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Abstract. We discuss geometric properties of non-Noether symmetries
and their possible applications in integrable Hamiltonian systems. The
correspondence between non-Noether symmetries and conservation laws is
revisited. It is shown that in regular Hamiltonian systems such symme-
tries canonically lead to Lax pairs on the algebra of linear operators on
the cotangent bundle over the phase space. Relationship between non-
Noether symmetries and other widespread geometric methods of generating
conservation laws such as bi-Hamiltonian formalism, bidifferential calculi
and Frolicher—Nijenhuis geometry is considered. It is proved that the inte-
grals of motion associated with a continuous non-Noether symmetry are in
involution whenever the generator of the symmetry satisfies a certain Yang—
Baxter type equation. Action of one-parameter group of symmetry on the
algebra of integrals of motion is studied and involutivity of group orbits is
discussed. Hidden non-Noether symmetries of the Toda chain, Korteweg—de
Vries equation, Benney system, nonlinear water wave equations and Broer—
Kaup system are revealed and discussed.
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1. INTRODUCTION

Symmetries play essential role in dynamical systems, because they usu-
ally simplify analysis of evolution equations and often provide quite ele-
gant solution of problems that otherwise would be difficult to handle. In
Lagrangian and Hamiltonian dynamical systems special role is played by
Noether symmetries — an important class of symmetries that leave ac-
tion invariant and have some exceptional features. In particular, Noether
symmetries deserved special attention due to the celebrated Noether’s the-
orem that established a correspondence between symmetries that leave the
action functional invariant, and conservation laws of Euler-Lagrange equa-
tions. This correspondence can be extended to Hamiltonian systems where
it becomes more tight and evident than in Lagrangian case and gives rise
to a Lie algebra homomorphism between the Lie algebra of Noether sym-
metries and the algebra of conservation laws (that form Lie algebra under
Poisson bracket).

The role of symmetries that are not of Noether type has been suppressed
for quite a long time. However, after some publications of Hojman, Harles-
ton, Lutzky and others (see [16], [36], [39], [40], [49]-][57]) it became clear
that non-Noether symmetries also can play important role in Lagrangian
and Hamiltonian dynamics. In particular, according to Lutzky [51], in La-
grangian dynamics there is a definite correspondence between non-Noether
symmetries and conservation laws. Moreover, unlike the noetherian case,
each generator of a non-Noether symmetry may produce whole family of
conservation laws (maximal number of conservation laws that can be as-
sociated with the non-Noether symmetry via Lutzky’s theorem is equal to
the dimension of configuration space of the Lagrangian system). This fact
makes non-Noether symmetries especially valuable in infinite dimensional
dynamical systems, where potentially one can recover infinite sequence of
conservation laws knowing single generator of a non-Noether symmetry.

The existence of correspondence between non-Noether symmetries and
conserved quantities raised many questions concerning relationship among
this type of symmetries and other geometric structures emerging in the the-
ory of integrable models. In particular one could notice suspicious similarity
between the method of constructing conservation laws from a generator of a
non-Noether symmetry and the way conserved quantities are produced in ei-
ther Lax theory, bi-Hamiltonian formalism, bicomplex approach or Lenard
scheme. It also raised the natural question whether the set of conserva-
tion laws associated with a non-Noether symmetry is involutive or not, and
since it appeared that in general it may not be involutive, there emerged
the need of involutivity criteria similar to Yang—Baxter equation used in
Lax theory or compatibility condition in bi-Hamiltonian formalism and bi-
complex approach. It was also unclear how to construct conservation laws
in case of infinite dimensional dynamical systems where volume forms used
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in Lutzky’s construction are no longer well-defined. Some of these ques-
tions were addressed in [11]-[14], while in the present review we would like
to summarize all these issues and to provide some examples of integrable
models that possess non-Noether symmetries.

The review is organized as follows. In the first section we briefly recall
some aspects of geometric formulation of Hamiltonian dynamics. Further, in
the second section, a correspondence between non-Noether symmetries and
integrals of motion in regular Hamiltonian systems is discussed. Lutzky’s
theorem is reformulated in terms of bivector fields and an alternative deriva-
tion of conserved quantities suitable for computations in infinite dimensional
Hamiltonian dynamical systems is suggested. Non-Noether symmetries of
two and three particle Toda chains are used to illustrate the general the-
ory. In the subsequent section geometric formulation of Hojman’s theorem
[36] is revisited and examples are provided. Section 4 reveals a correspon-
dence between non-Noether symmetries and Lax pairs. It is shown that a
non-Noether symmetry canonically gives rise to a Lax pair of certain type.
The Lax pair is explicitly constructed in terms of the Poisson bivector field
and the generator of symmetry. Examples of Toda chains are discussed.
Next section deals with integrability issues. An analogue of the Yang—
Baxter equation that, being satisfied by a generator of symmetry ensures
involutivity of the set of conservation laws produced by this symmetry,
is introduced. The relationship between non-Noether symmetries and bi-
Hamiltonian systems is considered in Section 6. It is proved that under
certain conditions a non-Noether symmetry endows the phase space of a
regular Hamiltonian system with a bi-Hamiltonian structure. We also dis-
cuss conditions under which the non-Noether symmetry can be “recovered”
from the bi-Hamiltonian structure. The theory is illustrated by examples of
Toda chains. Next section is devoted to bicomplexes and their relationship
with non-Noether symmetries. Special kind of deformation of De Rham
complex induced by a symmetry is constructed in terms of Poisson bivector
field and the generator of the symmetry. Examples of two and three particle
Toda chain are discussed. Section 8 deals with Frolicher—Nijenhuis recursion
operators. It is shown that under certain conditions a non-Noether symme-
try gives rise to an invariant Frolicher-Nijenhuis operator on the tangent
bundle over the phase space. The last section of theoretical part contains
some remarks on action of one-parameter group of symmetry on algebra of
integrals of motion. Special attention is devoted to involutivity of the group
orbits.

Subsequent sections of the present review provide examples of integrable
models that possess interesting non-Noether symmetries. In particular, Sec-
tion 10 reveals a non-Noether symmetry of the n-particle Toda chain. Bi-
Hamiltonian structure, conservation laws, bicomplex, Lax pair and Froli-
cher—Nijenhuis recursion operator of Toda hierarchy are constructed using
this symmetry. Further we focus on infinite dimensional integrable Hamil-
tonian systems emerging in mathematical physics. In Section 11 the case
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of Korteweg—de Vries equation is discussed. A symmetry of this equation is
identified and used in construction of infinite sequence of conservation laws
and bi-Hamiltonian structure of KdV hierarchy. Next section is devoted
to non-Noether symmetries of integrable systems of nonlinear water wave
equations, such as dispersive water wave system, Broer—Kaup system and
dispersionless long wave system. Last section focuses on Benney system and
its non-Noether symmetry, which appears to be local, gives rise to infinite
sequence of conserved densities of Benney hierarchy and endows it with a
bi-Hamiltonian structure.

2. REGULAR HAMILTONIAN SYSTEMS

The basic concept in geometric formulation of Hamiltonian dynamics is
the notion of symplectic manifold. Such a manifold plays the role of the
phase space of the dynamical system and therefore many properties of the
dynamical system can be quite effectively investigated in the framework of
symplectic geometry. Before we consider symmetries of Hamiltonian dy-
namical systems, let us briefly recall some basic notions from symplectic
geometry.

The symplectic manifold is a pair (M,w) where M is a smooth even
dimensional manifold and w is a closed,

dw =0, (1)

and nondegenerate 2-form on M. Being nondegenerate means that the
contraction of an arbitrary non-zero vector field with w does not vanish:

ixw=0&X=0 (2)

(here ix denotes contraction of the vector field X with a differential form).
Otherwise one can say that w is nondegenerate if its n-th outer power does
not vanish (w” # 0) anywhere on M. In Hamiltonian dynamics M is usually
the phase space of a classical dynamical system with finite number of degrees
of freedom and the symplectic form w is a basic object that defines the
Poisson bracket structure, algebra of Hamiltonian vector fields and the form
of Hamilton’s equations.

The symplectic form w naturally defines an isomorphism between vector
fields and differential 1-forms on M (in other words, the tangent bundle
TM of the symplectic manifold can be quite naturally identified with the
cotangent bundle T*M). The isomorphic map ®,, from TM into T*M is
obtained by taking contraction of the vector field with w

B, X — —ixw (3)

(the minus sign is the matter of convention). This isomorphism gives rise to
natural classification of vector fields. Namely, a vector field X}, is said to be
Hamiltonian if its image is an exact 1-form or in other words if it satisfies
Hamilton’s equation

Z'th +dh =0 (4)
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for some function A on M. Similarly, a vector field X is called locally
Hamiltonian if it’s image is a closed 1-form
ixw+u=0, du = 0.

One of the nice features of locally Hamiltonian vector fields, known as
Liouville’s theorem, is that these vector fields preserve the symplectic form
w. In other words, Lie derivative of the symplectic form w along arbitrary
locally Hamiltonian vector field vanishes

Lxw=0%ixw+du=0, du = 0.

Indeed, using Cartan’s formula that expresses Lie derivative in terms of
contraction and exterior derivative

Lx =ixd+dix
one gets

Lxw=tixdw+dixw = dixw

(since dw = 0) but according to the definition of locally Hamiltonian vector
field

dixw = —du=0.

So locally Hamiltonian vector fields preserve w and vise versa, if a vector
field preserves the symplectic form w then it is locally Hamiltonian.

Clearly, Hamiltonian vector fields constitute a subset of locally Hamil-
tonian ones since every exact 1-form is also closed. Moreover, one can
notice that Hamiltonian vector fields form an ideal in the algebra of locally
Hamiltonian vector fields. This fact can be observed as follows. First of
all for arbitrary couple of locally Hamiltonian vector fields X,Y we have
Lxw=Lyw=0and

LxLyw — LyLXw = L[ny]w = O7

so locally Hamiltonian vector fields form a Lie algebra (the corresponding
Lie bracket is ordinary commutator of vector fields). Further it is clear that
for arbitrary Hamiltonian vector field X and locally Hamiltonian one Z
one has

Lyzw=0
and
ix,w+dh=0
that implies
Lz(ix,w+dh) = Liz x,jw +ix,Lzw +dLzh =
= Lz x,)w+dLzh = 0.

Thus the commutator [Z, X}] is a Hamiltonian vector field Xy ,p, or in
other words Hamiltonian vector fields form an ideal in the algebra of locally
Hamiltonian vector fields.
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The isomorphism @, can be extended to higher order vector fields and
differential forms by linearity and multiplicativity. Namely,

DL(XNY) = Dy,(X) A Dy (Y).

Since ®,, is an isomorphism, the symplectic form w has a unique counter
image W known as the Poisson bivector field. The property dw = 0 together
with non degeneracy implies that the bivector field W is also nondegenerate
(W™ #£0) and satisfies the condition

(W, W] =0 ()

where the bracket [, | known as Schouten bracket or supercommutator, is
actually the graded extension of ordinary commutator of vector fields to
the case of multivector fields, and can be defined by linearity and derivation

property
[Cy ACoa AN~ ANCpy ST AS2 A+ ASy] =
= (=1)PH[C,, Sy ACLACo A= ANCy A~ ACy,
ASIASyA---ASyA--- NS,
where the over hat denotes omission of the corresponding vector field. In

terms of the bivector field W, Liouville’s theorem mentioned above can be
rewritten as follows

(W (w), W] =0 & du=0 (6)

for each 1-form u. It follows from the graded Jacoby identity satisfied by the
Schouten bracket and property [W, W] = 0 satisfied by the Poisson bivector
field.

Being the counter image of a symplectic form, W gives rise to the map
®yy transforming differential 1-forms into vector fields, which is inverted to
the map ®,, and is defined by

Dy u— Wu); Oy, = id.

Further we will often use these maps.

In Hamiltonian dynamical systems the Poisson bivector field is a geo-
metric object that underlies the definition of the Poisson bracket — a kind
of Lie bracket on the algebra of smooth real functions on phase space. In
terms of a bivector field W, the Poisson bracket is defined by

{f: 9} = W(df Adg). (7)

The condition [W, W] = 0 satisfied by the bivector field ensures that for
every triple (f,g,h) of smooth functions on the phase space the Jacobi
identity

{H{g, h}} +{n{f, 9} +{g{h, F}} =0 (8)

is satisfied. Interesting property of the Poisson bracket is that the map from
the algebra of real smooth functions on the phase space into the algebra of
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Hamiltonian vector fields defined by the Poisson bivector field
f— Xy =W(df)

appears to be a homomorphism of Lie algebras. In other words, the commu-
tator of two vector fields associated with two arbitrary functions reproduces
the vector field associated with the Poisson bracket of these functions

(X5 Xo] = X{1.0y- 9)

This property is a consequence of the Liouville theorem and the definition
of the Poisson bracket. Further we also need another useful property of
Hamiltonian vector fields and the Poisson bracket

{fig} =W(df Nndg) =w(Xy AN Xy)=Lx,g=—Lx,g. (10)

It also follows from the Liouville theorem and the definition of Hamiltonian
vector fields and Poisson brackets.

To define dynamics on M one has to specify time evolution of observables
(smooth functions on M). In Hamiltonian dynamical systems time evolution
is governed by Hamilton’s equation

d
Sf=1h 1), (11)

where h is some fixed smooth function on the phase space called Hamilton-
ian. In local coordinate frame zy, the bivector field W has the form

0 0
W = Wpe=— A
be Ozpy 0Oz
and Hamilton’s equation rewritten in terms of local coordinates takes the

form

. oh
zZp = Wbca .

Note that the functions W, are not arbitrary: to ensure the validity of the
condition [W, W] = 0 condition they should fulfill the restriction
Zn: [ OWeq OWha OWie

Waba—za + Wae 92, + Wad 92, =0

a=1
and at the same time the determinant of the matrix formed by the func-
tions Wy, should not vanish to ensure that the Poisson bivector field W is
nondegenerate.

3. NON-NOETHER SYMMETRIES

Now let us focus on symmetries of Hamilton’s equation (11). Generally
speaking, symmetries play very important role in Hamiltonian dynamics due
to different reasons. They not only give rise to conservation laws but also
often provide very effective solutions to problems that otherwise would be
difficult to solve. Here we consider the special class of symmetries of Hamil-
ton’s equation called non-Noether symmetries. Such symmetries appear to
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be closely related to many geometric concepts used in Hamiltonian dynam-
ics including bi-Hamiltonian structures, Frolicher—Nijenhuis operators, Lax
pairs and bicomplexes.

Before we proceed let us recall that each vector field E' on the phase space
generates a one-parameter continuous group of transformations g, = eale
(here L denotes Lie derivative) that acts on the observables as follows

0olf) = €L (f) = f +aLuf + S(aLuff + - (12)

Such a group of transformations is called symmetry of Hamilton’s equation
(11) if it commutes with the time evolution operator

d d

%ga(f) :ga(af)' (13)

In terms of the vector fields this condition means that the generator E of
the group g, commutes with the vector field W (h) = {h, }, i.e.

[E, W (h)] = 0. (14)

However we would like to consider a more general case where F is a time
dependent vector field on the phase space. In this case (14) should be
replaced with

0
= E =[E,W(h)]. (15)
ot

Further one should distinguish between groups of symmetry transforma-
tions generated by Hamiltonian, locally Hamiltonian and non-Hamiltonian
vector fields. First kind of symmetries are known as Noether symmetries
and are widely used in Hamiltonian dynamics due to their tight connec-
tion with conservation laws. The second group of symmetries is rarely
used, while the third group of symmetries that further will be referred as
non-Noether symmetries seems to play important role in integrability is-
sues due to their remarkable relationship with bi-Hamiltonian structures
and Frolicher—Nijenhuis operators. Thus if in addition to (14) the vector
field E does not preserve Poisson bivector field [E, W] # 0, then g, is called
non-Noether symmetry.

Now let us focus on non-Noether symmetries. We would like to show
that the presence of such a symmetry essentially enriches the geometry of
the phase space and under certain conditions can ensure integrability of
the dynamical system. Before we proceed let us recall that a non-Noether
symmetry leads to a number of integrals of motion. More precisely the
relationship between non-Noether symmetries and the conservation laws is
described by the following theorem. This theorem was proposed by Lutzky
in [51]. Here it is reformulated in terms of Poisson bivector field.

Theorem 1. Let (M,h) be a reqular Hamiltonian system on the 2n-
dimensional Poisson manifold M. Then, if the vector field E generates a
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non-Noether symmetry, the functions
ik —k
y - WEAWETE

wn ’

where W = [E, W], are integrals of motion.
Proof. By definition
Wh AWk =y B

(the definition is correct since the space of 2n-degree multivector fields on
2n-degree manifold is one dimensional). Let us take time derivative of this
expression along the vector field W (h),

%W’@ AWPF = <%Y<k>) W+ Y®[W(h), Wn],

or

d . . .
k <%W> AWFLAW R 4 (n — E)W(h), W] AWFAWR—F1 =

_ (%Y(k)) W™ +nY W[W (h), W] A W™ (17)

But according to the Liouville theorem the Hamiltonian vector field pre-
serves W i.e.

Ly — (wn), w) =o.

dt
Hence, by taking into account that
d 0
—FE=—-FE+[W(h),E]=0
GE= 5 E+W(k),E| =0,
we get
Ly~ Ligw) = | L, wl| + Ew ), w) =0
d dt" 0 dt R
and as a result (17) yields
Lyt — o,
dt
But since the dynamical system is regular (W™ # 0), we obtain that the
functions Y *) are integrals of motion. O

Remark 3.1. Instead of conserved quantities Y (1) ... V(") the solutions
cq . ..cp of the secular equation

(W — eW)" =0 (18)

can be associated with the generator of symmetry. By expanding the ex-
pression (18) it is easy to verify that the conservation laws Y *) can be
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expressed in terms of the integrals of motion ¢; . ..c, in the following way

—k)k!
vk — (n—k)!&! Z CiyCiy - - - Ciy - (19)

n!
i1 >0 > >l

Note also that the conservation laws Y (¥) can be also defined by means

of the symplectic form w using the following formula

(Lpw)k Awn=F

wn

y &) — ., k=1,2,...,n, (20)

while the conservation laws ¢; ... ¢, can be derived from the secular equation
(Lpw — cw)™ = 0. (21)

However, all these expressions fail in case of infinite dimensional Hamilton-
ian systems where the volume form

Q=uw"

does not exist since n = oo. But fortunately in this case one can define
conservation laws using the alternative formula

C®) = iy (Lgw)k (22)

as far as it involves only finite degree differential forms (L gpw)* and well-
defined multivector fields W¥. Note that in finite dimensional case the
sequence of conservation laws C'(®) is related to families of conservation
laws Y(*) and ¢, in the following way

!
(k) — o I U O]
C = Z 4 cllcmn'cl’“_(n—k)!kly . (23)
11 >12> >
Note also that by taking Lie derivative of known conservation along the
generator of symmetry F one can construct new conservation laws

d d
2V =Lx,Y =0= - LpY =Ly, LpY = LpLx,Y =0

since [E, X3 = 0.

Remark 3.2. Besides continuous non-Noether symmetries generated by
non-Hamiltonian vector fields one may encounter discrete non-Noether sym-
metries — noncannonical transformations that doesn’t necessarily form a
group but commute with the evolution operator

%g(f) =y <%f> :

Such symmetries give rise to the same conservation laws

(k) _ gW)k AWn—h

Y
wn ’

k=1,2,....n. (24)
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Example. Let M be R* with the coordinates z1, 22, 23, z4 and the Poisson
bivector field

0 0 0 0

V=00 om0 N om

(25)
and let’s take

1 1
h= 52% + 52% + e* T, (26)

This is the so-called two particle non periodic Toda model. One can
check that the vector field

L0
PR
ot 024
with the components
1 t
B, = 5,2% — TR — 5( 1+ 2z9)e® 7%

1 t
E, = 5,23 +2e® T 5(21 + z9)e*

(27)
1 2 2 23—Z
E3:221+§Z2+§(21+€3 4)
1 t 2 23—24
E4:2:2_§Zl+§(22+6 )

satisfies the condition (15) and as a result generates a symmetry of the
dynamical system. The symmetry appears to be non-Noether with the
Schouten bracket [E, W] equal to
- 0 0 0 0
W=EW]|=217—N—7— — N =
[ ] 1 62:1 823 + 22 822 62:4
0 0 0 0

BT _— N —  — N —. 28
te 0z1  Ozy Ozz 0Oz (28)
Calculation of volume vector fields W* A Wn—Fk gives rise to
0 0 0 0
WAW =-2—AN—AN—N—
821 822 823 824 ’
- 0 0 0 0
WAW =~ T A A A
(Zl + 22) 821 62:2 823 824 ’
- A 0 0 0 0
WAW = -2 _eBTE) A N A ——
(2122 ¢ ) 821 62:2 823 62:4 ’
and the conservation laws associated with this symmetry are just
WAW 1
vy — I
waw -zt (29)
v® = WAW = 2129 — €377,

TWAW
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It is remarkable that the same symmetry is also present in higher dimen-
sions. For example, in case where M is R® with the coordinates

21y 22, 23, Z4y 25, 26-

The Poisson bivector equal to

0 0 0 0 0 0

W= At At A= 30
8z1 824 + 822 825 + 823 826 ( )
and the following Hamiltonian
1 1 1
h=c2i+ 225+ 23 + €577 7%, (31)

2 2 2

we still can construct a symmetry similar to (27). More precisely the vector
field

6
0
E= ZE“@za

a=1

with the components specified as follows

1 t
By = =28 — 2775 — 5(21 + z9)e*t %

2
E _ l 2 3 Z4—25 __ ,25—Z26 E Z4—25
2= 5% +3e e +2(z1+22)e ,
1 t
E3 —_ —Zg + 2e75 %6 + _(22 + 23)625_26 ,
2 2 392
1 1 t, 5 (32)
Ey =321+ 522 + 523 + 5(21 + e 7))
1 1 t 2 Z4—25 25—2
E5=22:2—521+§Z’3+§(22 4 e*47% 4 e* 6),
1 1 t
Bg =2 — 52— 522+ 5(23? +e77%)

satisfies the condition (15) and generates a non-Noether symmetry of the
dynamical system (three particle non periodic Toda chain). Calculation of
the Schouten bracket [E, W] gives rise to the expression

. 0 0 0 0 0 0
p— E = —_— —_— —_— e o he—
w [ ’W] 1 821 A 824 + 22 822 A 825 + 28 823 A 826+

+ €Z4_Z5£ A i + ezs—zﬁi A i+
0z1 0Oz Ozo Oz
+i/\i+i/\i+i/\i (33)

823 824 824 825 825 826

Volume multivector fields W* A W% can be calculated in the manner
similar to the R* case and give rise to the well known conservation laws of
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three particle Toda chain.

1 WAW AW
y®» = = )=

6(Z1+22+Zs) WAW AW’

1 WAW AW
Y@ = 5(2'122 + 2123 + 2923 — €747 — 77%0) = AT A (34)
Y = 212025 — 235477 — z1e%5 7% = %2 %2 K

4. NON-LIOUVILLE SYMMETRIES

Besides Hamiltonian dynamical systems that admit invariant symplectic
form w, there are dynamical systems that either are not Hamiltonian or
admit Hamiltonian realization but the explicit form of symplectic structure
w is unknown or too complex. However, usually such a dynamical system
possesses an invariant volume form 2 which like the symplectic form can be
effectively used in construction of conservation laws. Note that the volume
form for a given manifold is an arbitrary differential form of maximal degree
(equal to the dimension of the manifold). In case of regular Hamiltonian
systems, n-th outer power of the symplectic form w naturally gives rise to
the invariant volume form known as Liouville form

Q=uw",
and sometimes it is easier to work with  than with the symplectic form

itself. In the generic Liouville dynamical system time evolution is governed
by the equations of motion

d
SF=X(), (3)

where X is some smooth vector field that preserves the Liouville volume
form €

d O=Lx0=0

T
A symmetry of the equations of motion still can be defined by the condition

d d
Ega(f) = ga(af)

which in terms of vector fields implies that the generator of symmetry E
should commute with time evolution operator X

[E,X]=0.
Throughout this chapter a symmetry will be called non-Liouville if it is not
a conformal symmetry of 2, or in other words if

LgQ # cQ
for any constant c. Such symmetries may be considered as analogues of non-

Noether symmetries defined in Hamiltonian systems and similarly to the
Hamiltonian case one can try to construct conservation laws by means of the
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generator of symmetry E and the invariant differential form 2. Namely, we
have the following theorem, which is a reformulation of Hojman’s theorem
in terms of the Liouville volume form.

Theorem 2. Let (M, X,Q) be a Liouville dynamical system on a smooth
manifold M. Then, if the vector field E generates a non-Liouville symmetry,
the function

LgQ
J =" 36
. (36)
is a conservation law.
Proof. By definition
LgQ)=JQ

and J is not constant (again the definition is correct since the space of
volume forms is one dimensional). By taking Lie derivative of this expression
along the vector field X that defines time evolution, we get

LxLgQ) = L[X,E]Q + LgLxQ) =
=Lx(JQ)=(LxJ)2+ JLxQ
but since the Liouville volume form is invariant, Lx{2 = 0, and the vector

field FE is the generator of a symmetry satisfying the commutation relation
[E, X] =0, we obtain

(LxJ)Q =0

or d
L T=LyJ=0.
dt X

O

Remark 4.1. In fact the theorem is valid for a larger class of symme-
tries. Namely, one can consider symmetries with time dependent genera-
tors. Note, however, that in this case the condition [E, X]| = 0 should be
replaced by

0

—F=|FE X]|.

at [ ) ]

Note also that by calculating Lie derivative of the conservation law J along
the generator of the symmetry F, one can recover additional conservation

laws
J™ = (Lg)™Q.
Example. Let us consider a symmetry of the three particle non periodic

Toda chain. This dynamical system with equations of motion defined by
the vector field

0 0 0
X = —*73 2 4 (pFATE _ @) L 4 o6 L
0z1 ( )02’2 073
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L0 00
1824 2825 362’6

possesses the invariant volume form
QO =dz1 ANdzo ANdzg Ndzg Ndzs N dzg.
One can check that € is really an invariant volume form, i.e. Lie deriva-
tive of € along X vanishes
d 0X,1 0Xe 0X3 0Xy 0Xs; 0Xg
—O0=Lx0=
dt X [ 821 + 822 + 823 + 824 + 825 + 826
The symmetry (32) is clearly non-Liouville one as far as
Ok, O0F, OEs O0OFEy O0OF; O0Fg
821 822 62:3 62:4 825 62:6

= (21 + 22+ 23)dz1 ANdza Ndzs ANdzg Ndzs Adzg = (21 + 22 + 23)€2

Ja-o

LEQ{

and the main conservation law associated with this symmetry via Theorem
2 is total momentum

LgQ
J:%:Zl+22+23.

Other conservation laws can be recovered by taking Lie derivative of J along
the generator of symmetry F, in particular

12,1

2 2
1 )

J@ = LpdW = S(ef + 25 + )+

1
JO = LgJ = 52? + z% + zg + P47 P56

3 3
+ 5(21 + z9)e* 7% 4+ 5(22 + z3)e™ 70,

5. LAX PAIRS

The presence of a non-Noether symmetry not only leads to a sequence
of conservation laws, but also endows the phase space with a number of
interesting geometric structures and it appears that such a symmetry is re-
lated to many important concepts used in the theory of dynamical systems.
One of the such concepts is Lax pair that plays quite important role in
construction of completely integrable models. Let us recall that the Lax
pair of a Hamiltonian system on a Poisson manifold M is a pair (L, P) of
smooth functions on M with values in some Lie algebra g such that the
time evolution of L is given by the adjoint action

d

EL = [L,P] = —adpL, (37)
where [, ] is Lie bracket on g. It is well known that each Lax pair leads
to a number of conservation laws. When ¢ is some matrix Lie algebra, the

conservation laws are just traces of powers of L

1
I® = §Tr(Lk) (38)
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since the trace is invariant under coadjoint action

d 1d 1 d k d
—I®) = ——Tp(LF) = ZTr ( —LF | ==Tr(LF'—L) =
dt car ") =T g 2" dt

_ gTr(Lk_l[L,P]) _ %Tr([Lk,P]) 0.

It is remarkable that each generator of a non-Noether symmetry canonically
leads to a Lax pair of a certain type. Such Lax pairs have definite geometric
origin, their Lax matrices are formed by coefficients of invariant tangent
valued 1-form on the phase space. In the local coordinates z,, where the
bivector field W, the symplectic form w and the generator of the symmetry
E have the following form

0 0 0
= [~ a. = a d a d ) E= Ea_a
W %}W”aza Nom ¢ %}w vt N2 za: 0za

the corresponding Lax pair can be calculated explicitly. Namely, we have
the following theorem (see also [55]-[56]):

Theorem 3. Let (M,h) be a regular Hamiltonian system on an 2n-
dimensional Poisson manifold M. Then, if the vector field E on M gener-
ates a non-Noether symmetry, the following 2n x 2n matrix valued functions
on M

OWap 0FE, oE,
Loy = § Wad |:Ec — Whe + Wae :| ,
- 0z, 0z, 0z,

Wy Oh d*h (39)
S L

0z, Oz be 0%a%c
form the Lax pair (37) of the dynamical system (M, h).
Proof. Let us consider the following operator on the space of 1-forms
Rp(u) = ®,([E, ®w(u)]) — Leu (40)

(here @y and P, are maps induced by the Poisson bivector field and the
symplectic form). It is remarkable that Rp appears to be an invariant linear
operator. First of all let us show that R is really linear, or in other words,
that for arbitrary 1-forms u and v and function f the operator Rg has the
following properties

Rp(u+v) = Rg(u) + Rp(v)
and

Rp(fu) = fRE(u).

The first property is an obvious consequence of linearity of the Schouten
bracket, Lie derivative and the maps @y, ®,,. The second property can be
checked directly

Rp(fu) = ®u([B, 2w (fu)]) - Le(fu) =
= (B, fow (w)]) — (Lef)u— fLpu =
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= ®u((Lef)Pw(u) + u(f[E, Pw(u)]) = (Lef)u— fLpu =
= LpfO,0w(u) + fOu([E, Pw(u)]) — (Lef)u— fLeu =
= [(@u([E, ®w (u)]) — Lpu) = fRp(u)

as far as @, Py (u) = u. Now let us check that R is an invariant operator:

d— _
R =Lx,Rp = Ly, (2. Lpdw — L) =
= Lx,, 51 %w — Lix, .5 =0

because, being a Hamiltonian vector field, X} commutes with the maps ®yy,
®,, (this is a consequence of the Liouville theorem) and commutes with E
as far as E generates the symmetry [Xp, E] = 0. In terms of the local
coordinates R has the following form

Rp =) Lapdz, ®

0
b 02:(,

and the invariance condition

il =L Rer =
dtRE wmnBRe =0

yields

REfdtZLbdza =
0 0
=N | Sl | dze ® —— Lap(Lw (n)dza) ® 55—
%;th b] ’ ®02b+%; Aot © gt

0 d 0
Lapdz, L —| = —Lagp| dzg ® —
Jr%b: pdzgq & [ W(h)azzj % [dt b] Zaq @ aZbJr

awdah )
+ D Lap—5 D02 @ g

abed c Oz
82h 0
La a d c a_
+ (;l »W. d@zcé)zd 2e ® 0Zb+
OW,q Oh 0 92h 0
—d — LpWeqg————d — =
+£ b oz 920" B2 +;1 abVed g 2 © B

0
= _La Pach - LacPc d a a. 03
%,: gplar t ;( b b)| dza ® 9ot

or in matrix notation
d
—L =[L,P]
SL=[LP
So we have proved that a non-Noether symmetry canonically yields a Lax
pair on the algebra of linear operators on cotangent bundle over the phase

space. (I
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Remark 5.1. The conservation laws (38) associated with the Lax pair
(39) can be expressed in terms of the integrals of motion ¢; in quite simple
way:

1) = %Tr(Lk) => . (41)

This correspondence follows from the equation (18) and the definition of
the operator Rg (40). One can also write down a recursion relation that
determines the conservation laws I(*) in terms of the conservation laws C(¥)

m—1
109 4 (~1)™mCt™ + Y (~1)F =P o = 0, (42)
k=1

Example. Let us calculate the Lax matrix of two particle Toda chain
associated with the non-Noether symmetry (27). Using (39) it is easy to
check that Lax matrix has eight nonzero elements

z1 0 0 —e*3 T
_ 0 2z e»7 % 0
L= 0 1 z1 0 ’ (43)
-1 0 0 z9
while the matrix P involved in Lax pair
d
—L=|L,P
dt [ Y ]
has the following form
0 0 10
0 0 0 1
P= _eFF gE—za () () (44)
e e (0 0

The conservation laws associated with this Lax pair are total momentum
and energy of the two particle Toda chain:

1
M = §Tr(L) =21+ 22

1
I? = §Tr(L2) = zf + 23 + 2e#37 %4,

(45)

Similarly one can construct the Lax matrix of three particle Toda chain. It
has 16 nonzero elements

z1 O 0 0 —eFaTEs 0
0 29 0 e 3 0 —e#sTE6
B 0 0 =z 0 e %6 0
L= 0o -1 -1 21 0 0 (46)
1 0 -1 0 29 0
1 1 0 0 0 23
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with the matrix

0 0 0 1 00
0 0 0 0 1 0
0 0 0 0 0 1
P - _624—,25 624—25 0 O O 0 (47)
P _eFATRs _ o526 %5 %6 0O 0 0
0 e*5 %6 —e®7% 0 0 0

Corresponding conservation laws reproduce total momentum, energy and
second Hamiltonian involved in bi-Hamiltonian realization of the Toda chain

1
I(l) = ETT(L) =21+ 29

1

I = STr(L%) = 2f + 25 + 23 + 2e¥7% + 2¢% 7% 8)
1 , ,

1) = 5Tr(L3) =23+ 25+ 25+

+ 3(21 + 22)e™ 77 + 3(29 + 2z3)e™5 .

6. INvOLUTIVITY OF CONSERVATION LAWS

Now let us focus on the integrability issues. We know that n integrals of
motion are associated with each generator of a non-Noether symmetry. At
the same time we know that, according to the Liouville-Arnold theorem, a
regular Hamiltonian system (M, h) on a 2n-dimensional symplectic manifold
M is completely integrable (can be solved completely) if it admits n func-
tionally independent integrals of motion in involution. One can understand
functional independence of a set of conservation laws c1,cs, ..., ¢, as linear
independence of either differentials of conservation laws dcy, dcs, . .., dc, or
corresponding Hamiltonian vector fields X, , X,,,...,X,,. Strictly speak-
ing, we can say that conservation laws ci,co,...,c, are functionally inde-
pendent if Lesbegue measure of the set of points of the phase space M,
where the differentials dcy, dco, . . ., dc, become linearly dependent is zero.
Involutivity of conservation laws means that all possible Poisson brackets
of these conservation laws vanish pairwise

{Ci,Cj}ZO, i,j:l,...7n.

In terms of vector fields, the existence of involutive family of n functionally
independent conservation laws cq,co, ..., c, implies that the corresponding
Hamiltonian vector fields X.,, X,,,..., X,, span the Lagrangian subspace
(isotropic subspace of dimension n) of tangent space (at each point of M).
Indeed, due to the property (10)

{ciscj} =w(Xe, Xe;) =0,

thus the space spanned by X, X,,...,X,, is isotropic. The dimension
of this space is n so it is Lagrangian. Note also that the distribution
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Xeyy Xeyy ooy Xe, 1s integrable since due to (9)
[ch,;Xc,'] = X{ci,cj} = 07

and according to the Frobenius theorem there exists a submanifold of M
such that the distribution X, , X.,,...,X., spans the tangent space of this
submanifold. Thus for the phase space geometry the existence of complete
involutive set of integrals of motion implies the existence of an invariant
Lagrangian submanifold.

Now let us look at the conservation laws Y Y2 Y™ associated
with a generator of a non-Noether symmetry. Generally speaking, these
conservation laws might appear to be neither functionally independent nor
involutive. However, it is reasonable to ask the question — what condition
should be satisfied by the generator of a non-Noether symmetry to ensure
the involutivity ({Y*®), Y (™} = 0) of conserved quantities? In Lax theory
the situation is very similar — each Lax matrix leads to a set of conservation
laws but in general this set is not involutive. However in Lax theory there is
certain condition known as Classical Yang-Baxter Equation (CYBE) that
being satisfied by the Lax matrix ensures that conservation laws are in
involution. Since involutivity of conservation laws is closely related to inte-
grability, it is essential to have some analogue of CYBE for the generator of
a non-Noether symmetry. To address this issue, we would like to propose
the following theorem.

Theorem 4. If the vector field E on a 2n-dimensional Poisson manifold
M satisfies the condition

([ElE,W]W] =0 (49)

and the bivector field W has mazimal rank (W™ # 0), then the functions
(16) are in involution

{Y(k), Y(m)} —0.

Proof. First of all let us note that the identity (5) satisfied by the Poisson
bivector field W is responsible for the Liouville theorem

W, W] =0 &  LypW=[W(),W =0 (50)

that follows from the graded Jacoby identity satisfied by the Schouten
bracket. By taking Lie derivative of the expression (5) we obtain another
useful identity

LW, W] = [EW,W]] = [[E,W]W] + [W[E, W]] = 2[W, W] = 0.
This identity gives rise to the following relation
W.wl=0 e W)W =-[W, W) (51)
and finally the condition (49) ensures the third identity
(W, W] =0
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yielding the Liouville theorem for W'

W, W]=0 <« [W(f),W]=0. (52)
Indeed,

W, W] - 1B, W]W] = [[W, E]W] =

= —[[E,W]W] = —[[E[E, W]]W] = 0.

Now let us consider two different solutions ¢; # ¢; of the equation (18). By
taking Lie derivative of the equation

(W — 61W)n =0

along the vector fields W (c;) and W(c;) and using the Liouville theorem

for the bivectors W and W we obtain the following relations
(W — ciW)"_l(LW(CJ)VAV —{cj, e }W) =0, (53)
and
(W = aiW)" H(eiLyyy o) W+ {ej, ¢} W) = 0, (54)

where

{Ci; Cj}* = W(dcz A\ de)
is the Poisson bracket calculated by means of the bivector field W. Now
multiplying (53) by ¢;, subtracting (54) and using the identity (51) gives
rise to
({en s} — eden e DOV — W)W = 0. (55)
Thus, either
{Ciacj}* 761’{01'76]'} =0 (56)

or the volume field (W — ¢;W)"~'W vanishes. In the second case we can
repeat the procedure (53)—(55) for the volume field (W —¢; W)~ 'W yielding
after n iterations W = 0, which according to our assumption (that the
dynamical system is regular) is not true. As a result, we arrive at (56) and
by the simple interchange of indices ¢ < j we get

{Ci,Cj}* —Cj{Ci,Cj} =0. (57)
Finally by comparing (56) and (57) we obtain that the functions ¢; are in
involution with respect to both Poisson structures (since ¢; # ¢;)

{Civ Cj}* = {Civ Cj} =0,
and according to (19) the same is true for the integrals of motion Y'(*). O

Remark 6.1. Theorem 4 is useful in multidimensional dynamical systems
where involutivity of conservation laws can not be checked directly.
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7. BI-HAMILTONIAN SYSTEMS

Further we will focus on non-Noether symmetries that satisfy the con-
dition (49). Besides yielding involutive families of conservation laws, such
symmetries appear to be related to many known geometric structures such
as bi-Hamiltonian systems [53] and Frolicher—Nijenhuis operators (torsion-
less tangent valued differential 1-forms). The relationship between non-
Noether symmetries and bi-Hamiltonian structures was already implicitly
outlined in the proof of Theorem 4. Now let us pay more attention to this
issue.

Originally bi-Hamiltonian structures were introduced by F. Magri in
analisys of integrable infinite dimensional Hamiltonian systems such as
Korteweg—de Vries (KdV) and modified Korteweg—de Vries (mKdV) hier-
archies, Nonlinear Schrédinger equation and Harry Dym equation. Since
that time bi-Hamiltonian formalism is effectively used in construction of
involutive families of conservation laws in integrable models.

A generic bi-Hamiltonian structure on 2n dimensional manifold consists
of two Poisson bivector fields W and W satisfying certain compatibility
condition [W, W] = 0. If, in addition, one of these bivector fields is nonde-
generate (W™ # 0), then the bi-Hamiltonian system is called regular. Fur-
ther we will discuss only regular bi-Hamiltonian systems. Note that each
Poisson bivector field by definition satisfies condition (5). So we actually
impose four restrictions on the bivector fields W and W

(W, W] = [W,W] = [W,W] =0 (58)
and
W™ £ 0. (59)

During the proof of Theorem 4 we already showed that the bivector fields
W and W = [E, W] satisfy the conditions (58) (see (50)—(52)). Thus we
can formulate the following statement.

Theorem 5. Let (M,h) be a regular Hamiltonian system on a 2n-
dimensional manifold M endowed with a reqular Poisson bivector field W .
If a vector field E on M generates a non-Noether symmetry and satisfies
the condition

[E[E, W)}W] =0,
then the following bivector fields on M
W, W = [E,W]
form an invariant bi-Hamiltonian system ([W, W]=[W,W]=[W, W]=0).

Proof. See proof of Theorem 4. O
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Example. One can check that the non-Noether symmetry (27) satisfies
the condition (49) while the bivector fields

w2, 0,9 9
- 821 823 822 824
and
. 0 0 0 0
W =K W = — A\ — — N\ —
[ ’ ] 1 821 823 + 22 822 824
+623—Z4i A i + i A i
821 822 823 824
form a bi-Hamiltonian system [W, W] = [W, W] = [W, W] = 0. Similarly,
one can recover the bi-Hamiltonian system of three particle Toda chain
associated with the symmetry (32). It is formed by the bivector fields

w.od, 9 9o 90 9 0
T 0z Ozy  Oza Oz Oz3 Oz

and
o 0 0 0 0 0 0
W = [E’W]_Z18_QA8_Q+Z28_@A8_%+238_23/\8_26+
+ 624_Z5£ /\ i + 625_261 /\ i_’_
8z1 822 822 823
0 0 0 0 0 0
823 824 824 62:5 62:5 826 '

In terms of differential forms, a bi-Hamiltonian structure is formed by a
couple of closed differential 2-forms: a symplectic form w (such that dw = 0
and w" # 0) and w* = Lpw (clearly dw* = dLgw = Lgdw = 0). It is
important that by taking Lie derivative of Hamilton’s equation

ix,w+dh=0
along the generator E of the symmetry
Lp(ix,w + dh) = ijg x,|w +ix, Lpw + Lgdh = ix,w" +dLgh = 0,
one obtains another Hamilton’s equation
ix,w" +dh* =0,

where h* = Lgh. This is actually a second Hamiltonian realization of
the equations of motion and thus under certain conditions the existence of
a non-Noether symmetry gives rise to an additional presymplectic struc-
ture w* and an additional Hamiltonian realization of the dynamical system.
In many integrable models admitting bi-Hamiltonian realization (including
Toda chain, Korteweg—de Vries hierarchy, Nonlinear Schrodinger equation,
Broer—Kaup system and Benney system), non-Noether symmetries that are
responsible for existence of bi-Hamiltonian structures have been found and
motivated further investigation of relationship between symmetries and bi-
Hamiltonian structures. Namely, it seems to be interesting to know whether
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in the general case the existence of a bi-Hamiltonian structure is related to
a non-Noether symmetry. Let us consider more general case and suppose
that we have a couple of differential 2-forms w and w* such that

dw =dw* =0, W"#0,

Z'th +dh=0
and
Z‘th* +dh* = 0.

The question is whether there exists a vector field E (the generator of a
non-Noether symmetry) such that [E, X},] =0 and w* = Lpw.

The answer depends on w*. Namely, if w* is the exact form (there ex-
ists 1-form 6* such that w* = df*); then one can argue that such a vector
field exists and thus any exact bi-Hamiltonian structure is related to a hid-

den non-Noether symmetry. To outline the proof of this statement, let us
introduce the vector field E* defined by

(such a vector field always exist because w is a nondegenerate 2-form). By
construction
LE»«w = UJ* .

Indeed,

*

Lpw=digpw+ ig-dw = df* = w",
and
i, x,w = Lp-(ix,w) — ix, Lp+w = —d(E*(h) — h*) = —dh’.
In other words, [X}, E*] is a Hamiltonian vector field
(X3, E] = X

One can also construct the locally Hamiltonian vector field X, that satisfies
the same commutation relation. Namely, let us define the function (in the
general case this can be done only locally)

g(z) = /th’dt
0

where integration along a solution of the Hamilton’s equation, with the
fixed origin and the end point in z(t) = z, is assumed. And then it is
easy to verify that the locally Hamiltonian vector field associated with g(z)
by construction satisfies the same commutation relations as E* (namely
[Xn, Xg] = Xps). Using E* and Xj/, one can construct the generator of the
non-Noether symmetry — the non-Hamiltonian vector field £ = E* — X,
commuting with X, and satisfying

Lpw = Lg-w— Lx,w = Lg-w = w"



106 G. Chavchanidze

(thanks to Liouville’s theorem Lx,w = 0). So in case of the regular Hamil-
tonian system every exact bi-Hamiltonian structure is naturally associated
with some (non-Noether) symmetry of the space of solutions. In the case
where bi-Hamiltonian structure is not exact (w* is closed but not exact),
due to

w*=Lpw =digw + tgpdw = digw

it is clear that such a bi-Hamiltonian system is not related to a symmetry.
However, in all known cases bi-Hamiltonian structures seem to be exact.

8. BIDIFFERENTIAL CALCULI

Another important concept that is often used in the theory of dynamical
systems and may be related to the non-Noether symmetry is bidifferential
calculus (bicomplex approach). Recently A. Dimakis and F. Miiller-Hoissen
applied bidifferential calculi to a wide range of integrable models including
KdV hierarchy, KP equation, self-dual Yang-Mills equation, Sine-Gordon
equation, Toda models, non-linear Schrédinger and Liouville equations. It
turns out that these models can be effectively described and analyzed using
the bidifferential calculi [17], [24]. Here we would like to show that each gen-
erator of non-Noether symmetry satisfying the condition [[E[E, W]|]W] = 0
gives rise to certain bidifferential calculus.

Before we proceed let us specify what kind of bidifferential calculi we
plan to consider. Under a bidifferential calculus we mean a graded algebra
of differential forms over the phase space

o=[Jao® (60)
k=0

(Q(k) denotes the space of k-degree differential forms) equipped with a cou-
ple of differential operators

d,d: k) — qk+l) (61)

satisfying the conditions d? = d? = dd + dd = 0 (see [24]). In other words,
we have two De Rham complexes M,Q,d and M,(,d on the algebra of
differential forms over the phase space. And these complexes satisfy certain
compatibility condition — their differentials anticommute with each other
dd + dd = 0. Now let us focus on non-Noether symmetries. It is interest-
ing that if the generator of a non-Noether symmetry satisfies the equation
[[E[E, W]]W] = 0, then we are able to construct an invariant bidifferential
calculus of a certain type. This construction is summarized in the following
theorem:

Theorem 6. Let (M,h) be a reqular Hamiltonian system on a Pois-
son mamnifold M. Then, if a vector field E on M generates a mon-Noether
symmetry and satisfies the equation

[E[E, W]]W] =0,
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the differential operators
du = (I)w([Wa q)W(u)])a (62)
du = @, ([[E, W]Pw (u)]) (63)

form an invariant bidifferential calculus (d*> = d*> = dd + dd = 0) over the
graded algebra of differential forms on M.

Proof. First of all we have to show that d and d are really differential opera-
tors , i.e., they are linear maps from Q*) into Q*+1 | satisfy the derivation
property and are nilpotent (d?> = d? = 0). Linearity is obvious and follows
from the linearity of the Schouten bracket [,] and the maps @y, ®,,. Then,
if u is a k-degree form, ®y maps it on a k-degree multivector field and the
Schouten brackets [W, @y (u)] and [[E, W]®w (u)] result the k + 1-degree
multivector fields that are mapped on k + 1-degree differential forms by ®,,.
So, d and d are linear maps from Q*) into Q*+1) The derivation property
follows from the same feature of the Schouten bracket [,] and linearity of
the maps ®y and ®,,. Now we have to prove the nilpotency of d and d.
Let us consider d?u:

@ = B, (W, Doy (B (W, By (w)]))]) = B (W W, Sy (w)]]) = 0

as a result of the property (50) and the Jacoby identity for the bracket [,].
In the same manner

d*u = O, ([[W, E][[W, E]®w (u)]]) =0

according to the property (52) of [W,E] = W and the Jacoby identity.
Thus we have proved that d and d are differential operators (in fact d is
an ordinary exterior differential and the expression (62) is its well-known
representation in terms of Poisson bivector field). It remains to show that
the compatibility condition dd + dd = 0 is fulfilled. Using the definitions of

d,d and the Jacoby identity, we get
(dd + dd)(u) = @ ([[[W, E]W]®w (u)]) = 0

as far as (51) is satisfied. So, d and d form a bidifferential calculus over the
graded algebra of differential forms. It is also clear that the bidifferential
calculus d, d is invariant, since both d and d commute with time evolution
operator W (h) = {h, }. O

Remark 8.1. Conservation laws that are associated with the bidifferential
calculus (62) (63) and form the Lenard scheme (see [24])

(k+1)dI® = kdr*+b

coincide with the sequence of integrals of motion (41). Proof of this corre-
spondence lays outside the scope of the present memoir, but can be done in
the manner similar to [17].
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Example. The symmetry (27) endows R* with the bicomplex structure
d,d, where d is the ordinary exterior derivative while d is defined by
dz1 = z1dz1 — €3 *dzy |
dzo = zodze + €3 *4dzg
, (64)
dzz = z1dz3 + dzo
dzy = 2odzy — dz;

and is extended to whole De Rham complex by linearity, derivation property
and the compatibility property dd + dd = 0. By direct calculations one can
verify that the calculus constructed in this way is consistent and satisfies
d? = 0. To illustrate the technique, let us explicitly check that d?z; = 0.

Indeed,
A’z = ddz, = d(z1dz) — e *dzy) =
= dz; Ndzy + z1ddz; — e *dzg A dzg+
+e® 7% dzy Adzy — €2 % ddzy =
=dz Ndz — z1ddzy — €37 dzg A dzg+
+e*Fdz, ANdzy + e *ddz, =0
because of the properties
dzy ANdzy = e *dz Adzy,
—21ddz = 217 4 dzs A dzy,
—e3 7P dzs ANdzy = —21€73 T dzy A dzy — €3 dzg A d2a,
€37 dzy Ndzy = € "4 dzy A dzy
and
B P ddzy = —e® M dzy A dzy.
Similarly one can show that
&222 = &223 = &224 =0

and thus d is a nilpotent operator: d? = 0. Note also that the conservation
laws

I = 2, + 2
I = 22 4 22 4 2%

form the simplest Lenard scheme
2d1V) = d1®,

Similarly one can construct the bidifferential calculus associated with the
non-Noether symmetry (32) of three particle Toda chain. In this case d can
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be defined by
dz = z1dz — e*4 7 dzs

dzo = zodzg + €** 7 *5dzy — €*° " *Odzq

dzs = z3dzs + €55 *0dz5
, (65)
dZ4 = 2:le4 — ng — dZ3 s

dzs = 2zodzs + dz — dzg ,
dzg = 2z3dzg + dzq + dza,

and as in the case of two particle Toda it can be extended to the whole
De Rham complex by linearity, derivation property and the compatibility
property dd + dd = 0. One can check that the conservation laws of Toda
chain

M = 21+ 22
TP = 22 4 22 4 22 4 2e%a7 %5 4 2?57
I® = 23 1 23 4+ 23 4+ 3(21 + 20)e™ 755 + 3(22 + 23)e™ 70
form the Lenard scheme
2dIV) = ar®
3d1® = 2d1®.

9. FROLICHER—NILJENHUIS GEOMETRY

Finally we would like to reveal some features of the operator Ry (40)
and to show how the Frolicher-Nijenhuis geometry arises in a Hamiltonian
system that possesses certain non-Noether symmetry. From the geometric
properties of the tangent valued forms we know that the traces of powers
of a linear operator F' on the tangent bundle are in involution whenever
its Frolicher—Nijenhuis torsion T'(F') vanishes, i.e. whenever for arbitrary
vector fields X,Y the condition

T(F)(X,Y)=[FX,FY] - F([FX,Y]+[X,FY] - F[X,Y]) =0

is satisfied. Torsionless forms are also called Frolicher—Nijenhuis operators
and are widely used in the theory of integrable models, where they play the
role of recursion operators and are used in construction of involutive families
of conservation laws. We would like to show that each generator of non-
Noether symmetry satisfying the equation [[E[E, W]]W] = 0 canonically
leads to an invariant Frolicher—Nijenhuis operator on the tangent bundle
over the phase space. This operator can be expressed in terms of the gen-
erator of symmetry and the isomorphism defined by the Poisson bivector
field. Strictly speaking, we have the following theorem.

Theorem 7. Let (M, h) be a reqgular Hamiltonian system on the Poisson
manifold M. If the vector field E on M generates a non-Noether symmetry
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and satisfies the equation

[E[E,W]]W] =0,
then the linear operator defined for every vector field X by the equation
Rp(X) = ¢w(Lp®u (X)) — [E, X] (66)

is an invariant Frolicher—Nijenhuis operator on M .

Proof. Invariance of Ry follows from the invariance of Ry defined by (40)
(note that for an arbitrary 1-form vector field u and a vector field X the
contraction i xu has the property ir, xu = iXREu, so Rp is actually trans-
posed to Rg). It remains to show that the condition (49) ensures vanishing
of the Frolicher—Nijenhuis torsion T (Rg) of Rp, i.e. for arbitrary vector
fields X,Y we must get

T(Rg)(X,Y) = [Re(X),Re(Y)] — Re([Re(X), Y]+
+ X, Re(Y)] - Re([X,Y])) = 0. (67)

First let us introduce the following auxiliary 2-forms

w=&,(W), w"'=Rpw, w*=~Rpw" (68)
Using the realization (62) of the differential d and the property (5) yields

dw = B, ([W, W]) = 0.
Similarly, using the property (51) we obtain
dw* = dd,([B,W]) — dLpw = &, ([[E, W]W]) — Lpdw = 0.

And finally, taking into account that w* = 2®,,([E, W]) and using the con-
dition (49), we get

dw™ =20, ([[E[E, W]|]W]) — 2dLgw* = —2Lgdw* = 0.
So the differential forms w,w™,w** are closed
dw = dw™ = dw™ = 0. (69)
Now let us consider the contraction of T'(Rg) and w.
IT(Rp)(X,Y)W = {RpX,RpYIW — {RpX, YW —Ix Rey|w +ixyw™ =
= Lppyxiyw" —iryyLxw" — Lryxiyvw*+
+iy Lppxw” — Lxippyw” +ippy Lxw™ +ipx yjw™ =
=iy Lxw™ — Lxiyw™ +ix yw™ =0, (70)
where we have used (68) (69), the property
Lxiyw =iy Lxw +ixyw
of the Lie derivative and the relations of the following type
Lp,xw=dig,xw+ip,xdw = dixw* =

= wa* — ixdw* = LXw*.
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So we have proved that for arbitrary vector fields X,Y the contraction of
T(Rg)(X,Y) and w vanishes. But since the bivector W is non-degenerate
(W™ £ 0), its counter image

w=o,(W)

is also non-degenerate and the vanishing of the contraction (70) implies that
the torsion T'(Rp) itself is zero. So we get

T(Re)(X,Y) =[Re(X),Re(Y)] - Re([Re(X),Y]+
+[X,Re(Y)] - Re([X,Y])) =0. O

Example. Note that the operator Rg associated with the non-Noether
symmetry (27) reproduces the well-known Frolicher—Nijenhuis operator

9 d d d
RE_Zlel@&_Zl_dZ1®8_2’4+22dZ2®3_22+d22®3_23+

0 0 0 0
+21d2z3 @ — + € 4 d23 @ — + 290d2a @ — — 34 d2y @ —
823 62:2 62:4 62:1

(compare with [30]). Note that the operator Rg plays the role of recursion
operator for the conservation laws

IW = 2 + 2,
I® = 22 4 22 4 2e%7 5,
Indeed, one can check that
2Rp(dIMW) = dI®.
Similarly using the non-Noether symmetry (32), one can construct the

recursion operator of three particle Toda chain

0 0
R = z1dz1 @ — — €Z47Z5d255 & —+
0z1 021

i) )
dzy ® —— + € 5dzy @ ———
+22dm ® 5t 24® 5

0 0 0
— €702 @ — + 23dz3 @ — + ¥ 0 dzs  —+
62:2 62:3 62:3

o} 0 0
d — —d — —dz3 ® —
+ 21424 @ 921 22 ® 971 Zs®az4+

+ 22dz ®i+dz ®ifdz ®i+
2055 825 ! 825 3 62:5

+ z3dz ®i+dz ®i+dz ®i
376 826 ! 826 2 8267
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and as in case of two particle Toda chain, the operator Ry appears to be
the recursion operator for the conservation laws

I =21 + 2,

I® = 22 4 22 4 22 4 275 4 25575,

I =23 4 23 4 23 + 43(21 + 22)e™ ™™ + 3(22 + 23)e™ %
and fulfills the following recursion condition

dI® = 3Rg(dI®) = 6(Rp)*(dIM).

10. ONE-PARAMETER FAMILIES OF CONSERVATION LAWS

The one-parameter group of transformations g, defined by (12) naturally
acts on the algebra of integrals of motion. Namely, for each conservation
law

d
%Jfo

one can define a one-parameter family of conserved quantities J(a) by ap-
plying the group of transformations g, to J

1
J(a) = go(J) = eFeJ = J +alpJ + 5(aLE)2J+--- _

The property (13) ensures that J(a) is conserved for arbitrary values of the
parameter a

d d d
—J(a) = —ga(J) = —J | =0
a1 = g9 = ga <dt )
and thus each conservation law gives rise to whole family of conserved quan-
tities that form an orbit of the group of transformations g,.
Such an orbit J(a) is called involutive if the conservation laws that form
it are in involution

{J(a), J(b)} =0

(for arbitrary values of the parameters a, b). On a 2n-dimensional symplectic
manifold each involutive family that contains n functionally independent
integrals of motion naturally gives rise to an integrable system (due to
Liouville-Arnold theorem). So in order to identify those orbits that may be
related to integrable models it is important to know how the involutivity of
the family of conserved quantities J(a) is related to properties of the initial
conserved quantity J(0) = J and the nature of the generator E of the group
ga = €2, In other words, we would like to know what condition must be
satisfied by the generator of symmetry E and the integral of motion J to
ensure that {J(a), J(b)} = 0. To address this issue and to describe the class
of vector fields that possess nontrivial involutive orbits, we would like to
propose the following theorem
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Theorem 8. Let M be a Poisson manifold endowed with a 1-form s such
that

(WW(s), Wi(s)] = coW(s)[W(s), WI]  (co # —1). (71)
Then each function J satisfying the property
W (Liw(d]) = ei[W(s), WI(@J) (e #0) (72)
(co,1 are some constants) gives rise to an involutive set of functions
JM = (Ly)™J,  {J™, 0™} = 0. (73)

Proof. First let us introduce a linear operator R on bundle of multivector
fields and define it for arbitrary multivector field V' by the condition

R(V) = 3(W(5), V] - B (L0 (V). (74

The proof of linearity of this operator is identical to the proof given for (40),
so we will skip it. Further it is clear that

RV = [W(s), W] (75)
and
RE(W) = RW (), W]) = S(W IV (3), W] — e (L)) =
= 1w ()W (), W), (76)

where we have used the property
w ((Lw(s)*w) = Pw (L) Lw(sw) =
= Qw (iw(s)dLw(syw) + Pw (diw (s) Lw(syw) =
= [W, @w (iw(s) Lw(sw)] = [WW (s), W](s)] =
= co[W(s)[W(s), W]].

At the same time, by taking Lie derivative of (75) along the vector field
W (s) one gets

(WW(s), W](s)] = (Lw s R+ R*)(W). (77)
Comparing (76) and (77) yields
(1 + Co)(LW(s)R + RQ) = 2R2,

and thus
Lo R = ——0 2 (78)
W)= l+co
Further let us rewrite the condition (72) as follows

Due to linearity of the operator R this condition can be extended to

R™(W)(Lyy(sydJ) = ey R™ L (W)(d.J). (80)
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Now assuming that the following condition is true
W((Lw(s)"dJ) = cn B™ (W)(d]), (81)
let us take its Lie derivative along the vector field W (s). We get
RW)(Lw(s))™d]) + W (L (s))" ' d]) =
_ mcmi—zng“(W)(dJ) + e R (W) (), (82)

where we have used the properties (75) and (78). Note also that (81) to-
gether with linearity of the operator R implies that

REW (L))" dJ) = e R (W)(AT), (83)
and thus (82) reduces to
W ((Lw ()" d]) = e R (W)(dT), (84)

where ¢, 41 is defined by

1-— Co

1+co’

So we have proved that if the the assumption (81) is valid for m, then it is
also valid for m + 1. We also know that for m = 1 it matches (79) and thus

by induction we have proved that the condition (81) is valid for arbitrary
m while ¢, can be determined by

Cm+1 = MCp

1760 m—1
1+co '

Now using (81) and (83) it is easy to show that the functions (Lyy ()™ J
are in involution. Indeed,

{(LW(S))mJa (LW(é))kJ} = W(d(LW(a))m‘] A d(LW(a))k‘]) =
=W((Lws))™dJ A (Lw(5)*dJ) = cpmer W (dJ AdJ) = 0.

e = ol 1)t

So we have proved the functions (73) are in involution.

Further we will use this theorem to prove involutivity of a family of
conservation laws constructed using a non-Noether symmetry of Toda
chain. 0

11. TopA MODEL

To illustrate features of non-Noether symmetries we often refer to two
and three particle non-periodic Toda systems. However, it turns out that
non-Noether symmetries are present in generic n-particle non-periodic Toda
chains as well. Moreover, they preserve basic features of the symmetries
(27), (32). In case of n-particle Toda model the symmetry yields n function-
ally independent conservation laws in involution, gives rise to bi-Hamiltonian
structure of Toda hierarchy, reproduces the Lax pair of Toda system, en-
dows the phase space with a Frolicher—Nijenhuis operator and leads to an
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invariant bidifferential calculus on the algebra of differential forms over the
phase space of Toda system.

First of all let us remind that Toda model is a 2n-dimensional Hamil-
tonian system that describes the motion of n particles on the line governed
by the exponential interaction. Equations of motion of the non periodic
n-particle Toda model are

do_
(iltql = Pi, (85)
Epi = (i —1)eh17% — ¢(n — i)l Ui+

(e(k) = —e(—k) = 1 for any natural k and €(0) = 0) and can be rewritten
in the Hamiltonian form (11) with the canonical Poisson bracket defined by

"9 0
Wigapi/\a_qz'

and Hamiltonian equal to

1 n n—1
_ _ 2 qi—qi
h—2;pi+z;e )
= i=

Note that in two and three particle case we have used slightly different
notation

zZi=pi  Znpi=¢ 1=1,2,(3); n=2(3)

for the local coordinates. The group of transformations g, generated by the
vector field F will be a symmetry of Toda chain if for each p;, q; satisfy-
ing the Toda equations (85) g.(pi), ga(g:) also satisfy it. Substituting the
infinitesimal transformations

9a(pi) = pi + aE(p;) + O(a?),
9a(pi) = @i + aE(q;) + O(a?)

into (85) and grouping first order terms gives rise to the conditions

S B) = Ep),

SE(p) = eli = 1)t (Blgi1) - Blay))- (56)

dt
—e(n —1)et "M (E(q;) — E(git1))-
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One can verify that the vector field defined by

1
E(p;) = 52912 +e(i—1)(n—i+2)et 7% —e(n —i)(n—i)et "I 4

t, . a0
+ 5 (e(i = Dpiz1 + pi)et =7~

—e(n—i)(pi + pi+1)€Q7’_Q7'+1) (s7)
B(g:) = (n—i+1)pi - —pr— Z Pt
=i+1

+ = (p? +e(i — 1)e®=179 4 e(n — i)eli9i+1)

DO =+

satisfies (15) and generates a symmetry of Toda chain. It appears that this
symmetry is non-Noether since it does not preserve the Poisson bracket
structure [E,W] # 0 and additionally one can check that Yang—Baxter
equation [[E[E, W]]W] = 0 is satisfied. This symmetry may play important
role in analysis of Toda model. First let us note that calculating L gW leads
to the following Poisson bivector field

. n 0 0
W = E’W — i + edi— Q7+1
(£, W] ;p Z:: N oo
0 0
+ N7,
Z 0q; a‘b

and W and LgW together give rise to a bi-Hamiltonian structure of Toda
model (compare with [30]). Thus the bi-Hamiltonian realization of Toda
chain can be considered as manifestation of hidden symmetry. The conser-
vation laws (22) associated with the symmetry reproduce the well-known
set of conservation laws of Toda chain.

W = o = Zpi’

n—1

72 — (C(l)) —90®2) — Zp +2 Z eBi it
i=1 i=1
I® =cWy3 _3cMe® 430G =
n n—1
=D PP 3D (pi+pipa)et 9, (88)
i=1 =1
IW = ¢t _4(cM)20c®@ 4 2(0@)2 4 40MC®) —4c™ =

n—1

= sz + 4> (0] + 2pipis1 + piyy et T

i=1 =1
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n—1 n—2
+9 Z e2(di—gi+1) +4 Z el ai+2,
1=1 i=1
m—1
I(m) _ (_1)m+1mc(m) + Z (_1)k+11(m7k)0(k)
k=1

The condition [[E[E, W]]W] = 0 satisfied by the generator of symmetry F
ensures that the conservation laws are in involution, i.e. {C®) C(™1 =
0. Thus the conservation laws as well as the bi-Hamiltonian structure of
the non-periodic Toda chain appear to be associated with a non-Noether
symmetry.

Using the formula (39) one can calculate the Lax pair associated with
the symmetry (87). The Lax matrix calculated in this way has the following
non-zero entries (note that in case n = 2 and n = 3 this formula yields the
matrices (44)-(47))

Lk = Lotk ik = Pks

Lotbgs1 = —Lnirrip = €(n — k)eds—am+1, )
Ly nim = €(m — k),
m,k=1,2,...,n,
while the non-zero entries of matrix P involved in the Lax pair are

Pk,n+k = 17

Pn+k,k = —E(k‘ — 1)6%—1*% _ e(n _ k)e%iqk"'l,

Poiips1 = €(n — ket ar+1, (90)

P = €(k — 1)e®-170,

k=1,2,...,n.

This Lax pair constructed from the generator of non-Noether symmetry
exactly reproduces the known Lax pair of Toda chain.

Like two and three particle Toda chain, n-particle Toda model also admits
an invariant bidifferential calculus on the algebra of differential forms over
the phase space. This bidifferential calculus can be constructed using a
non-Noether symmetry (see (63)). It consists of two differential operators
d,d, where d is the ordinary exterior derivative while d can be defined by

dg; = pidg; + Y _dp; — Y _ dpj,
j>i i>j (91)
d_pi = pidp; — edi~9i+1 dgis1 + =19 dg;

and is extended to the whole De Rham complex by linearity, derivation
property and compatibility property dd 4+ dd = 0. By direct calculations
one can verify that calculus constructed in this way is consistent and satisfies
property d? = 0. One can also check that the conservation laws (88) form
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the Lenard scheme
(k+1)dI® = kdr*+Y),

Further let us focus on the Frolicher—Nijenhuis geometry. Using the for-
mula (66) one can construct an invariant Frolicher—Nijenhuis operator out
of the generator of non-Noether symmetry of Toda chain. The operator
constructed in this way has the form

- ) 9] &« )
Rp = i d i - d i | = Q%_Qi-l—ld i .
B Zp[p®8%+ q®3pi] Ze q+1®3pi+

i=1 i=1

n—1
0 0 0
+ E el=17%dq; ® ap; E [dpi ® o dp; ® o4 | (92)
4 J g

i=1 J>i

One can check that the Frolicher—Nijenhuis torsion of this operator vanishes
and it plays the role of recursion operator for n-particle Toda chain in sense
that conservation laws I(®) satisfy the recursion relation

(k+1)Rp(dI®™) = ka1 +b, (93)

Thus a non-Noether symmetry of Toda chain not only leads to n functionally
independent conservation laws in involution, but also essentially enriches the
phase space geometry by endowing it with an invariant Frolicher—Nijenhuis
operator, a bi-Hamiltonian system, a bicomplex structure and a Lax pair.

Finally, in order to outline possible applications of Theorem 8 let us study
the action of the non-Noether symmetry (87) on conserved quantities of
Toda chain. The vector field E defined by (87) generates the one-parameter
group of transformations (12) that maps an arbitrary conserved quantity J
to

a2 a3
J(a):J+aJ(1)+§J(2)+§J(3)+~' ,
where
JM = (Lg)™J.

In particular, let us focus on the family of conserved quantities obtained by
the action of g, = e*F# on total momenta of Toda chain

J=> pi (94)

By direct calculations one can check that the family J(a) that forms an orbit
of non-Noether symmetry generated by E reproduces the entire involutive
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family of integrals of motion (88). Namely

1 n n—1
(1) — _ 2 qi—qi
J —LEJ—2Z;pi+Z;e 1
n—1

1 3
(2) — 1) — 2 7_5 3 _E ) _ i—qi
J = LEJ = (LE) J = 9 .71pi + 9 (pz +p1+1)€q dit1

i=1
3 n
3) = (2) = 372 4
J¥W =LgJ —(LE)J—4.§1pi+

n—1

+3) (0 +2pipig1 + D et T+
=1

-
Il

1 n—2
62(511'*511#1) +3 E edi —di+2
i=1 i=1

JM = Lggm=Y = (Lg)™J.

+

N1 o
3
AR

Involutivity of this set of conservation laws can be verified using Theo-
rem 8. In particular one can notice that the differential 1-form s defined
by

E=W(s)

(where E is the generator of the non-Noether symmetry (87)) satisfies the
condition

WIW(s), W](s)] = 3[W(s)[W(s), W]]
while the conservation law J defined by (94) has the property

and thus according to Theorem 8 the conservation laws (95) are in involu-
tion.

12. KORTEWEG—DE VRIES EQUATION

Toda model provides a good example of a finite dimensional integrable
Hamiltonian system that possesses a non-Noether symmetry. However,
there are many infinite dimensional integrable Hamiltonian systems and
in this case in order to ensure integrability one should construct an infi-
nite number of conservation laws. Fortunately in several integrable models
this task can be effectively simplified by identifying an appropriate non-
Noether symmetry. First let us consider a well-known infinite dimensional
integrable Hamiltonian system — the Korteweg—de Vries equation (KdV).
The KdV equation has the following form

Ut + Ugze + ULy = 0 (96)
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(here u is smooth function of (¢,z) € R?). The generators of symmetries of
KdV should satisfy condition

E(u): + E(t)ggs + uz E(u) +uE(u)y =0 (97)

which is obtained by substituting the infinitesimal transformation v — u +
aE(u) + O(a?) into the KAV equation and grouping first order terms.

Later we will focus on the symmetry generated by the following vector
field

2 1
E(u) = 2ug, + §u2 + Eumv + ;(Uzm + ) —

t
= 5 (Btaaaas + 20Ustiy + 10UUgzs + 5u’uy) (98)

(here v is defined by v, = u).
If w is subjected to zero boundary conditions u(t, —o0) = u(t, +00) = 0,
then the KdV equation can be rewritten in the Hamiltonian form

uy = {h,u} (99)

with the Poisson bivector field equal to

—+o0
) )
_ — A= 100
W / dxéu [&J N (100)
and the Hamiltonian defined by
+oo
ud
h = /(ui - g)d:c. (101)
—o0

By taking the Lie derivative of the symplectic form along the generator of
the symmetry, one gets the second Poisson bivector

- [ull£] o[8] (2] oo

involved in the bi-Hamiltonian structure of the KdV hierarchy and proposed
by Magri [58].

Now let us show how non-Noether symmetry can be used to construct
conservation laws of the KdV hierarchy. By integrating KdV it is easy to
show that

+oo
JO = /ud:c

is a conserved quantity. At the same time Lie derivative of any conserved
quantity along the generator of symmetry is conserved as well, while taking
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the Lie derivative of J(© along E gives rise to infinite sequence of conser-
vation laws J(™) = (Lp)™J () that reproduce the well-known conservation
laws of the KdV equation

+oo

JO = / udz,
+oo
JV = LggO = i / u?dz,
— 00
+oo 103)
5 3 (
70 = (Lers® =2 [ (e
—o0
35 5 5
— 00

Jm) — (LE)mJ(O).

Thus the conservation laws and bi-Hamiltonian structures of the KdV hier-
archy are related to the non-Noether symmetry of the KdV equation.

13. NONLINEAR WATER WAVE EQUATIONS

Among nonlinear partial differential equations that describe propagation
of waves in shallow water there are many remarkable integrable systems.
We have already discussed the case of the KAV equation that possess non-
Noether symmetries leading to an infinite sequence of conservation laws and
a bi-Hamiltonian realization of this equation. Now let us consider other
important water wave systems. It is reasonable to start with the dispersive
water wave system, since many other models can be obtained from it by
reduction. Evolution of dispersive water wave system is governed by the
following set of equations

Ut = U W + UWy,
Vf = Uy — Vg + 20,W + 20Wy, (104)

Wi = Wy — 2V + 2WW,.

Each symmetry of this system must satisfy the linear equation
E(u)e = (wE(u))z + (uB(w)).,
E(): = (uBE(u))s = E(0)es + 2(wWE(v))2 + 2(0E(w))s,
E(w): = E(w)zy — 2E(0)z + 2(WE(w)) s
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obtained by substituting the infinitesimal transformations
u — u+ aB(u) + O(a?),
v — v+ aE(v) + 0(a?),
w — w+ aB(w) + O(a?)

into the equations of motion (104) and grouping first order (in a) terms.
One of the solutions of this equation yields the following symmetry of the
dispersive water wave system

E(u) = uw + x(uw), + 2t(uw? — 2uv + uwy ).,

3
E(v) = §u2 + 4vw — v, + z(uuy + 2(vw)y — Vg )+

+ 2t (uw — utty — 307 + 3vw? — 3VW + Vg )y (105)
B(w) = w* 4+ 2w, — 4v + 2(2ww, + Wy — 20,)—

— 2t(u? + 6vw — w? — Bww, — Wey)s,

and it is remarkable that this symmetry is local in the sense that E(u) at
the point x depends only on w and its derivatives evaluated at the same
point (this is not the case in KdV where the symmetry is non-local due to
presence of the non-local field v defined by v, = u).

Before we proceed let us note that the dispersive water wave system is
actually an infinite dimensional Hamiltonian dynamical system. Assuming
that the fields u,v and w are subjected to zero boundary conditions

u(£00) = v(+o0) = w(+oo) =0,

it is easy to verify that the equations (104) can be represented in the Hamil-
tonian form

uy = {h,u},
vy = {h,v},
wy = {h,w}
with the Hamiltonian equal to
+o0
h= 7% / (w?w + 2vw? — 2u,w — 20%)dx (106)

and the Poisson bracket defined by the following Poisson bivector field

s T8 5 [o
= S A= +—=A|— . 1
W / [25u/\ {&LL—’—&)A [&UL] de (107)
Now using our symmetry that appears to be non-Noether, one can calculate

the second Poisson bivector field involved in the bi-Hamiltonian realization
of dispersive water wave system

W=[E,W]=
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+00
) 1) ) ) 1) )
=2 / R bl e Y Frd Bl b A i B
) ) ) )
rep Al el A sele (108)
Note that W give rise to the second Hamiltonian realization of the model
ug = {h", u}s,
vy = {h*, v},
wy = {h*, w}y,
where
+00
h* = —i /(u2 + 2vw)dx

and {, }. is the Poisson bracket defined by the bivector field W.
Now let us pay attention to conservation laws. By integrating the third
equation of the dispersive water wave system (104) it is easy to show that

+oo

JO = /wd:c

— 00
is a conservation law. Using the non-Noether symmetry one can construct
other conservation laws by taking Lie derivative of J(©) along the generator
of symmetry and in this way the entire infinite sequence of conservation
laws of dispersive water wave system can be reproduced
+o0

JO = / wdzx,
—o0
+oo
JW = Lpg® = 2 / vdz,
+o0
J® = LgJ® = (Lg)?J© = -2 / (u? + 2vw)dz, (109)
+oo
J® = Lpg® = (Lg)*J® = —6 / (u?w + 20w? — 2u,w — 20%)dx,

JY = LpJ®) = (LE)4J(0) -
“+o0
= —24/(u2w2+u2wx—2u2v—6v2w—|—2vw3—3vmw2—2vmwm)da?,

—0o0
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Jn — LEJ(n—l) — (LE)"J(O).

Thus the conservation laws and the bi-Hamiltonian structure of the dis-
persive water wave system can be constructed by means of non-Noether
symmetry.

Note that the symmetry (105) can be used in many other partial dif-
ferential equations that can be obtained by reduction from the dispersive
water wave system. In particular, one can use it in the dispersionless water
wave system, the Broer—Kaup system, the dispersionless long wave system,
Burger’s equation etc. In case of the dispersionless water waves system

Ut = Uz W + UWy,
Vg = Uy + 20w + 20wy, (110)

Wy = —20, + 2wwy
the symmetry (105) is reduced to

E(u) = vw + z(uw), + 2t(vw? — 2uv),,

E(v) = qu + dvw + x(uu, + 2(vw)z) + 2t(uw — 30% + 3vw?),, (111)

E(w) = w? — 4v 4 2(2ww, — 2v;) — 2t(u® + 6vw — w®),,
and the corresponding conservation laws (109) reduce to

+oo

JO = / wdzx,
+oo
JV = LpJO = 2 / vdz,
— 00
+oo
J? = LpgM = (Lg)2J© = -2 / (u? + 2vw)dz,
oo (112)
+oo
J®) = LpJ® = (Lg)?J® = —6 / (u?w + 2vw?* — 2v?)dx,
J&@ — LEJ(3) — (LE)4J(0) —
—+o0
=24 / (u?w? — 2u*v — 6v%w + 2vw?)dz,
—0o0

JM = [ g = (LE)"J(O).



Non-Noether Symmetries in Hamiltonian Dynamical Systems 125

Another important integrable model that can be obtained from the dis-
persive water wave system is the Broer—-Kaup system

Uy = Evm + VW + VWy,
1 (113)
Wy = —§wm + Uy + Wwy.

One can check that the symmetry (105) of the dispersive water wave sys-
tem, after reduction, reproduces the non-Noether symmetry of Broer—Kaup

model
E(w) = 4vw + 3v, + x(2(vw)y + vz )+
+ t(3v2 + 3vw? + 3v,w + Vo)
B(w) = w* — 2w, + 4v + 2(2ww, — Wey + 20,)+ (114)
+ t(6vw + w? — 3ww, + Waa )z

and gives rise to the infinite sequence of conservation laws of the Broer—
Kaup hierarchy

—+o0

JO — / wd,
—0o0
—+o00
JV =L =2 / vdz,
—00
+oo
J(Q) = LEJ(I) = (LE)2J(O) =4 / dema
J (115)
+oo
JB = LEJ(2) _ (LE)BJ(O) =12 /(Uw2 + vpw + 1)2)d307
+oo
J® = LpJ® =(Lg)*J® =24 / (6v*w+ 20w’ +3v,w* —2v,w, ) da,

Jm — LEJ("’U — (LE)"J(O).

And exactly like in the dispersive water wave system one can rewrite the
equations of motion (113) in the Hamiltonian form

vy = {h,v},
wy = {h,w},
where the Hamiltonian is
+oo
h= % / (vw? + vew + v?)dx

— 00
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while the Poisson bracket is defined by the Poisson bivector field
e s
W= [_ A [_} }d:c. (116)
v -

And again, using the symmetry (114) one can recover the second Poisson
bivector field involved in the bi-Hamiltonian realization of the Broer—-Kaup
system by taking the Lie derivative of (116)

+oo
ot (2] (4[4
+ w% A [%L n % A [%L}dm. (117)

This bivector field gives rise to the second Hamiltonian realization of the
Broer—Kaup system

vy = {h*, v},
wy = {h*, w}.
with
+oo
h* 1 d
==7 vwdx

So the non-Noether symmetry of the Broer-Kaup system yields an infinite
sequence of conservation laws of Broer—-Kaup hierarchy and endows it with
bi-Hamiltonian structure.

By suppressing dispersive terms in the Broer—-Kaup system one reduces
it to a more simple integrable model — the dispersionless long wave system

Vi = Vg W + VWy, (118)
Wt = Vg + WWy.

In this case the symmetry (105) reduces to the more simple non-Noether
symmetry

E(v) = 4vw + 2z(vw), + 3t(v* + vw?),,

o, 3 (119)
E(w) = w* + 4v + 2z(ww, + vy) + t(6vw + w?),,
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while the conservation laws of the Broer—Kaup hierarchy reduce to the se-
quence of conservation laws of the dispersionless long wave system

+o0
JO = / wdz,
o N
JV = Lpg©® =2 / vdr,
o N
J® = LpJ® = (Lp)2J©® =4 / vwdz,
. (120)
+oo
J® = LpJ® = (Lg)*J® =12 /(vw2 + v?)dz,
oo
+00
JW = LpJ® = (Lp)*J® =48 / (302w + vw?)dz,
oo

JMW = Lpgm=Y) = (Lg)" g0,

At the same time the bi-Hamitonian structure of Broer—Kaup hierarchy
after reduction gives rise to the bi-Hamiltonian structure of the dispersion-
less long wave system

1) 1)
w50 ) Joe
W=[EW] = (121)
“+o0
f72/ i/\i +i/\i +i/\i d
a Uso ov], 5o dw), ow dw], o

Among other reductions of the dispersive water wave system one should
probably mention Burger’s equation

W = Wey + WW,. (122)

However, Hamiltonian realization of this equation is unknown (for instance,
the Poisson bivector field of the dispersive water wave system (107) vanishes
during reduction).

14. BENNEY SYSTEM

Now let us consider another integrable system of nonlinear partial differ-
ential equations — the Benney system. Time evolution of this dynamical
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system is governed by the equations of motion
ur = vuy + 2(uw),,
vy = 2uy + (VW) (123)
wy = 2V, + 20wy

To determine symmetries of the system one has to look for solutions of the
linear equation

Eu): = (WE(v))z + 2(uE(w))s + 2(wE(u))s,

E(); = 2E(u)z + (vE(w))z + (WE(v))z, (124)
E(w); = 2E(v)s + 2(wE(w))s

obtained by substituting the infinitesimal transformations
u — u+ aB(u) + O(a?),
v — v+ aE(v) + 0(a?),
w — w+ aB(w) + O(a?)

into the equations (123) and grouping first order terms. In particular, one
can check that the vector field E defined by

E(u) = buw + 200% + x(2(uw)y + vvy) + 2t(4duv + 2w + Suw2)x7
E(v) = vw + 6u + z((vw), + 2ug) + 2t(4uw + 3v? + vw?),, (125)
E(w) = w? + 4v 4 2z (ww, + v,) + 2t(w® + dvw + 4u),

satisfies the equation (124) and therefore generates a symmetry of the Ben-
ney system. The fact that this symmetry is local simplifies further calcula-
tions.

At the same time, it is well-known that under the zero boundary condi-
tions

u(£00) = v(+o0) = w(+oo) =0

the Benney equations can be rewritten in the Hamiltonian form

uy = {h,u},
vy = {h,v},
wy = {h,w}
with the Hamiltonian
400
h= f% / (2uw? + 4uv + v2w)dz (126)
“

and the Poisson bracket defined by the following Poisson bivector field

v Tl A El)e
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Using the symmetry (125) that in fact is a non-Noether one, we can re-
produce the second Poisson bivector field involved in the bi-Hamiltonian
structure of the Benney hierarchy (by taking the Lie derivative of W along
E)

W= [E,W] =
+oo
s T[]+t [2].
er%/\ [%L+2%A [%ud:c (128)

The Poisson bracket defined by the bivector field 144 gives rise to the second
Hamiltonian realization of the Benney system

Ut = {h*vu}*a
Uy = {h*a ’U}*,
wy = {h", W}
with the new Hamiltonian
+oo
* 1 2
h* = 8 (v* + 2uw)dz.

Thus the symmetry (125) is closely related to the bi-Hamiltonian realization
of Benney hierarchy.

The same symmetry yields an infinite sequence of conservation laws of
Benney system. Namely, one can construct a sequence of integrals of motion
by applying the non-Noether symmetry (125) to

+oo
JO = / wdx
—o0
(the fact that J () is conserved can be verified by integrating the third
equation of the Benney system). The sequence looks like

—+o0

JO = /wd:c,
— 00
+00
Jo :LEJ<0>=2/udx,
—00

+oo
J? = L = (Lg)?J® =38 / udz,

— 00
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+oo
J® = LpJ® = (Lg)3J® =12 / (v? + 2uw)dz, (129)
—00
+oo
JW = LpJ® = (L)*J© =48 / (2uw? + 4uv + v?w)dz,
—00
JO) — LEJ(4) — (LE)5J(0) —
+oo
= 240 / (4u? + Suvw + 2uw® 4 20° 4 v2w?)dz,

J = LpJm=Y = (Lg)"J©,

So the conservation laws and the bi-Hamiltonian structure of the Benney
hierarchy are closely related to its symmetry, which can play an important
role in analysis of the Benney system and other models that can be obtained
from it by reduction.

15. CONCLUSIONS

The fact that many important integrable models, such as the Korteweg—
de Vries equation, the Broer-Kaup system, the Benney system and the
Toda chain, possess non-Noether symmetries that can be effectively used in
analysis of these models, inclines us to think that non-Noether symmetries
can play an essential role in the theory of integrable systems and properties
of this class of symmetries should be investigated further. The present re-
view indicates that in many cases non-Noether symmetries lead to maximal
involutive families of functionally independent conserved quantities and in
this way ensure integrability of the dynamical system. To determine the
involutivity of conservation laws in cases when it can not be checked by
direct computations (for instance, one can not check directly the involutiv-
ity in many generic n-dimensional models like the Toda chain and infinite
dimensional models like the KdV hierarchy) we propose an analogue of the
Yang—Baxter equation, that being satisfied by the generator of symmetry,
ensures the involutivity of the family of conserved quantities associated with
this symmetry.

Another important feature of non-Noether symmetries is their relation-
ship with several essential geometric concepts emerging in the theory of
integrable systems, such as Frolicher—Nijenhuis operators, Lax pairs, bi-
Hamiltonian structures and bicomplexes. On the one hand, this relation-
ship enlarges the possible scope of applications of non-Noether symmetries
in Hamiltonian dynamics and, on the other hand, it indicates that the exis-
tence of invariant Frolicher—Nijenhuis operators, bi-Hamiltonian structures
and bicomplexes in many cases can be considered as manifestation of hidden
symmetries of the dynamical system.
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