo1 = Opxn,
Ljos = Laj_ny, ( = no1 + 1,...,n01 + no2); and the matriz-functions
[(G1, G2, G3)(5)]; and Vi(G1,G2,G3)(32) are defined by (4.23) and (4.24),
respectively.
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Corollary 4.2. Let

no1 no2

det (ZLlj(In + Gl(k’j))_l) 7é 0, det (Z ng) 7é 0 (431)
j=1 j=1
and
T(L()Mo) < 1,
where
_ LOl Onxn
LO h (Onxn LO2 ) ’
no1 _ no1
Lov = I+ | (D Laj(Tu+ Galk)) ™) |3 Ly + Guls)) 7|
j=1 j=1
no2 1 noe2
Lo =1, + ‘(ZLQJ') ‘ Z |Loj|
j=1 j=1
and

2o ([(Gr() + G2(i))(In + G1(D) 71| |Ga(i)]

-3 L ean
i=1 |(In + G1 (i) I,

Then the problem (1.9), (1.10) has one and only one solution.

Corollary 4.3. Let either the condition (4.31) hold, or there exist a
natural number k such that the conditions

no1 no2
ZLlj(In+G1(kj))_1 = Opxn, ZLQj = Opxn,
Jj=1 j=1

detM; =0 (i=0,...,k—1)
and
det My, # 0
hold, where M; = (Milj)IQ.jzl (1=0,...,k),

Mir =) Lij(In + Gi(k;) (G, Ga, Ga) (ky)]
j=1

Mo =3 Lij(T + G (k) [(Gr, G, Gs) ()] 1
Jj=1

Y ZLQJ' [(G1,G2,Gs)(k; + 1)] ;.
j=1

Moo = ZL% [(Gla G2, Gs)(kj + 1)]1'22

j=1



On the General and Multipoint Boundary Value Problems 43

and the n x n matriz-functions [(G1, G2, G3)(30)]a; (1, =1,2;i=0,...,k)
are defined in Theorem 4.2. Then there exists eqg > 0 such that the system

Ay(k —1) = e(Gi(k — Dy(k — 1) + G2(k)y(k) + G3(k)y(k + 1)) + go(k)
(k=1,...,mo)

has a solution satisfying the condition (1.10) for every e €]0,¢q].

Theorem 4.3. Let the matriz-functions Go; € E(Iglmo,R”X") (1 =1,2,3)
be such that

det(I, + Go1(k— 1)) #0, detGos(k) #0 (k=1,...,mg),
the homogeneous system
Ay(k —1) = Go1(k — 1)y(k — 1) + Goz2 (k)y(k)+
+Goz(k)y(k+1) (k=1,...,mo) (4.32)

have only the trivial solution satisfying the boundary condition (1.10), and
let the matriz-functions G; € E(Np,, R™*™) (j = 1,2, 3) admit the estimates

Z [Goji (K, i = 1)(G1(i) + Ga(i) — Goja(k,i — )] (In + G1 (i)' =
—[Goj1(k,i — 1)(Gor (i) + Goz(i)) — Goja(k,i — 1)] (In + Gou(i ‘ < Mj

Z|gojl i — 1)(G5(i) — Gos(i))] < Mjz (j =1,2),

where go(kz, i) = (Goji(k,1))3 =, is the augmented Green matriz of the prob-
lem (4.32),(1.100), and My € R*™ (4,1 = 1,2) are constant matrices such
that

Then the problem (1.9), (1.10) has one and only one solution.

4.2. Solvability of the Problems (1.9),(1.11) and (1.9), (1.12).
Theorem 4.4. Let the matriz-function Gy be such that
(I, + G1(k)) ™t > Onxn and g14:(k) # —1
for ke{0,...,mg} (i=1,...,n), (4.33)

and let there exist matriz-functions C; = (cju)i 1=, (J = 1,2) and positive
homogeneous nondecreasing continuous operators Lo; = (Loj:)7—; (j = 1,2)
satisfying the condition

(Cl, 02, 6017 602) S UG1 (k‘l, ey k‘n) (434)
such that

pﬂﬁ%Wu—@wmu+@@wﬂ“7ngmm
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for (=1)7(k—k;)>0 (j=1,2; i=1,...,n), (4.35)
1@ (k) + Gak) (I + G ()], | < crah)
for ke {0,...,mo} (i #£1l i,l=1,...,n) (4.36)
and
lgsi (k)| < cau(k) for ke {1,....,mo} (i,0l=1,...,n). (4.37)

Let, moreover,
[Gi(ys - ym)| < Logi(lyal, - - [yml)
Jor (y)izy € E(Nmo,R") (j=1,2; i=1,...,n). (4.38)
Then the problem (1.9), (1.12) has one and only one solution.
Theorem 4.5. Let the conditions (4.33),
(—1)y+t (‘ [(In — Ga(k))(In + G1 (k)] .| — 1) < huii(k)
Jor (=17 (k—k;)>0 (j=1,2; i=1,...,n),

(4.39)
|[(G1 (k) + Gak)) (T + G k)], | < Paaa(h)
for k€ {0,...,mo} (i#1; i,l=1,...,n) (4.40)
and
lg3i1(E)| < hau(k) for ke {1,...,mo} (i,1=1,...,n) (4.41)

hold, where hyi; € E(&mO,R), hiy € E(f\imoaR-i-) (’L 7é l), hos € E(&moaR-i-)
(i,l=1,...,n). Let, moreover,

=1
n n 1)
< il 2 [+ GO i)
=1 j=1
for (y)i—, € E(Npy,R™) (i=1,...,n), (4.42)
|02y, - yn)| < Z’mz”yzﬂu
=1
for (y)p-y € E(Npy,R™) (i=1,...,n), (4.43)
and
r(H") <1, (4.44)

mo 1 ~
D Here flyly = ( X Iy(8)]) ¥ for y € E(Fmg,B").
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where Y141, v2u € Ry (4,0 = 1,...,n), v > 2, and the 2n X 2n-matrizc
H* = (H})5 me 45 defined by

n
)
i,l=1

HY, = (éo([(fn + G1(/€i))_1}ii)_1’71u + )\Othil”u)
T2 = (A0||h2z‘l|\u)i Ly Ha= oll[(Zn + Gr(D Tl s

Hso = (50’}/211)21:1 + )\Omg I,

1

1 2
%ﬁr% =1,&=m§, Ao = (%sin” . Then the problem (1.9), (1.12)

has one and only one solution.

Corollary 4.4. Let G1(k) = diag(g11(k),...,g91n(k)) be the diagonal
matriz-function such that the conditions

gu(k’)>—1 for kE{O,...,mo} (i:l,...,n), (445)
(~17 (1 + g0 (B) 71 = gaia(B)] — 1) < b (B)
for (=1)/(k—k) >0 (j=1,2 i=1,...,n),
(1+ gu(k) ™ gra(k) + g2a (k)| < hya(k)
for ke {0,...,mo} (i £l i,l=1,...,n)
and (4.41) hold, where hyi; € BNy R), hig € ENmy Ry) (i # 1), hai €
E(Np,,R4) (4,1 =1,...,n). Let, moreover,

i (ya, - - ym)| < Z’YulH(l + 911('))27]'%(')”1,
=1

TryT3)

for (yl)lnzl € E(ﬁmoaRn) (.7 =1,2; i= 1,...,TL>

and the inequality (4.44) hold, where Y141, vou € Ry (i,1=1,...,n), v > 2,

H = (H;m)?,mzlf the matrices Hi1, His, Hsy and numbers u, &y, Ao are

defined as in Theorem 4.5, and
Hiy = Ao diag (]| (14 g12()) 7|
Then the conclusion of Theorem 4.5 is true.
Corollary 4.5. Let the conditions (4.33), (4.39)—(4.41),
[(In+Gi(k:)7'],, =0 (i#L i,l=1,...,n) (4.46)

(1 + g1 (N7, )-

—

and
2
>

r(Ho) < (2 sin (4.47)

dmg + 2)
hold, where h1; € E(Npmy,R), h1i € E(Npmg, Ry) (i # 1), hoi € E(Npy, Ry)
(i,l=1,...,n), v>2,

Ho = ((H[ (thil”u)zlzl (Hthl u“)Zl—l) |

(In +G1('))_1]iz|‘ﬂ)21:1 me I
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and i—i—% = 1. Then the problem (1.9), (1.11) has one and only one solution.

Corollary 4.6. Let the conditions (4.33), (4.46),
(1 (|0 = Galk) U+ Ga k)], —1]) < b
for (=1 (k—ki)>0 (j=1,2; i=1,...,n),
(G (k) + Ga(0) (T + Ga(k) '] | < b
for ke {0,...,mo} (i £l i,l=1,...,n),
|g3zl(l€)| < hgy for k € {0, R ,mo} (Z,l =1,.. .,n)
and
[(In + Gl(k.))_l}il < hgy for k€ {0,. . .,mo} (i,l =1,... ,n)

hold, where hi;; € R, hiy € Ry (i # 1), hoy € Ry (4,0 = 1,...,n). Let,

moreover,
2
v

) , (4.48)

_1
r(Ho) <my " (2 I

where p > 1, v > 2, ﬁJr%:l,
Ho = ((hlil)?,l:l (hQil)zn,l:l) .
(hsit)ii=1 In
Then the problem (1.9), (1.11) has one and only one solution.

Let a € E(ﬁmo,R). On the basis of Definition 1.22, we introduce the
following function:

j
H (1—Aa(l - 1))71 for j >k,
=ht1
1K) H (1 - Aa(l—1)) for j <k, (4.49)
I=j+1
1 for j =k.

Theorem 4.6. Let the conditions
(=17 (|[(n = Ga(k) (I + Grk) ], | = 1) < b (k) + B (k)
for (1) (k—k;)>0 (j=1,2; i=1,...,n),
‘ [(G1(k) + Ga(k)) (I, + Gl(k))_l]iz < hiaBi(k) + Briu(k)
for ke {0,...,mo} (i #£1; i,l=1,...,n),
lg3it (k)| < houBi(k) + Brou(k) for ke {0,...,mo} (i,1=1,...,n),
|[(In + G1(k) 7], | < Bara(k) for ke{0,...,mo} (i,l=1,...,n),

Ci(yrs - yn) + [T+ Gr(k)) D [In + Gu(ka)] wn (ki) — wilk)| <
=1
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< |M1 Z I +G1 mz } lyl(mi)

for (y1)iL, € N(NmO,R”) (i=1,...,n), (4.50)
[62i(y1, - yn)| < |paal |yi(mi + 1))

Jor (y)p—, € NNy, R™) (i=1,...,n), (4.51)

Bi(ki) <0, 0<Bi(k) <|ni| ™"
for ke{ki+1,...,mo} (i=1,...,n)
and
Ll vi(ma, ki) <1, Jueil <1 (i=1,...,n)

hold, where h1;; < 0, hiy >0 (i #1), hoa >0 (i,1 =1,...,n); pj; € R,
M <0, m; € N, mi # ki (i =1,...,n); Buiii, Bora € E(Nmg, Ry) (4,1 =

n); ﬁljil(k) >0 (] = 1,2,‘ 7 7’5 l) and ﬁz(k) >0 fO’I“ k e Nmo \ {k’l}
(,,0=1,...,n); vi(m, k) = v4,(m, k), the function 'yaqy is defined by (4.49),
and a;(k) = ni(a; (k) — o (k) sgn(k — k;), ai(k) = Zﬁl() (i=1,...,n).

Let, moreover,

gi <1 (i=1,...,2n) (4.52)
and the real part of every characteristic value of the 2n x 2n-matriz (£;)27_,
be negative, where 7

&ii = h1ii(1 — gi), & = higjahi — hiaga
(j=0,1; i#1l; i=1,...,n; l=nj+1,...,nj+n),
Eu=gu—Jjoa (j=0,1; i=n+1,...,2n; l=nj+1,...,nj+n),
i —1
gi = |pagil (1= [pag el 7 (ma ki)™ va(me)+
+ma’x{’71l(0)7’)/zl(m0)} (.7:0717 t=nj+1,...,nj+n; l:]_,,QTl),
vilki+p) =0 (u=0,1; i=np+1,....;nu+n; I=1,...,2n),
(k) = [ (k) — e (ki + )| = (1= 8i) X0 1, o (B) Brs 14w it (R + p1)
Jor ke N \ {ki +p} (v =0,1; p+v<1;
it=np+1,...,npu+n; l=nv+1,...,nv+n),
%l(k) - (k — ki — 1)(1 - X[O,ki] (k)) + 5ilX[0,ki] (k)
Jor k€ Ny \ {ki +1} (i,l=n+1,...,2n);

k
a; (k) = Z Brepitvit(m)
m=0

(b,v=0,1; p+v<l; i=np+l,...,np+n; l=nv+l,...,nv+n);
hi =1 ’Lf |/L11‘| < 1, and

-1 . .
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Then the problem (1.9), (1.12) has one and only one solution.

Theorem 4.7. Let the condition (4.33) hold, and let {y;; E(Iglmo,Ri) —
Ry (j =1,2; i =1,...,n) be linear continuous functionals, the matriz-
functions Cj = (cju)i—; € E(Npng, R™™) (j = 1,2) be such that c;y (k) >0
for k € ﬁlmo (j=1,2;i#1;i,l=1,...,n), and the problem (4.25), (4.26)
have a nontrivial nonnegative solution y = (y;)I, i.e. the condition (4.34)
be violated. Let. moreover,

c1ii(k) >0 for ke{0,...,mo} (i=1,...,n) (4.53)

and
det(Ca(k)) #0 for ke{0,...,mp}. (4.54)
Then there exist matriz-functions Go, G3 € E(ﬁlmo,R”X"), linear continu-
ous functionals Uy, : E(Np,, ,R*) = R (m =1,2;i=1,...,n) and numbers

comi € R (m =1,2; 4 =1,...,n) such that the conditions (4.1), (4.35)-
(4.38) are fulfilled, but the problem (1.9¢), (1.12) is unsolvable.

5. BOUNDARY VALUE PROBLEMS FOR THE DIFFERENCE SYSTEM (1.13)

As we noted above (see Remark 1.1), the results obtained for the system
(1.9) in Section 4 cannot be extended to the system (1.13) automatically
because in these results the condition

det G5(k) £ 0 for ke {1,...,mo},

that is, Gs(k) # 0 for k € {1,...,mg} is always required, and we cannot
consider the system (1.9) for G3(k) = 0.

Thus the systems (1.9) and (1.13) may have different properties. This
conclusion is based on the following arguments.

The general solution of the homogeneous system (1.99) contains 2n con-
stants. Therefore for these constants to be equal to zero, it is necessary to
have boundary conditions with 2n equalities. In this connection, we con-
sider the boundary conditions (1.10)-(1.12) and (1.10¢)-(1.12g) consisting
of 2n equalities.

Unlike the system (1.9¢), the general solution of the system (1.13¢) con-
tains n constants. In this regard, we consider the boundary conditions
(1.14)-(1.16) and (1.14¢)-(1.16¢) containing n equalities.

To apply the results of Section 2, we construct a system of the form (1.1)
corresponding to the difference system (1.13).

In this section we assume that G; = (g1i;)7 ;=1 € E(Np,, R?*1) (1 =1,2),
go = (90i)7~1 € E(Ny,,,R™) and

det(l, + G1(k)) #0, det(l, —Ga(k)) #£0 (k=0,...,mg). (5.1)

Let y € E(N,,,,R") be a solution of the difference system (1.13). Then
the vector-function

2(k) = (In + GL(k)y(k)  (k=0,....m0) (5.2)
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is a solution of the difference system
Az(k—1)=G(k)z(k) + go(k) (k=1,...,mq), (5.3)
where
G(k) = (G1(k) + G2 (k) (I, + Gy (k)L (5.4)
Conversely, if the function z is a solution of the system (5.3), then due
to (5.1), the function
y(k) = (In + G1(k) " 2(k) (k=0,...,mq)

is a solution of the system (1.13).
On the other hand, the vector-function z € E(N,,,,R™) is a solution of
the difference system (5.3) if and only if the vector-function

1
a(t) = z([t + ED for ¢ € [0, mo) (5.5)
is a solution of the system (1.1), where
[t+3]
Alt) = ) (Gili) + G2(i)) I + G (),
i=0
5.6
[t+3] (56)
Ft) =" goli) for t € [0,mg].
i=0
It should be noted that in this case the condition (1.21) is of the form

(5.1).

Consider now the boundary value problems.

If y € E(N,,,,R") is a solution of the problem (1.13),(1.14), then the
vector-function x € BV([0, mo], R™) defined by (5.2) and (5.5) is a solution
of the problem (1.1),(1.2), where

tjzk’j (j:l,...,n), (57)

Ly = Lij(L+ Gi(k) ™ (G =1,....n). (5.8)

Let now y € E(N,,,,R") be a solution of the problem (1.13),(1.16), and
[(In+G1(k:))],, #0 (j=-1,1; i=1,...,n). (5.9)
Moreover, let z(k) = (z;(k))"_; be the vector-function defined by (5.2).
Then due to (4.11), just as in Section 4, we conclude that
- —1
zi(ki) = ([(In + G1(k:)7'],.) (Griya, - - yn) + coni) +

+((1 + gii(ki)) - [(In + Gl(ki))fl}n)ilx
<3 gualk) - (Lo + G1(k:)) '] yma(ki) (i=1,...,n). (5.10)
Lj=1, l#i, j#i
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In view of (5.10), the vector-function x = (z;)1"_; € BV([0, mo],R"™) is a
solution of the problem (1.1),(1.4), where ¢t; (j = 1,...,n) are defined by
(5.7),

Co; = (1 —+ glii(ki))COIi (Z = 1, ey n), (511)
Gz, mn) = ([(In + Gl(ki))_l]ii)_lfu(yh ey Yn)t
+((1 +guii(k:)) - [(In + Gl(ki))fl}n)ilx

n

X Z glil(ki) . [(In + Gl (k/’i))_l}ljxl(kji) (Z = 1, e ,n); (5.12)
Lj=1, 14, j#i
here y(k) = (y:(k))?_, is defined by
y(k) = (I, + G1(k))*x(k) (k=0,...,mp). (5.13)
Using (5.12), as in Section 4 we get

zi(ki) = ([(In + G1(k:) 7],
(@ gralha)) - [+ Ga (k)

%

—1
yi(ks)+
—1

x Y gualk) - [T+ Gi(k) ™ ja(k) (i=1,...,n)  (5.14)
Lj=1,1#1, j#i
and

Ci(xy, .o n) — x1i(ks) =

= ([(Ln+Gi(k)™],) 7 (Cuilyrs -y yn)—ilk)) (i=1,...,n), (5.15)

where y(k) = (y;(k))™, is defined by (5.13).

On the other hand, if the vector-function = = (x;)", € BV(]0, m¢], R™)
is a solution of the problem (1.1),(1.4), where A(t), f(¢), t; (i =1,...,n),
coi (i =1,...,n)and ¢; (i = 1,...,n) are defined by (5.6), (5.7), (5.11)
and (5.12), respectively, then due to (5.15), the vector-function y defined
by (5.13) will be a solution of the problem (1.13), (1.16).

The problem (1.13), (1.15) is a particular case of the problem (1.13), (1.16),
which is equivalent to the problem (1.1),(1.3) in the sense described above.

Along with the difference system (5.3), we consider the corresponding
homogeneous difference system

Az(k—1) = G(k)z(k) (k=1,...,m0), (5.30)

where G(k) is defined by (5.4).
Note that the matrix-function
k

Y (k) = [[((In = G2(i) ™ (In + G1(i — 1)) (5.16)

i=0
(here G1(—1) = G2(0) = Opxy) is a fundamental matrix of the system
(1.13¢) satisfying Y(0) = I,,.
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The matrix-function
Y (k) > Z;Y~Yi)  for 0<i<k<mo,
J€{1,...,n0: k;<i}
G(k,i) =4 —Y (k) > Z;Y7li) for 0<k<i<mg, (5.17)
JE{1,...;n0: k; >}
On><n fOI‘ 0§k:z§m0,

where Y (k) is defined by (5.16) and
no 1
Zi= (LY (k) LY (k) (G=1,....m0), (5.18)
i=1
is called the augmented Green matrix of the problem (1.13¢), (1.140).

Under the Green matrix of the problem (1.13¢),(1.149) we mean the
matrix-function

Gu(k,i) = —(I, + G1(k))"'G(k, ). (5.19)
We introduce the operators
Gl,GQ k = Ip, Gl,GQ k). = — le' ng'
[( J(K)] g =1n, [( )(k)], j:zk;rl( (k) + Ga(k)) % (5.20)
X(In+ G1(k) " [(G1, Go)(j)],_, (i=1,2,...),
and
Vi(Gy, Go)(k Z (G1(j) + G2(3) (I + G1(5)) ],
j=k+1
Vit1(G1,Go)(k Z | (G1(J) + G ))(In-f—Gl(j))_l‘X (5:21)
j=k+1

X ‘/’L(GI)G2)(3) (Z = 13"'3”)'

Definition 5.1. Let k; € IngO (t=1,...,n), and let G; = (gm)ﬁl:l €
E(ﬁmO,R"X”) be a matrix-function satisfying (5.1). We say that a pair
(C,€o) consisting of a matrix-function C' = (cq)j—; € E(N,,,, R"*") and
a positive homogeneous nondecreasing continuous operator £y = (fo;)"; :
E(Igfmo,Ri) — R belongs to the set Ug, (k1,...,kn) if ¢iy(k) > 0 for k €
N o (i £ i,l=1,...,n) and the system

(Ayi(k - 1)+Z(gul(k)yz(k)—Qliz(k—l)yz(k—l))> sgn (k/’_ki_%) <

=1
<> calk)Gu+gra(k))yi(k) for ke{l,...,mo—1} (i=1,...,n) (5.22)
I,j=1

has no nontrivial nonnegative solution satisfying the condition
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5.1. Solvability of the Problem (1.13),(1.14).

Theorem 5.1. The boundary value problem (1.13), (1.14) has a unique so-
lution if and only if the corresponding homogeneous problem (1.13y), (1.14¢)
has only the trivial solution. If the latter condition holds, the solution y
of the problem (1.13),(1.14) admits the representation (4.28), where yo is
a solution of the problem (1.13¢), (1.14), and the matriz-function G.(k,1)
defined by (5.16)—(5.19) is the Green matriz of the problem (1.13g), (1.14p).

Corollary 5.1. The boundary value problem (1.13),(1.14) is uniquely
solvable if and only if

det(ZLlj (I, + Gy (k 1]‘[ (I — Ga(i (InJrGl(ifl))) £0. (5.24)

J=1

Theorem 5.2. The boundary value problem (1.13),(1.14) is uniquely
solvable if and only if there exist natural numbers k and m such that the

matrix
no k—1

My =" Lij(In + Ga(ky) 7 [(Gh, Ga) ()],

j=1i=0
is nonsingular and the inequality (4.30) holds, where

Mk,m = Vm(Gh G2)(O)+

m—1 no

+ 3 G GO 5, D M Ll + Gk) T Vi G, Ga) (k)

=0 j=1

and the matriz-functions [(G1,G2)(1)]; and Vi(G1,G2)(I) are defined by
(5.20) and (5.21), respectively.

Corollary 5.2. Let

no

det (ZLlj(In + Gl(kj))_l) £0 (5.25)
j=1
and
T(LQMo) <1
where
no 1 no
Lo=In+ | (D2 Luih + Galk) 1) |- DB + Gahy) ™|
j=1 j=1
and

MOfZ\ G1(i) + G2(3)) (In + G1(i)) 71|

Then the problem (1.13), (1.14) has one and only one solution.
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Corollary 5.3. Let the condition (5.25) hold, or there exist a natural
number k such that the conditions

no
> LI+ Girg) ™ = Onsn, det M; =0 (i=0,...,k—1)
j=1
and
det My, #0

hold, where
no

M; =3 Lij(Lu+ Gi(hy) ™ [(Cr. Ga) (k)]

j=1
Then there exists ey > 0 such that the system
Ay(k — 1) = £(Gr(k — Vy(k — 1) + Ga(k)y(k)) + go(k) (k=1,...,mo)

has a solution satisfying (1.14) for every e €]0,e¢].

Theorem 5.3. Let matriz-functions Go; € E(Iglmo,R”X") (j =1,2) be
such that

det(I, + Goi(k)) # 0, det(I, — Goz(k)) #0 (k=0,...,mg),

the homogeneous system

Ay(k —1) = Gou(k — Dy(k — 1) + Goa(R)y(k) (E=1,...,mp)  (5.26)

has only the trivial solution satisfying the condition (1.14¢), and let the

matriz-functions G; € E(Np,,,R"*"™) (j = 1,2) admit the estimates

mo

>

i=1

Golk.i = 1) { (I = Goa ()T + Gon (i)~ -

(0 = Gai)1 + Gr0) | <

where Go(k, i) is the augmented Green matriz of the problem (5.26), (1.14¢),
and M € R™"™"™ is a constant matriz such that
r(M) < 1.
Then the problem (1.13), (1.14) has one and only one solution.
5.2. Solvability of the Problems (1.13), (1.15) and (1.13), (1.16).

Theorem 5.4. Let the matriz-function G1 = (g1a);—, satisfy the condi-
tion (4.33), and let there exist a matriz-function C = (cq)};—, and a positive
homogeneous nondecreasing continuous operator o = (£o;)_, such that

(C.ly) € Ug, (k- kn), (5.27)
(*1)”1(‘ [(In — Ga(k)) (I + G1(k))_1]ii‘ - 1) < cii(k)
for (=1 (k—k)>0 (j=1,2; i=1,...,n), (5.28)
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|[(G1(R) + G2(1)) (T + GrR) ]| < calh)
for ke{l,...,mo} (i #£1l 4,0l=1,...,n) (5.29)
and
[0 (y1s - ym)| < Loi(lyals- -, lyml)
for (y)iey € E(Npy, R™) (i =1,...,n). (5.30)
Then the problem (1.13), (1.16) has one and only one solution.
Theorem 5.5. Let the conditions (4.33), (4.44),

(—1)i+! (} [(In = Ga(k))(In + G1 (k) ]| - 1) < hai(k)
for (=1 (k—k)>0 (j=1,2; i=1,...,n), (5.31)
|[(G1(k) + Gk (I + Gr (1) ]| < (k)
for ke{0,...,mo} (i #£1l; i,l=1,...,n) (5.32)
and

Giyn, o) + [T+ Gu(k)) 7, D [ + Gu(kalay(ka) — yilki)| <

=1
n

< Z il
=1

ST+ GOy, for iy € B, RY)

(i=1,...,n)
hold, where hi; € E(Igfmo,R), hy € E(ﬁ?mo,R_F) (t#1;4,0=1,...,n), and
vi €ERy (4,l=1,...,n),v>2,
* — -1 n
= (o[ + Gk ™]) v + Nallhall)

1 2
%ﬁr 2=1,&=my, Ao=(3% sin™" 4m7[;+2) v. Then the problem (1.13), (1.16)
has one and only one solution.

Corollary 5.4. Let G1(k) = diag(gi1(k),...,91n(k)) be a diagonal
matriz-function such that the conditions (4.44), (4.45),

(171 4 g1a(k) L = g2ii (k)| = 1) < hai(k) for (=1)7(k —k;) >0
(j=1,2; i=1,...,n),
(1+ gu(kz))_1|g1il(kz) + 921'1(]?)‘ < hy(k) for ke€{0,...,mo}
(it £ i,l=1,...,n)

and

iy, )] <D vall(1+ gu()w )],
=1

for (yl)?:l € E(ﬁlmoan) (l =1,.. '777‘)
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hold, where hi; € E(Ny,,R), hy € E(Npy,Ry) (i # 1; 4,0 = 1,...,n),
vi € Ry (4,0 = 1,...,n), v > 2, the matrix H* is defined as in Theo-
rem 5.5. Then the conclusion of Theorem 5.5 is true.

Corollary 5.5. Let the conditions (4.33), (4.46), (4.47), (5.30) and (5.31)
hold, where h;; € E(NmO,R) hi € E(Npg,Ry) (i # 1; i)l = 1,...,n),
v>2, Ho = (||hallp )Ll:l, L+ 2 = 1. Then the problem (1.13), (1.15) has
one and only one solution.

Corollary 5.6. Let the conditions (4.33), (4.46), (4.48),
(1P (| [0 = Ga (T + g (0], [ = 1) <
for (~1)(k—k)>0 (j=1,2; i=1,...,n)

and
‘[(Gl(k)+G2(k))(In +G1(k))—1]ﬂ‘ < hy for ke {0,...,mo}
(40 il=1,...,n)
hold, where hy;; € R, hy € Ry (i £ 1; 4,0 =1,...,n), p > 1, v > 2,

/ll‘+ 2 =1, and Ho = (hit)i=y- Then the problem (1.13),(1.15) has one
and only one solution.

Theorem 5.6. Let the conditions
(—1)7+! O [(In — G2(F))(In + Gl(k))_l]ii‘ - 1) < hiiBi(k) + Brii(k)
for (=1)7(k—k;)>0 (j=1,2; i=1,...,n),
[[(G1 () + Ga (1) (I + G1(0)) 1] | < hafs(h) + Bra (k)
for ke{0,...,mo} (i #1l; i,l=1,...,n),
|[(In + G1(k) '], | < Bau(k) for ke{0,...,mo} (i,0=1,...,n),

[1itons - n) + (L + Ga(k Z [T+ Ga (k)] (ki) — yalks)| <
=1

for (yi)i=, EE(KTmO,R”) (i=1,...,n),

n
<|,uz Z I +G1 mz lyl(mi)

6(k)<0, 0<Bi(k) <|m|™" for ke {ki+1,...,mo} (i=1,...,n)
and
lpilvi(mi k) <1 (i=1,...,n)
hold, where hy; < 0, hy >0 (i # 1; 4,0 = 1,...,n); pi € R, n; < 0,
m; € ﬁmo, m; 7& ki (i =1,...,n); Buii, Bair € E(Npg, Ry) (6,0 =1,...,n);

Bru(k) > 0 (i # )andﬁz()ZOforkGNmO\{ki} (t,1 =1,...,n);
vi(m, k) = o, (M, k), the function v, is defined by (4.49), and a;(k) =
i(k

i (k)—a;(k;)) sgn(k—k;), a; (k) = é:o Gi(l) (i=1,...,n). Let, moreover,
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the condition (2.39) hold, and let the real part of every characteristic value
of the n X n-matrix (fil)zn,lzl be negative, where

§ii = hii(1 — gii), &a = hahi —hugn (i # 1 i,1=1,...,n);
gi =il (1= by (mi, k) ™ i (ma) +max {7 (0), v (mo) } (,1=1,...,n);
viu(k)) =0 (i,1=1,...,n),
i (k) = ‘ail(k) — (k)| — (1 - 6it) X (o.x,) (k) Braa (ki)
Jor ke Ny, \ {ki} (i,1=1,...,n);

k
o (k) = Z Bri(m) (i,1=1,...,n);
m=0
hi=1"4f |us| <1, and

-1 . .
hi =1+ (|l = D) (1 = |pilyi(mi, k) if Jwal > 1 (i=1,...,n).
Then the problem (1.13), (1.16) has one and only one solution.

Theorem 5.7. Let the condition (4.33) hold, and let £y; : E(ﬁmo,Ri) —
Ry (i =1,...,n) be linear continuous functionals, a matriz-function C' =
(ci)i1=1 € E(Npg, R™™) be such that cy(k) > 0 for k € Ny, (i # I;
i,l=1,...,n), and the problem (5.22), (5.23) have a nontrivial nonnegative
solution y = (y;)_q, i.e. the condition (5.27) be violated. Then there exist
a matriz-function Go € E(NmO,R"X”), linear continuous functionals £; :
E(Np,R?) — R (i = 1,...,n) and numbers co; € R (i = 1,...,n) such
that the conditions (5.28)—(5.30) are fulfilled, but the problem (1.13¢), (1.16)
is not solvable. In addition, if the matriz-function C = (Cil)Zl=1 is such
that

det (I, — diag(sgn(k — k1),...,sgn(k — k,,))C(k) diag(1, ..., en)) # 0
for ke{0,...,mp}, (5.33)
where g; € [0,1], then the matriz-function G2 satisfies the condition (5.1).
Remark 5.1. The condition (5.33) holds, for example, if either

> lea(t) <1 for k€Np, (i=1,...,n)

=1
or
ci(k) <1 for k>k; (i=1,...,n)
and
n ~
Z lea (k)] < |1 —sgn(k — k;)eii (k)| for k€ Np,, (i=1,...,n)
=1, I

( Z lews (k)] < |1 = sgn(k — ki) (k)| for k € Ny, (izl,...,n)).
I=1, i
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6. AUXILIARY PROPOSITIONS
1. General Lemmas.

Lemma 6.1. Let g = (g:)j-; € BV([a,b],R"), and let (cu)i =, €
BV([a, b], R"*™) be such that ¢;; (i # ;4,1 = 1,...,n) are nondecreasing
functions. Let, moreover, B = (by);j,—; € BV([a,b],R"*") be a matriz-
function satisfying the conditions

So(bii)(t) — So(bii)(s) < [So(cz'i)(t) — So(cii)(s)] sgn(t — s)

for (t—s)(s—1t); >0 (i=1,...,n), (6.1)
(=1 (|1 + (=)™ dmbii(t)] = 1) < dimeai(t)
Jor (=17t —t)>0 (jym=1,2 i=1,...,n), (6.2)
|So(bir) (t) — So(bir)(s)| < So(ciu)(t) = Solca)(s)
for a<s<t<b (i#l i,l=1,...,n) (6.3)

and
|d;bi(t)] < djcu(t) for t€fa,b] (t#1 i,l=1,...,n). (6.4)
Then every solution x = (x;)7—, of the system
dz(t) = dB(t) - z(t) + dg(t)

will be a solution of the system

[d|xl(t)| —sgn(t —t;) Z | (t)|dei (t) — sgnx;(t) - dgi(t)| sen(t —t;) <0
=1

(—1)7dlai |<Z|xl )Id;cu(ts)+

+(—1) sgna;(t;) - d;gi(t 1) (j=1,2 i=1,...,n).
Proof. This lemma with the supplementary condition
djci(t;) >0, djcii(t) > —1 for (=1)7(t—t;)>0 (j=1,2; i=1,...,n)

is proved in [6, Lemma 2.2]. We only note that the last condition follows
immediately from the condition (6.2). O

Lemma 6.2. Let ty € [a,b], co € R™, g € BV([a,b],R™), and let the
matriz-function B = (big);',—, € BV([a,b], R"*™), where by (i # k; i,k =
1,...,n) are nondecreasing functions on [a,b], be such that

det(l, +d;B(t)) #0 for t € [a,b]\ {to} (j=1,2),
L4+ d;bii(t) >0 for (=1)7(t—t9) >0 (j =1,2)

and

zn:djbik(t)<1 for (=1)7(t—t0) <0 (j=1,2; k=1,...,n).
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Let, moreover, the vector-function z : [a,b] — R™ (z € BV([¢,d],R™) for
every [c,d] C [a,to[U]to,b]) be a solution of the system of linear differential
inequalities
sgn(t — to)dz(t) < dB(t) - z(t) + dg(t)
on the intervals [a, to[ and Jto,b], satisfying the condition
2(to) + (=1)d;z(to) < co + d;B(to) - co + djg(t) (j =1,2).
Then the estimate
2(t) < u(t)
holds, where u € BV([a,b],R™) is the unique solution of the system
sgn(t — to)du(t) = dB(t) - u(t) + dg(t)
on the intervals [a,to[ and Jto,b], satisfying the conditions
(—1)’dju(to) = d;B(to) - ulto) + d;b(to) (j=1,2)
and
U(to) = Cp.

Proof. This lemma is proved in [8, Lemma 2.7]. O

6.2. On the Set U(t1,...,tn).
The following lemmas make more precise the ones given in [3].

Lemma 6.3. Let the conditions (2.26), (2.27) and
¢

‘cil(t) - cil(s)‘ < /hil(T) dog(r) for a<s<t<b (i,l=1,...,n)
hold, where ¢;; € BV([a,b],R) (i,l =1,...,n), oy (I =1,...,n) are func-
tions, nondecreasing on [a,b] and having not more than a finite number of
points of discontinuity; hy € L*([a,b],Ry;ap) (i #1), hy € LH([a, b], R; ay)
(i,0=1,....n), 1 < p < +00; bmir € Ry (m = 0,1,2; i,k = 1,...,n),
/%‘+ 2 =1, and H = (Hj+1’m+1)im:0 is the 3n X 3n-matriz defined as
in Theorem 2.6. Then the problem (1.23),(1.24) has no nontrivial non-
negative solution. In addition, if ¢y (i # 1; i,1 = 1,...,n) are functions
nondecreasing on [a,b], then the condition (2.16) holds for C = (ci)i =,
and fo = (601')?:1;

2 n
eOi(mla o ,In) = Z Zemiknx”usm(ak)

m=0 k=1
for (z;)i—, € BV([a,b],R") (i=1,...,n).

Lemma 6.4. Let the conditions (2.36)—(2.38),

Sjlea)(t) = Siea)(s) < ha[Sj(i)(t) = Sj(ci)(s)] + S;(Bu) (t) — Sj(Bi)(s)
for a<s<t<t; and t; <s<t<b (j=0,1,2; i,l=1,...,n)
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and
d‘C“‘( z) < hiid»ai(ti) + djﬁ“‘(ti) (] = 1, 2; 7= 1, e ,n)

hold, wherehll>0( D), his <0 (i,1=1,...,n); u; >0, 7, <0, s; € [a,b],
si#t;(i=1,...,n); By (i=1,...,n) are functwns nondecreasing on [a, b];
Ba (1 £1) and ozz (i,l=1,..., ) are functions on [a,b] nondecreasing on
every interval [a,t;[ and Jt;,b]; Ni(t) = va,(t, t:), the function v, (¢, t;) is
defined according to (1.22), and a;(t) = ni (i (t) — o (t;)) sgn(t — ;) (1 # 1;
i1 =1,...,n). Let, moreover, the condition (2.39) hold, and let the real part
of every characteristic value of the matrix (fil)?,z=1 be negative, where g;;
and & (4,0 = 1,...,n) are defined as in Theorem 2.7. Then the problem
(1.23), (1.24) has no nontrivial nonnegative solution. Moreover, if ¢y (i # 1;
1,0 =1,...,n) are nondecreasing functions, then the condition (2.16) holds

Jor C' = (Cil)?,z=1 and o = (o; )iy,
loi(x1,. .., xn) = pizi(ss) for (x1)j=y € BV([a,b],RY) (i=1,...,n).

Proofs of Lemmas 6.3 and 6.4 are analogous to those of Lemmas 2.6 and
2.7, respectively, given in [3].

Lemma 6.5. Let tg1,...,tkm € [a,b] (k= 1,2), lo; : BV([a,b],R}) —
Ry (B =1,2; 9 =1,...,n) be linear continuous functionals, and Cy; =
(ckji)i=1 € BV([a,b],R"*") (k,j = 1,2) be such that the system

sgn(t — t1;) - dwi(t) < Z z1(t)dera(t) + Z xor(t)derza (t)
forte[a,b], t#£ty (t=1,...,n),
x1(tii)djcrra(ti) + Z xor(t1:)djcr2a (t1s)

= (6.5)
(j=1,2 i=1,...,n),

dxo;(t Z x1(t)deara( )+Z$2z(t)dc22u(t)
=1

(=1 djayi(ti) <

WE

l

Il
N

for t€la,b] (i=1,...,n)
has a nontrivial nonnegative solution under the condition
:L']“'(tu) § fo]ﬂ'(xu, ey LIny L21y - - - ,l‘gn) (k = 1, 2; 1= 1, . .,’Il). (66)
Then there exist a matriz-function A € BV ([a,b],R™*™), linear continuous
functionals ¢; : BV([a,b],R?") — R (i = 1,...,2n) and numbers co; € R
(i=1,...,2n) such that the 2n-system

dz(t) = dA(t) - z(t) (6.7)
under the 2n-condition (1.4) is unsolvable, where t; = t1; (i = 1,...,n),
tn-i—i = tQi (Z = 1, ce ,n), and

~ (AW)  Ci)
Al = <C21((35) 022Et)) ' (6:8)
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Proof. Let x = (xx)?_,, ©x = (ki)"~; (k = 1,2) be the nonnegative solu-
tion of the problem (6.5), (6.6).
Let b;, ; € BV([a,b],R) (i =1,...,n) be the functions defined by

bl(t) = (SO(Cllii)(t) — SO(Cllii)(S)) sgn(t — th‘) (’L = 1, ey n)

and

pi(t)

(i: (/txll(T) de1a(T) +j$21(7‘) dc12u(7))—

=1 t1;

_ /t:cu(T)dSo(clm)(T)) sgn(t —t1;) (i=1,...,n).

It is evident that the Cauchy problem

dy(t) = y(t) dbi(t) + di(t), (6.9)
y(th‘) = xu(tli) (610)
has a unique solution y,; for every i € {1,...,n}.

Moreover, it is easy to verify that the function z(t) = z;(t),
zi(t) = z1(t) — yri(t)
satisfies the conditions of Lemma 6.2 and the problem
du(t) = u(t) db;(t), u(t1;) =0

has only the trivial solution for every i € {1,...,n}.
According to this lemma we have

x1;(t) <wy1i(t) for te€a,b (i=1,...,n)
and therefore
x1;(t) = ni(O)y1:(t) for te€a,b] (i=1,...,n),
where, by Theorem 1.4.25 of [28], n; : [a,b] — [0,1] (i = 1,...,n) are
functions such that the integrals ftm(T) deiia(r) (3,1 = 1,...,n) exist for
every t € [a,b]. "

Let us introduce the notation
t

aii(t) = bi(t) + sgn(t — t1;) /m(T) d(c114(7) — Sole114)(7))
’ (i=1,...,n), (6.11)
ag(t) = sgn(t —t1;) /771(7) deyra(r) (E#£1 i,l=1,...,n).

t1;
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Due to (6.6), (6.9) and (6.10), the vector-function y = (y;)7, vi(t) =

21:(t) (1=1,...,n), Ynti(t) = 22;(¢) (i =1,...,n), is a nontrivial nonneg-
ative solution of the 2n-problem
dy(t) = dA(t) - y(b), (6.12)
yi(ti) = (Sifoi(yl, ce ,ygn) (Z = 1, ey 2n), (613)

where §; € [0,1] (i = 1,...,n), dppi =1 (i =1,...,n), A(t) = (au(t))} 1=,

Loi(y1s - - y2n) = Loki (Y1, - -, Y2n)
for (y)?", € BV([a,b],R*") (k=1,2; i=(k—1)n+1,...,kn). (6.14)

Let ¢; : BV([a,b],R*") — R (i = 1,...,2n) be linear functionals defined
by

&-(ml, . ,xgn) = (Si (601'([331]4_, ceey [Ign]+) — fol'([ml]_, ceey [Ign]_))
for (x)?, € BV([a,b],R*") (i=1,...,2n), (6.15)

where [a]4(t) = 3(l2:(O)] + :(t) and [ei]_(t) = L(|e:(t)] — 2i(t)) (i =

1,...,2n) are the positive and negative parts of the function x;, respectively.
By (6.11)—(6.13), y = (y;)7"; is a nontrivial, nonnegative solution of the

system (6.7) under the boundary condition (1.4).

On the other hand, by Remark 1.2, there exist numbers cp; € R (i =
1,...,2n) such that the problem (6.7),(1.4) is not solvable, where the
matrix-function A(t) is defined by (6.8), (6.11), and the linear function-
als ¢; (i=1,...,2n) are defined by (6.15). The lemma is proved. O

7. PROOF OF THE MAIN RESULTS

7.1. Proof of the Results of Section 2.
Proof of Theorem 2.1. Let | = 1.

We introduce the following sequence of operators: p; : BV([a, b], R"*!) —
BV([a,b],R™*!) (i =0,1,...):

1
pi(X)(t) = (I, — dy A(t)) ™! /dA(T—) pic1(X)(r) (i=1,2,...). (7.1)
To prove the theorem, we have to show that the conditions of the theorem
are necessary and sufficient for the absence of nontrivial solutions to the
homogeneous problem (1.1p), (1.5¢).
Let us show the sufficiency. Let z = (x;)!; be an arbitrary solution of
the homogeneous problem (1.1¢), (1.50). Then

z(t) =c+ /dA(T) ~xz(t) for t€[a,b], (7.2)

a



62 M. Ashordia

where ¢ = z(a). This, by (1.21), (1.31) and (7.1), yields

o) = e+ / dA(r—) - 2(7) + di A(t) - 2(t)

= ([A®)]o + [A®)) - ¢+ p2(2)(t) = ([A(D)]o + [A)]) - e+
+p2([A()]o - ¢ + p1(2))(t) =
= ([A®)]o + [A®N) - ¢+ p2([AC)o - ) (@) + p2(pr(2))(8) =

= ([AD]o + [AW)]1 + [A(D)]2) - ¢+ ps(@)(t) for ¢ € [a,b],
etc. Continuing this process infinitely, we obtain

j—1

o) = (MO e m)) for tefet] (3
i=0
for every natural number j.
According to (1.171), (1.191) and (7.1), from (1.5¢) and (7.3;) we find

that
b

Myc — /dL(t) ~pr(x)(t) = 0.
a
Therefore in view of the fact that My is a nonsingular matrix, we have

b
e=" [ L) puie)o.

Substituting this value of ¢ into (7.3,,), we get

m—1

b
z(t) = pm(z)(t) + (Z[A(t)]i) /d(M;ZIL(t)) - pr(@)(D)- (7.4)

=0 .
On the other hand, by (1.191) and (7.1), we have
pi(2) (@) < Vi(A)() - fz|s for tela,b] (G=1,2...).
From this and (2.3), owing to (7.4), it follows that
|7]s < My m|z]s

and
(In — Mgm)|zls <0.
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Hence according to (2.2), we obtain
|z]s < 0.

Consequently, x(t) = 0. Thus the sufficiency of the conditions of the
theorem is proved for the absence of nontrivial solutions to the problem

(1.1p), (1.5¢).

Let us now prove the necessity. Let the problem (1.1p), (1.59) have no
nontrivial solutions. Then the inequality (1.28) holds, where the matrix D
is defined by (1.25), and Y is an arbitrary fundamental matrix of the system
(1.1p). For definiteness we mean that

Y(a) = I,.

Assume
Yi(t) =Y [A@®): for tefab] (k=12,..). (7.5)

0
Analogously to (7.3;) we show that

k—1
Y(t)=> [A@W)] +p(Y)(t) for t€[a,b] (k=1,2,...). (7.6)
i=0
We now estimate |px(Y)||s. Let ro = [|[Y||s. It is clear that (I, —

d1A(t))~! is a bounded matrix-function on [a, b]. Therefore
r=sup{|(In — diA(t))""|| : t € [a,b]} < 0.

Taking into account the fact that A_ is a continuous from the left matrix-
function and V(A_) is nondecreasing, by (1.34) we estimate

1 (V)OI < |(Tn = dr A 1||/||Y VA @) < rrolVA-) @],
Ip2(Y)(OI < [(In — d1 A 1||/||p1 TV (A-)(n)] <

<rr0/||v 7)lld|[V (A ><T>||<””” V(A (@0)].

Using the method of induction, we obtain

ro(r _ k ra(r B k
(V) (D) < of IIV(Zl! )(®)1) < o IIV(]/:! O

for t€a,b (k=1,2,...). (7.7)
According to (7.7), from (7.5) and (7.6) it follows that
lim ||Yx —Y]s =0. (7.8)
k—o0
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Moreover,

b
[€(Ye) — £(Y)]| < /”Yk(t) —Y@OldVL) O < VL)@ - [V = Ys-

Therefore by (7.8) we have
lim ¢(Yy) = £(Y).
k—o0
But in view of (2.1) and (7.5), we have
0Yy) = — My,
and hence
klim My, = —L(Y).

From the above arguments and (1.28), there exist a natural number kg
and a positive number « such that

det(My) #0, |MY <a (k=koko+1,...). (7.9)
Moreover, as above, it is easy to verify that

V(AN < VA )@ for ¢ € [a,b],

IVa(A ||</||v1 DV A ()] <

< /nv DIV (A )] <

<2—||V(A_()||2 for ¢ € [a,b],

and so on. Thus

1 1
IVe(A)ON < 5 CIVA)BOIN® < 5 IV A @)D"
for te€a,b] (k=1,2,...).
Taking into account these estimates and (7.9), from (2.3) we get

lim My, = = Onxn-

k,m—oo

Thus the inequality (2.2) holds for some sufficiently large k and m. The
theorem has been proved for [ = 1.
Let now [ = 2. For this case we define the operators p; (i =0,1,...) by

po(X)(t) = X(1),

(X)) = (I +d2A(t))*1/dA(T+) A (X)) (=1,2,...)
b
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instead of (7.1).
We use the equality

x(t) =c+ /dA(T) cx(t) for t€[a,b]
b

instead of (7.2).
Acting analogously as in proving the case [ = 1, we can easily show that
the theorem is true in this case, as well. ]

Proof of Theorem 2.1'. The proof is analogous to that of Theorem 2.1.
Let [ = 1, and let p; : BV([a,b],R"*!) — BV([a,b],R™*!) (i = 0,1,...)
be the operators the defined by
t
WOW =X, w00 = [dAE) pa (00 (=12,...)

Let x = (x;)_, be an arbitrary solution of the problem (1.1¢), (1.50).
Then by virtue of (7.2),

2(t) = c+pi(@)(t) = c+ /dA(T) (et p(a)(r) =

a
t

= [In + (A(®)]e + /dA(T) p1(2)(7) = [In + (AW ]e + p2(2)(t) =

— (1 + AN+ [ aai) - [dAG) e+ p@) ) -

= [In + (A@))1 + (A(t))2]c + ps(x)(t) for ¢ € [a,b],

and so on. Continuing this process infinitely, we obtain

x(t) = {In + Z(A(t))i}C—i—pj(x)(t) for te€a,b] (=1,2,...). (7.10)

According to (2.4) and (2.5), from (1.50) and (7.10) we can find ¢ as
above. Substituting the value of ¢ in (7.10) and acting as above, we find
that x(t) = 0. The theorem has been proved for [ = 1.

The proof of the theorem is analogous for the case [ = 2. We only note
that the operators p; (i =0,1,...) are defined by

po(X)(t) = X (1), pz-(X)(t)E/dA(T)’pH(X)(T) (i=12,...)
b

The theorem is proved. O
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Proof of Corollary 2.1. Let A.(t) = cA(t). It is evident that
ali_%(ln + (=1)’ed;A(t)) = I,, uniformly on [a,b] (j = 1,2).
Therefore there exists €1 > 0 such that
det(I, + (—=1)7d;Ac(t)) #0 (t € [a,b], j=1,2)

for every € €0, e1].
If the condition (2.6) holds, then we assume k = 1, while if the conditions
(2.7)—(2.9) hold, we assume k = [ + 1. Moreover, we put

k‘
,_.

My(e) = /de

2

I\
o

and
M () = (VA ) + ML e) / AV (L)(2) - (V(A) (£)r.

In view of the condition (2.6) (of the conditions (2.7)—(2.9)), we can easily
verify that

My(e) = " IMy,  det(My) #0, Mya(e) = My,

where M}, and My are the matrices defined by (2.4) and (2.5), respectively.
Let

) 1
€0 _mln{T(MkJ) ,El}.

r(Mp1(e)) <1

for every € €]0,e9[. Therefore, according to Theorem 2.1’, the problem
(1.6), (1.5) has one and only one solution for every ¢ €]0,e0[. Thus the
corollary is proved. (]

Then we have

Proof of Theorem 2.2. Let x = (x;)]~, be an arbitrary solution of the
problem (1.1p), (1.5¢). Since the problem (2.10), (1.50) has only the trivial
solution, by (1.27) and the equality

da(t) = dAo(t) (/td ))~x(T)>

we have the representation

t T

z(t) = /dTgo(t,T) . /d(A(s) — Ap(s)) - z(s).

a a
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Therefore using the integration by part formula (1.32) and (1.33), we
have

£(t) = / Go(t, T)A(A(r) — Ao(r)) - () +
£ 3 (Golty7) — Golt, 7)) - di (A(r) — Ao(r)) - ()~

a<t<t

= > (Golt,+) = Golt,m) - da (A(7) = Ao(7)) - a(r) =

a<lt<t

= 7/g0(t,7')d50(14 — Ao)(7) - 2(1)—

- Z Go(t,7—)d1 (A(T) — Ao(7)) - 2(7)—

— D Golt,7+)da (A(r) — Ao(7)) - (7)
and )
|z(t)] S/Igo(t,T)ldV(So(A*Ao))(T)'|96(T)|+
+ Y (Go(t,7=) di(A(r) = Ao(7))] - |a(7) |+
+ > [Go(t, 7+) da(A(T) — Ag(7))] - a(7)| <
< M|;|S for ¢ € [a,bl.
Hence

(I, — M)|z|s <0.

From the above, owing to (2.12), it follows that x(t) = 0. Consequently,
the problem (1.1), (1.5) has one and only one solution. Thus the theorem
is proved. O

Theorems 2.3 and 2.4 and Corollaries 2.2 and 2.4 follow immediately
from Theorems 1.1 and 2.1 and Corollaries 1.1 and 2.1 if we assume that

no
L(t) = =Y X, (DL,
j=1

where X|[q,,] is the characteristic function of the set [a,t;] (j =1,...,n0).
Corollary 2.3 follows from Theorem 2.4" if we assume k =1 and m = 1.
Proof of Theorem 2.5. According to Theorem 1.1, to prove the theorem

it is sufficient to verify that the homogeneous problem (1.1g), (1.49) has
only the trivial solution.
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Let (x;)_, be an arbitrary solution of the problem (1.1p), (1.4¢). We

T(t) = zi(t)] (i=1,...,n).

Then by (2.17)-(2.21) and Lemma 6.1, we have

sgn(t — t;)dT;( <le (t)dey(t) for te€lab], t#£14; (i=1,...,n),

(1) d;Ti(t; <Zml Vjca(t) (G=1,2; i=1,...,n)
and
.ﬁz( )<€01($1,.. fn) (’L'Zl )
Hence (T;)"_; is a nonnegative solution of the problem (1.23), (1.24). There-
fore by (2.16), Z;(t) =0 (i =1,...,n) and
2i(t) =0 (i:l,...,n). O

Proof of Theorem 2.6. By Lemma 6.3, the condition (2.16) holds for
C= (Cil)?,lzl and £y = (£o;)I,, where

cu(t) = /hil(T)dOél(T) for té€la,b] (i,l=1,...,n)

and
2 n
foi(xl,...,.ﬁn) = Z Z@miﬂ 2 S (k)
m=0 k=1
for (z1)j2; € BV([a,b],R™) (i=1,...,n).
Therefore the theorem follows from Theorem 2.5. O

Remark 2.1 follows from the fact that Lemma 6.3 is also true for the
n X n-matrix described in this remark.
Corollary 2.5 is a particular case of Theorem 2.6, when £,,1; = 0 (m =
0,1,2;4,k=1,...,n).
Proof of Theorem 2.7. By Lemma 6.4, the condition (2.16) holds for
C = (ca)i=, and £ = (Lo;)j;, where
Cil(t) = huai(t) + ail(t) for te [0,, b] (Z,l =1,... ,n)

and

gOi(xla s 7xn) = |p’z|m1(s’t) for (‘Tl)?zl € BV([(Z, b]aRi) (7’ =1,... 7”)'
Therefore the theorem follows from Theorem 2.5. O

Proof of Theorem 2.8. Note that the problem (1.23), (1.24) is a par-
ticular case of the problem (6.5), (6.6) if we assume in it Cy1(t) = C(¢),
012(75) = Cgl(t) = ng(t) = Oan and ﬁou(ml, . ..xgn) = EOi(xl, .. .,In)
(i = 1,...,n), Eogi(xl,...,xgn) =0 (Z = 1,...,71).
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By Lemma 6.5 there exist a matrix-function A = (au)j)=, €
BV([a, b], R"*™) and linear continuous functionals ¢; (i = 1,...,2n) defined
by (6.11) and (6.15), respectively, and numbers co; (i = 1,...,2n) such that
the 2n-system (6.7) is unsolvable under the 2n-condition (1.4), where A(t) is
defined by (6.8). Moreover, it is evident that the system (6.7) is equivalent
to the system (1.1p). Therefore the problem (1.1¢), (1.4) is unsolvable for
the matrix-function A and linear functionals ¢; (i = 1,...,n).

Due to (2.40), (6.11) and (6.15), it is not difficult to verify that the
conditions (2.17)—(2.21) are fulfilled.

Let now the condition (2.41) hold. By (6.11), we get

d; A(t) = diag (sgn(t — t1),...,sgn(t — t,)) d;C(t) diag(ni (t), . .., (1))
for t€a,b] (j=1,2).
Therefore, in view of (2.41), the condition (1.21) holds. Thus the theorem
is proved. O
Consider Remark 2.4. The first case is evident. Indeed, by (6.11),

djaq(t) =sgn(t —t;)m(t)d;cu(t) for teab] (j=1,2; i,l=1,...,n)
and
|djau(t)| <|djea(t)] for tela,d (j=1,2; i,l=1,...,n).
Taking this into account, by (2.42) we have

n
> ldjaa(t)] <1 for te€lfab] (j=1,2 i=1,...,n).
=1
Hence the condition (1.21) holds.
Let now the conditions (2.43) and (2.44) be valid. Then from (2.44) we
have
S Isen(t —t) - eidsea(t)] < lei + (~1)7 sgu(t — t;) - cad;eis(?)]
I=1, I£i
for t€fa,b] (j=1,2; i=1,...,n). (7.11)

Using (2.43), we obtain

|E7; + (—1)j sgn(t - ti) . Eidjcii(t” <1+ (—1)j sgn(t - ti)sidjcii(t)
for te€a,b] (j=1,2; i=1,...,n).
This and (7.11) yield
n .
Z |sgn(t — tl) . Eidjcil (t)| <14+ (—1)j sgn(t — ti)sidjcii(t)
1=1, I#i
for te€a,b] (j=1,2; i=1,...,n).
Therefore by Hadamard’s theorem (see [12, p. 382]), the condition (1.21)
holds. Remark 2.4 is proved analogously for the second case of (2.44). O
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7.2. Proof of Results of Section 3. Below, for the theorems and corol-
laries of Section 3 we assume that the matrix-function A(t) and the vector-
function f(t) are defined by

A(a) = Onxn, f(a) =0,
A(t) = /p(T) dr+ > Gy,
a a<t <t (712)

f(t):/Q(T)dT+ Z gr for a <t <b.

a a<T<t

Note that by virtue of (1.8) we have A € BV([a,b],R"*") and f €
BV([a,b],R™). In addition, A and f are continuous from the left, i.e.

AL A() = Opyn and  dif(t) = 0. (7.13)
Moreover,
dQA(t) = Oan and dgf(t) =0 if ¢t §Z {70,7'1, N },
doA() =G and dof(mi) =gr (k=1,2,...), (7.14)
S0 = [Py son® = [ann (7.15)

a a

S1(A)(t) = Onxn,  S1(f)(t) =0,
SAH= D G S(NB= D o (7.16)

a<t<t a<7<t
Theorems 3.1-3.5 and Corollaries 3.1-3.3 follow from Theorems 1.1,
2.1-2.4 and Corollaries 2.1-2.4, respectively, taking into account (7.12)-
(7.16). |
Proof of Theorem 3.6. The theorem follows from Theorem 2.5 if we
assume in it that

t

cil(t)z/qil(T)dTJr > hea (i,1=1,...,n) (7.17)

a a<Tp<t

and take into account that owing to the equalities (7.13)—(7.16) the condi-

tion (2.16) has the form (3.7), the inequalities (2.17) and (2.19) are equiv-

alent to the inequalities (3.8) and (3.10), respectively, and the inequalities

(2.18) and (2.20) coincide with the inequalities (3.9) and (3.11), respec-

tively. O
Proof of Theorem 3.7. In Theorem 2.6 we assume

ait)=t—a+ Z a (i=1,...,n)

ap<T <t
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and

bk = Yk, L2ik =0, Ly =v2 (B,k=1,...,n).
Then by virtue of (7.13)—(7.15) the conditions (2.22)—(2.25) are transformed
into the conditions (3.12)—(3.15), respectively, and for the 3n x 3n-matrix
H = (HjJrl,erl)?,m:o we have sz = Oan (j = 1,2,3), ng = Oan
(J = 1,2,3), Hu1 = Hou, Hiz = Hoiz, Ha1 = Hoz1, Haz = Hozz and
r(H) = 7(Hp), since in this case

N

in:(bfa)%a filzoa €i2<zaki> (7::17"'3”)7
k=0

Aroio = E (ba)} (i,k=1,...,n),

)\klij:() (]:OaL?a iak::[,'"an),
Mjin =0 (7=0,2; i,k=1,...,n),

AN

1 7r v
Ak2iz = | = o sin =2 i k=1,...,n).
k2i2 <4NMkSIH 4nk+2> (i n)

Thus Theorem 3.7 follows from Theorem 2.6.

Corollary 3.4 is a particular case of Theorem 3.6, when v, = 0 (m =
1,24,k=1,...,n).

Corollary 3.5 is a particular case of Corollary 3.4 if we assume h;(t) =
hy = const (i,l=1,...,n) and g = +o0.

Theorem 3.8 follows from Theorem 2.7 if we assume

O

ai(t)z/ﬁi(r)dr—&— S G (i=1,...,m),

a<Tp<t

ail(t)E/ﬁil(T)dT-i- Z Bra (5,1=1,...,n)

a<Tp<t

and apply the equalities (7.13) and (7.14).
Corollary 3.6 is a particular case of Theorem 3.7, when

ﬁl(t) = 1, ﬁil(t) =0 (Z,l = 1, ce 777,),
Bri=0 (i=1,....,n; k=1,...,mp).

Corollary 3.7 is a particular case of Corollary 3.6, when gr;; = 0 (i =
L,...,n; k=1,...,mg).

Theorem 3.9 follows from Theorem 2.8 if we define the functions ¢;; (i,1 =
1,...,n) by (7.17) and take into account (7.13) and (7.14).

7.3. Proof of the Results of Section 4.
Proof of Theorem 4.1. The problem (1.9), (1.10) is equivalent to the 2n-
problem (1.1), (1.2), where A(t) and f(t) are defined by (4.7), ng = no1+noz,
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t;j (j =1,...,n0) are defined by (4.8), and L; are defined by (4.9). The
above-said shows that

dlA(t) = O2n><2n and dlf(t) -

for tG[O,mO]\{%,;,...,mO%}, (7.18)

d, A <k - —) =G(k) and dyf <k - %) =g(k) for k€ Ny, (7.19)

dQA(t 02n><2n; d2f(t) = 07 (720)

So(A)(t) = Oanxan, So(f)(t) =0, (7.21)
[t+3] [t+3]

SA0 = 3 66, SO0 = X 16 1)

So(A)(t) = O2pxan,  S2(f)(t) =0,

where G(k) = (Gim (k))7,,—; and g(k) = (g:(k))7_, are defined, respectively,
by (4.4) and (4.5).
Using Theorem 1.1, we can see that the first part of Theorem 4.1 is valid.
Let us show the representation (4.28). By (1.32), (1.33), (2.14) and
(7.18)—(7.22), we have

dsG(t,s)- f(s) =
0
— G(t,mo) - f(mo) - / G(t,5)df(s) + S drG(t.s) - dif(s) =
0<s<myg

Z G(t,s) - dif(s Z diG(t,s) - di f(s) =

0<s<myg 0<s<myg
Z G(t,s—)dif(s thz -g(#) for t e [0,mpg).

0<s<mo

Therefore, by (1.27),
mo
— > G(t,i—)-g(i) for te [0,mol, (7.23)
where xo is a solution of the problem (1.1p), (1.2) corresponding to the
problem (1.9¢), (1.10).

If we take into account the fact that the functions x, o, G(-,%) and G(k, -)
are jump functions continuous from the right, then from (7.23) we get

z(k) :xo(kz)—zo:g(k,i—)-g(i) for k=1,...,mo,
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whence by virtue of (4.2), (4.5) and (4.6) we obtain

(T Ga)(8) = (I + G (R ) — DG i — 1))

for k=1,...,mp.

Consequently, the equalities (4.28) hold. The theorem is proved. O
Remark 4.1 follows from Remark 1.2.

Proof of Corollary 4.1. By (4.10), (7.18)—(7.22) and Corollary 2.2, the
problem (1.9), (1.10) is uniquely solvable iff

no
det (Z Dj) 40, (7.24)
=1
where ng = ng1 + no2,

Dj = Lj (Ign - G(Z))_l (j = 1, . .7’1’1101)7

Il
o~ —-
K

7

(7.25)
Dj=1L;

%

(Ion — G@E)™" (j=no1 +1,...,n0),

|
EH

Il
>

i+l

G(i) = (Gim (7))} =y is defined by (4.4), and L; (j = 1,...,np) are defined
by (4.9).
It is not difficult to verify that

w1 { Onxn I, +G1(3)
(lon —G(1)) = (—Gsl(i) G5 6) (I, — Gz(i))) '

From this, in view of (7.25), we have
D;=L;Y(k;) (j=1,...,n01),
Dj=L;Y(kj+1) (j =no1+1,...,n0),
where Y (k) = (Vi (k))? is defined by (4.19).

l,m=1

According to (4.9), we conclude that

D, = (Llj(fn +Gu(ky) " Yia(ky)  Laj(In + Gl(kj))lyu(kj))

nxn Oan

(7.26)

(7.27)

(jZl,...,’IlOl)

and

On><n On)(n .
D. = = 1,... .
J <L2jy21(k?j + 1) L2jy22(/€j + 1)) (.7 no1 + 1, anO)

Therefore, by (7.24), the condition (4.29) holds. O

Theorems 4.2 and 4.3 and Corollaries 4.2 and 4.3 follow from the cor-
responding results of Section 2 if we apply them to the 2n-problem (1.1),
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(1.2) corresponding to the problem (1.9), (1.10), and take into account the
equalities (4.6)—(4.9) and (4.20)—(4.24).

Proof of Theorem 4.4. To prove the theorem, we use Theorem 2.5. Con-
sider the 2n-problem (1.1), (1.4), where the matrix- and the vector-functions
A(t) and f(t) are defined by (4.4), (4.5) and (4.7), ¢; (i = 1,...,2n) and
coi(t = 1,...,2n) are defined by (4.13), and ¢; (i = 1,...,2n) are defined
by (4.14) and (4.15).

Consider the matrix-function C' = (¢;)77_, and the operator £o = (fo;)7;
appearing in the condition (2.16).

Let

C(t) = (Cjm(1))* for t e [0,mg),

j,m=1
where the matrix-functions Cjy, (t) (j, m = 1,2) are defined by (4.27).
For z = (z;)2_; € BV([0,mo], R%"), z; = (z4;)1, (I = 1,2), we define the
nonnegative operators

Loi(T11, .o T1n, T21, - oy Ton) =

= ([(I, + Gl(k’i))_l]ii)il Co1i(Y1, - s Yn)+

-1

+ (14 graa(ki)[(In + Ga (k)" Ha) x
x Z gra(ks) [(In + G1(k:)) Myzu(k:) (i=1,...,n) (7.28)
Lj=1; 14, j£i

and
Lomi(T11y ooy Ty @21y - ooy Ton) = Lo2i (Y1, - yn) (E=1,...,n), (7.29)
where
(i (k) = (In + G1(k)) " tay (k) for k€ {0,...,mo}. (7.30)

Let us now verify the conditions of Theorem 2.5.

The conditions (2.17) and (2.19) are evident owing to So(A)(t) =
So(C)(t) = Opxn- The conditions (2.18) and (2.20) are of the form (4.35)—
(4.37). As to the estimate (2.21), it follows from (4.38) due to the condition
(4.33).

We now show that the conclusion (2.16) is true.

Let z = (z)2, € BV([0,mo], R3"), 2; = (z;)"; (I = 1,2) be a non-
negative solution of the problem (1.23), (1.24). Then by the definition of
the matrix-function C' = (Cjm)3 =, and due to (4.33), the vector-function
y(k) = (yi(k))j~, defined by (4.10) will be a nonnegative solution of the
system of difference inequalities (4.25).

Moreover, by (4.16) and (7.28), we have

Loi(T11, s T1n, T21, - -5 Ton) — 21(Ki) =
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With regard for (1.24), (4.15), (4.38), (7.30) and (7.31), the vector-
function y(k) = (yi(k))Z, satisfies the inequalities (4.26). Therefore, due
to the condition (4.34), we have

y(k)=0 for ke{0,...,mo}.
As a result, from the above reasoning and (4.1) we obtain
z1(k) =0 and z2(k)=0 (k=0,...,mp).

Thus the conditions of Theorem 2.5 are fulfilled. On the basis of this theo-
rem, the generalized boundary value problem corresponding to the problem
(1.9), (1.12) has one and only one solution. Consequently, the problem
(1.9), (1.12) has one and only one solution, as well. Thus the theorem is
proved. O

Proof of Theorem 4.5. Consider the 2n-problem (1.1), (1.4) correspond-
ing to the problem (1.9), (1.12), where the matrix— and the vector-functions
A(t) and f(t) are defined by (4.4), (4.5) and (4.7),¢; (i =1,...,2n) and cy;
(1t =1,...,2n) are defined by (4.13), and ¢; (i = 1,...,2n) are defined by
(4.14) and (4.15).

Let

a(t)y=1[t] for 0<t<mg (I=1,...,n).

We verify the conditions of Theorem 2.6.

The conditions (2.22) and (2.24) are trivial. By the definition of the
matrix-function A(t), every condition from (2.23) and (2.25) contains 2n
inequalities which are equivalent to the conditions (4.39)—(4.41) if we assume

hil(t)Ehh‘l([t]) (i,l: 1,...,’17,)7

ha(t) = hou([t]) (i=1,...,n; Il=n+1,...,2n),

hil(t) = [(In + Gl([t]))_l]il (Z =n+1,....2n; [ =1,..., TL),
hil(t) =y (’L',l =n+ 1,...,271).

Consider now the condition (2.26). Let x = (z;)?_,, 2 = (z1;), €
BV([0,mo],R™) (I=1,2), and let £;(x11,...,Z1n, T21,...,Z2,) (i =1,...,n)
and £, 4i(211,. .., Z1n, 221, - ., Z2n) be defined by (4.14) and (4.15), respec-
tively, where y(k) = (y;(k))?; is defined by (4.10). Then taking into ac-

=

count (4.33), from (4.17) and (4.42) we obtain

[0i(z11,5 ..o Tin, Ta1, ..., Ton)| < ([(In + G1(k’i))_1]z‘i)71 X

“

Ci(yn, - yn) + [(In +Gi(ki)a Z[In +G1 (k)] ayi (ki) —yi(kq)
=1

< ([T + G1k) i) > yallzaillve,
=1

)<

for x1 = (zu),, x2 = (za),, € BV([0,mo],R") (i=1,...,n),
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and from (4.15) and (4.43) we have

n
[lnti(z11, ..o T, T21, ..o, Ton)| < Z’Y2il||$2u||u,al
=1

for x1 = (zu),, x2 = (za), € BV([0,mo],R") (i=1,...,n).

Therefore

n 2n
[li(@11, .- o, T1n, 21, -5 T2n)| < Z&k”fﬁkﬂu,ak + Z ok ||z 2k | 1,0
k=1 k=n+1

for @1 = (zu)_,, x2 = (x2);; € BV([0,mo],R") (i=1,...,2n),
where

G = ([(Tn + G (k) ) e Gk =1,...,m),
bi=0 (i=1,....,n; k=n+1,...,2n),
lix,=0 (i=n+1,...,2n; k=1,...,n),
bik =72k (L,k=n+1,...,2n).
Thus the condition (2.26) holds for #1;, = 4 (i,k =1,...,2n), because
So(au)(t) =0 and Sa(y)(t) = 0.
Let H = (Hjt1m11)meo> Hjt1mr1 € R¥2 (j,m = 0,1,2) be the

6n x 6n-matrix appearing in Theorem 2.6. Then by the definition of the
functions ay(t) (I =1,...,n), it is not difficult to verify that

7_llm - O2n><2n7 HSm = O2n><2n (m = 13273)3
Ho1 = O2pnx2n, Haz = Oanxan

and

H22 - H* .
Therefore the condition (2.27) is equivalent to the condition (4.44). Conse-
quently, using Theorem 2.6, we have proved Theorem 4.5. O

Corollary 4.4 is a particular case of Theorem 4.5, when Gi(k) =
diag(g11(k),...,q1n(k)) is a diagonal matrix.

Proof of Corollary 4.5. In Theorem 4.5 we take v14 = 725 = 0 (i, =
1,...,n). Then by virtue of (4.42) and (4.43), we have

C1i(yny ) = yilks) — [(In 4+ G1(k:)) ™ il In + G1 (k)i vi(ki)
for (yl)lnzl € E(ﬁmoﬂRn) (7’ = 17 LR Tl)
and

loi(y1,. .. yn) =0 for (yl)?ZIGE(NmO,R”) (t=1,...,n).
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On the other hand, the condition (4.44) is equivalent to the condition
(4.47), because in this case

2
* 1 o—1 7T v
H* = (2 sin 4m0+2> Ho.

Therefore the system (1.9¢) has a unique solution y = (y;)j, satisfying
[(In 4+ G1(k:) iilln + Gr(k)]si (ki) =0 (i=1,...,n),
yi(k’i—f—l) =0 (Z =1,...,n).

But owing to (4.33) and (4.45), the above equalities are equivalent to the
condition (1.11p). Thus the corollary is proved. O

Corollary 4.6 is a particular case of Corollary 4.5.

Proof of Theorem 4.6. Consider the 2n-problem (1.1), (1.4) correspond-
ing to the problem (1.9), (1.12), where A(¢) and f(¢) are defined by (4.4),
(4.5) and (4.7), t; (i = 1,...,2n) and ¢o; (i = 1,...,2n) are defined by
(4.13).

To prove this theorem we use Theorem 2.7. We construct the functions
and numbers appearing in Theorem 2.7, which are based on the functions

given in the conditions of Theorem 4.6.
Let

hi=hiyja (j=0,1; i=1,....,n; l=nj+1,...,nj+n),
hu=0 (i=n+1,....2n; I=1,...,n), hy=—-0;y (i,l=n+1,...,2n),

[t]
Oéi(t) = Zﬁl(k) for te [07m0] (’L =1,.. .,n),
k=0

a;(t)=0 for t€[0,mg] (i=n+1,...,2n),
[t]

ail(t) = ZﬂHu 1+vit(k) for t€[0,mo] (p,v=0,1;
k=0

p+v<1l;, i=nu+1,...;np+n; l=nv+1,...,nv+n),
(]
ail(t):6ilZX[ki+1,mo](k) for te[oamO] (ial:n+1a~'~vn)>
k=0

h;i=1 (i=n+1,...,2n).

It is not difficult to verify that the conditions of Theorem 2.7 coincide
with those of Theorem 4.6. In addition, just as in the proof of Theorem
4.5, we can easily verify that the estimates (4.50) and (4.51) guarantee the
estimate (2.36).

Therefore, by Theorem 2.7, the generalized 2n-problem (1.1), (1.4), cor-
responding to the problem (1.9), (1.12), is uniquely solvable and hence
the problem (1.9), (1.12) is uniquely solvable, too. Thus the theorem is
proved. O
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Proof of Theorem 4.7. Let y = (y;)?_, be a nontrivial nonnegative so-
lution of the problem (4.25), (4.26). Then due (4.33), the vector-function
x(t) = (z;(t))?, defined by (4.2) and (4.6) is a nontrivial, nonnegative
solution of the problem (6.5), (6.6) on [0,mg], where the matrix-function
C(t) = (Cjm (1))} =1 is defined by

[t+3] [t4+1]
Ch(t Z Ci(k), Cra(t) = Z Co(k),
k=0
[t+§] (7.32)
CQl(t) = - Z (In + Gl(k?))il 022(75) = t+ 1 +1)1,
k=0 , 2 ’
the functionals £o;, fon+i (i = 1,...,n) and the points ¢;, t,4; (i =1,...,n)

are defined by (7.28), (7.29) and (4.13), respectively.

According to Lemma 6.5, there exist a matrix-function A = (ail)21=1 €
BV([0,mg], R"*™), linear continuous functionals ¢; : BV ([0, mg], R?") — R
(i=1,...,n) defined by (6.11) and (6.15), respectively, and numbers cq; €
R (i = 1,...,2n) such that the 2n-system (6.7) is unsolvable under the
2n-condition (1.4), where A(t) is defined by (6.8).

By (6.8) (6.11) and (7.32) we have
2 A(

1

t)=

VA(k) = C(k),  dyCia(k) = Co(k) for k€ Ny,
dlczl(k) (I + G1(K)™Y, diCas(k) = I, for k € N,

Oanxan for te[0,mgl,

where
C(k) = (sgn(k — ki)m(k)clil(k))i,l:l.
Basing on the above-said, by virtue of (4.4) and (4.7), we define
Ga(k) = C(k)(In + G1(k)) — Gi(k) for k€ Ny,

and B
Gs(k) = Ca(k) for k€ Np,.
Let, moreover, the functionals ¢1;(y1,...,y») (¢ = 1,...,n) and
l2i(y1, ..., yn) (1 =1,...,n) be defined by means of (4.14) and (4.15), re-
spectively, where

n
wh Z 1l+ghl yl(k) for k‘ENmO (i:1,...,n)
=1

and
zoi(k) =yi(k+1) for ke Ny, (i=1,...,n),
and

cori = (L4 grii(ki)) " teoi,  cozi = conpi (i=1,...,n).
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Then, by (4.53) and (4.54), it is not difficult to verify that the condi-
tions (4.1), (4.35)—(4.38) are fulfilled, but the problem (1.9¢), (1.12) is not
solvable. Thus the theorem is proved. O

The results of Section 5 follow immediately from the corresponding re-
sults of Section 2, because the system (1.13) is a particular case of the
system (1.1), where the matrix- and the vector-functions A(t) and f(¢) are
defined by (5.6). We only note that in Theorem 5.7 the matrix-function
G2(k) is defined as in Theorem 4.7.
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