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Abstract. For a class of first and second order hyperbolic systems with
symmetric principal part, to which belong systems of Maxwell and Dirac
equations, crystal optics equations, equations of the mathematical theory of
elasticity and so on which are well known from the mathematical physics,
we have developed a method allowing one to give correct formulations of
boundary value problems in dihedral angles and conical domains in Sobolev
spaces. For second order hyperbolic equations of various types of degen-
eration, we study the multidimensional versions of the Goursat and Dar-
boux problems in dihedral angles and conical domains in the corresponding
Sobolev spaces with weight. For the wave equation with one or two spatial
variables, the correctness of some nonlocal problems is shown. The existence
or nonexistence of global solutions of the characteristic Cauchy problem in
a conic domain is studied for multidimensional wave equations with power
nonlinearity.
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Introduction

In this work we investigate some multidimensional problems for hyper-
bolic partial differential equations and systems. It should be said that when
passing from two to more than two independent variables difficulties may
arise that are not only technical. They may arise even when formulating
multidimensional versions of classical two-dimensional problems, for exam-
ple, of the Goursat and Darboux problems.

As is known, the strict hyperbolicity of a system plays an important
role in establishing the correctness of the posed initial, initial-boundary
and other problems. At the same time, the investigation of some problems
makes it possible to consider a class of systems wider than that of strictly
hyperbolic ones. In the case of one equation this is the ultrahyperbolic
equation. In the first section of Chapter I we consider second order systems
with several independent variables hyperbolic with respect to some two-
dimensional planes. For such systems, in dihedral domains of a certain
orientation we consider boundary value problems in special weight function
spaces with boundary conditions of Poincaré type imposed on the faces
of the dihedral angle. The correctness of these problems is proved when
the order of the weight function determining the function space is greater
than a definite value [69]. A separate consideration is given to the case of
ultrahyperbolic equation [70].

In the second section of Chapter I we develop methods of formulating
correct boundary value problems for a class of second order hyperbolic sys-
tems with several independent variables with symmetric principal part in
conic domains, taking into account the spatial orientation of the latter.

In the third section of the same chapter we investigate boundary value
problems for a class of first order hyperbolic systems with symmetric princi-
pal part. To this class belong, in particular, the Maxwell and Dirac systems
of differential equations and the equation of crystal optics which are well
known from mathematical physics. We begin the subsection by consider-
ing boundary value problems in a conic domain whose boundary is one of
the connected components of the characteristic conoid of the system [71],
[72]. Certain difficulties arise even if the cone of normals of the system
consists of infinitely smooth sheets and the connected components of the
characteristic conoid of the system corresponding to these sheets may have
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strong singularities [24, p. 586]. Thus difficulties already arise when formu-
lating a characteristic problem, when the carrier of boundary data must be
indicated [72].

In the second part of Section 3 we consider boundary value problems
in dihedral domains [73], [74]. To show that the formulation of a problem
in terms of its correctness demands much care we give the following simple
example of symmetric system [105]

EoU, + AU, + BU, = F,

1 0 1 0 0 -1 .
whereEo(O 1),A(0 _1),3(_1 0),F(F1,F2)1S&

given and U = (u1,u2) is an unknown two-dimensional real vector. The
characteristic polynomial of the system is p(&o, &1, &2) = det(oEp + §1A4 +
&B) =¢2—€2—-¢2. Wedenoteby D : —t <z <t,0 <t < +oo the dihedral
angle bounded by the characteristic surfaces S; : t —2z =0,0 <t < 400
and So : t+x =0,0 <t < 400, of the system. As is shown in [71],
the problem of finding a solution of the system under consideration in the
domain D by the boundary conditions

ug‘sl = fi1, U1|S2 = /2

is posed correctly, whereas in the case of the boundary conditions

ul‘slzfla u2|32:f2

for the problem to be solvable we need the fulfulment of a continual set of
solvability conditions imposed on the right-hand sides F', f; and fy of the
problem.

Note that in the second and third sections the approaches to stating
correct boundary value problems make an essential use of the structure of
quadratic forms which correspond to characteristic matrices of the systems
and which, in particular, depend on the spatial orientation of the problem
data carriers. We conclude the sections by presenting the correct statements
of boundary value problems for Maxwell and Dirac systems of differential
equations and those of crystal optics.

Problems in a certain sense close to the ones we consider in this chap-
ter, were investigated by A. V. Bitsadze [8]-[10], K. O. Friedrichs [30], [31],
K. O. Friedrichs and P. D. Lax [32], [33], A. A. Dezin [25]-[27], M. S. Agra-
novich [1]-[3], V. S. Vladimirov [122], [123], V. N. Vragov [125], [126],
K. Kubota and T. Ohkubo [80], [81], T. Ohkubo [106], S. Kharibegashvili
[61], [64], [65], O. Jokhadze [55], [56], P. Secchi [113], Y. Tanaka [117] and
other authors.

In Chapter II we study some multidimensional versions of the Goursat
and Darboux problems for degenerating hyperbolic equations of second or-
der. Note that when passing from nondegenerating hyperbolic equations to
degenerating ones there may arise essential differences in the correct state-
ment of multidimensional versions of the Goursat and Darboux problems.
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For example, if the characteristic conoid for a second order nondegenerating
hyperbolic equation which is simultaneously the data carrier of the charac-
teristic Cauchy problem (of the multidimensional version of the Goursat
problem), consisting of bicharacteristic curves emanating from one point
(conoid vertex), is homeomorphic to the conic surface of a circular cone,
then in the case of degeneration this conoid may have a smaller dimension.
For example, for the equation

Ut — uI1I1 - UCEQCEQ - x3u1313 = F

the characteristic conoid Ko with the vertex at the origin O degenerates
into the two-dimensional conic manifold {(x1, o, x3,t) € R*: t?—22 —22 =

0, 3 = 0}, while for the equation
m
T3 Utt — Uz 2y — Uzozs — Uzzzz = F

the characteristic conoid Ko consists only of one bicharacteristic curve
{(z1,22,23,t) ER*: 71 =20 =0, t? = %:Ug, x3 > 0} in the case m =1
and it degenerates into one point O(0,0,0,0) in the case m = 2. It clearly
follows that in such cases the statement of the characteristic Cauchy prob-
lem is out of question. Another peculiarity connected with degeneration of
an equation is that the parts of the boundary where the equation under-
goes characteristic degeneration must be completely free from any kind of
boundary conditions.
In the first section of Chapter II, for the degenerating equation

Ut — Ugyy — T3Uggzy — Uzgwy = F

we construct the characteristic conoids Ko and K4, where O = (0,0,0,0),
A =(0,0,0,tp), and study a multidimensional version of the first Darboux
problem in a finite domain bounded by the hyperplane x3 = 0 and by some
parts of the conoids Ko and K4 lying in the half-space x3 > 0 [76].

In the second section of that chapter we investigate the characteristic
Cauchy problem for the equation

pt — " (Ugy 2y FUgozs ) +A1 Uz, +A2Uz, Fagur+agu=F, m=const>0,

with noncharacteristic degeneration, and for the equation
(™ Ut)t — Uy — Ugpzy + 01Uz, + 02Uz, +a3Uz, Faru=F, 1<m=const<2,

with characteristic degeneration on the plane ¢ = 0 [68].

Finally, in the last section of Chapter II we consider some multidimen-
sional versions of the first Darboux problem in dihedral domains for the
degenerating equations

Upt— | T2 " Uy oy — Uy + A1 Uz, +a2Ug, +asus+asu=F, m=const>0,
and
Upt — Uy g — (T2 Uy ) oyt Q1 UL, F A2Ug, Fagur+asu=F, 1<m=const<2,

respectively with noncharacteristic and characteristic degeneration on the
plane x5 = 0 [66], [67].
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All the results of this chapter are obtained by the method of a priori
estimates in negative Lax norms in special Sobolev weight spaces connected
with the principal parts of degenerating equations.

The questions raised in this chapter were investigated by many authors
(see A. V. Bitsadze [7], [10], A. M. Nakhushev [103], [104], A. V. Bitsadze
and A. M. Nakhushev [11]-[13], R. W. Carrol and R. E. Showalter [22],
M. M. Smirnov [116], D. Gvazava and S. Kharibegashvili [40], J. M. Rassias
[109], N. I. Popivanov and M. F. Schneider [107] and other works).

Chapter III, consisting of two sections, deals with some nonlocal prob-
lems for wave equations. In the first section, we show for the wave equation
with one spatial variable that the lowest term affects the correctness of the
nonlocal problem: in some cases the problem has a unique solution, while
in other cases the corresponding homogeneous problem has an infinite set
of linearly independent solutions [75]. We give the correct formulation of a
nonlocal problem with an integral condition. The multidimensional version
of this problem is studied in the next section. In the second section we
establish one property of solutions of the wave equation with two spatial
variables. This property is of integral nature and defines solutions com-
pletely. Furthermore, we give the properties of wave potentials, by means
of which the nonlocal problem is reduced to a Volterra type integral equation
with a weakly singular kernel. The investigation of this integral equation
made it possible to prove the correctness of the nonlocal problem both in the
class of generalized solutions and in the class of regular classical solutions
of arbitrary smoothness [75].

The active interest shown recently in nonlocal problems for partial dif-
ferential equations is, to a certain extent, connected with the fact that
nonlocal problems arise in the mathematical modelling of some physical,
biological and other processes. For equations of parabolic and elliptic type,
these problems were studied by J. R. Cannon [21], L. I. Kamynin [58],
N. L Ionkin [51], N. I. Yurchuk [129], A. Bouziani [18], S. Mesloub and
A. Bouziani [94], A. M. Nakhushev [104], A. V. Bitsadze and A. A. Samarskii
[14], A. V. Bitsadze [15], [16], V. A. I'in and E. I. Moiseyev [49], E. Moi-
seyev [102], D. G. Gordeziani [36], A. L. Skubachevskii [115], A. K. Gushchin
and V. P. Mikhailov [39], F. J. Correa and S. D. Menezes [23] and other
authors. For equations of hyperbolic type, mention should be made of
the works by Z. O. Mel'nik [90], Z. O. Mel'nik and V. M. Kirilich [91],
T. I. Kiguradze [77], [78], V. A. I'in and E. I. Moiseyev [50], S. Mesloub
and A. Bouziani [93], A. Bouziani [19], S. Mesloub and N. Lekrine [95],
G. Avalishvili and D. Gordeziani [4], D. G. Gordeziani and G. A. Aval-
ishvili [37], [38], G. A. Avalishvili [5], L. S. Pul’kina [108], J. Gvazava [41],
[42], B. Midodashvili [97], [98], G. G. Bogveradze and S. S. Kharibegashvili
[17], M. Dohghan [28].

As is known, the characteristic Cauchy problem for linear hyperbolic
equations of second order with the data carrier on a characteristic conoid (in
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particular, for the linear wave equation with the data carrier on the bound-
ary of a light cone of the future) is globally solvable in the corresponding
function spaces [20], [24], [43], [88]. This circumstance may significantly
change if the equation involves nonlinear terms. In the last Chapter IV,
consisting of two sections, we study the question of the existence and nonex-
istence of global solutions of the characteristic Cauchy problem in a light
cone of the future for nonlinear wave Gordon equations

Ut — Z“amz = f(u) + F(z,t), n>1,
i=1

with power nonlinearity of the type f(u) = A|u|®, or f(u) = —Alu[Pu in the
right-hand side, where A, a and p are real constants, and A # 0, a > 0,
p > 0. In the first section, in the case f(u) = Alu|®, 1 < a < Z—ﬂ,
where n is the spatial dimension of the equation, the local solvability of
that problem is proved; for A > 0, the conditions on the right-hand sides of
the problem are found when a global solution does not exist. The estimate
of the time interval of solution’s life is given. In the second section, in
case f(u) = —A|u|Pu, for A > 0 the existence of the global solution of the
characteristic Cauchy problem and for A < 0 the nonexistence of such a
solution is proved, when some additional conditions are imposed on the
right-hand sides of the problem.

Note that the problems of existence or nonexistence of global solutions
for nonlinear equations with the initial conditions u|,—¢ = uo, %—ﬂ reo = U1
have been considered and studied by K. Jorgens [57], H. A. Levin [85],
F. John [52], [53], F. John and S. Klainerman [54], T. Kato [59], V. Georgiev,
H. Lindblad and C. Sogge [35], L. Hormander [47], E. Mitidieri and S. I. Po-
hozaev [101], M. Keel, H. F. Smith, and C. D. Sogge [60], C. Miao, B. Zhang,
and D. Fang [96], Z. Yin [128], K. Hidano [45], G. Todorava and E. Vitil-
laro [119], F. Merle and H. Zaag [92], Y. Zhou [130], Z. Gan and J. Zhang
[34], etc.



CHAPTER 1

Boundary Value Problems for Some Classes
of Hyperbolic Systems in Conic and Dihedral
Domains

1. Boundary Value Problems for a Class of Systems of Partial
Differential Equations of Second Order, Hyperbolic with
Respect to Some Two-Dimensional Planes

1.1. Statement of the problem and formulation of results. Con-
sider in the real n-dimensional space R™, n > 2, a system of linear partial
differential equations of second order

n n
Z Aijug,z; + ZB"“% +Cu = F, (1.1)

i,j=1 i=1

where A;;, B;, C are given constant (m X m)-matrices, F' is a given and u
is an unknown n-dimensional real vector.

Under strict hyperbolicity of the system (1.1) is meant the existence of
the vector ¢ € R™, passing through the point O(0, ..., 0), such that any two-
dimensional plane 7, passing through (, intersects the cone of normals of

n
the system (1.1) K : p(§) = det ( 421142-]-&5]-) =0,¢&=(&,...,8,) € R,
)=
along 2m different real lines [24, p. 584].

Below, we will consider a wider class of systems of equations, when there
exists a two-dimensional plane 7y passing through the point O(0,...,0) and
intersecting the cone of normals K : p(§) = 0 of the system (1.1) along
2m different real lines. For the sake of simplicity, without restriction of
generality, we can assume that 7o : {3 = =§, =0. For m =1, an
example of such equation is the ultrahyperbolic equation

Ugizy = Uzsay + Usszs — Uzgey =0 (1.2)

for which o - 53 = 54 =0.

By D : koxo < 21 < k122, 0 < 9 < +00, k; = const, 1 = 1,2,
ko < k1, we denote the dihedral angle bounded by the plane surfaces .S; :
r1 —kixzgo = 0, 0 < 29 < 400, i = 1,2. It will be assumed that the
hyperplane S : 1 — kgzre = 0 with ks < kg < kp is not characteristic for
the system (1.1).
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Consider the boundary value problem formulated as follows: in the
domain D, find a solution w(z1,...,z,) of the system (1.1) satisfying the
boundary conditions

(i Mjiug, + Cju)
i=1

where Mj;, C; are given real (s; x m)-matrices, f; are given s;-dimensional
real vectors with s; > 1, j = 1,2, and s1 4 s2 = 2m.

By our assumption, in the plane of variables x1, xo2 the system of equa-
tions

:fja j:1327 (13)
S.

J

2
> Aijiiz,e, =0 (1.4)
i,j=1

is strictly hyperbolic. Without restriction of generality, we can assume that

p(0,1,0,...,0) = det A3z # 0. In this case under strict hyperbolicity of

the system (1.4) is meant that the polynomial po(A) = det(A1; + (A12 +

A21)X + Az2)2?) has only simple real roots A1, ..., A2, The characteristics

of the system (1.4) are the families of straight lines z7 + \;jzo = const,

i=1,...,2m.

Denote by Dy the section of the domain D by the two-dimensional plane
T x3 = -+ =z, = 0, i.e. Do is the angle in the half-plane {(z1,z2) €
R? . 19 > 0} bounded by the rays v; : a1 — kjae = 0, 0 < 23 < +00,
i = 1,2, coming out of the origin (0,0). By the requirements on the domain
D, the rays 71, 72 are not characteristics of the system (1.4). On ~; we
fix arbitrarily a point P; different from the origin (0,0), and enumerate
the roots of the polynomial pg(\) in such a way that the characteristic rays
01(Py), ..., Lo (P1) corresponding to the roots Ay, ..., Ay, and coming out of
the point P; to the inside of the angle Dy were numbered counter-clockwise,
starting from ¢1(Py).

Let P = P(x1,22) € Dg. Denote by Dop C Dy the convex quadrangle
with vertex at the origin (0,0) bounded by the rays 1, 72 and the character-
istics L, (P), Ls,+1(P) of the system (1.4) passing through the point P. Ob-
viously, as P — Py € 0Dg \ (0,0) the quadrangle Dop degenerates into the
corresponding triangle Dop. If now Q = Q(z1,22,...,2,) € D\ (51 N Ss),
then by Do C D we denote the domain Dg = {(2%,29,...,2%) € D :
(.ﬁ?,.ﬁg) (S DOP7 P = P(J}l,IQ)}.

Since all the roots A1, ..., Aoy of the polynomial py(A) are simple, there
take place the equalities dim Ker(Aj1 + (Aiz + Aa1)\i + A2X?) =1, i =
1,...,2m. Denote by v; the vectors v; € Ker(A11 + (A12 + A21)\; + A2a)?),
|lvil] # 0,4 =1,...,2m, and form the matrices

%1 . Vg, Vgi+1 . Vom
Vi = , Vo = )
! ()\11/1 . )\511/51) 2 ()\51+11/51+1 . )\le/Qm)
Ly = (Ma, Mi2), i=1,2,

of dimensions 2m X s1, 2m X s2, s; X 2m, i = 1,2, respectively.
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Denote by ®* (D), k > 2, a > 0, the space of the functions u(z1, ..., z,)
of the class C*(D) for which 9"%2u(0,0,x3,...,2,) = 0, —00 < z; <
400, = 3,...,m, 0 < iy +iy < k, d%2 = 9172 /9r 9r, and whose
partial Fourier transforms @(z1, 22,83, . . .,&,) with respect to the variables
x3...,T, are functions continuous in G; = {(:cl,:cg,fg,...,fn) € R" :
(z1,22) € Do, £ = (&,...,&) € R"?} together with partial derivatives
with respect to the variables 1 and x2 up to the k-th order, inclusively,
and satisfy the following estimates: for any natural N there exist positive
numbers Oy = 5N(m1,x2) and Ky = I?N(J?l,.ﬁg), independent of ¢° =
(&3,...,&n), such that for (z1,32) € Do and €9 = [&] + - + €| > Kn
the inequalities

Hail,iza(th’go)u < 5N:c§+o‘_i1_i2 exp(—N|£%)), 0 <iy +iy <k, (1.5)

hold, where 6'10\,(301,952) = sup 6’N(m?,x8) < +00, IN(]OV(xl,xg) =
(29,23)€Dop \(0,0)
sup KN(:C(I)VT(Q)) < +o0, P = P(xhl?)'

(29,23)€Dop\(0,0)

Analogously we introduce the spaces (%’2(51-), ¢t = 1,2. Note that the
trace u|g of the function u from the space %2(5) belongs to the space
(%’3(51-). It can be easily verified that the function u(x1,z2,...,2,) =
:cé”'o‘cp(a:l, Z9) exp ( — Xn: Yi(xq, :cg)xf) belongs to the space CIODZ(ﬁ) for any
@, 1; € C*(Dy) if wl(;fxg) >const >0,i=3,...,n.

Remark 1.1. When considering the problem (1.1),(1.3) in the class
%’;(E), it is required of the functions F', f; and the coefficients Mj;, Cj,
i=1,...,m, j = 1,2, that in the boundary conditions (1.3) F € &)ifl(ﬁ),

f; € ®EY(S)), 5 =1,2, My;, C; € C*71(S;), j=1,2,i=1,...,n. Below
it will be assumed that the coefficients M;; and C;, j = 1,2, ¢ =1,...,n,
depend only on the variables z1, 5.

In Subsection 3° we prove the following statements.

Theorem 1.1. Let the conditions
det(T'; x Vi)| g #0, i=1,2, (1.6)

be fulfilled. Then if at least one of the equalities (I'y x V5)(O) = 0 or
(Ty x V1)(O) = 0 holds, where O = O(0,...,0), then for any F € ®~1(D)
and f; € ®E=1(S;), j = 1,2, the problem (1.1), (1.3) is uniquely solvable in

the class ® (D) for k > 2, a > 0, and the domain of dependence of the
solution u of that problem for the point Q € D is contained in Dg.
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Theorem 1.2. Let the conditions (1.6) and (I'y x V3)(0) # 0 be fulfilled.
Then there exists a positive number po, depending only of the coefficients A;;

and My, 1 <i,j <2, such that for any F € ®*~1(D) and f; € ®E71(S;),

j = 1,2, the problem (1.1),(1.3) is uniquely solvable in the class ®F (D) for
k+a > po, and the domain of dependence of the solution w of that problem
for the point Q € D is contained in Dg.

In the case where the equation (1.2) is ultrahyperbolic, in the boundary
conditions (1.3) we should assume that s; = so = 1, i.e. the coefficients
Mj;, C; are scalar functions and |k;| < 1, ¢ = 1,2, ko < 0 and k1 > 0.
Suppose T0 — (]. + kg)(]. — kl)/((l + kl)(]. — kg)), g = [(Mll — Mlg)(Mgl +
Ma2) /(M1 + Miz)(May — Ma2))](0). Owing to our assumptions, it is
obvious that 0 < 75 < 1.

Corollary 1.1. Let the conditions (M1 +M12)|51 #0, (M —Mgg)‘sz
# 0 be fulfilled. Then if at least one of the equalities (M11 — M12)(O) =0 or
(Ma1 + Ma2)(O) = 0 holds, then for any F € ®*~1(D) and f; € ®£-1(S;),
j = 1,2, the problem (1.2),(1.3) is uniquely solvable in the class ®¥(D)

Jor k> 2, a >0, and the domain of dependence of the solution u of that
problem for the point Q € D is contained in Dg.

Corollary 1.2. Let the conditions of Corollary 1.1 and (M7, fMlg)‘Sl
# 0, (Myy + M22)|52 # 0 be fulfilled. Then for any F € &)ﬁfl(ﬁ) and
f; € ®571(S;), j = 1,2, the problem (1.2),(1.3) is uniquely solvable in the

class ®F (D) for k+a > —log|o|/logmo + 1, and the domain of dependence
of the solution u of that problem for the point @ € D is contained in Dq.

1.2. Reduction of the problem (1.1), (1.3) to a system of integ-
ro-functional equations with a parameter. Below, without restriction
of generality it will be assumed that

k1 >0, ky <0, Ay, >0, Ag41<0, (1.7)

since otherwise, due to the above enumeration of the roots Aq,..., Ay, of
the polynomial pg(A), one can achieve the fulfillment of the equalities (1.7)
by a proper linear transformation of the variables z; and x5. As far as
det Ags # 0, in the system (1.1) we assume Ay = F, where E is the unit
(m x m)-matrix, since otherwise one can achieve this by multiplying both
parts of the system (1.1) by the inverse matrix A5 .

In the notation v; = uy,;, @ = 1,...,n, the system (1.1) is reduced to
the following system of the first order:
Uy, = Va, (1.8)

Vigy — V22, = 0,
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2 n
Vg, + A11V1a, + (A12 + A21)v2s, + Z Z Aijvig; +
i=1 j=3
n 2 n n
+ZZAijvjzi + Z Aijvixj +ZB¢’U¢+C’M:F, (110)
i=3 j=1 i,j=3 i=1
Vizy — U2z, :0, i:3,...,n, (1.11)

and the boundary conditions (1.3) can now be written as

(é Mjv; + C’ju) .

Along with the conditions (1.12), let us consider the boundary condi-
tions

—f i=12 (112)

J

(tz, —vi)|g g, =0, 1=1,3...,n. (1.13;)
It is evident that if u is a regular solution of the problem (1.1), (1.3) of the

o —
class ®% (D), then the system of functions u, v;,i = 1,. .., n, will be a regular

[e]
solution of the boundary value problem (1.8)—(1.13), where v; € ®*~1(D),
i =1,...,n. Conversely, let the system of functions u, v;, ¢ = 1,...,n, of

the class ®*~1(D) be a solution of the problem (1.8)—(1.13). Let us prove
that in this case v; = ug,, ¢ = 1,...,n, and hence the function u is a solution
of the problem (1.1),(1.3) in the class ®* (D). Indeed, using the equality
(1.9), we have (ugy, — v1)zy = (Ugy)zy — V20, = V2z, — V2, = 0, whence by
the boundary condition (1.13;) we find that v; = v,, in D.
Further, applying the equality (1.11) we obtain (uy; — v;)z, =
Vog; = Vag, — U2z, = 0, whence by the boundary condition (1.13;),

obtain v; =u,, in D, ¢t =3,...,n.

Thus the problem (1.1),(1.3) in the class ®*(D) is equivalent to the
problem of finding a system of functions u, v;, ¢ = 1,...,n, in the class

®k=1(D) satisfying the boundary value problem (1.8)-(1.13).
Introduce the following (2m x 2m)-matrices:

(0 B
0=\ A, (A2 + A21) )’

quadK:(Vl,VQ):(Vl vy ... Vo, )7

(ul‘2)l‘7, -
i#£ 1, we

)\1 11 )\2 Vg ... )\2m Voam

where F is the unit (m x m)-matrix.
Due to strict hyperbolicity of the system (1.4) it can be easily shown
that

K 'A)K = Dy; (1.14)
here Dy = diag(—M\1, ..., —Aam).
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Suppose v = (v1,v2). As a result of the substitution v = Kw, by virtue
of (1.14) instead of the system (1.9), (1.10) we have

n n n
Way +D1Wy, +ZAJ‘IU1-,~ + Z Azl;jvmj +ZBJ1»Uj+BOw+Clu:F1, (1.15)
j=3 p,j=3 Jj=3

where A; and B? are (2m x 2m)-matrices, A,;, Bj and C' are (2m x 2m)-
matrices which are expressed in terms of the coefficients of the system (1.1),
Fl=K7'F% FO=(0,F).

Representing the matrix K in the form K = colon(K7, K3), where K7,
K5 are matrices of order m x 2m, from the equality v = Kw we find that
1}]' = Kjw, j = 172

Ifu,vj, 7 =1,...,n, is a solution of the problem (1.8)-(1.13), then after
the Fourier transform with respect to the variables x3 ..., x, the system of
equations (1.8), (1.15), (1.11) and the boundary conditions (1.12), (1.13)
take the form

a.fCQ - K2@7 (116>

n n n

Wey + D1y, + Z(Z Ajffj)@JriZ (ZA;]-Q)@mL
j=3 p=3  j=3
n ~
+> Bjo; +B@+Cla=F", (1.17)
j=3

6]'932 7’L‘§jK2'&)\:0, j :3,...,77,, (118)

(Mk1K1+Mk2K2)zﬁ+ZMkj6j+Ckﬁ} — o k=12, (1.19)

j=3 Tk

(aam - Kl@)"le’Yz = 07 (120)
(@ —i&a)], ., =0, j=3....n, (1.21)
where u, w, v;, j =3,...,n; ﬁl, ]?1, ]?2 are the Fourier transforms respec-
tively of the functions u, vj, j = 3,...,n, F', fi, fo with respect to the
variables x3...,2,, and ; : ®1 —k;jz2 = 0,0 < 29 < +o00, j = 1,2, are the
above-introduced rays bounding the angular domain Dg in the plane of the

variables x1, x2. Here in these equalities i = —/1.

Remark 1.2. Thus after the Fourier transform with respect to the vari-
ables x1,...,x, the spatial problem (1.8)—(1.13) is reduced to the plane
problem (1.16)—(1.21) with the parameters &3,...,&, in the domain Dy :
koxo < 11 < kix9, 0 < T3 < 400 of the plane of the variables x1, xs.

It is easy to see that in the class ®F (D) of the functions defined by the
inequalities (1.5), this reduction is equivalent.

Written parametrically, let L;(z%,29) : 21 = 2z;(29,23,¢) = 29 + \j2§ —
Ajt, @y = t be the characteristic of the j-th family of the system (1.4)
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passing through the point (29, 29) € Dy, 1 < j < 2m. Denote by wj(x1, z2)
the ordinate of the point of intersection of the characteristic L;(z1, x2) with
the curve v, for 1 < j < s; and with v, for s; < j < 2m, (z1,22) € Do.
Here as the ordinate of the point (z1,z2) in the plane of the variables a1
and zo we take x2. Obviously, w;(z1,22) € C™ (Do), 1< < 2m.

By the inequalities (1.7), the domain Dop, P(z9,29) € Dy \ (0,0) con-
structed above lies entirely in the half-plane zo < x9. Therefore from the
construction of the function w;(x1,z2) it follows that

0< wj(xhl?) < x2, (ZI;:L'Q) € DO? .7 = ]-a . '72m7 (122)

since the segment of the characteristic L;(p) coming out of the point P €
Do\ (0,0) up to the intersection with v; for 1 < j < s; and with 7, for
s1 < j < 2m lies entirely in Dop.

It can be easily verified that

-1 .
)T e, j=1,0 81, =19
‘“JJ|W* 21 . =524
T e, j=s51+1,...,2m,

(1.23)

R (k2+/\)(k1+>‘j)717 jzla"-asla
J (k1 + X)) (k2 + X)) j=s1+1,...,2m,

and by virtue of (1.7) and the fact that v and 72 are not characteristic rays
of the system (1.4), we have

O<7 <1, j=1,...,2m. (1.24)

Remark 1.3. The functions u, w, v, j = 3,...,n, ﬁl, fl, fg, besides the

independent variables x1 and x2, depend also on the parameters &5...,&,.
For the sake of simplicity of writing, these parameters will be omitted below.
For example, instead of u(x1,x2,&s, ..., &) we will write u(zq, z2).

By (1.16), (1.20) and the fact that @(0,0) = 0, if u € ®*(D) we have

T2
Ao, 22) = / (i, +T10,) (st £) dt =

/ k? K4 +K2 (k‘jt,t) dt, (Z‘l,Ig) € - (1.25)
0

Denote by U(x(f,:cQ) the ordinate of the point of intersection of the
straight line z; = 2! passing through the point P(z9,29) € Dy with ; for

kl_lml for x1 >0,
k;lmg for z1 <0,
and by (1.7) we have 0 < & (21, x2) < 29, (71,22) € Dy.

29 > 0 and with 5 for 29 < 0. Obviously, 7(z1,z2) =
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ki1 for x; > 0,
ko for x1 <0,
(1.18) with respect to the variable 2 and taking into account the boundary
conditions (1.21) and (1.25), we obtain for (z1,z2) € Dy

Suppose 8 = . Integrating the equations (1.16) and

o(z1,22) o
e, 22) = / (B + K)B (B, 1) dt + / Kod(zr,t)dt, (1.26)
0 o(z1,x2)
o(z1,r2) Zo
5 (e, ) = i€, / (B + Ka)@(0t, 1) di+i€; / Ky, 1) dt, (1.27)
0 o(z1,22)

j=3,...,n.

Suppose

90(1‘2)— wj|'yl :wj(klmQ;mQ), j:l,...,517
J :wj(kaQ,m2)7 j:51+1"”’2m'

Integrating now the j-th equation of the system (1.17) along the j-th charac-
teristic L;(z1, x2) from the point P(x1,x2) € Dy to the point of intersection
Lj(x1,2z2) with 1 for j < s; and with 7 for j > s1, we obtain

T2 2m n m
Wj(a1,m2) = pj(wj(@1,22)) + / {Z Eijpp+ Y Y BajpgUpg+
wj (11’12) p=1 p=3 q=1

m
+ Z E3jqaq} (zj(acl, Ig;t), t) dt + ng(acl, x2), j=1,...,2m, (1.28)
g=1

where F1jp,, Eojpg, E354 are quite definite linear scalar functions with respect

to the parameters &s, ..., &n, Up = (Upts- - Upm)s
T2
Foj(x1,20) = / ﬁjl (zj(:vl,:ng;t),t) dt, 7=1,...,2m.
wj(®1,72)

Rewrite the system of equations (1.28) in the form of one equation

w(x1, x2) = (a1, 22)+
2m Z2 n
—I—Z [E4j@ +Z E5jqﬁq+E6jﬂ} (zj(z1,251), 1) dt+F(z1,22), (1.29)
jzle(mvfz) =3
where E4;, Es;, and Eg; are matrices of orders 2m x 2m, 2m x m and
2m x m, respectively, whose elements are linear functions with respect to the

parameters &s, . .., & (21, 22) = (@1(wi (21, 22)), - . ., Pom (Wam(x1, 22))).
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Substituting the expressions for the values u, w, v;, j = 3,...,n, from
(1.26), (1.27), (1.29) into the boundary conditions (1.19) and using the
equalities (1.23), we obtain for 0 < z3 < 400

Go(a)p(za) + Y Gjlma)(rjme)+
Jj=s1+1
+ T4 (@, @, T3, ..., Un)] (22) = f3(x2), (1.30)

Gi(2)Y(22) + Z G (x2)p(Tjma)+

+[To(0, @, 03, . ..,0)] (x2) = fa(w2), (1.31)

where o(z2) = (p1(22),--.,0s, (2)), V(22) = (Ps,41(22); - -, P2m(72)),
Gj, G3 are quite definite matrices of the class C*~1([0,+00)), and T} and
T are linear integral operators.

It is obvious that G3, j = 1,2, from (1.30) and (1.31) are matrices of
order s; X s; representable in the form of a product G% =I;xV;,j=1,2.
Therefore if the conditions (1.6) are fulfilled, the matrices G{ and G% are
invertible, and resolving the equations (1.30) and (1.31) with respect to ¢
and 1), we obtain

51 2m
o(x2) — Z Z Gijpp(TiTpa2) =
j=1p=s1+1
= [TB(ﬂa ﬁ)\a 7173; v a,ﬁn)] (ZQ) + f5(’$2), 0 <xg < +o00, (132)
51 2m
laa) = Y Goph(rimpae) =
j=1p=s1+1
= [T4(ﬂ, "(D, ’173, e ,’ﬁn)] (IEQ) + fﬁ(l‘g), 0 < xo < 400, (133)

where G1j, and Gaj, are matrices of the class C*~1([0, +00)) which are
defined through the matrices G;, G?, and T3, Ty are linear integral operators
with kernels linearly depending on the parameters &3, .. .,&,.

Let P € Dy. Denote by P, and P, the vertices of the above-constructed
quadrangle Dyp which lie, respectively, on y; and 7, and are different from
the origin (0, 0).

Remark 1.4. As is seen from our reasoning above, if the conditions (1.6)

are fulfilled, the problem (1.1),(1.3) in the class ®* (D) is equivalent to the
problem of finding a system of functions w, w, v;, j = 3,...,n, ¢ and ¢
from the system of integro-functional equations (1.26), (1.27), (1.29), (1.32),
(1.33), where @, @, 3; € 25" (Do), ¢, ¥ € B571([0, +00)), F € 25 (Dy),

fs, fo € ®571(]0, +00)). Note also that in considering the problem (1.16)—
(1.21) in the domain Dyp, it is sufficient to investigate the equations (1.32)
and (1.33) respectively on the segments [0, d;] and [0, d3], where d; and ds
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are the ordinates of the points P; and P, which are the points of intersection
of the characteristics Ly, (P) and Ls, +1(P) respectively with the curves v,
and 7s.

1.3. Investigation of the system of integro-functional equati-
ons (1.26), (1.27), (1.29), (1.32), (1.33) and proof of the theorems.
Introduce into consideration the functions

s1 2m
h(p) =3 D () IGup Ol g =12,
j=1p=s1+1
where Ggjp, 7;7, are defined in (1.32), (1.33), and || - || is the norm of
the matrix operator in the space R®¢. If all the values ||Gg;p(O)| = 0 for
j=1..,8,p=s+1,...,2m, then we put p, = —oo. Let now for

some values of the indices ¢, j, p the number ||Gy;,(O)]| be different from

zero. In this case, by virtue of (1.24), the function h4(p) is continuous and

strictly monotonically decreases on (—oo, +00) with lim hq(p) = +o0 and
p— —00

lir+n hqe(p) = 0. Therefore there exists a unique real number p, such that
pP—T00

hg(pg) = 1. Assume that po = max(p1,p2). It can be easily verified that
if at least one of the equalities (I'y x V2)(0) = 0 or (I'y x V1)(0O) = 0
given in the conditions of Theorem 1.1 holds, then pg = —oo. Note also
that in the case of the problem (1.2),(1.3) if at least one of the equalities
(My1 — M12)(0) = 0 or (Ma1 + M23)(O) = 0 holds, then py = —oo, while
otherwise pg = —(log|ol|)/logy + 1, where o and 79 are introduced in
Subsection 1.1.
Consider the functional equations

S1 2m
(Ari(@))(2) = p(2) = > D> (757) Grjpep(7jTpwa) =
j=1p=s1+1
= x,(22), 0<z2<di, i=0,1,....k—1, (1.34)
S1 2m
(Aoi (1)) (w2) = W(wa) = D > (757) Gojpth(rjmp2) =
j=1p=s1+1
=\, (22), 0<as<ds, i=0,1,... k1. (1.35)

Note that if one differentiates i times the expression (A19(¢))(x2) in the
left-hand side of the equation (1.32) with respect to x, then in the obtained
expression the sum of the summands in which the function p(z2) appears in
the form of the derivative ¢ (z5) yields (Ay;(¢))(z2). A similar remark
is valid for the operators As;.

Let in the equations (1.34), (1.35) the left-hand sides x, be in

®r_1+0-i([0,d,]), ¢ = 1,2. Here we agree to write ®% ([0, d,]) = ®,([0, d,])

for k = 0. Then by the definition of the space ®;_14+4—:i([0, d,]) for any nat-
ural N there exist positive numbers Cy = Cy (22, N, x, ), Kq = Kq(z2, N, x,)
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independent of £0 = (&s,...,&,) and such that for 0 < zy < d, and
€% > K, the inequality ||x, (z2)|| < Cah™ 1T exp(—N|¢%)) holds, where
C)= sup Cy(af) < +oo, K) = sup Ky(29) < +oo.

0<z9<z> 0<z9<z>

Lemma 1.1. For k+ a > pg, the equations (1.34), (1.35) are uniquely

solvable in the spaces ®_11a—:([0,d1]) and ®x_140—4i([0,d2]), and for [£°] >
K1 and |€°) > K3 respectively the estimates

AL ) (@2)] = llp(@a)|| < aChas T exp(—N|€%)),  (1.36)
(A% () (@2)]| = llp(@a)|| < 62Caah TP exp(—N|€%))  (1.37)

are valid, where the positive constants 61 and 82 do not depend on N, £°
and on the functions x,, X,-

The proof of Lemma 1.1 word for word repeats the reasoning of [62], [63].
We solve the system of equations (1.26), (1.27), (1.29), (1.32), (1.33)

with respect to the unknowns 4, @, v; € ®~Y(Dop), j = 3,...,n, p €
®F=1([0,dy]) and ¥ € ®5~1(]0, d2]) by the method of successive approxima-
tions.

Assume g (z1,22) = 0, Wo(x1,22) =0, Vjo(z1,22) =0, j =3,...,n,
p(x2) =0, tho(x2) =0,

o(z1,72) T2
(01, 22) = / (B, + K2)@y_1 (5t,1) di+ / Koy (21,0)dt, (1.38)
0 o(z1,T2)
5’(&?1,272)
ﬁq,p(xl,xg) = ifq / (ﬁKl + Kg)ﬁ}\p_l(ﬁt,t) dt+
0
xr2
+1i&q / Kgfu\p_l(.ﬁl,t) dt, ¢g=3,...,n, (139)
5(&?1,272)

Wp(x1,22) = pp(21, T2)+

2m Z2 n
+ Z |:E4j@p71 + Z E5jqi)\q’p,1 + Eﬁjﬂpfl} (Zj (:El, T9; t), t) dt+
j:4£j($17$2) =3

+F (21, 2), (1.40)
and define the functions ¢, (z2) and 1, (z2) from the equations

(Am((pp))(CCQ) = [T3 (apflv {Dpfla 637P*1a cee 7671,17*1)] (1’2) + f5(l‘2),

1.41
(Ao (W) (#2) = [Ta(Bpr, By Bapers - Bopr)] (@2) + fola). )
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By (1.22), (1.24) and the inequality 0 < &(x1,22) < 9, the integral ope-
rators in the equalities (1.26), (1.27), (1.29), (1.32), (1.33) are of Volterra
structure. Therefore in the domain Dop, P(z,29) € Dy, using the es-
timates (1.36) and (1.37), for [€9] > Kj by the method of mathematical
induction we obtain

H[ O (U4 — Ty (21, 22) H

< M*(MP /ph)(1 + [€°])Pah o exp(— N [€0)), (1.42)
| [0 (W1 — W] (21, 22) || <
< M*(MP/ph)(1 + [€°[)Pabtiremi =1 exp(—N|E2)), (1.43)

H[ DI (T pi1 — ﬁqyp}(!ﬂbm)u =<

<M (M /p) (L4l T T T exp(<NIE0)), g =3,...,n, (144)

@9 (ppar = @)/ ) )| <

< MH(MP/p))(1+ €] Pt e exp(—N[€)), (1.45)
H[thrjl (wp_"_l ’l/)p /dxh-‘rh x2)H <
< MH(MP/p))(1+ €] Pat e exp(—N€)), (1.46)

where 8“7]'1 = %, 0 § il +]1 § k — 1, I?j = I?S(Z(l);l'gaNaflaf27F)a
M = M*(’chl),l‘g,N, J1, f2, P 51;52) and M, = M*(’Jl(l),l‘g,N, J1, f2, F, 51a52)
do not depend on ¢°, and §; and &, are the constants from (1.36), (1.37).

Remark 1.5. By the definition of o (z1, 22) and g, the inequalities (1.38)
and (1.39) define the functions 4y, Vy,p, ¢ = 3, ..., n, using different formulas
for x1 > 0 and z; < 0. But this does not imply the existence of discontinu-
ities along the axis Ozy : 21 = 0 of the functions 4y, vy p, ¢ =3,...,n, and
their derivatives with respect to x; and z3 up to the order (k—1) inclusively
since the functions F, f5, fe from (1.40), (1.41) and their derivatives up to
the order (k — 1) inclusively are equal to zero at the point (0,0), by the
condition.

It follows from (1.42) that for 0 < iy + j; < k — 1 the series

Uiy 4, (21, 72) :plijgo [ail’jl (x1,x2) Z 0“’]1 (Up — Up—1)] (z1,22)
p=1

converges uniformly in Dop, and for its sum the estimate
[T 1 (w1, 2) | < M7 P 70 exp [ML(14€%)ars] exp(=NIE°)) (1.47)

[e] J—
is valid, from which it follows that %;, j, € Pr—14a—i;—j (Dop) since, as
it can be easily verified, the operator of multiplication by the function

exp[ M. (1 + |€°])z2] maps the space ®x_11a—i,—j; (Dop) into itself. In its
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! =g (21, 22) belongs to &£~ (Dop),

turn, this implies that the function u
where @;, j, (1, 22) = 0T (21, 29).
Analogously, from (1.43)—(1.46) we obtain that the series

[e.e]
W' (21, m9) = Jim @ (@1, 2) = (Wp (21, 22) — Wp—1(x1,22)),

P

NERE

U (1, 22) = Jim, Ugp(w1,22) = ) (Vg p(w1,22) — Vg p1(21,22)),

1

S
Il

q=3,...,n,

o _
converge in the space ®~1(Dgp), and the series

NE

o' (z2) = T op(w2) = ) (¢p(w2) = wp-1(22));

Il
-

p

hE

(¢p(x2) = Yp—1 (932))

WH(az) = lim ¢y(ws) =
1

p

converge respectively in the spaces ®*~1([0,d;]) and ®*~1(]0,ds]). By
virtue of (1.38)—(1.41) it follows that the limiting functions u!, @?, 5; €

851 (Dop), q = 3....om, 91 € BEI([0,du]) and ! € B51([0, dy]) satisfy
the system of equations (1.26), (1.27), (1.29), (1.32), (1.33).

Thus to prove Theorems 1.1 and 1.2, it remains to show that this sys-
tem of equations has no other solutions in the classes under consideration.
Indeed, assume that the functions u*, w*, vy, ¢ =3,...,n, ¢* and ¥* from
the above-mentioned classes satisfy the homogeneous system of equations
corresponding to (1.26), (1.27), (1.29), (1.32), (1.33), i.e. for F =0, f5 =0,
fe = 0. To this system we apply the method of successive approximations,
taking the functions u*, w*, vy, ¢ = 3,...,n, ¢* and ¥* themselves as
zero approximations. Since these functions satisfy the homogeneous system
of equations, then every next approximation will coincide with them, i.e.
Up(w1,2) = U (21, 22), Wy(T1,72) = W (21, 72), Uy ,(T1,72) = V" (21,22),
q=3,...,n, py(r2) = ¢*(22), ¥y (x2) = ¥*(22). The same reasoning as in
deducing the estimates (1.42)—(1.46) allows one to obtain

[ (@1, w2) || = ([ (w1, ) | < M (MP/p) (1+]€°]Pah 4 exp(=N[€°)),
1@ (21, o) | = [ @y (1, @) || < M (M /p!) (14]€°))Paf 0  exp(~N1€)),
[0g (w1, z2)[| = [|0g (1, 2) || <
< M*(MP /) (14]€°))Pab TR exp(=N[€2)), ¢=3,...,n,
" (@2)| = llgp(w2) | < M*(MP /ph)(1 + [€°)Pah ™+  exp(=N[¢°)),
1" (22) | = [l (wa)l| < M*(MP/p)(1 + |€°])Pah 7 exp(~N|€°)),
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0, vF = 0,

whence in the limit as p — oo we find that u* = 0, w* p

qg=3,....,n, " =0,¢v* =0.

2. Boundary Value Problems for a Class of Hyperbolic Systems
of Second Order with Symmetric Principal Part

2.1. Statement of the problem. In the Euclidean space R"*! of the
variables z = (z1,...,,) and ¢ let us consider a system of linear differential
equations of the type

n n
Lu=uy — Z Aijuxﬂj + Z Biug, + Cu = F, (2.1)
ij=1 i=1
where A;; (A;; = Aj;), B; and C are given real (m x m)-matrices, F' is a
given and u is an unknown m-dimensional real vector, n > 2, m > 1.
The matrices A;; below will be assumed to be symmetric and constant,

and for any m-dimensional real vectors n;, i = 1,...,n, the inequality
n n
Z Aimin; > co Z |n:|%, co = const > 0, (2.2)
i,j=1 i=1

is assumed to be valid.

It can be easily verified that by the condition (2.2) the system (2.1) is
hyperbolic.

Let D be the conic domain {(z,t) € R"™ : |z|g(z/|z|) < t < 400} ly-
ing in the half-space t > 0 and bounded by the conic manifold S = {(z,t) €
R t = |z|g(x/|z])}, where g is a positive continuous piecewise-smooth
function given on the unit sphere of the space R™. For 7 > 0 we denote by
D; = {(=,t) € R"* . |z|g(x/|z]) < t < 7} the domain in the half-space
t > 0 bounded by the cone S and the hyperplane t = 7.

Let So = 0D;, NS be the conic portion of the boundary of D,, for an

arbitrary 7o > 0. Assume that S1,...,S%,, Sk +1,---, Sk +k, are noninter-
secting smooth conic open hypersurfaces, where Sy, ..., Sk, are characteris-
ki+ka _
tic manifolds of the system (2.1), and So = |J S;, where S; is the closure
i=1
of Sz

Consider the boundary value problem which is stated as follows: find
in the domain D, a solution u(z,t) of the system (2.1) satisfying the con-
ditions

U‘SO = an (23)

riut|5i:f1—, i=1,... ki + ko, (2.4)

where f;, i = 0,1,...,k; + ko, are given real s;-dimensional vectors, I'?,
i = 1,...,k1 + ko, are given real constant (35 X m)-matrices, and sy =
m, 0 < s <m,i=1,...,k; + ks. Here the number s;, 1 < i < m,

shows to what extent the part S; of the boundary 0D,, is occupied; in
particular, >y = 0 shows that the corresponding part S; (2.4) is completely
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free of boundary conditions. Below we will see that in order to ensure the
correctness of the problem (2.1), (2.3), (2.4) the number »; must be chosen in
a quite definite way, depending on geometric properties of the hypersurface
Si.

Below the elements of the matrices B;, C' in the system (2.1) will be
assumed to be bounded measurable functions in the domain D, and the
right-hand side of that system F' to belong to La(Ds,).

2.2. The method of the choice of the numbers s»; and matri-
ces I'" in the boundary conditions (2.4) depending on geomet-
ric properties of S;. By the condition (2.2), the symmetrical matrix
Q)= > A&, ¢ =& ...,6) € R"\{(0,...,0)}, is positive definite.

i,j=1
Therefore there exists an orthogonal matrix T'= T'(¢’) such that the matrix
T-HENQENT (&) is diagonal, and its elements g1, . . ., fty, on the diagonal
are positive, i.e. y; = A2(¢) >0, \; > 0,7 =1,...,m. In addition, without
restriction of generality, we can assume that A\, (§') > -+ > A (&) > 0,
V¢ € R\ {(0,...,0)}. Below it will be assumed that the multiplicities of

the values ¢1,...,£, do not depend on £, and we assume that
ME) = M) = =X (€) < X2(€) = Ay (€) = - Aoy (€) <
<) = A 1(€) = = Xal€), € € R"\{(0,...,0)}.  (2.5)

Note that by virtue of (2.5) and the continuous dependence of the roots
of the characteristic polynomial of a symmetric matrix on its elements,
A1(&), ..., X2(&’) are continuous first degree homogeneous functions [46,
p. 634].

It can be easily seen that the roots of the characteristic polynomial
det(E&2, — Q(&')) of the system (2.1) with respect to &,41 are the num-
bers &n41 = £ (&1, -.+,&n), ¢ = 1,..., s, with multiplicities ¢1,...,{s, re-
spectively, where F is the unit (m x m)-matrix. Therefore the cone of the
normals K = {5 - (51; s 7£na€n+1) € Rn+1 : det(Efngrl - Q(é./)) - 0} of
the system (2.1) consists of its separate connected components K Zi = {§ =
(6/7§n+1) € R+ €n+1 F )\1(8) = O}, 1=1,...,s.

Denote by D; = {{ = (¢,&n41) € R™M 1 o1 + Ni(€) < 0} the

conic domain whose boundary is the hypersurface K; ;b =1,...,s. By
(2.5), we have D] DDy D---D D;. Let G, =D; ;\D; for1<i<s,
Gi1 =R\ D, with R"™ = {¢ € R"*': ¢,,1 <0}, and G4yq = D5 .

Since for the unit vector of the outer normal o = (a1, ..., an, apt1) at
the points of the cone S different from its vertex O(0,...,0) we have
99
o : 1
= —— i=1,...,n,

1 ) 9 Ontl = —F——=)
V1+[Vagol? V1+[Vagol?
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where V, = (8671, ce %) and go(x) = |z|g(x/|z|), therefore

an+1|s\o <0. (2.6)

According to our assumption, the smooth conic hypersurface S; for
1 < i < k; is a characteristic one. Therefore by virtue of the fact that S; C
So C S and the condition (2.6) is fulfilled, for some index m;, 1 < m; < s,
we have

a|si€K;%,, i=1,..., k. (2.7)

Since S; for k1 +1 < i < k1 + ko at none of its point is characteristic,
by virtue of S; C Sy C S and (2.6), and by the definition of the domains
G there is an index n;, 1 < n; < s+ 1, such that

al

g, €Gniy i=ki+1,... k1 + ks (2.8)

Below, without restriction of generality, it will be assumed that m; <
coe <mgy and ngy 41 < < Mgy gk,

By Qo(§) = EE2, — Q(&') we denote the characteristic matrix of the
system (2.1) and consider the question on reduction of the quadratic form
(Qo(&)n,n) to the canonic form when £ = « is the unit vector of the normal
to the hypersurface S;, 1 < i < ky + ko, exterior with respect to the domain
D.,. Here n € R™ and (-,-) is the scalar product in the Euclidean space
R™.

Since

:diag(ﬁ(a’),...,A%(o/),...,A?(a'),...,xg(a')), o =@,... ), (2.9)

S

A £
for n = T'C we have
(Qo(@)n.m) = (I''QuT)()¢,¢) = ((Bapy — (T7'QT)(e)))¢,¢) =

= (ai-ﬂ N @NE++ (04%4-1 - A?(O/))C?ﬁ
(b = A3 (a))CE o+ (Al = A3(a))CE gy + - F

Haq gy = X)), g1+ (an g = A2())G (2.10)

For 1 < i < ki, i.e. in the case (2.7), since o2, — A2 (o/) = 0, by
virtue of (2.5) we have

[Oéi+1—)\?(0/)]|K;Li>O, .7217 s 7mz_17 [a?@+1_)\72”ni (O/)HK;LI_:Oa (2 11)

[0472z+1*/\?(0/)”;(7; <0, j=m;+1,...,s
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If k1 +1 < i < ki + ko, i.e. in the case (2.8), by the definition of the
domain G,,; from (2.5) it follows that for n; < s

[04%4-1 — )\?(o/)HGni >0, j=1,...,n; — 1,
[ap 41 — A3 ()]
and for n; = s+1

[ Xpt1 )‘2( )”Gnl >0, j=1,...;s

<0, j=n4...,8,
s ' (2.12)

Denote by %;r and sz, the positive and the negative indices of inertia
of the quadratic form (Qo(a)n,n) for a € K., when 1 < i < k; and for
a € Gy, when k1+1§i§k1+k2 For 1 <2<I<:1,by (2.10) and (2.11)
we have

s =l + b1, % =l + o+ lsy (def)m, = by, (2.13)

where (def),, is the defect of that form, and in addition s;” = 0 for m; = 1.
In the case k1 + 1 <14 < k1 + ko, by (2.10) and (2.12) we have

b =+ A b1, =l e+ L, (2.14)

where % =0 for n; = 1.

If now ( = C'n is an arbitrary nondegenerate linear transformation
reducing the quadratic form (Qo(a)n,n) in the case (2.13) or (2.14) to the
canonic form, then by the invariance of indices of inertia of the quadratic
form with respect to nondegenerate linear transformations we have

» s
(Qo(a)n,m) = ) _[Afi(a,n Ao, 1<i<ki+ky. (215)
j=1 j:l
Here
m .
Af(enm) =D ¢ (), A Z (),
p=1 (2.16)
C'=C'a) = (cz-p(a));?pzl, 1<i<ki+ko.
In accordance with (2.16), in the boundary conditions (2.4) as the mat-
rix I'" we take the matrix of order (s; x m) whose elements s; = %;r ,
1 <4 < ky + ko, are given by the equalities
i i o +.
L, =c(a), j=1,....5¢; p=1,....m, (2.17)

where o € K, for 1 <4 <kj and a € Gy, for k1 +1 <4 < kg + ko,
Below it will be assumed that in the boundary conditions (2.4) the

elements F;-p of the matrices I'* on S; are bounded measurable functions. It

will also be assumed that the domain D, is a Lipschitz domain [89, p. 68].
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2.3. Deduction of an a priori estimate for the solution of the
problem (2.1), (2.3), (2.4). Below, if it will not cause ambiguity, instead
of u = (u1,...,um) € WE(D; ™ we will write u € W¥(D,,). The condi-
tion F' = (Fi,...,Fy) € La(D4,) should be understood analogously. Let
u € W3(D-,) be a solution of the problem (2.1),(2.3), (2.4). Multiplying
both parts of the system of equations (2.1) scalarly by the vector 2u; and
integrating the obtained expression over D, 0 < 7 < 7, we obtain

2/<F§:Biuzi — Cu)ut dx dt/{%+2zﬂ: Aijuxiutxj} dx dt—
i=1

D, ' D, ij=1
n n
-2 Z Ajjugug;oids = / (utut + Z Aijuxiuxj) dx+
Son{t<r}bi=1 8D\ So b=l
n n
+ / {(utut + Z Aijuxiu%)anﬂ -2 Z Aijutuxjai} ds =
Son{t<t} hy=1 i,j=1
n
= / (utut + Z Aijuxiumj) dx+
8D\ So hj=1
n
+ / Aptr | D Asj(ngatie, — asue)(Qng1tiy, — ajug)+
Son{t<r} b=l
n n
—I—(Eosz_l — Z Aijaiaj)utut] ds = / (utut + Z Aiju%umj) dx+
i,j=1 2D\ i,j=1
n
+ / a,_Hl_l[ Z Aij (g 1z, — o) (g 1Ua; — ajut)} ds+
Son{t<7} ij=1
+ / a;j_l(Qo(a)ut, ut) ds. (2.18)
Son{t<r}

Since (anH % — o %) is inner differential operator on the conic hy-

persurface S, by virtue of (2.3) and the boundedness of |a; 1| on Sy we
have

n
‘ a;}_l[ Z Aij (g1, — i) (g 1Ua; — ajut)} ds| <
Son{t<r} hi=1
< 1l foll c1 = const > 0. (2.19)

Wi (sgn{t<r})’
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On the other hand, by (2.15), (2.16), (2.17) and (2.4), (2.6) we have

k1 £k <
[ ety Qo) ds=- {lont a2 [Af (o un)]* st
Son{t<t} =lgn{t<r} J=1
k1+k2 >
+ {lozhil 3 A5 (a )]} ds >
=1 g A{t<r} j=1
ki+ko '
> — {|a,_Hl_1| Z [A;'j(a,ut)f} ds >
=1 g,n{t<r) J=1

k1+k2 2 k1+k2

S / IS u)])ds=—c2 ST, ey, (220)
1 =1

=lg.n{t<ry 771

where 0 < ¢3 = sup |a, 14| < +0o0.
So
Assume

n
w(r) = / (utut + E Aijumiuxj) dr, U = apy1Uy, — aiuy.
D\ So hj=1

Then since the elements of the matrices B; and C in the system (2.1) are
bounded and measurable, as well as by (2.18), (2.19) and (2.20), we have

T

w(T) §03/w(t)dt+04/uudxdt+05||f0||

0 D,
k1+k2

SN S 12 AP ) [ (2.21)
i=1

+

Wi(son{t<r})

Here and in what follows, all the values ¢;, i > 1, are positive constants
independent of w.

Let (z,7,) be the point of intersection of the conic hypersurface S with
the straight line parallel to the axis ¢ and passing through the point (z,0).
We have

T

u(z,t) :u(x,Tx)Jr/ut(a:,t) dt, >z,

Tx

whence with regard for (2.3) we find that

/ u(z, Tu(z, ) dx <

aD;\5So
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<2 / u(z, 7 )u(z, 7o) de + 2|7 — 74| / dx/ut(ac,t)ut(ac,t) dt <
8D,\Sg 8D,\Sg Tx

T

<csg / uuds + 09/ (t)dt = Cg||f0||L2(Soﬂ{t<T}) + CQ/w(t) dt. (2.22)

Son{t<t} 0 0

Introduce the notation

n
wp () = / (uu + upuy + Z Aijumiuzj) dx.
D\ So b=l

Summing up the inequalities (2.21) and (2.22), we obtain

wo(T) <
T k1+k2
Scm[/ oAy 3 Iy 1P J

0
whence by the Gronwall lemma we find that
k1+ko

wo(r) < 11 (1ol g apmiecny, + DR A L ) (2:23)

Integrating both parts of the inequality (2.23) with respect to 7, we
arrive at the following a priori estimate for the solution u € W2(D,,) of the
problem (2.1), (2.3), (2.4):

k1+k2

el (|\fo|\wl(s>+z VA2 e HIFIZ, 0, ) (229)

with a positive constant ¢ independent of w.
Introduce the notion of the strong generalized solution of the problem
(2.1),(2.3),(2.4) of the class W3.

Definition 2.1. Let fo € W}(So), fi € La(Si), i = 1,..., k1 + ko,
and F € Lo(D;). A vector function u = (uq,...,uy) is said to be a
strong generalized solution of the problem (2.1), (2.3), (2.4) of the class W4
if u € W3(D,,) and there exists a sequence of vector functions {uj}?°
from the space WZ(D,,) such that

kILH;O ||uk - u”Wl(DT ) - 07 hm ||uk|50 - fOHWr}(SO) = 07
;0
lim ||0¢ 24 f’ 0, i=1,... ki +ko,
k—oo LQ(S)
klgrolo || Ly, — F|L2(DT0) =0.

Below we will prove the existence of a strong generalized solution of
the problem (2.1),(2.3), (2.4) of the class W3 for the case when the conic
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hypersurface Sy is of temporal type, i.e. when the characteristic matrix of
the system (2.1) is negative definite on Sp \ O. The latter can be written as
follows:

([Eaiﬂ - Z Aijaiaj}n,n> <0 Vne R"\{0,...,0)}, (2.25)
ij=1
where the vector & = (a1,...,qn,apt1) is the outer unit normal to the
cone Sy at the points different from its vertex O.

In the case (2.25), by (2.13)-(2.17) and according to our choice of T'?,
i=1,...,k1 + ko, in (2.4) we have 5;; = 0, ¢ = 1,...,k; + ko, i.e. the
problem (2.1), (2.3), (2.4) is free from the boundary conditions (2.4), and
the a priori estimate (2.24) for the solution u € W2(D,,) of the problem
(2.1),(2.3) takes the form

lll g, < (ol g oy + 1F o) (2.26)

Note that the geometric meaning of the condition (2.25) has been elu-
cidated in [61], and also therein for the solution u € WZ(D,) of the prob-
lem (2.1),(2.3) the a priori estimate (2.26) is obtained, although there is
not proved the existence of a strong generalized solution of the problem
(2.1),(2.3) of the class W, whose uniqueness directly follows from the esti-
mate (2.26).

2.4. Proof of the existence of a strong generalized solution of
the problem (2.1), (2.3) of the class Wy. Consider the question on the
solvability of the above-mentioned problem, when the conic hypersurface is
of temporal type. For the sake of simplicity of our discussion, we restrict
ourselves to the case where the boundary condition (2.3) is homogeneous, i.e.

ulg, = 0. (2.27)
The system (2.1) after the change of variables
y:%,z:torx:zy,t:z (2.28)

with respect to the unknown vector function v(y, z) = u(zy,y) takes the
form

1 o ~ 2 — 1o ~ S~ -
Ll’l) = Vyy — 2_2 i]z;l Aijvyiyj — ; ; YiVzy,; + ; ; Bivyi +Cv=F. (229)

Here

Aij = Eyiy; + Ayj,
B; = Bi(zy, z), C = C(zy, z), F = F(zy, z).
Denote by G the n-dimensional domain being the intersection of the
conic domain D : ¢ > |z|g(z/|x|) and the hyperplane ¢ = 1 in which the
variable x is replaced by y. Obviously 0G = {y € R™ : 1 = |ylg(y/|y])}-
Upon the transformation (z,t) — (y, z), by the equalities (2.28) the domain
D transforms into the cylindrical domain Q, = G x (0,7) = {(y,2) €

(2.30)
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R"t1: ye G, 2 € (0,7)} lying in the space of the variables y, z. Denote
by T'; = 0G x [0, 7] the lateral surface of the cylinder €,. The boundary
condition (2.27) with respect to the vector function v takes the form

=0. (2.31)

T0

v

T

The proof of existence of a strong generalized solution of the problem
(2.1),(2.3) of the class W3 will be presented in several steps.

19, First of all we deduce an a priori estimate for the solution v =
(v1,...,0m) of the problem (2.29), (2.31) from the space WZ(2,,), equal to
zero in the domain Q5, 0 < 6 < 79.

Let v be a solution of the problem (2.29), (2.31) from the space W3 (Q,)
such that for some positive §

V], =0, 0<8 <. (2.32)

Under the assumption that (0,...,0) € G and diam G is sufficiently
small, by (2.2) and (2.30) for any m-dimensional vectors 7;, i = 1,...,n,
the inequality

n
Z Y)nin; > Co Z |n:|?, o =const >0, Yye&Ga, (2.33)
j=1 i=1
is valid.
If v = (v1,...,Vn,Vnyt1) is the unit vector of the outer normal to the

boundary 99 of the cylinder €2, at the points (y, z) where it exists, then
with regard for (2.32) we can easily see that

0, i=1,...,n, =0. (2.34)

VnJFl‘FTO = 0’ Vi‘@ﬂroﬂ{z=7'o} - UZ|FTO

Assume G, = Q. N{z=r7}.

Multiplying both parts of the system (2.29) by the vector 2v, and in-
tegrating the obtained expression over €2, § < 7 < 7, and also taking into
account (2.30), (2.31), (2.32) and (2.34), we obtain

Q. i=1
— / |:2Uzzvz - 32 i Ai”(y)vylvaz _ éiy’bvzylvz} dy dz —
Q- == Z =1
0) | 2 L ) 8141
:/{%Jr; Z Aij(Y) vy, vz, + = Z ] v
Q, Q=1 )
2w (g)yj ] aya: /{ (?(;Zv _28_(2 Ay, )+

QT
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+— Z Eyvy,v, + - Z

ayl ’UZ’UZ:| dydz =

3,7=1
1 ~
= |:'Uz’Uz + 2_2 Z Aij (y)qu,vy,} dy+
& ij=1
2 o ~
+ / L—sz Aijvy,vy; + = Z Eyivy,v, + vzvz} dy dz. (2.35)
QT\Q(S i,j=1 i,j=1

Since the ranges of the variables y; in G are bounded, i.e. sup|y;| < d,
G

t=1,...,n, by (2.30) and (2.33) for some ¢; = const > 0 the inequality

Z Ai(y)nin; <& Z Ini|> Vm; € R*, Yy€QG, (2.36)
i,7=1

holds.
Under the notation

w(r) /{Uzvz + Zvyzvyl} dy, wo(T / VU + UV, + Zvyivyi} dy,

G- i=1 e i=1
by (2.33), (2.35) and (2.36) we have
min (1, %)w(ﬂ <
20 — dn <& 2n
< L—g D v+ g )y, vsvs) + vzvz} dy dz+
Q- \Qs i,7=1 i=1

o~ 13, ~
b FF vt 2 S 1Bl (s + o)
Q,\Q5 i=1

HE,_ (v +vzvz>] dyds <

26, dn 1 ~ i
< (== _ _ .
<G+ rgmsBll) [ (D) dss

alq, =1
dn? 2n
(52 +7+1+||C’||L ) / v, dydz+
Q,\Qs
+||(~3’||LOO / vodydz + / FFdydz <
Q-\Qs Q-\Qs

§02(5)/{vv+vzvz+2vyivyi} dyder/ﬁﬁ dydz =
i=1

T Q-
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= c2(0 /wo dU+/FF dy dz, (2.37)
0

where ¢2(0) = const > 0, 6 < 7 < 79, and ||Bi||Lm and ||C’||Loo are the upper

bounds of the norms of the matrices B; and C' in Q.
By (2.32) we have

T

oly,2) = / v.(y,0) do,

0

/v(y,f)v(ym) dy < / [/Tlvz(y,a)ldordy <
G- G 0
< / [(/12d0)1/2</|vz(y,a)|2do)1/2rdyS
G 0 0
< TC[O/vg(y,a) do dy T(lvg dydz. (2.38)

Taking into account (2.38), from (2.37) we have

7) < c3(0 /wo +eq( /f‘ﬁdydz,
0 Q-

whence

where ¢;(§) = const > 0, i« = 3,4. From the above reasoning, on the basis
of the Gronwall lemma we can conclude that

To(2) < () /ﬁﬁ dydz, 0<7 <1, (2.39)
Q

with ¢(d) = const > 0.
In turn, from (2.39) it follows that

o] <UD NF 40,0 E6) = comst > 0. (2.40)

Wi (Qrg)

Remark 2.1. To construct for
Fly, =0, 0<6 <, (2.41)

a solution v of the problem (2.29), (2.31) from the space W2({2,,) satisfying
the condition (2.32), we apply Galerkin’s method [84, pp. 213-220]. Note
that unlike equations and systems of hyperbolic type considered in [84], the
system (2.29) contains terms with mixed derivatives v,,.
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20, Here we prove the existence of a weak solution of the problem
(2.29), (2.31), (2.32) of the class W3 . Let {px(y)}$2, be an orthogonal basis
in a separable Hilbert space [IW3(G)]™. As elements of the basis {¢r(y)}72,

o
in the space [W3(G)]™ we take proper vector functions of the Laplace oper-
ator: Apr = Aok, vrloc = 0 [84, pp. 110, 248]. In addition, in the space

[W3(G)]™ as an equivalent norm we can take
ol ﬂz%ww

v=(v1,...,0m), vieVV%(G), i=1,...,m.

An approximate solution v (y, z) of the problem (2.29), (2.31) will be
sought in the form of the sum

N
2= G (2)ex(y), (2.42)
k=1
whose coefficients Ci¥ (z) are defined from the relations
N T G S S
C@W%@bE{ZVMW%+JWMV“
o Sig=1 v
2 - N N -5 N ~ N
+2 { > Lo e, + ol o] } dy + [; > B}l + Cu wz} dy =
o=l & Ti=1
:(ﬁacpl)Lg(G)a 5§Z§7—0; l:]-a"'aNa (243)
d .~ N
EC’“ (2) Z:L;:o, Ci(2)|,_s=0, k=1,...,N, (2.44)
ON(z)=0, 0<2<4, k=1,...,N. (2.45)

The equalities (2.43) represent a system of linear ordinary differential
equations of second order in z with respect to unknown functions C’év k=

1,..., N, with the constant matrix containing the elements which are in
fact the coefficients of the second order derivatives %k#, and with the

determinant different from zero, since it is the Gramm determinant with
respect to the scalar product in Lo(G) of a linearly independent system of
vector functions ¢4 (y),...,¢on(y). The coefficients of each of the equations
of that system are measurable bounded functions, and the right-hand sides
gl(z) = (FaCPl)LQ(G) belong to Ll((OaTO))'

As is known [84, p. 214], the system (2.43) has a unique solution sat-
isfying both the initial conditions (2.44) and the condition (2.45) by virtue

of (2.41), where —k— € L1((0,79)).
Let us now show that for v = v the estimates (2.39) and (2 40) are
valid. Indeed, multiplying each of the equalities (2.43) by di CN(z) and
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summing up with respect to [ from 1 to IV, we obtain the equality

92N ool 1 S NN 8&‘]‘ N, N
(—822 o )LQ(G) +3 { Z [Aij (y)op vl + En v v] }}d?ﬂ—
G

3,j=1

1 - 1 o~ ~
+;/{Z[ywivvgl —l—vivviv]}dy—&—/[;ZBivgviv-ychuiv} dy =
& =1 & i=1
= (F, o)) 1,0, (2.46)
from which after integration with respect to z from 0 to 7y, with regard

for (2.45) and subsequent transformations we have actually deduced the
inequalities (2.39) and (2.40). In addition, by (2.45) it is obvious that

UN|96=0, N=12,.... (2.47)
Thus the estimates
/[UNUNJrvéVvZI g vévvév} dy§c5(5)||f'||i2mf), 0<r<19, N>1,
Gy i=1 (2.48)
||UN||W21(QT0) < CG((S)”F”LQ(QTO)v N >1,

are valid, where the positive constants ¢5(d) and ¢g(d) do not depend on N.

Owing to (2.48) and weak compactness of the closed ball in the Hilbert
space W3 (£, ), from the sequence {v"'} we can choose a subsequence, with-
out changing the notation, converging weakly in W3 (£2,,) to some element
v € W3 (Q,) for which the equality (2.32) is valid by virtue of (2.47). Note
also that since UN|FT0 = 0, N > 1, by the compactness of the operation
of taking the trace v — w|p,  from the space W3 (Qy,) into Ly(I'r,), the
element v satisfies the homogeneous boundary condition (2.31) [84, p. 71].

Let us now show that v is a weak generalized solution of the system
(2.29), i.e. the identity

IR ~ 2 ¢
/ [ vsWz + 5 Z vy, (Aijw)y, + 2 ;vz(yiw)yﬂr

QTO 1,j=1

1A ~ - ~
- B;v,, C dydz = | Fwdyd 2.49
+ZZ; Uy, W + vw} ydz / w dydz (2.49)
1= o
holds for any w € V satisfying the following homogeneous boundary condi-

tions:

wl, =0, w[__ =0, (2.50)

where V is the closure of the space W3 (Q,,) of the vector functions w =
(W1, -+, wm) of the class C?(Qy,).

Towards this end, we multiply each of the equalities (2.43) by its func-
tion d;(z) € C2([0,79]), di(70) = 0, and then we sum the obtained equalities
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with respect to all [ from 1 to N and integrate with respect to z from 0 to
Tp. Further, integration by parts in the first term results in the identity

/[ N, + 22 (L), Zv (yiw

7,7=1
70

1< ~ ~ -
Jr;ZlBivé\inrC’uNw} dydz = /Fw dydz, (2.51)

70

which is valid for every w of the type Z di(2)pi(y). We denote the family of

such v by V. If we pass in (2.51) to the limit by means of the above chosen
subsequence for a fixed w from some Vj, then we will arrive at the identity
o0

(2.49) for the limiting function v € W} (Q,,), valid for every w € |J V.
N=1

o0
Now we show that |J Vu is dense in V.
N=1
Indeed, let w € C2(€),,), and let the equalities (2.50) be fulfilled. Then
there exists an extension wg of the vector function w to a larger cylinder

Q. = {(y,2) € R"': y € G, z€ (—79,m0)} of the class C*(Q,) such

[e]
that wolaq, = 0, wola,, = w [29, p. 591]. Consequently, wo € W), and
since the system of functions

. mk(z+ 719
{soz(y) sin ——— }kvl:l (2.52)

is fundamental in the space W3 (£2,) [100, pp. 112, 165], for every € > 0 there

exists a linear combination Y. a;w; of vector functions from the system
i=1

k
Hwo - E o W;
=1

By (2.50) and the fact that wolq,, = w,

(2.52) such that

g, 2.53
Wi(Q.) ( )

because ||@HV% = ||@||W21(Q*).

L)
we have
Hw Eomul wa gawl

But Z ow; € U Vn. Therefore from (2.54) and the fact that the set
i=1

{we C* Q) : w|p70 =0, w|.—r, = 0} is dense in the space V, we find

wi@ )<Hw0 Za w; <€. (2.54)
TO

2 *

o)
that |J Vi is dense in V. Since v € W3 (Q2,), this in its turn implies that
N=1

the identity (2.49), valid for every w € |J Vy, is likewise valid for every
N=1
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w € V. Thus the limiting vector function v = v(y, z) is a weak generalized
solution of the equation (2.29) satisfying the equalities (2.31) and (2.32).

39, Let us show that if the supplementary conditions

OG € C*; B, Bit, Ca,, Cy € Loo(Ds,), 4,5 =1,...,n, (2.55)
F € Wy(Dy,), F|, =0 (2.56)

are fulfilled, then the above-obtained vector function v is a solution of the
problem (2.29), (2.31), (2.39) from the space W3 (£),,), where Lo, (D) is
the space of measurable functions bounded in D, .

First we multiply the expression obtained after differentiation of the
equality (2.43) with respect to z by % CN(2) and then sum with respect
to [ from 1 to N. Reasoning as in deducing the inequality (2.39) and using
the already proven estimate (2.39), we obtain

Wo(T) < ¢10(9) /(ﬁﬁ + FLF.) dydz, c10(8) = const > 0,
o

n

() — NN N N ..

where wWo(7) = [ [o}ol + ) o} v | dy, whence in its turn we have
a. i=

n

1o, + S 102,

i=1

Lo (Qrg) < 011(6)[||F||L2(Q7—0) + ||FZHL2(QTO)L (2'57)

where ¢11(6) = const > 0.
By the estimates (2.48) and (2.57), some subsequence {v"*} converges
weakly in Lo together with the first order derivatives vV, ’Ué\j, i=1,...,n,

and the derivatives vivz’“, U?L’j, i =1,...,n, to the above-constructed solution
v and respectively to v,, vy,, V.2, Vsy,, ¢ = 1,...,n. In addition, for v the

inequality

n
||/UZZ||L2(QT0) + Z ||Uzyi||L2(Q,.0) < 012(6)[||F||L2(Q7—0) + ||FZ||L2(QTO)} (258)

i=1

is valid, where c12(d) = const > 0.

By (2.40) and (2.58), the vector function v will belong to the space
W3(Q,) if we show that v has generalized derivatives vy, from La(Q,),
L,j=1...,n

By V we denote the space of all vector functions w = (w1,...,wy) €
Ly(27,) which have generalized derivatives wy,y;, i,j = 1,...,n, from
Ly(Q27,) and satisfy the homogeneous boundary condition (2.31), i.e.
U}|FTO =0.

Analogously to our reasoning when we obtained (2.49) from (2.43), it
follows from (2.43) that the vector function v satisfies the following integral
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identity
1 & ~ 2 — T ~ ~
Uy W+ ) Z vy, (Aijw)y, — ;szyiyinr ;ZBivyinrC’vw dydz=
i,j=1 i=1 i=1
70
= /ﬁw dydz YweV. (2.59)

Qry

If in (2.59) we take as w € V the vector function w(y, z) = 1(2)¥(y),
where the scalar function ¥(¢) and the vector function ¥(y) are arbitrary

elements respectively from L ((0, 7)) and W3(G), then by Fubini’s theorem
the equality (2.59) can be rewritten in the form

7o
1< ~ 2 o
/w(z){/ |:UZZ\I/ + 2 Z vy, (Aij W)y, — . szwyi\lj"'
0 =1
n

¢, ij=1

1 W,in C'v z = z F z, .
+;;B, U+ \If}dy}d Q/w()[/mdy}d (2.60)

T0 z

whence because of the arbitrary choice of ¥(z) € L2((0,79)), for all z €
(0,70) we get

n n
/ [ Z Yy, (AVIJ\I/)y] + Zzgiqu,‘l’ + 2257}‘1/} dy =

&, tig=1 i=1
n ~ [e]
:/ (—ZQ’UZZ —l—QZszyiyi—i—zQF)\I/dy YU € WiG). (2.61)
é. i=1

Since for such z € (0, 79) the vector function

n
F= { — 220, + 22 Z Vay; Yi T 2215}

i=1
belongs to La(G), the identity (2.61) means that the vector function v =

(v1,...,0m) is a generalized solution from the space W3(G) for the following
elliptic system of equations:

n n
- Z gijvy%yj +z Z Biv,, + 2°Cv = F. (2.62)

ij=1 i=1

By the inequality (2.33), the system (2.62) is strongly elliptic. Therefore
under the assumption that 0G € C?, i.e. the appearing in the definition of
the conic domain D function g belongs to C?, we have that in the system
(2.1) By, C € C*(D,,) and hence in the system (2.62) B;, C € C1(Q,,), the
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generalized solution v of the system (2.62) from the space Wi (G) belongs
likewise to the space W2(G) for these z € (0,7) [89, p. 109], and

1ollyz.0) < 12lFlluyiny < 01 [0zl +

n
3 M0 lliyior + 1Pl ey ] €13, e1a = const > 0. (2.63)
=1

Thus for such z € (0,79) the vector function v has the generalized
derivatives vy,y;, 4,5 = 1,...,n, and by virtue of (2.58) and (2.63) we have
9ij(2) = vyl 1, 6., € L2((0,70)). Therefore it remains only to note that
the function g(y,z) € L2(fly,) has the generalized derivative gy, (y, z) €
L2(924,), 1 < i < n, if and only if for almost all z € (0,7y) the function
g has the generalized derivative g,, € L2(G;), and @;(2) = ||gy. €
15((0, 70)).

Getting back from y, z to the initial variables z, ¢, the vector function
u(z,t) = v($,t) due to the equalities (2.28) will be a solution of the sys-
tem (2.1) from the space W#(D,,) satisfying the homogeneous boundary
condition (2.27).

Thus we have proved the following

Lemma 2.1. Let g € C?, B;,C € C'(D,,), i = 1,...,n, F €
W3 (Dy,), Flps = 0, 0 < § < 79, and let the condition (2.33) be ful-
filled. Then the problem (2.1),(2.27) has a unique solution u from the space
W3(D.,), where u|p, = 0.

L2(G2)

In the case where F' € Ly(D,), since the space of infinitely differen-
tiable finite functions C§°(D) is dense in Lo(D;,), there exists a sequence
of vector functions Fj, € C§°(D;,) such that F, — F in Ly(D,,). Since
Fy € C§°(Ds,), we have F), € W} (D,,), and for a sufficiently small positive
Ok, Ok < 7o, we have Fi|p, = 0. Therefore, according to Lemma 2.1, there
exists a unique solution uy € W2(D,,) of the problem (2.1),(2.27). By
(2.27), from the inequality (2.26) we have

Huk - up||W21(DTO> < C”Fk - Fp||L2(DTO)7
whence it follows that the sequence {uy}72; is fundamental in W3 (D),
because F, — F in La(Dy,).

Since the space W3 (D,,) is complete, there exists a vector function
u € W3 (Ds,) such that u, — win W3 (D;,) and Lug = F, — F in La(Dx,).
Consequently, u is a strong generalized solution of the problem (2.1), (2.27)
of the class Wy, for which the estimate

il (2.64)

Wi(Drgy) < C||F||L2(DT0)

holds by virtue of (2.26).
Thus the following theorem is valid.
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Theorem 2.1. Let g € C?; B;, C € C*(D,,), i = 1,...,n, and let
the condition (2.33) be fulfilled. Then for every F € Lo(D,,) there exists
a unique strong generalized solution of the problem (2.1),(2.27) of the class
Wy for which the estimate (2.64) is valid.

3. Boundary Value Problems for a Class of First Order
Hyperbolic Systems with Symmetric Principal Part

3.1. Statement of the problem in conic domains. In the space
of variables x1,...,x, and t we consider a system of differential equations
of the first order of the type

n
Lu= EutJrZAiuzi + Bu=F, (3.1)
i=1
where A; and B are given real (m x m)-matrices, E is the unit (m x m)-
matrix, F' is a given and u is an unknown m-dimensional real vector, n > 1,
m > 1.
Below the matrices A; will be assumed to be symmetric and constant.
In this case the system (3.1) is hyperbolic [24, p. 587].
n

Since the matrix Q(¢') = — 3. A&, & = (&1,...,&,) € RY is sym-
i=1
metric, its characteristic roots are real. We enumerate them in decreasing
order: A1(&') > A2(&) > -+ - = A (€'). The multiplicities k1, ..., ks of these
roots are assumed to be constant, i.e. do not depend on £/, and we put
ME) =) = =X (€) > X&) = M1 (&) =+ = My 4 (§) >
> As(€) = A 41 (€) = - = A (€), € € R"\{(0,...,0)}.  (3.2)

Note that due to (3.2) and continuous dependence of the roots of a
polynomial on its coefficients, A1 (£'), ..., As(&’) are continuous homogeneous
functions of degree 1 [46].

As far as the matrix Q(&’) is symmetric, there exists an orthogonal
matrix 7' = T'(¢’) such that

(T1QT) (&) = diag (M(€), -, M(€),- Ae(€), - A(E)). (3.3)

By (3.2) and (3.3), the cone of the normals K = {f =(&,..,&n,80) €
R det(E&—Q(£')) = 0} of the system (3.1) consists of separate sheets

Ki= {6 = (¢ &) € R™: g0 = A(€) =0} i=1,....s.
Since

; s+1
N(E) = =Asi1—i (=€), 05 < [ 2]
the cones K; and K ,1_; are centrally symmetric with respect to the point
(0,...,0), where [a] denotes the integer part of the number a.

: (3.4)
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Remark 3.1. In the case where s is an odd number, we have j = s+1—j
for j = [#51]. Therefore the cone K; for j = [#51] is centrally symmetric
with respect to the point (0,...,0). In this case, for the sake of simplicity

of our presentation, for s = 25y 4+ 1 we assume that

s+1

Aso+1(§) =0, {

where K, 41 is the hyperplane 7y : § = 0.

} =so+1, (3.5)

Remark 3.2. Below it will be assumed that mo N K, = {(0,...,0)} for
even s = 2sgp. By (3.2) and (3.4) this implies that the cones K1,..., K, lie
on one side from 7y : & = 0, while Ks,41,..., Kas, on the other side, i.e.

)‘1(8) > > Ay (gl) >0> >‘50+1(£I) > > Aggg (gl)a (36)
¢ e R"\{(,...,0)}.
If s = 259 + 1 is odd, by virtue of (3.2), (3.4) and (3.5) we have mo N K, =
{(0,...,0)}, and hence
AL(E) > > A (€) > Agp11(§) =0 >
> Ago42(8) > - > Aago1+1(€), € € R\ {(0,...,0)}. (3.7)
In this case Ki,...,Ks, lie on one side from my = K, 41, while

Ksot2y- .., Kasy+1 on the other side. From (3.4)—(3.7) it follows that for
the multiplicities k; of the roots A; the equalities

. s+1
kj:kerlfja ]:137|: 9 :| (38)
are valid.
Let KX = ) {(j eR"f: (-n< O}, where ( -7 is the scalar product

neK;
of the vectors ¢ and n. By (3.4) or (3.5) we have mo N K; = {(0,...,0)},
1 <i < s, and if s is odd we assume that i # [%1} Therefore K7 is a
conic domain, and if s = 2s¢ is even we have K C K; ; C --- C K7,
K. C K; o C - C K, while for s = 2s¢ + 1 there takes place
K, CK; C--CK{, K, CK; 3C-CKJ 1.

Remark 3.3. Note that O(K7}) is a convex cone, where i # [2£1] for odd
s, and at those points P of the cone 9(K;) which contain the unit vector
a,, of the outer normal to J(K) we have [61]

a, € K;, Peio(K)). (3.9)

It follows from (3.9) that at the points at which there exists the tangent
plane, the conic surface d(K}) is a characteristic one. Below, as exam-
ples, we will consider some symmetric first order hyperbolic systems of the
mathematical physics for which O(K}) is a smooth or piecewise smooth
characteristic cone.



40 S. Kharibegashuvili

By Qo(§) = E& + Y. Ai&i = E§ — Q(&') we denote the characteristic
i=1

matrix of the system (371) and consider the question on the reduction of
the quadratic form (Qo(§)n,n) to the canonical form when ¢ € K/ = K; \
{(0,...,0)}, where n € R™ and (-,-) denotes the scalar product in the
Euclidean space R™.

By (3.3), for n = T'¢ we have

(Qo(©)mm) = (T QuT)(€)¢,¢) = ([Ego — (T71QTIE]¢.C) =

= (60— M(E))CF + -+ + (o — M(€))GE, +
(60— A2(€))Ch, 1+ + (o = A€ Ry 0 F
+(&0 = (€)1 + o+ (S0 = As(€)) G- (3.10)

Since for £ = (£',&) € K there takes place the equality & = A;(£),

with regard for (3.2) we have
[50 - A](gl)”[(: <0, j=1,...;i—1 [50 - /\Z(gl)”[(: =0,
[0 fAj(g’)HK; >0, j=i+1,...,s.

Denoting by s and s; the positive and the negative index of inertia
of the quadratic form (Qo(&)n, n)‘geK{, by virtue of (3.10) and (3.11) we
find that l

%; :]{31++k‘171, %;r :ki+1 ++k5, (def)z :kz, (312)

where (def); is the defect of that form, and »; =0 for i = 1.
If now ¢ = C'n is some nondegenerate linear transformation reducing
the quadratic form (Qo(&)n,n) ‘ger to the canonical form, then due to (3.12)

(3.11)

and the invariance of indices of inertia of the quadratic form with respect
to nondegenerate linear transformations we have
+

@m0, = S N En) - [ En)” @1y
Here
N = - ct + = 3 &t
Aj (&m) ; o (O AT (Em) ,,; R (T 1)

C" = C'(¢) = (cj,(€)), €€ K.

Remark 3.4. Below it will be assumed that the elements ¢, (&) of the
matrix C* = C%(¢) are bounded piecewise continuous functions with respect
to & on every compact subset of the conic surface K;, and according to Re-
mark 3.3 we assume that S; = 9(K}), where i # [%] if s is odd, is
a smooth or piecewise smooth characteristic cone, i.e. the surface S; \
{(0,...,0)} is smooth or piecewise smooth. Note also that by (3.4) the
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conic surfaces S; and Ssy1—; are centrally symmetric with respect to the
point (0,...,0), where i # [Sgl] if s is odd.

Let Py(2°,t°) € K7, where i > [*31]. Denote by Si(Pp) the cone
with vertex at the point Py obtained by parallel transfer of the cone S, i.e.
S1(Py) = {(z,t) € R™™ : (z — 2%t —1°) € Sy = O(K7})}. Note that by
virtue of the inequalities (3.6) or (3.7), the cone S; for i > [5£1] is directed
towards the increasing values of ¢, while S (Py) towards the decreasing ones.
Denote by D; C K the finite domain bounded by the cones S; and S1(Fp),
and let SY = 0D, N S;, S =90D; N S1(Ry).

In accordance with (3.14), by I';; we denote the boundary operator
acting by the formula

m

Ly ()] g0 = Ajja,u)] g0 = [Zcép(o‘)“p} ;
' ' p=1 S9
where « is the unit vector of the outer normal to SY, u = (u1,...,up).

Let us consider the characteristic problem which is formulated as fol-
lows: in the domain D, find a solution u of the system (3.1) by the boundary
conditions

Fi—j(“)|sg:fjv J=1 0k (3.15)

where f; are given real scalar functions, and the number s is defined
in (3.12).

Below we assume that the elements of the matrix B in the system (3.1)
are bounded measurable functions in D;.

3.2. A priori estimate.

Lemma 3.1. For any solution u € W3 (D;) of the problem (3.1), (3.15)
the following a priori estimate

ltllyiony < CD My ispy + 1F 1Lz ) (3.16)
j=1

is valid, where W4 (D;) is the Sobolev space, and the positive constant C
does not depend on u, f; and F.

Proof. For any u € W4 (D;) and A = const > 0, integrating by parts we

obtain

2/ (Lu,uexp(—At)) dD; =
D;

= / (Qo(a)u,u)exp(—At) ds + / (()\E + 2B)u, uexp(f)\t)) dD;, (3.17)
aD; D;
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n
where Qo(a) = Eag + Z Ajoj, o = (o1, ..., an,qp) is the unit vector of

the outer normal to 6‘D1, 7> [‘H‘l]
From (3.9) it follows that

alg € Ki, alg € K7. (3.18)

Taking now into account that 9D; = S?USY, by virtue of (3.12), (3.13),
(3.15) and (3.18) we have

(Qol)u, )] g9 = (i (Af (e w]®)| (3.19)
j=1 57
(Qo(a)u,u)|sg = ( %_Z [A;rj(a,u)f) _ (i [Ai’j(a,u)f) . =
- (X )| (S, = S e

From (3.17)—(3.20) we find that

2/ (F,uexp(=At)) dD; = 2/ (Lu,uexp(—At)) dD; =

D; D;
/( a)u, u) exp(—At) ds + /(Qo(a)u,u) exp(—At) ds+
57

+/ ((AE + 2B)u, uexp(—At)) dD; >

D;

> — Z/erXp —\t) ds+/(()\E+2B)u7ueXp(—)\t)) dD;.  (3.21)

J= 150

Taking now into account that D; is a bounded domain and the ele-
ments of the matrix B are bounded measurable functions, from (3.21) for
sufficiently large A it follows (3.16). Thus the proof of the lemma is com-
plete. O

3.3. The existence and uniqueness theorems. Here we introduce
into consideration a new unknown vector function v(z,t) = u(x, t) exp(—At),
A = const > 0. Then for v(z,t) we obtain the following system of equations:

n
Lyv=Ev + Z Aivg, + Bav = Fjy, (3.22)

i=1
where By = B+ AE, F) = Fexp(—A\t).
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Denote by G = K} the unbounded conic domain whose boundary is the
characteristic cone S,. If v € W2(G) N W1(G), then on the boundary G
we have v = 0, and hence

0G 1 vy = QpUa, Uz, = QiVq, T=1,...,n, (3.23)

i

n
where v, = agur + Y Uy, @ = (aq,...,an,qp) is the unit vector of the
i=1
outer normal to 0G.
Further, for the sake of simplicity we introduce the notation t = x,1,

a9 = Qpt1, Ant1 = E. Then the principal part of the system (3.22) can be
n+1 o
written as L§v = > Aivg,. Forv e W2(G) N Wi(G), simple integration

i=1
by parts yields
1
/(Aivz“vmjzj) dG = 5 /(Ajajvzjavzj) ds, i=j,
G oG
1
/(Aivmi,vmm) dG = /(Aiajvmi,vmj)ds — 5/(Aiaivmj,vmj)ds, i # 7,
G oG oG
whence it directly follows that
n+1
/(Lg\v, 'U;cjxj) dG = / (Z Aiajvxiavxj) ds—
: o ]
1 [ A 1
-3 (Z Ay, vmj) ds + 5 /(Ajajvmj , Vg, ) ds. (3.24)
oG 17 oG
n+1
By (3.23), (3.24) and also by the equality a® = Y o? = 1, we have
i=1
n+1
/(Lgv, Av)dG = / (Lgv, Z vxm) dG =
G G J=1
n+1 n+1 1 n+1 n+1
:Z /( ZAiOéjUxﬂij) ds+§ Z /([Ajaj —ZAiozl} a?va, va) ds=
i=lgg =1 I=lsa =
1 n+1 n+1
=3 Z / <{Ajo<j + Aiai]a?va,va> ds =
i— i=1
=loc i#i

1 n+1 n+1
= 5 Z/ ((ZAI‘OQ)&?’UO”’U(X) ds =

e i=1
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- B / (%&%%,%) ds] (%af) = % / (Qo(a)va,va) ds, (3.25)

o =1 j=1 oG
n+1 n
where Qo(a) = A;a; = Eag + Y Aja; is the characteristic matrix of
i=1 i=1
the system (3.22).
Below it will be assumed that the elements of the matrix B are bounded
in the closed domain G together with their partial first order derivatives.
Reasoning analogously, owing to (3.22) and (3.25) we obtain

n+1

_ /(L/\’U, Av —v)dG = —/ (L,\’U, vaﬂj — ’U) dG =
G G j=l1
n+1 n+1
= Z/(Bkvxj,vxj)dG—l— Z/(ijv,vxj)dG—&—
j=1 G j=1 G
+/(B)\’U,’U) dG + % /(Qo(a)v,v) ds — % / (Qo(@)va,va)ds.  (3.26)
G oG oG

Since G = 0K, by (3.9), (3.10) and (3.11) the matrix Qo(«), where
« is the unit vector of the outer normal to 9K, is nonpositive. Therefore

1

T2 / (Qo(@)va, va) ds > 0. (3:27)

oG

As far as v € W3(G) N W(G), we have v|se = 0 and

1
3 /(QO(Q)U,U) ds = 0. (3.28)
oG
Under the assumption, the matrices B and B;,, + = 1,...,n + 1, are

bounded in G, i.e. there exists M = const > 0 such that

n+1
1Bl + > [1Be. ]l < M. (3.29)
i=1
From (3.29) for A >  M(n + 3) + 1, using the Cauchy inequality we
can easily get

n+1 n+1
> /(szj,vzj) dG+> /(BMJ.,%) dG + /(B,\v,v) dG >
=g i=lg G

n+1

> ()\fM)/(Zvﬁj)dG,

G J=1
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G
n+1
)\f—M /(Zvj dG+(A——(n+3))/v 4G >
j=1
n+1 ¢
/(v2 )dG— 2, 0 (3.30)
G J=1

Next, by (3.27) (3.3 ) 0) from (3.26) it follows that for A > 2 M (n+3)+
and v € WZ(G)N % , the inequality

}/ Lyv, Av —v) dG} > o2 (3.31)

wi(a)
holds.

From (3.31) in the well-known manner we obtain the inequality [126,
p. 51]

L w]|-1 = cflwll-1 Yw € W3 (G), (3.32)
where Liw = —EFw; — nil Ajwg,; + Bfw, the positive constant ¢ does not
depend on w and =

lwl 1= sw (ﬁ””)
eEW3(G) wie)

o
is a norm in the negative Lax space W5'(G), (-)T is the operation of
transposition.
Consider now the corresponding to (3.1), (3.15) characteristic problem
for + = s with homogeneous boundary conditions, which after the change
v(z,t) = u(z,t) exp(—At) can be written as follows:

Lyv = Fj, (3.33)
L@)]g =0, j=1,....5 (3.34)

Definition 3.1. The vector function v € Ly(G) is said to be a weak
generalized solution of the problem (3.33), (3.34), where F)\ € Lo(G), if for
any w € W3 (G) the identity

(v, Lyw = (Fy,w (3.35)

)L2(G) )LQ(G)

is valid.
Let us show that for any vector function Fy € W1(G) there exists
a unique weak generalized solution of the problem (3.33),(3.34) from the

space W1(G). Obviously, this solution v € W3(G) will satisfy the system
(3.33) a.e., and the boundary conditions (3.34) in the sense of the trace



46 S. Kharibegashuvili

theory [84]. Indeed, considering the linear functional (v, Lw), ., over the
space W5 *(G), by virtue of (3.32) for any w € W (G) we have
[(Bxw) o | < NN llw]l -1 < e HILiwl]| -1 | Exlls, (3.36)

where [|[F)[|1 = [[F[|, . On the basis of (3.36), we can extend the above
Whe)

functional to the whole space W5 1(G). Further, using the Riesz theorem
o
on the representation of the functional over the space W5'(G), we find

that there exists a vector function v € Wi(G) satisfying the identity (3.35).
To prove the uniqueness of solution, it should be noted that for a weak

generalized solution v of the problem (3.33), (3.34) from the space W1(G)
we have v|gg = 0. Therefore integrating the identity (3.35) by parts, we
obtain Lyv = Fy, (z,t) € G. It remains only to note that analogously to

the above proven a priori estimate (3.16), for any v € W1(G) the inequality
”v”LQ(c) < CIHL/\UHLQ(G)’ C1 = const > 0,

holds.
Now we get back to the problem (3.1),(3.15) when ¢ = s, i.e. in the
domain Dy under the homogeneous boundary conditions

L@)g =0, j=1,...,5. (3.37)

Let F € W3(D;) and F|go = 0. We extend F' from the domain D, to G in

such a way that F' € W1(G), and hence Fy = Fexp(—\t) € W1(G), where
A > 2 M(n+3)+ 1. As is shown above, the problem (3.33),(3.34) has a

solution v from the space W(G). But in this case in the domain D; the
vector function u = v exp(At) is a solution of the problem (3.1), (3.15) from
the space W4 (Ds). The uniqueness of that solution in the space Wi (Ds)
follows from the a priori estimate (3.16). Thus the following theorem is
valid.

Theorem 3.1. For any F € W4 (Ds) such that F|so = 0, there exists
a unique solution of the problem (3.1), (3.17) from the space W4 (D).

Definition 3.2. Let F' € Lo(D;). We call the function u € La(Ds) a
strong generalized solution of the problem (3.1), (3.37) of the class L if there
exists a sequence of functions uy € Wi (Dy) satisfying the homogeneous
boundary conditions (1.37) such that

klinc;lo HU’ - uk||L2(DS) =0, klggo HF - LukHLQ(DS) =0.
If F € Ly(Dy), then since the space Cg(Ds) = {v € C*(Dy) : suppv C
D} is dense in La(Dy), there exists a sequence Fj, € C}(Ds) such that
Fy, — F in Ly(D). Since Fy, € C§(D;), we have Fj, € W3 (D) and
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Fy| so = 0. Thus by Theorem 3.1 for F' = F}; there exists a unique solution
ur € W4 (Ds) of the problem (3.1),(3.37). From the inequality (3.16) we
have

[l — ] CllFx — F

La(Ds) S La(Ds)?

whence it follows that the sequence {uy} is fundamental in Ly(Ds), because

F, — F in Ly(Dy). Since the space Lo(D;) is complete, there exists a

function u € Lo(D;) such that up — w and Lug = Fy, — F in Lo(Dy).

Consequently, u is a strong generalized solution of the problem (3.1), (3.37)

of the class Lo. The uniqueness of the strong generalized solution of the

problem (3.1), (3.37) of the class Ly follows from the inequality (3.16).
Thus the following theorem is proved.

Theorem 3.2. For any F € Lo(D;), there exists a unique strong
generalized solution u of the problem (3.1), (3.37) of the class Lo for which
the estimate

| ClIF]|

L2(Ds) S L2(Ds)

is valid with a positive constant C' independent of F'.

3.4. Some examples of systems of differential equations of ma-
thematical physics.

1°. In the space of the variables z, y, z and t we consider the nonhomo-
geneous system of Maxwell differential equations for electromagnetic field
in vacuum [24, p. 640]

E,—rotH =F,, Hy+rotE = F, (3.38)

where E = (Ey, Es, E3) is the electromagnetic field vector and H =
(H1, Hs, H3) is the magnetic field vector. Light velocity is assumed to be
equal to unity.

Assuming U = (E, H), F = (Fy, F,), we can rewrite the system (3.38)
in the form

LU = U, + AU, + AoU, + AsU, = F, (3.39)

where A, As, As are quite definite real symmetric (6 x 6)-matrices. The
characteristic determinant of the system (3.39) is equal to & =
(€0,€1,62,83) € R, Qo(&) = E0E + €141 + &3 Ay + €3 A3 is the characteristic
matrix of that system. Here E is the unit (6 x 6)-matrix.

In accordance with (3.2), (3.5) and (3.7), for the system (3.39) we have
so=1, s=2s0+1, ki =ka=ks =2, A1(5/) = (5% +€§ +£?2;)1/2a

() =0, Ma(€)=—(G+E+8)"2
K;: & —)\i(f’) =0, :=1,2,3,
Sp:t=—(2+y2+22)2 Sy t=(a®+y7+2H)V2
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For the unit vector of the outer normal o = (o, g, a3, a9) = (&, )
on S3 we have [24, p. 642]

(QO(a)a =

Since ap < 0 on S3, according to (3.13) and (3.40) s; = 4 and the boundary
conditions (3.15) for the system (3.38) take the form

o= (3.41)

3

(H,a)|go = fo. (3.42)

Owing to (3.16), for every solution U = (E, H) € W} (Ds) of the prob-
lem (3.38),(3.41), (3.42) the a priori estimate

1000 < € (110 + 12l gy + 1F N )

is valid with a positive constant C, independent of U. Next, by the above
proven theorems, for every F' € Lo(D3) there exists a unique strong gener-
alized solution of the problem (3.38),(3.41), (3.42) of the class Ly with the
homogeneous boundary conditions f; = fo = 0. Moreover, if F € W} (Ds)
and F|go = 0, then this solution belongs to the class Wy (D3).

aio (Bao + [H x @)+ (H,a?].  (3.40)

(EOLO —+ [H X &])

20, Consider the nonhomogeneous system of Dirac differential equa-
tions in the complex form [24, p. 183]

4
0
;uk(aak)uﬂbuﬂ (3.43)

where the vector (a1, a2, as) is proportional to the magnetic potential, ay
to the electric potential, and b to the rest-mass; F' = (Fy, F», F3, Fy) is a
given and u = (uy, ug, us, uq) is an unknown 4-dimensional complex vector
function of the variables z1, x2, x3, x4 = t. The coefficients in the system
(3.43) are the following matrices:

000 1 0 0 0 —i 0 0 1 0
00 1 0 0 0 i 0 0 0 0 —1
M=o 1 0 of "o = 0 o 7|1 o o o
1000 i 0 0 0 0 -1 0 0
1 0 0 0 10 0 0
o -1 0 o o1 0 o
=109 o -1 ol P=loo -1 o
0o 0 0 -1 00 0 -1

If u = w + iv, then the system (3.43) with respect to the unknown
8-dimensional real vector U = (w,v) can be written as

4
EQU = Z 04Uy, +0U = I, (3.44)
k=1
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where F} = (Re F,Im F'), o is some real (8 x 8)-matrix, and

_(m 0 _( 0 ipe _(ms 0O _(pa O
01<0 u2>7 UQ(-i,UQ 0); 03<0 /1/3)’ 04<0 L4 .

The system (3.44) is the first order symmetric hyperbolic system whose
characteristic polynomial is equal to

p(€) = det Qo(§) = (& + & + & — &)°,

where & = (£0,&1,62,&3) € R*, Qo(§) = &ou + &101 + &a02 + 303 is the
characteristic matrix of the system.
Taking into account (3.2) and (3.6), for the system (3.44) we have

S = 1, s = 280 = 2, k’l = k‘g = 4, )\1(5’) == (f% +€§ +€§)1/27
(@) =—(E+E+E)" K &-X(E)=0, j=12
Syt t=—(24+ai+22)V2 Sy t= (a2 + a4 222

We rewrite the system (3.44) in the form of scalar equations and mul-
tiply the equations under numbers 1, 2, 5 and 8 by —1. Then we transpose
2 3 45 6 7 8
2 1 8 3 45 6 7>'
Then under the new notation A= (W, V, w1, wa), where W=(vy, wy,—v3),
V= (wg, —03, —w4)7 w1 = V4, We = —w2, we obtain the system of equations
which in the matrix form is written as follows:

these equations according to the permutation (

3

LsA = EA+ Y AjA,, + BA = P, (3.45)
j=1
where
0O 0 0 0 0 0O -1 0
0O 0 0 0 O 1 0 O
0O 0 0 0 -1 0 0 O
i = 0O 0 0 0 0 0 o0 1
0O 0 -1 0 0 0O 0 o0}
0O 1 0 O O O 0 O
-10 0 0O 0 0 0 O
0O 0 0 1 0 O O O
0 0O 00 0 -1 0 O
0 0O 000 O -—-10
0 0O 01 0 O 0 0
A, — 0 0O 1 0 0 O 0 0
0 0O 00 0 O 0o 1|’
-1 0 0 0 0 O 0 O
0O -1 0 0 0 O 0 0
0 0O 0 0 1 0 0 0
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o 0 0 o0 1 0 0 O

o 0 0 -1 00 0 O

o 0 0 0 00 -1 0
Ay — 0O -1 0 0 OO0 0 O

1 0 0 0 00 0 0}

o 0 0 0 00 0 1

o 0 -1 0 00 0 O

o 0 0 0 o1 0 O

F3 is the known vector function, and Bisa quite definite real (8 x 8)-matrix.
Obviously, the systems (3.44) and (3.45) are equivalent.

~ 3.~
It can be easily verified that if LI = E % + > A % is the principal
=1 ’

part of the operator from (3.45), then

2(ZgA)A =2 aa—vl/ V —2WrotV —2W gradw; + 2V 88_‘75/ + 2V rot W+
+ 2V grad ws + 2wy % — 2w div W + 2ws % + 2w div V,

ot ot
whence

2(LOA)A = (W2 + V), 4+ 2div[W x V]+
+ (W? + wd); + 2div]wsV — w W], (3.46)

where [W x V] is the vector product of the vectors W and V.
On the other hand, for every A € W3 (D3) analogously to (3.17) we
have

2 / (EOA)A dadt — / (Qo(a)A, A) ds,

Dy aDs
3.
where Qo(a) = Eag + > Aja;, a = (a,ap) = (a1, a2, a3, ) is the unit
j=1

vector of the outer normal to 9Ds. Therefore taking into account that

aolsg <0, [(a0)? — [aP]],

and using the well-known vector relations [24, p. 642]
W& = [W x &) + W -a]?, V?a® =[V xa]*+[V-a)?,
from (3.46) we have

(Qo(@)A, A) =
1
"o [(W2+V2)O‘(Q)+2[WX V]aag+ (wi+ws)ag 42wV —wi Waag | =
0
1 -~ o~
~ o [(wlao —Wa)? + (waco + Va)? + (W? + V?)ag+
0

12[W x V]dag — (W&)? — (vaﬂ -
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1 ~ ~ ~
= — [(wlao —Wa)? + (weap + Va)> + [W x a)*+

Qp
12[W x V]dag + [V x aﬂ. (3.47)
Assume
I=[W xal?+2[W x Vlaag + [V x a)?. (3.48)
Let first
a= 620 = (0,0, |a0|) = |a0|(0, O, 1). (349)

Then it can be easily verified that
W x & = o> (W + W),
2[W x V]aag = 2ap|ao|(Wr Ve — Wa Vi), (3.50)
[V x a]? = Jao(V? + V).
Therefore in the case (3.49) due to the fact that |ag| = |a], ag < 0,

~2
o3 + |a] =1 and hence |ag|? = %, from (3.48) and (3.50) we have
1 1
I= §(W1 *‘/2)24‘ §(W2+V1)2. (3.51)

Let T be the matrix of the orthogonal transformation which transforms
the vector & into ag = (0,0, |ag|) not changing the space orientation. As is
known, the action of that transformation on the vector x = (21,22, z3) for
a # —ay is given by the following equality [99, p. 68]:

(@+ap) =, - 2 L < ~
Tr=2—-— —5——=—=—((a+a — (a-x)ag, a# —ap.
a%+aoa0(+0)+a%( )0 # 0

Using the properties of the vector and mixed product of vectors, we can

see that

I=[W xal?+2[W x Vlaag + [V x a]? =
=[TW x Ta)? + 2[TW x TV]Taag + [TV x Ta)? =
= [TW x o) + 2[TW x TV]apag + [TV x ). (3.52)

Let v, v5 and v3 be the rows of the matrix T, i.e.

Vi1 Viz Vi3 1551
T=|va1 vo2 o3| =112
V31 V32 V33 V3

By (3.49)—(3.51), from (3.52) we obtain
1 1
I=50mW- V)% + 5 (W + V)2, (3.53)
Now from (3.47),(3.48) and (3.53) it follows that

(QO(O‘)AvA) = Ozio (wlao - Wa)2 + ((UQOéQ + V&)2+

1 1
5 (W = V) 4 5 (W + ylvﬂ. (3.54)
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According to (3.13)—(3.15), from (3.54) for »5; = 4 we obtain the fol-
lowing boundary conditions for the system (3.45),

(wiao = Wa)|g = fi, (w200 +Va)|g = fo,

(3.55)
(W — VQV)‘Sg = f3, (LW + V1V)‘S(2; = f4.

By (3.16), for every solution u € Wy (Ds2) of the problem (3.43), (3.55) the
a priori estimate

4
il ey < C( DMl gy + 1F gy, )» C = comst >0,
j=1

is valid.

Further, just as when considering the problem (3.38),(3.41),(3.42) we
find that for every F' € Ly(D3) there exists a unique strong generalized
solution of the problem (3.43), (3.55) of the class Ly with the homogeneous
boundary conditions f; = 0, i = 1,...,4. Moreover, if F € W3 (D3) and
F|gg = 0, then this solution belongs to the class W3 (Ds).

39, The system of equations of the crystal optics has the form
1~ 1 ~
~E.Ei—10tH=F;, —pH;+rotE =F,, (3.56)
c c

where E and H are the same as for the Maxwell equations (3.38), ¢ is the
light velocity, p is the constant of magnetic permeability, F5 is the diagonal
(3 x 3)-matrix with elements 1, e5 and e3 on the diagonal, and ¢; are the
dielectric constants is valid in the direction of three coordinate axes.

In the notation U = (E, H), F = (F}, F3) the system (3.56) takes the
form

E.Uy + AU, + AyU, + AsU. = F, (3.57)

where A;, i = 1,2, 3, are the same matrices as in (3.39), and
- 1
E. = E dlag(gla €2,€3, U, 1, ‘LL)

Since all the coefficients in (3.57) are real symmetric matrices and E.
is positive definite, the system (3.57) is hyperbolic [24, p. 587].

Assume o; = (u/c?)e;, i = 1,2,3, and 01 > 09 > 03. If K and S are
respectively the cone of normals and that of rays for the system (3.56), then
as is known, they are algebraic surfaces of sixth order given by the equations
[24, p. 599]

3 3 ¢
K: 2 _0; 1-— —=t = 0,
[16* -~ o]t - 3 =]
\ . (3.58)
€T
S:1-— ——— =0,
; r2 — a;th
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where p? = €2 + €2 4+ €2 1?2 = 22 + 2% + 23, and instead of z, y and z are
written x1, xo and x3, respectively.
In accordance with (3.2), (3.5) and (3.7), in this case we have

so=2, s=250+1=5, ki=ka=kys=ks=1,
ks =2, x5 =5, A3(¢)=0,
the remaining \;(£’) are the roots of the first of the equations (3.58) with
respect to & which determine the sheets K; : & — A;(§’) = 0 of the cone of

normals K. If ST = SN {t > 0}, then S5 = I(K?) is the convex shell of
ST, and Ss is a piecewise smooth conic manifold [24, p. 602].

Remark 3.5. Note that in the given case the constancy of multiplicities
k; of the roots X\;(¢'), & € R™\ {(0,...,0)}, or what is the same, the
fulfilment of the inequalities (3.2) is violated only on the set of measure zero
in R™, but this fact, as it can be easily noticed, does not affect the validity
of the a priori estimate (3.16) and the theorems proven above. Analogous
remark is true for the coefficients ¢}, (a) in the boundary conditions (3.15)
which can be assumed to be bounded and measurable.

As for the unknown vector function V = (E.)Y/2U, the system (3.57)
can be rewritten equivalently as

3
Vit Y AiVi, =F, (3.59)
i=1
where A; = (EE)_I/QAi(EE)_l/Q, i = 1,2,3, are likewise real symmetric
matrices, F = (E.)"Y?F. Let Qo(¢) be the characteristic matrix of the

system (3.59), and let T be the orthogonal matrix from the corresponding
equality (3.3). Then by (3.10) and (3.11) applied to the system (3.59) we
have
~ Do 12 12
(@@ m) = =3 [(s@) = 2s(@) 2] =
j=1
5 2

= [(it) = Aste) T | =

5

- z_: [(Xﬂ'(o‘) o) "? zi: Tijni} -

5 6 )

=3[ @im], ack, (3.60)
j=1 =1

where according to (3.2) we obtain XZ = A, Ny = Ao, Xg =\ = A3,

s = s, m € RS, (f’n)j is the j-th component of the vector T’n, Gii(o) =

(Xj(a) — X5 (a))l/Qﬁ-j are bounded measurable functions.
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By virtue of (3.13) and (3.60), the boundary conditions (3.37) for the
system (3.59) take the form

(igﬁ(a)vi)

which with respect to the unknown U = (E.)"Y/2V of the initial system
(3.57) can be written in the form

(Zﬁjaﬁ(a) diUi)

where d;, i = 1,...,6, are the diagonal elements of the matrix (EE) and
« is the unit vector of the outer normal to SY. Therefore by the above-
proven Theorem 3.1, for every F € W (Ds) such that F| so = 0 there exists
a unique solution of the problem (3.57), (3.61) from the space W3 (Ds). If,
however, F' € La(Ds), then there exists a strong generalized solution of the
same problem of the class L.

S8

=0, j=1,...,5, (3.61)

S0

5

1/2
K

3.5. Boundary value problems in dihedral domains. In this sub-
section we will give a brief scheme of investigation of boundary value prob-
lems for the system (3.1) with the symmetric principal part in the dihedral

. n .
domain D = {(1,...,2,,t) € R"™ ¢ aft + Yoatr; <0, i = 1,2}
j=1

bounded by the hypersurfaces II; : ajt + oz]lxj =0 and II, : adt +
j=1

> a?:ﬂj = 0, where o/ = (a7,...,a, ) is the unit vector of the outer
j=1
normal to dD at the point of the face Il; = II,N 9D, j # 1,2, a! # o?. For
the sake of simplicity it will be assumed that of, <0, j =1,2.

Consider the boundary value problem which is formulated as follows:
find in the domain D a solution u of the system (3.1) by the boundary
conditions

I‘ju|Hj =fI j=1,2, (3.62)

where IV are given real constant (¢ x m)-matrices, and f/ = (f{,..., fL,)
are given s;-dimensional real vectors, j =1, 2.
Below, the elements of the matrix B in the system (3.1) will be assumed

to be bounded measurable functions in D, i.e. B € C (D). Introduce into
consideration the following weight spaces:

W3 (D) = {u € Laoc(D) : uexp(—Xt) € Wy (D)},

lllyy oy = [[exp(=2) |11 )

L2,)\(D) = {F € L2,loc D) : Fexp(fAt) € LQ(D)}a
1L, o) = 1 Fexp(=20)| ,, )

)
(
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Loa(Ij) = {f € Lasoc(Il;) : fexp(—At) € Ly(II;)}, j=1,2,
Hf||LM<n o= erXp —At) HLQ(H )

where X is a real parameter, and Lo 1oc(D), W3 (D), Laoc(IL;), j = 1,2, are
well-known function spaces [121, p. 384].

Let Amax(P) be the largest characteristic number of the nonpositively
defined symmetric matrix BT B at the point P € D, where () denotes
transposition. Then due to the fact that B € L., (D), we have

A2 = sup Amax(P) < 400. (3.63)

PeD
Let the faces II; and Il of the dihedral angle D be characteristic ones,
namely o/ € K, where s; > [‘H‘l} 7 =1,2, and K; is the i-th connected
component of the cone of normals K of the system (3.1) considered in the
Subsection 3.1. In accordance with (3.13) and (3.14), in the boundary
conditions (3.62) we put s; = »,,, and as I'V we take the matrix of order

(545, x m) which is composed of the first s rows of the matrix C% (a7),

5j
7 =1,2, and the number »g, Is defined in (3.12). Under these assumptions

the following proposition is valid.

Lemma 3.2. For every solution u € W217)\(D) of the problem (3.1),(3.62)
for A > Ao the a priori estimate

il (3.64)

j
Lo S ZZ 1N, vy + HFIIL ()
2,7 \/ﬁ] e 2,7 2,7
is valid, where »; = . J =12, and the number \g > 0 is defined from
(3.63).

Proof of Lemma 3.2 is similar to that of Lemma 3.1 [73].

Let f7=0,j=1,2,and F € Ly (D). Analogously to Definition 3.2
from Subsection 3.3 we call a function u € Ly (D) strong generalized solu-
tion of the problem (3.1), (3.62) of the class Ly y if there exists a sequence of
functions uy € W4 (D) satisfying the homogeneous condition corresponding

0 (3.62) such that

lm ||u — ug| = lim ||F — Lug]| =0.
k—oo k—o0

Ly A(D) Ly A (D)

Below the elements of the matrix B will be assumed to be bounded in
the closed domain D together with their partial first order derivatives, and
the faces II; and Il of the dihedral angle D be tangent to the outer cone
of rays of the characteristic conoid of the system (3.1), i.e

s1=s0=s5, ol €K, j=1,2. (3.65)

Let \. . (P) be the largest characteristic number of the nonnegatively

max

defined symmetric matrix B Bz, at the point P € D,i=1,...,n+1,
where we have introduced the notatlon Zp41 = t. Then takmg mto account
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that by our assumption the elements of the matrices By,, i =1,...,n+ 1,
are bounded in D, we have A2 = max sup A\ (P) < +oo.
1<i<n+1 pep

Consider the condition
1
A> Ao+ 3 (n+ 1)\ (3.66)

Analogously to Theorems 3.1 and 3.2 from Subsection 3.3 we prove the
following

Theorem 3.3. Let f7 =0, j = 1,2, and let the conditions (3.65) and
(3.66) be fulfilled. Then for every F' € Lo A(D) there exists a unique strong
generalized solution w of the problem (3.1),(3.62) of the class Ly x. For

FeWjy={ueWj,(D): ulap = 0}, this solution belongs to the space
Wy (D).

Here we give examples of systems of differential equations from math-
ematical physics and boundary value problems corresponding to these sys-
tems for which Theorem 3.3 is valid [73].

As D C R* we take the dihedral angle D : t > |z3], n = 3, whose faces

are the characteristic surfaces Iy : t —x3=0,t >0, and IIs : t+ 23 =0,
t>0.

19. For the system of Maxwell differential equations (3.38) such kind
of boundary conditions are

(Hy + (=1 BV, = fl, (Hi+ (-1 By, =13

E3|Hj =1, H3‘Hj =fi, i=12

20, For the Dirac differential equations, as the boundary conditions
(when Theorem 3.3 holds) we can take

(vs + (=1va) |y, = A, (wat (=D wa) |y = £,
(1 + (D) o)y = £, (o (CD) )|y = AL G=1.2

Remark 3.6. The method of proving the existence of solutions of the
problems presented in Theorems 3.1-3.3 in fact uses the requirement that
the data carriers of the problem be tangent to the outer cone of rays of
the characteristic conoid of the system (3.1). For the dihedral domain this
requirement is reflected in the condition (3.65). When the condition (3.65) is
violated, the proof of the existence of a solution of the problem (3.1), (3.62)
is carried out according to a different scheme in several steps [74]:

(i) using the Fourier transform with respect to the variables varying
in the subspace IIy N 1ly, similarly to Section 1 of Chapter I we prove the
existence of a solution of the problem (3.1), (3.62) in the weight functional

space CIODQ (D);
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(o)

(i) it is proved that the space ®¥ (D) (®*(Il;)) is densely embedded
into the space La(D) (L2(I1;));

(iii) on the basis of the facts cited in (i) and (ii), we prove the existence
of a strong generalized solution of the problem (3.1), (3.62) by using the a
priori estimate (3.64).

The same approach can be used for the investigation of the above prob-
lem when one or both faces IT; and II; are noncharacteristic [74].



CHAPTER 2

Multidimensional Versions of the Goursat and
Darboux Problems for Degenerating Second
Order Hyperbolic Equations

1. A Multidimensional Version of the First Darboux Problem
for a Model Degenerating Second Order Hyperbolic Equation
in a Cone-Shaped Domain

1.1. Statement of the problem. In the space of the variables zq,
To, 3, ¢ we consider a degenerating second order hyperbolic equation of
the type

Lu = upy — Uz, — T8 Uggzy — Uggms = F, (1.1)
where F' is a given, and u is an unknown real function, m is a natural num-
ber. The equation (1.1) degenerates parabolically for x3 = 0 and is strictly
hyperbolic for 3 > 0. For z3 < 0, the equation (1.1) is ultrahyperbolic
when m is odd and strictly hyperbolic when m is even.

Below for the equation (1.1) in the case m = 1 we will construct char-
acteristic conoids Ko and K4 with vertices at the point O(0,0,0,0) and
A(0,0,0,tp), to > 0, respectively, and consider the boundary value problem
whose data carriers are a part of the hypersurface 3 = 0 and some parts
of the conoids Ko and K4 contained in the half-layer {(xl, Z9,x3,1) € R*:
0<t<ty, 3> O}. Note that already for m = 2 the characteristic conoid
Ko of the equation (1.1) has sufficiently complicated geometric structure
which makes it difficult to formulate the boundary value problem. Of inter-
est is the fact that for the equation

Ut — Ugyzy — Uzpwy — T3Ugszey = F

the characteristic conoid Ko degenerates into the two-dimensional conic
manifold {(z1,z2,23,t) € R*: t? —2} — 23 =0, 23 = 0}. For the equation

m
x3 Ut — udflibl - UCEQCEQ - ud?gd?g = F

the characteristic conoid K¢ for m = 1 consists of only one bicharacteristic
curve {(a:l,acg,acg,t) ERY: 21 =2,=0, t? = %x%, T3 > O}, and for
m = 2 the conoid K¢ degenerates into one point O(0, 0,0, 0).

By K 5 and K} we denote the parts of the characteristic conoids Ko
and K4 with vertices at the points 0O(0,0,0,0) and A(0,0,0,tg) which are
contained respectively in the dihedral angles {(:cl,:cg,:cg,t) € R*: x3 >

58
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0, t > 0} and {(ml,xg,xg,t) €ERY: 23>0, t< to}. Let the domain D,
lying in the half-layer {(xl,xg, x3,t) € R : <t <tg, 23 > O}, be bounded
by the hyperplane z3 = 0 and by the characteristic hypersurfaces K 5 and
K7 of the equation (1.1). Assume Sy = 9D N {z3 = 0}, S = 0D N K,
Sy =0DnN KZ

For the equation (1.1) we consider a multidimensional version of the
Darboux problem formulated as follows: in the domain D, find a solution
u of the equation (1.1) satisfying the boundary condition

ulg, s, =0 (1.2)

Note that the operator L appearing in (1.1) is formally self-conjugate,
ie. L* = L.

The problem for the equation (1.1) in the domain D is formulated anal-
ogously by means of the boundary condition

u‘sou& =0. (1

.3)

By E and E* we denote the classes of functions from the space C?(D)

satisfying respectively the boundary condition (1.2) or (1.3). Let W, (W7)

be the Hilbert space with weight which is obtained by closing the space FE
(E*) by the norm

|lul|? = / [w® +uZ, +xsul, +ul, +ui]dD.
D

Let W_ (W*) be the space with the negative norm constructed on the
basis of Ly(D) and W (W5) [6, p. 46].

Definition. If F € Ly(D)(WX*), then the function w is said to be a
strong generalized solution of the problem (1.1), (1.2) of the class W, (Ls) if
u € W4 (La(D)) and there exists a sequence of functions u, € E such that
uy, — u in the space W (L2(D)) and Lu,, — F in the space W* (W*).

1.2. Construction of the characteristic conoids Kp and K4 of
the equation (1.1). The system of ordinary differential equations of a
bicharacteristic strip [24, p. 577]:

xz:p&a fizfpa:ia iil,...,n,

for the equation (1.1), i.e. for p = &3 — &7 — 2365 — &2, 24 = t, n = 4, has
the form

1 =261, @2 =236, d3=—28, d4=2E4, (1.4
él = 0, 52 = Oa 53 == 5%7 54 == 07 (15

where #; (£;) is the ordinary derivative of the function z = z;(7) (& = &(7)
with respect to the parameter 7. To construct the characteristic conoid Ko,

)
)
)
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the initial conditions for z; = z;(7) and § = &(7), 1 <i <4, when 7 =0
must be the following:

2i(0)=0, 1<i<4; &(0)=a, &(0)=5, &)=y, &(0)=4. (1.6)

In addition, since we are interested in zero bicharacteristic strips, i.e. in
strips along which the first integral p = p(z,&) of the system (1.4),(1.5)
vanishes, the real parameters «, 3, v and § from (1.6) with regard for
23(0) = 0 should obey the equality

52 —a’—42=0
or
d=xva?+~2 (1.7)

Integrating the differential equations (1.4), (1.5) and taking into account
the initial conditions (1.6), we obtain

51 = «, €2Zﬁa €3:’7+62T7 €4:65 7—207 (18)

2 .

) = =201, 9 =2yB81% + = (373,

1 2 B 35 (1.9)
x3 = —2v7 — (%72, x4 =207, T>0.

The equalities (1.8) and (1.9) provide us with a parametric representa-
tion of the bicharacteristic strip of the equation (1.1) satisfying the initial
conditions (1.6).

By (1.7) and (1.9), we have

4(yr)2 =22 — 22, (Br)? = —a3 — 29T (1.10)
For v > 0, since 7 > 0, from (1.10) we find that
2yr = (22— 22)2, Br=(—as— (22— 2)V2) Psgnp. (111
It follows from (1.10) and (1.11) that for v > 0 the condition

3+ /22— 22 <0 (1.12)

must be fulfilled along the bicharacteristic strip.
By (1.9) and (1.11), we have

T2 = BT {277 + % (57)2} =(—a3— (2F - x%)1/2)1/2><

2 1/2
x[(@3 = a2 4 S (— s — (0]~ )Y P sgn =

1 1/2
=3 ( — :c% — (:c?1 — x%)1/2) [(xi — 13)1/2 — 2x3] sgn . (1.13)
Squaring both parts of the equality (1.13), we obtain
1 2
x§:§ [ — a3 — /2 — 2% [\/xi—x%—2x3] : (1.14)
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Thus all bicharacteristics of the equation (1.1) coming out of the ori-
gin 0(0,0,0,0) for v > 0 lie on the characteristic hypersurface which is
described by the equations (1.14).

For v < 0 we analogously obtain

297 = —(@ =)/, Br=(—zs+ (@ - o)) Psgnp,  (115)

and hence

T9 = (BT {277 + % (57’)2} =(—a3+ (2F — x%)1/2)1/2><

2
x[ = @3 =2+ 2 (s + (@F = o)) | sen s =
1 1/2
= —= ( — x§ + (xi — x%)lﬂ) / [(mi — a:?)l/Q + 2303] sgn (3. (1.16)

3

It follows from (1.15) that all bicharacteristics of the equation (1.1)
coming out of the point O for v < 0 lie on the characteristic hypersurface
which is described by the equation

x%:% [ xi—x%—xzﬂ [\/33421—33%4-21‘3}2. (117)

Obviously the equalities (1.16) and (1.17) make sense under the condi-
tion x2 > 23 + 22.

Remark 1.1. In accordance with the above-considered cases, the char-
acteristic conoid Ko with the vertex at the point O consists of two parts
K} and K2. K}, is given by the equality (1.14) and lies, by (1.12), en-
tirely in the half-space x3 < 0, i.e. in the closed domain where the equation
(1.1) is ultrahyperbolic, while K2 is given by the equation (1.17) and lies
in the closed domain {(z1,22,23,t) € R* : 3 > x} + 23}. Analogously
we can show that the characteristic conoid K 4 with the vertex at the point
A(0,0,0,t9) consists of two parts K} and K% which are described, respec-
tively, by the equations

1
K m%zg [— x3f\/(x47t0)2793ﬂ [\/(:547150)2793%72&3}2,

K2 m%z% [/ (@a—to)2— a2 —a] [/ (za—to)?—23+223]°,

where, just as above, x4 = t.

Let us now show that K(Jg = Koﬂ{(ml,xg,xg,t) ER*: 23>0, t> 0}
can be represented in the form
KG:t=g%(z1,20,23) € C®(Q) NCAQ), (1.19)

where ) = {(:cl,:cg,:cg) € R3: 23> 0}.
Indeed, it is obvious that K g Cc K %, and since this case corresponds to
~v <0, in the notation z = g7 from (1.9) and (1.15) we have

2
IQ:—\/J?Z—J}'%Z—FgZQ, r3 = /22 — 23 — 22,

(1.18)
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whence
3 — a2 =a3+ 27 (1.20)
and xg = — (w9 + 22 )z+—z or
23 + 3232 + 320 = 0. (1.21)

As far as for p = 3x3, ¢ = 3x5 the discriminant
A= —4p® —27¢> = —4-27a3 — 27 - 9z = —27(4x3 + 9232)

of the cubic equation (1.21) is negative for x3 > 0, this equation, as is

known, has only one real root z = zg(z2,x3) for 3 > 0, |z2| + |z3] # 0,
which is given by the Cardano formula [83, p. 237]

9 o 3
o(z2,z3) f—m2+ —:E2+a:3 7—1‘27 Z:c2+a:3.

By (1.20), (1.22) and the fact that the coordinate ¢ = x4 of the points
of the mamfold K 5 is nonnegative, we obtain

KS:t= \/3:%—}—(3034—2'8(3:2,303))2, x3 > 0. (1.23)
The relation (1.23) implies (1.19), since by (1.22)
Zo(l‘g,l‘;g) S COO(Ql) N C(ﬁl),

where Q = {(z2,23) € R*: 23 > 0}.
Similarly to (1.19) and (1.23), taking into account (1.18), the manifold
K C K?% can be represented as

Ky : t=g (v1,72,73) € C™(Q) NC(Q), (1.24)

where

_ 2
g (z1,22,23) = to — \/!C% + (23 + 25 (w2, 23)) 7,
and the function zo(x2,x3) is given by the equality (1.22).
By the definition of the domain D we can see that

51CK5, SQCKZ, 0D = S,U S U Ss. (1.25)

1.3. Self-conjugacy of the problems (1.1), (1.2) and (1.1), (1.3).
Since the class E (E*) of functions vanishing in some (its own for every
function) neighborhood of Sy is likewise dense in the space W, (W) [89
p. 81], the class F (E*) will be assumed below to possess this property.

Let us show that for every u € F the inequality

[Lullyr < erlully, (1.26)

holds, where the positive constant ¢; does not depend on w, || - ||, =

I s =1
Indeed, let v = (v1,v9,v3,10) be the unit vector of the outer normal
to 0D, i.e. v; = cos(m,x;), ¢ = 1,2,3, vy = cos(n,t). Since the deriva-

i i 0 _ 0, 9 _ o _ .0
tive with respect to the conormal 7% = v 5; — 11 Jar — T3V2 5o — V3 Gag
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corresponding to the operator L is an interior differential operator on the
characteristic hypersurfaces of the equation (1.1), by (1.12) for the function
u € E we have

ou
anls =" (1.27)

By definition of the negative norm, the equalities (1.2), (1.27) foru € E
and the equality (1.3) for v € E* C W7, we have

_ ~1—1 ~ _ -1 _
[ Lull . = 5861114% Il (£, 0) 1y ) = Sup ol (Fsv) ) =
ou
-1
= sup ||v —vds+
SoUS1USs
+ sup ||v||V_V1 / [ = Wevs + Ug, Vg, + T3Ug, Vg + Uy Vay | dD =
veE* +
D
= sup ||v||V_V£ / [— UV + Uz, Vg + T3UgyVgy + uxgvxg] dD. (1.28)
veE* +
D
Using the Cauchy and Schwartz inequalities, from (1.28) we have

[ Lully. <

< sup ol [[(ubid, vamd, a2 ) (o2, rawd, o2, aD <
sup

1/2
< sup Ibllt | [ (442, 4o, + a2 ) a)
D

1/2
X |:/(U,52 + 02 4x3v2, +02,) dD} < seué) ||v||;vl+
e foe
D

ullw, Mol =llwllw,
+ + +

which proves the inequality (1.26).
Analogously it can be proved that for every v € E* the inequality

L7l < eallv]ly, (1.29)
is valid with a positive constant ¢, independent of v.

Remark 1.2. By (1.26) ((1.29)), the operator L : W, — W* (L* = L :
W3 — W_) with the dense domain of definition £ (E*) admits the closure
which in fact is a continuous operator from the space W, (W) to the space
W= (W_). Leaving for that closure the same notation L (L* = L), we can
say that it is defined on the whole Hilbert space W, (W7).

Let us now show that the problems (1.1), (1.2) and (1.1), (1.3) are self-
conjugate, i.e. the inequality

(Lu,v) = (u, Lv) YueW,, Vve Wi (1.30)
holds.
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Indeed, by Remark 1.2 it suffices to prove the equality (1.30) when
u € F and v € E*. We have

ou ov
(Lu,v) = (Lu,v),, oy = / |:’U v U a—N} ds + (u, L), - (1.31)

oD

Since the equality (1.3) is valid for v € E*, analogously to (1.27) we

have
ov

ONls,
From (1.31), owing to (1.2), (1.37) as well as (1.3), (1.32) for v, imme-
diately follows (1.30).

0. (1.32)

1.4. A priori estimates. The existence and uniqueness theo-
rem. We have the following

Lemma 1.1. For any function u € W, the estimate
cllull, oy < 1wy (1.33)
is valid with a positive constant c independent of u.

Proof. By Remark 1.2, it suffices to prove the estimate (1.33) for v € E. In
this case, since the function u vanishes in some neighborhood Sy C 9D, as
it can be easily verified the function
g~ (z)
v(x,t) = / e Mu(xz,7)dr, X =const >0, z=(x1,zs,23),
t

where t = g~ () represents by virtue of (1.24), (1.25) the equation of the
characteristic hypersurface Ss, belongs to the space E*, and the equalities

vi(x,t) = —e Mu(x,t), ui(z,t) = —e M (z,t) (1.34)
are valid.
By (1.2), (1.3), (1.27), (1.32) and (1.34) we have
(Lua ,U)LQ(D) =
ou
= [ N ds + [ — UVt + Uy, Vg + T3Ug, Vay + umvxa} dD =
oD D
= / [f UVt + Ugy Vg + T3UgyVay + umvxa} dD =
D
= /e’Atutu dD + /e*)‘t[f Ug, tVe) — T3VgytVzy — UgstVay | dD, (1.35)
D D

1 1
/e_)‘tutu dD = 3 / e Myl ds + 3 /e_)‘t)\u2 dD =
D oD D
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1 1 1 1
= 5/6_)‘%%0 ds+§/e)‘t)\vf dD= E/e)‘tvfuo ds—l—a/e”\t)\vf dD, (1.36)
Sa D Sa D
/e)‘t [ — Vg Vg, — T3VgotVUgy — U%tvxg] dD =
D
1 1
:7§/e)‘t [02 4a3v2, +v2, Jvo ds+ 5/@”)\[1}3.1 +agv: 402, ] dD. (1.37)
oD D

As far as v|g, = 0, the gradient Vv = (g, ,Vzy, Vzs, v¢) i proportional
to the vector of the outer normal v on S, i.e. for some « we have v, = avy,
Vg, = Ql2, Uz, = QV3, Uy = ajg on 9. Thus taking into account that Sy is
a characteristic surface, we get

(vf — 2, — w302, — Uij) o o?(vg —vi —xsvs —v3)| =0. (1.38)
2 2
It is easy to see that
1/0|S0 =0, y0|31\0 <0, y0|52\0 > 0. (1.39)
By virtue of (1.3),(1.38), (1.39) we arrive at
1 1
3 /e”vfuo ds — 5/6)"5 [02, + 2302, + 02, Jrods =
So D
1 1
- i/e)‘tvfz/o ds — 3 /eAlt [02, + 2302, + 02, v ds—
S2 Sl
1
~3 /eAlt [’uﬁl +£E3U§.2 +v§.3]1/0 ds >
Sa
> L Moy dsf1 e)‘t[’u2 + z302 + 02 ]1/ ds =
Z3 + Vo 5 oy T T3V, T UL, Vo ds =
Sa Sa
1
=3 /eAlt [vf —v2, —a3v2, — 02 Jugds = 0. (1.40)
Sa

Taking now into account (1.34), (1.36), (1.37) and (1.40), from (1.35)
for the fixed A > 0 we obtain
1 1
(Lu,v), oy = 5 /e’\tvfyo ds + 3 /e)‘t)\vt2 dD—

2
Sa D

1 1
—5 [ M e, 2 Jnds + 5 [ A2, o, +02,]dD 2
oD D

A
> 5/6)‘t[vt2+v§.1 +a:3’u§2 +v§3} dD >
D
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A 1/2 1/2
2 5 |:\/e)\tv§ |:/€At vt +va:1 +x3vxz +Um3) dD:| =

D D
A 1/2 1/2
— 5 |:/6—At 2 |: e)\t vt +%251 «|»;Ij‘3’l)32 +Ug233) dD:| >
D

D
A i 1/2 1/2
=_—e 2 0 u dD (vf +v2, + z302, +v2,)dD (1.41)
D

1/2

because |p > 0 and e~ 230 = (inf e )" > 0.

Since v|g, = 0 (u|s, = 0), standard reasoning allows one to prove that
the inequalities

/UQdDgco/thdD (/quDgco/ude)
D D D

D

are valid for some ¢y = const > 0 independent of v € E* (u € E). This
implies that in the space W, (W) the norm

ol s, _/(Uz+u§1+x3v32+v33+v§) dD
D

is equivalent to the norm

|| = / (v + 02, + a0, +02,)dD. (1.42)
D
Therefore leaving for the norm (1.42) the same notation ||1J||W+ W
+
from (1.41) we obtain
(Lt 0) iy 2 Pl 10 5 (1.43)
where p = % e~2 0 > 0. Thus we can easily verify that sup u(\) = u(%) =

A>0
(6 to) -1
Applying the generalized Schwartz inequality

(L, v) < [| Lufly. (0]l
to the left-hand side of (1.43), after reduction by ||v|| . we obtain the ine-
+
quality (1.33) with ¢ = g > 0. Thus the lemma is proved. O
Lemma 1.2. For every function v € W the estimate

cllof <[ Lofly_ (1.44)

Ly (D)

is valid with a positive constant ¢ independent of v.
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Proof. Just as in the case of Lemma 1.1, by Remark 1.2 it is sufficient
to prove that the inequality (1.44) is valid for v € E*. Let v € E*. We
introduce into consideration the function

t

u(z,t) = / e u(x,7)dr, A= const >0,

gt (z)
where t = gt (z) is by virtue of (1.19), (1.25) the equation of the character-
istic hypersurface S;. The function u(x,t) belongs to the space F, and the
equality
ug(z,t) = eMo(z,t), vz, t) = e Muy(z,t) (1.45)
holds.

By virtue of (1.2), (1.3), (1.27), (1.32) and (1.45), analogously to (1.35)—
(1.40) we have

(Lv,u),, ) = —/e)‘tvtv dD+

D
+/e*)‘t [uzltuml + T3UgptUg, + umstuma] dD, (1.46)
D
At 1 A, 2 1 Ay, 2
—[e vtvdD:f§ e vyods+§ e dD =
D D D
1 At, 2 1 —Aty, 2
=-5/c¢ ’Ul/ods+§ e "Auy dD =
Sy D
1 —At, 2 1 —Aty, 2
=5 | ¢ Tuir ds + 5 /¢ Auj dD, (1.47)
Sl D

—Xt
/e [uxltuxl + T3Ug,tUg, + u%tu%} dD =

D
1 1
= 5/@‘“ [ul +azsul, +u2 |vods+ 5/6_’\’5)\[1&3.1 +agul, +ul,] dD, (1.48)
8D D
(uf — w2, —xsul, —ul)) o = 0, (1.49)
1
1 1
fi/e*)‘tufz/o ds + 3 /e*)‘t [uil + zul + uig}l/o ds =
S oD
1 1
=3 /e’”ufl/o ds + 3 /e*)‘t [uil + x3ul, + uig}yo ds+

Sl Sl

2
Sa

1
+— /e*)‘t [uil + asguiz + uis}l/o ds >
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1
S I A R R Y S MR
S1

By (1.45) and (1.47)—(1.50), from (1.46) it follows that

A
) ) /e_)‘t [uf +u2, +axsul , +u2 ] dD >
D

> i —At QdD 1/2 —At(,,2 2 2 2 dD Yz _
Z 5 e “Tuy e (ut + Uy, +x3uy, + um) =
D D
A 1/2 1/2
=2 {/e)‘tqﬂ dD} [/e—kt (uf +ul, + zzul, +ul,) dD} >
D D
1/2

> %e—;m{/vzdp}uz{/(ugﬂgl nggﬁuig,)w] :

whence just in the same way as in obtaining the inequality (1.33) from
(1.44) in Lemma 1.1, we arrive at the inequality (1.44). Thus the lemma is
proved. O

Due to the results of [86, pp. 184-186], the consequence of the inequa-
lities (1.26) and (1.29), the equality (1.30) and Lemmas 1.1 and 1.2 is the
following

Theorem 1.1. For every F' € Lo(D) (WZ*) there exists a unique strong
generalized solution u of the problem (1.1), (1.2) of the class Wy (Lg) for
which the estimate

ull yo) < Coll E'llyy -

Ly (D)

is valid with a positive constant co independent of F.

2. The Characteristic Cauchy problem for Some Degenerating
Second Order Hyperbolic Equations in Cone-Shaped Domains

2.1. The case of equation with noncharacteristic degeneration.
In the space of variables x1, x2, t we consider a degenerating second order
hyperbolic equation of the type

Lu = uy — t" (Ugyzy + Unopzy) + Q1lUg, + G2Uz, + agus +agu=F, (2.1)

where a;, © = 1,...,4, F are given and u is an unknown real function,
m = const > 0.
By
2+m 5w 2
D20<t<|:17 5 Ti| ,T:($%+$§)1/2<2_'_—m
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we denote the bounded domain lying in a half-space ¢ > 0, bounded above
by the characteristic conoid

2 P 2
S:t:{lf—err]2+ , T <
2 2+m

of the equation (2.1) with vertex at the point (0,0, 1) and below by the basis

So:t=0, r<
0 7n_2—|—m

of the conoid on which the equation (2.1) has a noncharacteristic degenera-
tion. Below in the domain D the coefficients a;, i = 1,...,4, of the equation
(2.1) will be assumed to be functions of the class C?(D).

For the equation (2.1) we consider the characteristic problem which is
formulated as follows: in the domain D, find a solution u(x1,x2,t) of the
equation (2.1) satisfying the boundary condition

ul g =0. (2.2)

As it will be shown, the Cauchy problem on finding a solution of the
equation

L*v = vy —t" (Vaya, + Vagas) — (@10) 2, — (a20)z, — (a3v)i +agv = F (2.3)
in the domain D by the boundary conditions
g, =0, vi|g =0 (2.4)

is the problem conjugate to the problem (2.1), (2.2), where L* is the operator
formally conjugate to L.

Here by E and E* we denote the classes of functions from the Sobolev
space WZ(D) which satisfy respectively the boundary condition (2.2) or
(2.4) and vanish in some (its own for every function) three-dimensional
neighborhood of the circumference ' = SN Sy : r = 2+Lm’ t =0 and of the
segment [ :x1 =20 =0,0<¢< 1.

Let W, (W) be the Hilbert space with weight obtained by closing the
space E (E*) by the norm

Jul? = / [ + 7 (u2, +u2,) +u?] dD.
D

Denote by W_ (W*) the space with the negative norm constructed with
respect to La(D) and W (W7) [6].

Let v = (v1, 19, v3) be the unit vector of the outer normal to 9D, i.e.
v1 = cos(, 1), vy = cos(7; 2), vy = cos(1, t). By definition, the derivative
with respect to the conormal on the boundary 0D of D for the operator L
is calculated by the formula

0 0

Vg — —t"Mv— — "y —

aN ~ %ot Oz, Oxy
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Remark 2.1. Since the derivative with respect to the conormal % for
the operator L is an inner differential operator on the characteristic surfaces
of the equation (2.1), by virtue of (2.2) and (2.4) for the functions u € E
and v € E* we have

ou ov

aNls ~ % 3N (2.5)

So

In the equation (2.1) we impose on the coefficients a; and ag the fol-
lowing restrictions:

M; = sup |t7%ai(x1,x2,t)| < +o00, 1=1,2. (2.6)
D

Lemma 2.1. For all functions u € E, v € E* the inequalities
[Lully. <ellully, (2.7)
1Ll < eallolly, (2.8)
hold, where the positive constants c1 and co do not depend respectively on u
and v, || - Yo, =1 llws =1 - -

Proof. By definition of negative norm, for u € E, by virtue of the equalities
(2.2), (2.4) and (2.5), using the integration by parts we obtain

Ll = sup [t (L), ) = sup [0l (L), ) =
+

sup HUH;V%« / {_ UV + " Uy Voy + Uy Vg )+
veE* + 7

+ AUz, U + a2y, v + azupv + auw} dD. (2.9)

From (2.6) and the Cauchy and Schwartz inequalities it follows that

[ 1= e " ey, + 0] D) < ol (210)

‘ / [1Uz, U + A2Uz, v + azusv + aguv] dD‘ < Cllully, HU”Wi’ (2.11)
D

2
where ¢ = Y (M; + sup |az4.]), and from (2.9)-(2.11) it follows
=1 D

[Lull . < (147€) sup [Jof| )}
- veE* +

u||w+||v||wi - (1 +E)”u‘|w+a

i.e. we have obtained the inequality (2.7) for ¢; = 1 4 ¢. Since the proof of
the inequality (2.8) repeats word for word that of the inequality (2.7), we
can conclude that Lemma 2.1 is proved completely. O

Remark 2.2. By the inequality (2.7) ((2.8)), the operator L : W, — W*
(L* : Wi — W_) with the dense domain of definition £ (E*) admits a
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closure which itself is a continuous operator from the space W, (W3) to
the space W* (W_). Leaving for that closure the same notation L (L*), we
can say that it is defined on the entire Hilbert space W, (W7).

Lemma 2.2. The problems (2.1),(2.2) and (2.3), (2.4) are self-conju-
gate, i.e. for everyu € Wy and v € WY the equality

(Lu,v) = (u, L*v) (2.12)
holds.

Proof. By Remark 2.2 it is sufficient to prove the equality (2.12) in the
case where v € E and v € E*. In this case it is evident that (Lu,v) =

(Lu,v) Loy~ Lherefore the integration by parts yields
(Lu,v) =
ou v .
:/KU aN Y 6—N)+(a11/1+a21/2+a31/0)uv ds+(u,L*v), . (2.13)
oD
From the equalities (2.2), (2.4), (2.5) and (2.13) immediately follows
(2.12). O

Consider the following conditions:
Ql. <0, [0, — (Ot Q‘ >0, 2.14
¢ < [t — (M + m)Q] p= (2.14)
where the second inequality holds if A is sufficiently large, and Q2 = a1,, +
A2z, + A3t — Q4.

Remark 2.3. Tt is easy to see that the inequalities (2.14) are a conse-
quence of the condition

Q|5 < const < 0.

Lemma 2.3. Let the conditions (2.6) and (2.14) be fulfilled. Then for
every u € Wy the inequality

lft2 Dl ) < ILully,. (2.15)

is valid with a positive constant c independent of u.

Proof. By Remark 2.2, it suffices to prove the inequality (2.15) for u € E.
If u € E, then for a = const > 0 and A = const > 0 the function

t
v(x1, T2, t) = /e’\TTO‘u(ml,xg,T) dr (2.16)
0

belongs to the space E*. We can easily verify that for a > 1 the function v
belongs to E*, and for 0 < « < 1 this statement follows from the well-known



72 S. Kharibegashuvili

Hardy’s inequality [118, p. 405]
1 1
/t*2g2(t) dt < 4/f2(t) dt,
0 0

t
where f € Ly(0,1) and g(t) = [ f(7)dr.
0
By virtue of (2.16), the equalities

vy, T2, t) = eNtu(zy, x0,t), u(xy,x0,t) = e Mty (21, 22,t) (2.17)

are valid.
Taking into account (2.2), (2.4), (2.5) and (2.17), we have
ou
(Lu,v)L2(D) = {v N + (a1v1 + agre + a3V0)’U/U} ds+

oD

+/{futvt+tmumlvml+tmuz2vm27u(alv)mlfu(agv)mfu(a;gv)fra;luv} dD =
D

= —/e’\tto‘uut dD + /e_)‘tt_o‘ [tm(vxltvxl + VgotVsy ) —
D D

—(a1Vz, + a2V5,)Vr — (Q12,t + A2g, + Q3¢ — Gg)VL0 — Cl3’U§:| dD, (2.18)

and by (2.2) we find that

1 1
f/eMtauut dD = fi/eMta(’uQ)t dD = —= /e)‘ttau21/0 ds+

2
D D oD
1 1
+§ /e)‘t(()zta*1 + M) u?dD = 5 /e”(oﬁa*1 + M) u?dD =
D D
1
= %/e’\tt“_lzLQ dD + 3 /)\e_’\tt_o‘vde, (2.19)
D D
1
/e_’\ttm_o‘(Ul.ltvgc1 + Vgt Vg, ) dD = 5/6_’\ttm_“(1}31 + ’U32)l/0 ds+
D oD
1
+§/e_)‘t A7 + (o —m)t™ (02 + 02 ) dD >
D
1
> 5/5“ M™% 4+ (o —m)t" (02 +02))dD. (2.20)
D

In deducing the inequality (2.20) we took into account that

V0|5207 (1)2271+v32)‘50:0'
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From (2.19) we have

Atya @t (a-1),012 1 —Atp—a, 2
f/e tuuydD > 5 |2 ¢ )u||L2(D)+§/)\e t~*v7dD.  (2.21)
D D

Below it will be assumed that o = m.
By (2.6) we have

‘/e’\ttm(alvxl + AoV, )Vt dD‘ <
D

< M/e*)‘ttim [1}? + %tm(vil + Ui)} dD <
D
<M [ e Mt™™2dD + M /67”(1)2 + 02 )dD (2.22)
— t 2 1 T2 9
D D

where M = max(M;, Ma).
Since vy|g > 0, taking into account the conditions (2.4) and (2.14) and
integrating by parts, we obtain

—/ef)‘tt*m(am1 + agy, + azt — ag)vivdD =

D
1 1
=3 /e”‘tt’mﬂ(zﬂ)t dD = ~5 / e MmOy ds+
D oD
1
+3 /e*”t*m*1 [tQ — (At + m)Q]v? dD > 0. (2.23)

D

In deducing the inequality (2.23) we used the fact that the function t~™v?
has the zero trace on S, i.e. t~™v?|g, = 0.
From (2.18) and (2.20)—(2.23) we have

m

L > —
(u7v) —2

Lo(D) Lo(D)

1 1
|62 (D)2 4 §/Ae_’\tt_mvf dD+
D
1 - —Xt,—m
+§/)\e )‘t(vﬁl—i—vi?)dD—M/e M=my2 dD—
D D

M
— /e*)‘t(’ui1 Jr’ui?)dDfsup|a3|/e*)‘tt*mvt2 dD =
D
D D

m A
= T (5 ~ M~ sup Jas]) /emtfmvtg .
D

1
+3 (A — M)/e”\t(vﬁl +v2,)dD >
D
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ML (e _
> 0 ||t= (m 1)u||i2(D) +a/e )‘t(vf —|—Ug251 +Ug252)dD >
D

) 1/2

> fomaint e it 0l ([l w2)a0) L @2y
D

where o = [% — M — sup |a3|] > 0 for sufficiently large A, and inf e =

ol D

e > 0. In deducing the inequality (2.24) we took into account that
tim|D > 1.

If w e Wi (W3), then due to the fact that u|g = 0 (uls, = 0) it is not
difficult to prove the inequality

/quDgco/ude

D D

for some ¢y = const > 0 independent of u. This implies that in the space
Wy (W) the norm

0l?,. s, = / [u? + 7 (2, +u2,) +u?] dD
D
is equivalent to the norm
lul)? = / [u? + ™ (u2, +uZ,)] dD. (2.25)
D
Therefore leaving for the latter the same notation HuHW+ Wiy from (2.24)
we obtain
1 —
(Lu,v) ) = V2moe™ 82 Dall, o o]l - (2.26)

Applying now the generalized Schwartz inequality
(Lu,v) < || Luf,.

ol
to the left-hand side of (2.26), after reduction by |[[v|| . we obtain the
T
inequality (2.15) with ¢ = vV2moe=*. Thus the proof of Lemma 2.3 is
complete. O
Consider the conditions

a4|so >0, (Mag+a)|, >0, (2.27)
where the second inequality holds for sufficiently large .
Lemma 2.4. Let the conditions (2.6) and (2.27) be fulfilled. Then for
every v € WY the inequality

clloll iy < LT 0] (2.28)

is valid for some ¢ = const > 0 independent of v € WY.
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Proof. Just as in the case of Lemma 2.3, by Remark 2.2 it is sufficient
to prove that the inequality (2.28) is valid for v € E*. Let v € E*, and
introduce into consideration the function
p(z1,72)
u(xy, x2,t) = / e Muy(x1, w2, 7)dT, \ = const >0, (2.29)
t

where t = p(z1, 22) is the equation of the characteristic conoid S. Although
the function

2+m 135w
= [1- 52
has singularities on the circumference r= ﬁ and at the origin 1 =22=0,

since by the definition of the space E* the function v vanishes in some
neighborhood of the circumference I' = S N Sy and the segment I : z; =
22 =0, 0 <t <1, the function u defined by the equality (2.29) belongs to
the space F. In addition, it is obvious that the equalities

ug(x1,22,1) = fe_)‘tv(:cl, x9,t), wv(w1,z2,t) = fe_)‘tut(:cl, x2,t) (2.30)

hold.
By (2.6), (2.27), (2.29) and (2.30), the same reasoning as in proving the
estimate (2.28) allows us to prove the estimate (2.15) in Lemma 2.3. O
Denote by Ls (D) the space of functions u such that t*u € Lo(D).

Assume
oy
am = 3 (m .
Definition 2.1. If F € Ly(D) (WZ*), then the function u is said to
be a strong generalized solution of the problem (2.1),(2.2) of the class W
(Lo.a,,) if w € Wy (Lo, (D)) and there exists a sequence of functions
un € E such that u, — w in the space Wi (La,q,, (D)) and Lu, — F in

the space W* (W*).

ez, ooy = 1E%ll )

By the results of [86, p. 184-186], a consequence of Lemmas 2.1-2.4 is
the following

Theorem 2.1. Let the conditions (2.6), (2.14) and (2.27) be fulfilled.
Then for every F € Lo(D) (WX*) there exists a unique strong generalized
solution w of the problem (2.1),(2.2) of the class Wy (La,q,,) for which the
estimate

[ < || Flly-

L2, (D)

is valid with a positive constant ¢ independent of F'.

2.2. The case of equation with characteristic degeneration.
Consider a hyperbolic second order equation with characteristic degener-
ation of the type

Liu = (t"ug)t — Uzyzy — Uzgas + 01Uz, + G2Usz, + agug + agu = F, (2.31)

where 1 < m = const < 2.
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Denote by

2
2—m

2—m

lL:O<t<[1— 7if”,r:cﬁ+m@”2<
a finite domain lying in the half-space ¢ > 0 which is bounded above by the
characteristic conoid

2

2—m
=

2—m

2 2—m
of the equation (2.31) with the vertex at the point (0,0,1) and below by
the basis

Sy t:{l—

Sli t:(), T§2_m

of that conoid on which the equation (2.31) has a characteristic degenera-
tion. Just as in the case of the equation (2.1), we assume that in the domain
D, the coefficients a;, ¢ = 1,...,4, of the equation (2.31) are functions of
the class C%(D).

For the equation (2.31) we consider a characteristic problem which is
formulated as follows: in the domain Dy, find a solution u(x1,x2,t) of the
equation (2.31) satisfying the boundary condition

ulg =0 (2.32)

on the plane characteristic surface ;.
Analogously we formulate a characteristic problem for the equation

Liv = (t™0)t — Vayaq — Vaonn — (@10) 5, — (a20) s, — (agv)i +agv = F (2.33)
in the domain D; by means of the boundary condition
vlg, =0, (2.34)

where L7 is the operator formally conjugate to the operator L;.

By E; and E} we denote the classes of functions from the Sobolev
space W3 (D;) which satisfy respectively the boundary condition (2.32) or
(2.34) and vanish in some (its own for every function) three-dimensional
neighborhood of the segment I : z1 =0, z9 = 0,0 <t < 1. Let Wi
(WY, ) be the Hilbert space obtained by closing the space E; (Ef) by the
norm

l|lul|®> = / [uf +uZ, +u2, +u?]dD;.
D,

Denote by Wi_ (W{_) the space with the negative norm which is con-
structed with respect to La(D;) and Wiy (W7,).
Analogously to Lemmas 2.1 and 2.2 we prove

Lemma 2.5. For all functions u € E1, v € EY the inequalities

Il <eallullw,,, IL0lw, < collull,.
1— + 14+
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hold, and the problems (2.31),(2.32), and (2.33),(2.34) are self-conjugate,
i.e. for every u € Wiy and v € WY, the equality

(Llua ’U) = (uv LTU)

holds.
Consider the conditions
%f(a4 — A1z, — A2, — a3¢) > 0, (2.35)
o |
1§11fa3 >3 for m =1, 1§11fa3 >0 for m > 1. (2.36)

Lemma 2.6. Let the conditions (2.35) and (2.36) be fulfilled. Then for
every u € Wi the inequality

cllull Lo, < ILaully,
is valid with a positive constant ¢ independent of u.

Consider now the conditions

inf ay > 0, (2.37)
D

1
infag > —— for m =1, infas >0 for m > 1. (2.38)
S1 2 S1

Note the the condition (2.38) follows from (2.36).

Lemma 2.7. Let the conditions (2.37) and (2.38) be fulfilled. Then for
every v € Wi, the inequality

clfuf IL7vllw,

La(Dy) =

is valid with a positive constant ¢ independent of v.

From Lemmas 2.5-2.7, the proof of which to a certain extent repeats
that of Lemmas 2.1-2.4, we have the following [68]

Theorem 2.2. Let the conditions (2.35), (2.36), (2.37) be fulfilled.
Then for every F € Lo(D1) (W) there exists a unique strong generalized
solution u of the problem (2.31), (2.32) of the class W14 (Lz) for which the
estimate

ety < €l

La(Dy)

is valid with a positive constant c independent of F'.

Theorem 2.3. Let the conditions (2.35), (2.36), (2.37) be fulfilled.
Then for every F € Lo(D1) (W1_) there exists a unique strong generalized
solution v of the problem (2.33), (2.34) of the class Wi (L2) for which the
estimate

[l oy < €lEl,

is valid with a positive constant c independent of F'.
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Here, just as in Definition 2.1, for F' € La(D1) (W) the function w is
said to be a strong generalized solution of the problem (2.31), (2.32) of the
class Wit (Lg) if u € Wiy (L2(D1)) and there exists a sequence of functions
un € Fp such that u, — w in the space Wi4 (L2(D1)) and Liu,, — F in
the space Wi (W{_). For F € Ly(D) (W;_), the function v is called a
strong generalized solution of the problem (2.33),(2.34) of the class W7,
(L2) if v € Wi (L2(D1)) and there exists a sequence of functions v, € Ef
such that v, — v in the space Wi, (L2(D1)) and Ljv, — F in the space
Wi (Who).

3. Multi-Dimensional Versions of the First Darboux Problem for
Some Degenerating Second Order Hyperbolic Equations in
Dihedral Domains

3.1. The case of equation with noncharacteristic degeneration.
Consider a degenerating second order hyperbolic equation of the type

p— m
Liu = uy — 22| " Uy oy — Ugpwy + G1Uz, + G2Uy, + asur + agu = F, (3.1)

where m = const > 0.

By D: 23 <t<1—29 0< 1z < 1/2 we denote the unbounded
domain lying in the half-plane x2 > 0 and bounded by the characteristic
surfaces S1: t —20=0,0< a2 <1/2, Sy: t4+a22—1=0,0<mg <1/2
of the equation (3.1) and by the plane surface Sp: xz2 = 0,0 <t <1 of
temporal type on which the above equation degenerates. We assume that
in the domain D the coefficients a;, i = 1,...,4, of the equation (3.1) are
bounded functions of the class C1(D).

For the equation (3.1), we consider a multidimensional version of the
first Darboux problem which is formulated as follows: in the domain D, find
a solution u(z1, z2, t) of the equation (3.1) satisfying the boundary condition

ulg,ng, = 0- (3.2)

Analogously we formulate the problem for the equation
L™ = vy — |22|™ Vayz1 — Vasa, — (€10)a, — (a20)a, — (a3v)i +agv = F (3.3)
in the domain D by the boundary condition

u|son52 =0, (3.4)

where L* is the operator formally conjugate to the operator L.

Denote by E and E* the classes of functions from the Sobolev space
W3 (D) which satisfy respectively the boundary condition (3.2) or (3.4). Let
Wy (WZ) be the Hilbert space obtained by closing the space E (E*) by the
norm

ul|2 = / (2 + au? 42, +u?)dD.
D

By W_ (WZ*) we denote the space with negative norm which is con-
structed with respect to La(D) and Wy (W7).
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Below we impose on the coefficient a; in the equation (3.1) the following
restriction:

m

sup |, 2 a1 (21, 2, 1) < +00. (3.5)
D

For F € Lyo(D) (WZ), the function w is said to be a strong generalized
solution of the problem (3.1), (3.2) of the class W, (Lg) if u € W4 (L2(D))
and there exists a sequence u,, € F, such that u,, — u in the space W
(L2(D)) and Lu,, — F in the space W* (W*).

Similarly to the results obtained in the above subsections of this chapter
we prove that the estimates

cllull oy < ILully. <Ml s cllvll,,m < IL70l,_ < cllvlly

Yu (v) € E (E*) are valid and the problems (3.1),(3.2) and (3.3), (3.4) are
self-conjugate. In its turn, this results in the following [66]

Theorem 3.1. Let the condition (3.5) be fulfilled. Then for every
F € Ly(D) (WZ*) there exists a unique strong generalized solution u of the
problem (3.1), (3.2) of the class W4 (Ls) for which the estimate

cllullpyimy < 1y

is valid with a positive constant ¢ independent of F.

3.2. The case of equation with characteristic degeneration.
Consider the second order equation of the type

Lyu = ugt — Ugyzy — (|22] " sy )ay + G1Us, + a2Usy + asus + agu = F, (3.6)

where 1 < m = const < 2. We denote by

25 i< 2_
. _
2—m" 2 2—m

_m 2 —m\ 7=m
b 0<m < (250
4
the unbounded domain lying in the half-space x2 > 0 and bounded by the

characteristic surfaces

Dli

2 2-m 2 —m\ 2=m
S1it—5——a,7 =0, ogxgg(—4 ) ,
~ 2 2—m 2—m ﬁ
Sgit—ﬁ-QimIQz =1, nggg(—4 )

of the equation (3.6) and by the plane surface §0 t 220 =0,0<t<1,0on
which this equation has a characteristic degeneration. It is assumed that
in the domain D1 the coefficients a;, i = 1,...,4, of the equation (3.6) are
bounded functions of the class C?(Dy).

For the equation (3.6) we consider a multidimensional version of the
Darboux problem which is formulated as follows: in the domain D, find a
solution u(x1, x2,t) of the equation (3.6) satisfying the boundary condition

u|s1 =0. (3.7)
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Analogously is formulated the problem for the equation
Lylﬂu = Utt = VUzyzy — (|:C2 |mvl’2 )ﬂﬂz - (alv)ﬂﬂl - (a20)12 - (a3v)t tag=F (38)
in the domain D by means of the boundary condition
vlg, =0, (3.9)

where L7 is the operator formally conjugate to the operator L.

Here E; and Ef are the classes of functions from the Sobolev space
WZ2(D;) which satisfy respectively the boundary condition (3.7) or (3.9).
Let Wiy (WY, ) be the Hilbert Sobolev space with weight obtained by clos-
ing the space E; (E7) by the norm

Jull? = [ (a2, + 2, o) dD,
Dy
Denote by Wi_ (W7_) the space with negative norm constructed with

respect to La(Dy) and Wiy (W7.). We impose on the coefficient of the
equation (3.6) the following conditions:

sup |x2_%a2(x1, T3, t)‘ < +o00, (3.10)
D

Qlg, <0, A2+ Q)|, <0, as]g >0, (Aas—aw)|, >0, (3.11)

b
where Q = @15, + a2z, + a3+ — a4, and A is a sufficient large number.

For F € Ly(D) (W), just as in the previous section, we introduce
the notion of a strong generalized solution of the problem (3.6),(3.7) of
the class Wiy (Ls2), prove the two-sided estimates for the values ”Ll“leg
and || Ljvll,, _, and show that the problems (3.6), (3.7) and (3.8), (3.9) are
self-conjugate. As a consequence we have the following [67]

Theorem 3.2. Let the conditions (3.10), (3.11) be fulfilled. Then for
every F' € Lo(D) (Wi_) the problem (3.6),(3.7) has a unique strong gener-
alized solution u of the class W14 (La) for which the estimate

cllullLyoy < NEw,

is valid with a positive constant ¢ independent of F.



CHAPTER 3

Some Nonlocal Problems for Wave Equations

1. A Nonlocal Problem for the Wave Equation with One Spatial
Variable

1.1. Statement of the problem. Consider the wave equation with
one spatial variable
Chu = Uy — Uge = 0. (1.1)
By D we denote the characteristic quadrangle of the equation (1.1)
with vertices at the points 0(0,0), A(1,1), B(—1,1) and C(0,2). Let J :
OA — OC be the mapping transforming the point P € OA into the point
J(P) € OC lying on the characteristic of the family = + ¢ = const passing
through the point P, i.e. if P = (z,2) € OA, then J(P) = (0,2z) € OC.
For the equation (1.1), in the domain D we consider a nonlocal problem
which is formulated as follows: find a regular in the domain D solution
u(z,t) of the equation (1.1), continuous in D and satisfying the conditions

u(P) =¢(P), Pe€ OB, (1.2)

u(J(P)) =u(P), P e OA, (1.3)

where ¢ is a given function continuous on the segment OB of the charac-
teristic x +¢ = 0.

It is easy to verify that the problem (1.1)—(1.3) is not correctly posed

because the corresponding homogeneous problem has an infinite set of lin-

early independent solutions of the type u(z,t) = ¢(x +t), where ¢)(z) is an

arbitrary function of the class C([0,2]) N C?([0,2]) satisfying ¢(0) = 0.
Consider now the same problem for the equation

(O3 + N : ugg — Uge + Au =0, X = const # 0. (1.4)

In new variables ¢ = 27 (t+x), n = 271(t—x), the problem (1.4), (1.2),
(1.3) in the domain 2: 0 < £ <1, 0 < n < 1 of the plane of the variables
&, n can be rewritten as

Ven + A =0, (1.5)
v(0,m) =p(n), 0<n<1,
where v(£,7) == u( —n,§ + 7).

81
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1.2. The existence and uniqueness theorem. As is known [10,
p. 66], every solution v(&,n) of the equation (1.5) of the class C(Q2) N C?(£2)
is representable in the form

v(&,n) = R(£,0;¢,m)v(£,0) + R(0,n;€,m)v(0,1) — R(0,0;&,1)v(0,0)—

€ n
OR ,O, 5 OR 07 S
—/%U(U,O) da—/%v(o,ﬂ dr, (1.8)
0 0

where R(&1,m1;&, 1) is the Riemann function of the equation (1.5).
This function for the equation (1.5) can be represented in terms of the
Bessel function of zero order in the form [24, p. 455]

R, mi&m) = Jo(2VAE— &) —m)) =
sl k
Z " A ) (n —m)*. (1.9)

k=

Substituting (1.8) in (1.6) and (1. 7) and taking into account (1.9), with

respect to the unknown function (£) = v(&,0) we obtain the first order
Volterra equation

3
/Kf,a)\ o) do = f(€), 0< <1 (1.10)
0

e k
K(€oi0) = A +§]—n“a%¢@—aﬁ*&*, (111)
k=2

/K T N(T)dr + = ( (&) — R(0,0;£,£)p(0)). (1.12)

§

If the equation (1.10) is solvable in the class of continuous functions
C([0,1]), then f(£) € C*(]0,1]) and, differentiating both parts of the equa-
tion (1.10), by means of (1.11) we obtain

¢
K(
v+ [T yoyir — o), 0se<t @y
0
With regard for (1.11) and (1.12), we have

7(6) = ~Ael©) - / RETN) iy ar + (020

i 4) g2k=1) (1.14)

k=1
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From (1.13) and (1.14) we immediately obtain

Theorem 1.1. The problem (1.4),(1.2), (1.3) in the class C(D)NC?(D)
cannot have more than one solution. For every function ¢ such that (p(§)—
©(0))/€ € C3(]0,1]), the problem (1.4),(1.2),(1.3) has a unique solution
u(z,t) of the class C*(D).

1
Remark 1.1. Since (¢(£) —¢(0))/¢ = [ ¢'(£7) dr, it is enough to require
0

in the Theorem 1.1 that ¢ € C*([0, 1]).

Remark 1.2. Note that the theorem on the uniqueness for the problem
(1.4),(1.2),(1.3) is likewise valid in the class of generalized solutions u(z, t)
of the class C(D), i.e. when u(x,t) € C(D) and (u, 0w + Aw), . py =0 for
any w € C§°(D). In addition, the representation (1.8) holds for generalized
solutions of the equation (1.4) of the class C(D) as well. For a generalized
solution u(w,t) of the problem (1.4),(1.2),(1.3) of the class C(D) to exist,
it is sufficient that ¢ € C'([0,1]) and ¢ € C?(]0,¢]) for arbitrarily small
e > 0. Here (-,-),, p, is the scalar product in the space La(D).

Remark 1.3. As it can be easily verified, for the equation (1.1) the
nonlocal problem in which instead of (1.3) the condition

2x
uds = /u(O,t) dt = u(P), P(z,t) € OA, (1.15)
0J(P) 0

is prescribed and the condition (1.2) remains as before, i.e. the problem
(1.1),(1.2),(1.15), is well-posed, where OJ(P) is the rectilinear segment
connecting the points O and J(P).

2. A Nonlocal Problem with the Integral Condition for the
Wave Equation with Two Spatial Variables

2.1. Statement of the problem. One integral property of solu-
tions of the wave equation. Consider the wave equation

ot i= Ut — Ugyzy — Uzgzy =0 (2.1)

in the dihedral angle D : —t < xo < t, 0 < t < 400 whose faces are the
characteristic surfaces S; : t—22 =0,0<t < 4ooand Sy : t+x5=0,0<
t < 400 of the equation (2.1). Let Ji(P) be the point of intersection with
the plane z2 = 0 of the bicharacteristic ray ¢+ (P) : z; = 29, 73 = 23 — 7,
t =t"+7, 0 <7 < +o0 of the equation (2.1) passing through the point
P(a9,29,t%) € Sy, i.e. t° =29 > 0. Obviously, J+(P) = (29,0,29 + 29).
Denote by ¢ (P) the coordinate of the point J (P) with respect to the axis
t,ie. ty(P) = 2x).
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Consider a nonlocal problem which is formulated as follows: find in
the domain D a solution u(z1,x2,t) of the equation (2.1) satisfying the
conditions

u(P) = (P), P €Sy, (2.2)
t4(P)
uds = /u(xl,O,t) dt = u(P) + u(P), P(z9,29,t%) € S1, (2.3)
J_(P)J+(P) 0

where p and ¢ are given functions on S; and Sy satisfying on S1 N S the
consistency condition (1 + ¢)|s,ns, = 0, and J_(P)J4(P) is the rectilinear
segment connecting the points J_(P) and J(P).

Definition 2.1. The function u(z1,x2,t) is said to be a weak general-
ized solution of the equation (2.1) of the class C(D) if u € C(D) and this
function satisfies the equation (2.1) in terms of generalized functions [48,
p. 8], i.e. (u,0ow) = [uOowdD =0 Vw e C§°(D).

D

La (D)

Definition 2.2. The function u(z1,x2,t) is said to be a strong gener-
alized solution of the equation (2.1) of the class C(D) if u € C(D) and for

every subdomain D; compactly imbedded in D (i.e. D; is a compact and
D; C D) there exists a sequence u, of regular solutions of the equation (2.1)
of the class C?(D;) tending to u in the space C(D1): |juy — u||c(ﬁ1) — 0
for n — oo.

Denote by E(r,t,7) the Volterra function [10, p. 83]

1 t—1—JE-7)2—12
Bt 7) = o log T VUEETETT e S g 2

which is a solution of the equation (2.1) inside the cone
Kpp:t—7—7r=0, z=(21,22), (2.5)

characteristic for the equation (2.1). This solution vanishes on the cone
(2.5), but has singularities along its axis = 0. Let S. ;, (z,t) € D, be a part
of the surface S; lying inside the cone K¢, ¢ = 1,2, and S, = S;’t U Sit.
As is known [64, p. 96], for every regular solution wu(z,t) of the equation
(2.1) of the class C?(D) the integral equality

t

/u(an,xz,T) dTZ/[U%—E(T,t,T) S_XT ds, Y (z,t)eD, (2.6)
T Sa,t
holds, where N is the unit vector of the conormal to S ; at the point (y, 7) €
S, ie. N = (cosnxy,cos Ty, —cosnt), n = (cos ATy, cosnTy,cosnt) is
the unit vector of the outer normal to S, at the point (y,7) € Sy, and
y = (y1,y2) and 7 are the variables of integration in the right-hand side
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of the equality (2.6). It is evident that N|g: = (0, 1/v/2,1//2), Nlg2, =
(Oa 71/\/57 1/\/5)

Taking into account that E|g,, = 0 and on the characteristic surface
Sz the differentiation with respect to the conormal 9/0N is an inner dif-
ferential operator and integrating by parts the equality (2.6), we obtain

t

/u(ml,xg,r) dr =

T2
T14/t2—x2
1
= — / u(y1,0,0) log
T
@1—\/t2—a%

(21 —y1)* + 23
V(@1 —y1)? +a3(t+ /12— (x1—y1)2 —3)

OE(r,t,T)
+2 / T ds. (2.7)

dy1+

Sa,t

2.2. Some properties of wave potentials. First of all we make the
following

Remark 2.1. In the characteristic half-plane S7 : t—292 = 0,0 <t < +00
introduce a Cartesian coordinate system of the points yi1, y5: one of its
axes Oy; coincides with Oz; and the other axis Oy} is directed along the
bicharacteristic ray with the directional vector (0,1/v/2,1/+/2). Below, for
a function g defined on the surface S; or on S;yt C 51, we will assume
that it is a function of the variables y1, y5, i.e. g = g(y1,v5). Obviously,
99/ON|s, = Dg(yn, v})/Oyb, and on Sy ds — dydy.

Lemma 2.1. The operator Ty acting by the formula

(Thg)(z,t) == /g% ds, (x,t) € D, (2.8)

S
is a linear continuous operator from the space C(S1) into the space C(D),
and

(Tvg)(z,t) =0, (2,t) € S1U Ss. (2.9)

The operator Ty acting by the formula (Tog)(z,t) == [ g% ds,
Sit

(z,t) € D, is likewise a linear continuous operator from the space C(S1)
into the space C(D), and

t

(Tog)(z,t) = g(z1,y5) dys, (x,t) € St;

(2.10)

| =
o\&

(TQQ)(.?J,f) =0, (xvt) € S2a
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Proof. Taking into account the fact that on the space S; the variables 1,
Y2, T, Where yo = 7, are connected with the variables y;, y5 by the equality

7 = y4/v/2, we have

2ar ZEELD| (-7 — ()~ (2 - 2)?) E
—(t = 7)(z2 — y) [(21 — 91)? + (22 — y2)?] ' x

) ((t—7)2 — (21— )2 — (w2 — ga)?) ? =

=

S1

x((t—%)Q—(xl ) (@_%)37 . (2.11)

As is easily seen, when the point (z,t) belongs to D, the boundary
98}, of the plane domain S} , consists of the upper part of the parabola

Yot oyh = —(V2(t —22) My — 21)? + (t+ 22)/V2, yb > 0 and the

segment 6, . : x1 — /13 — 23 < y1 < @14 +/t? — 23, Y5 = 0, in the plane of
the variables y1, y5.
Under the new variables z1, zo

Yh— V2o = (t —x9)22, Y1 —x1 = (t —22)21 (2.12)
we have
) :(tfx2)2[1*\/522723],
2 2
) = -w)? 2+ 2, (2.13)
) =271t — 23)[20 — V2] 20

After the transformation of (2.25), the domain S, ; transforms into the
plane domain

Qeopp 1 — (tﬂ )952 <2z < (%)(1 - z7),

— 2

1/2 1/2
7(t+aﬁ2) <Zl<(t+x2>
t— xo - — \t— 129

which is bounded by the parabola zo = (1/v/2)(1 — 2?) and the straight line
29 = —(V/2/(t — x3))xo in the plane of the variables z;, 2o.
By virtue of (2.11) -(2.13), we rewrite the equality (2.8) in the form

(Tlg)(xa t) =
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:(t—l‘g) /Gl(Zl,Zg)g(Il-i-(t—xQ)Zl,\/53324—(75—3?2)22) dzy dzs, (2.14)
Qo

where
Gl(zl,ZQ) = (2\/57()71(]_ — \/522 — Z%)*%f
@V e — VD) [+ 2] 1= VB -,

For (z,t) € D, ie. for t > |xg|, it can be easily shown that

[ |Gi(z1, 22)| dz1dzs < +oo, whence by the representation (2.14) it
Qg o
directly follows that the function Thg is continuous at the point (x,t) if
g e C(Sl)

Let now (20,%) € S1, t° > 0. Denote by Il ¢, (z,t) € D, the rectangle
ly — 21| < /12 — 23, 0 < yb < ((t + x2)/v/2) in the plane of the variables
11, yh. Obviously, Si.’t C M, ;. Therefore as D > (z,t) — (29,t°), the
plane domain S} ; shrinks into the segment I = {(z1,22,t) € S1: a1 =
2, =1, t=7,0<7< to} which ir1~the plane of the variables y1, v}
(see Remark 2.1) represents the segment I : y; = 29, 0 < 4 < v/2t°. Since
g € C(9), for every € > 0 there exists a number § = §(g) > 0, § < e, such
that for |z — 20 < 4, |t — Y| < § we have

l9(y1,v5) — g(20,5)| <&, (y1,v5) € Sk (2.15)

Assuming a? = (¢~ yb/v/2)? — (w3 — yb/V/2)? = (t—w2)(t+22 — v/2uh),
a > 0, we can see that

/ 1 g(?,y5)
V2T [(t -y /v/2)2 — (21 — 11)? — (22 — 4/ V2)?]

(t+z2)/V2 zita

73 dyr dyh =
Sl

x,t

929, 5)

= o / dyé [a2—(y1—a?1)2]1/2 dyr =
1 —a
(t+x2)/V2
s | seabmen BT -
0
(t+x2)/V2
-5 | st (2.16)

Obviously, the latter equality can be rewritten as follows:

% (Tod) (z, 1) =
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oE( ) (t+z2)/V2
1 0, rtT 1 0,/ ’
=-—= [ 9\, u) ds = 9(x1,y2) dys,  (2.17)
2 ot 2v/2
\/_s,l V2 0
where g(y1,95) = g(2%,95), To is the operator from (2.10), and

—QE(r,t,7)/0t = OE(r,t,7)/0T = (2m)  ((t — 7)% — r2)"2, 12 = (2, —
y1)? + (w2 — y2)*.
From (2.17) it follows that

22 (Tol)(z,t) =t + 5. (2.18)
Assuming that M = max lg(x?,y4)| and taking into account
0<y,<V2 (t9+4¢)

that t° = 23 on Sy, for |z — 20| < 4, |t — 9] < 4, by virtue of (2.15)—(2.18)
we have

V210
1
‘(%9)(%0‘5 / 9(29, yb) dy =‘(To[y(yhyé)—g(x%yé)])(fc,t)Jr
0
) (t+x2)/V2 ) V20
+§ / 9(531ay2 dyy — B) / 9551;y2 ) dys <€‘ Tol) xt)‘Jf
0 0
. (t+x2)/V2
- , t M‘ (t - 2t0‘:
3| [ aGtudn] < e sl anl 4 5 M| (¢4 a) - V2
V2t
[elt + @] + M|(t —1°) 4 (22 — 29)]] _
_ NG <
C et =t 4w — b + [t + ab]) + M (|t — %]+ |w2 —3]) _
< Vo <
20 4 2t%) + 26 M O+ M
£(26 +2t°) + S(E-l— + M)e (2.19)
2V/2 V2

From (2.19) immediately follows the continuity of the function Tog at
the point (2°,t°) € S, as well as the first of the equalities (2.10). The
continuity of Tpg at an arbitrary point (2°,t%) € Sy and the second of the
equalities (2.10) are proved analogously.

We introduce now the operator

(Log)(z,t) / Go(z,t;y1,95)9(y1,y5) dy1 dya,
Szt

z,

where

Go(z, t;y1,y3) ==

2\/§7T
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(t = v5/vV2)(x2 — 4/V2)
[(21=y1)? + (@2 =9/ V2)2] ((t =9/ V2) = (21— 91)? = (22~ 9/ V2)?)
Note that on the segment 0 < y} < (¢ + 22)/v/2, where (z,t) € D,

ie. t > |z, the function (zg — y'2/\/§) is positive for 0 < y5 < v/2x2 and
negative for v/2zy < yh < (t+ xg)/ﬁ Taking this fact and the equality

X

/2"

b
dr =
/ (0% + 22)Va? — 22
1 va? + b2
= arctg

a2+ b2 bva? — z2

+ const, b#0, a#0,
into account, by analogy with (2.16) we have
(Lad)(art) = [ ol tign,vp)alad.v3) don oy =
Sa
V2 (t+z2)/V2

:2\/1§7r( 0/ + f/ )dyé(t—%)x

x1+a
% ( 0 /) (Ig—yé/\/i) d
9\Z1, Y2 — \/—2 — 5 7 = 5 Y1
ol [(x2 = y5/V2)? + (y1 — =1)?]/a? — (1 — 21)
. V2zs  (t4w2)/V2
2\/§7T ( /
0 V2zs
y1 —x1)(t —yh/V2 yrmm=a
xg(a?, yp) arotg — - 2/V2) - dyy =
(12*312/\/5) a *(y1*931) Yy1—ri1=—a
) V2 ) (t4z2)/V2
o ./ / o 7 /
—s5 [ s s [ b @20)
2v2 / 22
0 \/5582

where g(y1,y5) == g(29, y5).
It should be noted that the second summand in (2.20) tends to zero as
D > (x,t) — (2°,¢%) € S; since V225 — V219 and (t—ﬁ-l‘g)/\/i — /210,
From (2.20), just as in proving the continuity of the function Tpg at the
point (2°,#%) € Sy, it follows that the function Lgg is continuous at the

point (2°,t%) € Sy, where
V2t°

1
Log)(z°,t%) = — / 20 ) dyh, (2°,1°) € Sy. 2.21
(Log)( )2\/5 9(x1,y3) dyy, (27,17) € 5 (2.21)

0
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Since now Ty = Tov/2 — Lo, we find that the function Tig is continu-
ous at the point (2°,¢%) € S;, and by virtue of (2.10) and (2.21) we have
(T19)(z°,t%) = 0, (2°,¢°) € S;. The continuity of the function T1g at the
points of the set Sy and (Tig)(x°,t°) = 0, (z°,¢°) € Ss, and hence the
equality (2.9) are proved analogously.

The same reasoning allows us to show that the operator T acting from
the space C(S;) into C(D) is continuous. Let X be an arbitrary compact
subset from S1, Dx be the set of points (z,t) from D for which S, C X,
and let Dx # @. Then there exists a positive constant ¢ = ¢(X) such that
for every g € C(S1) the inequality [|Thgll., ) < c(X)|gllox, is valid. In
the same sense the operator Tp acting from the space C(S;) into C(D), is
continuous. Thus the lemma is proved. O

Remark 2.2. Note that Lemma 2.1 remains valid if instead of the surface
Sy ¢ we consider SZ , for the corresponding operators Ty and T}.

2.3. Some properties of generalized solutions of the wave equa-
tion. We have the following

Lemma 2.2. The following conditions are equivalent:

(i) the function u is a weak generalized solution of the equation (2.1) of
the class C(D);

(ii) the function u is a strong generalized solution of the equation (2.1)
of the class C(D);

(iil) the function u belongs to the class C(D) and for every (z,t) € D
the equality (2.7) is valid.

Proof. The condition (ii) follows from (i). Indeed, let u be a weak gener-
alized solution of the equation (2.1) of the class C'(D). Denote by w.(z,t) =
3wz /e t/e), € > 0, an averaging function, where w® € C§°(R?),
JWOz,t) dodt = 1, W > 0, suppw® = {(z,t) € R3 : |z]> +* < 1}
[48, p. 9]. Let D1 C D be a subdomain compactly embedded in D, and let
¢ be less than the distance § > 0 between the sets D; and dD. Then by
properties of convolution [48, pp. 9, 23], the function u. = u * w. belongs
to the class C* (D), is a classical solution of the equation (2.1) in Dy, and
converges as € — 0 to u in the norm of the space C(D1), i.e. the condition
(ii) holds.

If the condition (ii) is fulfilled, then, as is easily seen, the function
ue = u*w. € C°(D,) is a classical solution of the equation (2.1) in the
closed domain 55, where D, : —t + \/55 <o < t— \/55, \/55 <t <
+oo. Let Syte, (x,t) € D be a part of the boundary 9D, lying inside
the characteristic cone K, ; from (2.5). Then for the solution wu. of the
equation (2.1) the integral equality (2.7) is valid, in which instead of D
and Sy ;. we take D, and S, ;. and denote it by (2.7.). By Lemma 2.1,
since the linear operators represented by the left- and right-hand sides of
the equality (2.7.) are continuous in the corresponding spaces of functions
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u € C(D) and for every subdomain D; C D compactly embedded in D we
have lir% lue — u||c(ﬁl), passing in the integral equality (2.7.) to the limit
e—

as € — 0 we obtain (2.7). Consequently, (iii) follows from (ii).
Thus it remains only to show that (i) follows from (iii). Indeed, let
u € C(D) and for every (z,t) € D the integral equality (2.7) be valid.
We take an arbitrary function w € C§°(D) and introduce the set S! =
U Si i = 1,2. It is obvious that S/, C S;, i = 1,2. By the
(z,t)Esuppw
Weierstrass theorem, there exists a sequence of functions f: € C(S;),

diamsupp fi < 400, i = 1,2, such that || — uls, osiy —0asn— oo In

[64, p. 98] it is proved that there exists a unique solution u, € C*>(D) of

the equation (2.1) satisfying the boundary conditions u,|s, = f%, i = 1,2,

for which the integral equality (2.7) is valid. Since | fi — uls, oy — 0

as n — oo, by Lemma 2.1 there exists a limit in the right-hand side of the

equality (2.7), and in this case a limit exists in the left-hand side of the
t

same equality, i.e. the sequence v, (z1,%2,t) = [ un(z1,22,7)d7 tends to
T2

some continuous function v(z1,29,t) in the topology of the space C(D).
But dup (x,x2,t)/0t = up (1, z2,1) is a solution of the equation (2.1). Next,
by the condition (iii) and Lemma 2.1, we have the equality v(z1,x2,t) =
t

[ w(z1,22,7)dr. Therefore the function u = dv/dt is a weak generalized

2
solution of the equation (2.1) because

(u,Oow) ) = (%7D2w>L2(D) - _(U’ (%>D2w) La(D)

0 ov
= Jim (o, (5)02) = Jim, (T 029) ) =
n1—>H;o Un ot 2w La(D) nl—{go ot 2@ Lo(D)

= nli_{go(un; DQW)LQ(D) = nlLH;o 0=0,
which was to be demonstrated. ]

Remark 2.3. Without restriction of generality, we assume that in the
problem (2.1)-(2.3)

U‘SmSQ - 90|Sms? = ”|sln52 =0 (2.22)

since otherwise, if ¢|g,ng, = A(z1) # 0, the function A(t + 1) is likewise a
solution of the equation (2.1), and the new unknown function uq(z1, z2,t) =

u(x1, e, t) — At + x1) satisfies the equation (2.1) and the boundary condi-
tions

ul(P):gol(P), PESQ; / ulds:ul(P)+u1(P), PESl,
J-(P)J+(P)

in which by the consistency condition (u+¢)|s,ns, = 0 we have ui|s,ns, =
901|Slﬁ52 = M1|51032 = 0'
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2.4. Reduction of the problem (2.1),(2.2), (2.3) to an integral
Volterra type equation with a singular kernel, and its investiga-
tion. A solution of the problem (2.1)—(2.3) will be sought in the class of
generalized solutions of the equation (2.1) of the class C(D). Then ac-
cording to Remark 2.1, by Lemma 2.2 the boundary condition (2.3) for
P = (x1,t/V2,t/V/2) € Sy, i.e. J(P)= (21,0,v/2t), with regard for (2.2),
(2.22) and the integral equality (2.7) can be written in the form of the
equation

(21, t) — / B(w1, ty1,y2)¥ (1, y3) dyr dyy = f(21,t) (2.23)

1
SJ+(P)

with respect to the unknown function ¢ (z1,t) :=uls: (P):u(:cl, t/V2,t/V/2).
+
Here, by (2.11) and (2.22),
OB(r, V21, 1)
f(z,t) =2 / Y an ds — p(z1,t), f|SmS2 =0, (2.24)
S2

J4(P)

E 2t
QﬁWB(xlat;ylay;) = 74\/5’”8 (r7\/_ ’7—)

ON 83, (py
:_2((\/§t—7)2—($1 —y1)2—72)_% —27(V/2t — )X
T=y5/V2

x[(z1—y1)? + 727 (V2t = 1) = (21— 3)? — 72)7%

T=ys/VZ
_1
= 2(2t [t — b — (2) N (ay — yl)ﬂ) 2_
y/ 2.1 B 1

—y5(2t—y5) [(Il —y1)2+%] (2t[t—yh—(2t) N(z1—y1)?]) 2. (2.25)
To estimate the integral term in the left-hand side of the equation (2.23),
we will use the following reasoning. Under the transformation y; = x1 +1tz1,
yh = tzo the domain S}+ (P) transforms into the domain Q3 : -V2< <

V2,0 < 25 < (=1/2)2% + 1 of the plane of the variables z;, 2. In its

turn, the domain Q3 under the transformation 21 = o, 20 = —(27) " to? + 71
transforms into the triangle Q3 : 0 < 7 < 1, V27 < o < 27 of the
plane of the variables o, 7 (the parabola zo = —(279) 2% + 79 for a fixed

70 € (0,1] transforms into the segment 7 = 79, 21 <o < \/570). In
addition, it is easy to see that

My1,y2) _ o
d(z1, 22) =t (71,22) € O, (2.26)
8(21522) 0'2 0'2 -
S5 = —5 < —— < ol )
= (o, 1) R (27)2 — 2, 272 = 1, (0,7) € Q3 (2.27)

In the plane of the variables z;, zo we introduce the domains €4 :
“V2/4 <2 <V2/4,0< 2y < 22341 /4and Qs 1 27423 < 1/4,20 > 0. Tt
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is not difficult to verify that 4 C Q5 C Q3 and hence Q3\ Q5 C O3\ Q4 since
V1/4—22<1/2<7/8=—(1/2)(1/2)> +1 < —(1/2)2? + 1 for |21] < 1/2
and =227 +1/4 < 1/4 < 1/(2v2) = /1/4—2(1/4)2 < \/1/4— 2} for
|z1] < v/2/4. Moreover, taking into account (2.27), we see that there take
place the following inequalities:

27 d(o,7) ~
1y 2 1 11 3
(1t o1 11 3
L 2 (2)21 _1 2 2 4 8) (21722)6957
29(2—29) 229 92— 2 A
2— <2 Q
z%—I—Z%/Q _Z%-i-zg( 29) < ( Tz )1/2 (z e )1/2 , (21, 22)€Qs5,
22(2 — 23) _
[2F + 23/2)(2(1 — 22 — 2§/2))Y/2 —
4 8
= - ? ) S Q s
= (2(3/8))1/2(22 + 22)1/2  31/2(22 4 22)1/2 (21, 22) 5
2R=2) _,nl-2) _,1/2)2
<2 = Qs \ .
2+ 25/2 T 22422~ 1/4 8, (z1,22) € Q3\ Qs

Therefore by (2.25)—(2.27) we have

/ ‘B(fﬁht;yhyé”dy1dy/2:/|3(fﬂ1,t;x1 + tz1, tz0) |t dzy dzg =

51 Qs

J4(P)

t 1
= N / o= Z% — z%/Z))l/Q dzy dzo+

Q3
t 22(2 — 22)
NI / 27+ 22/2)(2(1 — 2 — 2/2))172

d21 dZQ =

= L T 1 8(2’1,2’2) -
ﬂ”o/ : / )0 + o2/ Blorr) T

t 22(2—22)
T dz1 dzo+
2\/5779/ (23 +23/2](2(1 — 22 — 2/2))1/2 7 7
t 22(2 — 22)
+ dz1 dzo <
w@r/ (22 4 22/2](2(1 — 20 — 22/2))1/2 "2 =
Q3\Q5
1 7'
t 2 le ng
< —— [ dr 7"’
_\/EWO/ / ))1/2 2\/_7T\/_ (2 + 23)1/2

2T
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1
t 8 V2
S dz1d <—t (1- ~34
+2\/§7r / (2(172272%/2))1/2 Z1 Az - O/T 7' T+

93\95
/2 x , )
4t z -3
—t | d do 8(2(1— 2 — 2 dzy dzg <
gt o [ras g [ s((-n ) s
0 0 Q3\ Q4
1
242 1 4
Sit/r(l— )_5d7+—t 4
T 6m 2
0
9 1 \/§T 9 18(
t o —2 0(21, 22
- 1— 14+ —
+w/dT / (a-n(1+5)) " Sy @<
/4 _var
22 / 2 2 ;
t t
STt/T(lf’r) 2d7'+%+;/4\/§7'(17') 2dT<
0 1/4
1
10v2 . 2 2012 2
< t 1—-7)"2d —t < | — — |t. 2.28
- o7 O/T( ) T+\/€ _( s +\/6) ( )

Remark 2.4. Since the function B(z1,t;y1,y5) has weak singularities,
the operator K acting by the formula

(K)(z1,t) := / Bz, ty1,y2)Y (Y1, ¥2)¥ (Y1, 43) dyr dyy - (2.29)
s3(P)

is a linear continuous operator acting from the Banach space C(Xs) of con-

tinuous bounded functions defined in the closed strip ¥s = {(yl, yh) € R? :

—00 < g1 < 00, 0 < yh <4} into itself, and owing to (2.29) for its norm
the estimate
202

2
||K||c(>:6)~c(25) <cd, c= T + % (2'30)

holds.

For0 <7<t 0<7<d,P=(x1,t/v/2,t/v/2) € S; we introduce the
sets QPJ’ = {(ylayé) € Sll+(P) : yé > T}a 25,7' = {(ylayé) € 25 : yé > T}'

Remark 2.5. Analogously we can show that the operator K, acting by
the formula

(K ) (1) = / Blar, tiyn, t)b(yn, ) dyn dyy (2.31)
Qp,r

is a linear continuous operator acting from the space C'(3;,;) of continuous
bounded functions with the domain of definition 35 - into itself, and for its
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norm the estimate

<er(6—7) (2.32)

15wy sy <

is valid with a positive constant ¢; (¢1 > ¢) independent of § and 7.

Lemma 2.3. In the class C(Xs) the equation (2.23) cannot have more
than one solution.

Proof. Indeed, let (x1,t) € C(Xs) be a solution of the homogeneous equa-
tion corresponding to (2.23), i.e. with regard for (2.29),

’(ﬂ(xl,t) — (Kw)(.’lﬁl,t) =0, (3’)1,75) € Xs. (233)

It immediately follows from the above equality and (2.30) that for §<c™*
the solution ¥ (z1,t) of the equation (2.33) is identically equal to zero in Xs.

Let now § > ¢~ !. Then there exists a natural number &k such that
§/k < c¢;*. By the above-said, the solution 9 (x1,t) of the equation (2.33)
is equal to zero identically in the strip ¥s/,. Therefore this equation in the
strip Yos/k,5/k With regard for the structure of the set S}+(P) and (2.31) can
be rewritten in the form ¢(x1,t) — (Ks/p9)(w1,t) = 0, (21,t) € Xo5/k,6/k;
whence by virtue of (2.32) we obtain 1 (x1,t) = 0, (x1,t) € Xo5/k.5/k-

Continuing this process, step by step we obtain that the solution ¥ (z1,t)
of the equation (2.33) is equal to zero in each of the strips
36 ks 2326 /.5 /s + + + 5 238 /ey ((i—1) /R)S 5 - -+ » 26,((k—1)/k)5» 1-€- P (x1,t) is equal to
zero in the entire strip 5. Thus Lemma 2.3 is proved. ]

Lemma 2.4. For every f € C(Xs) the equation (2.23) is uniquely
solvable in the class C(X5). In addition, if f(y1,0) =0, —oco < y1 < +00,
then ¥(y1,0) =0, —co < y1 < +00.

Proof. Indeed, by the estimate (2.30) and the principle of contracted maps
the equation (2.23) is uniquely solvable in the space C(X;/;), where a nat-
ural number k is chosen in such a way that §/k < ¢;' < ¢!, and the
solution % of the equation (2.23) in the strip Y.s/k 1s representable in the
form ¢ = Y K'f.
i=0

Having denoted this solution in the strip Y5/, by ¥o € C(X;);), for
finding a solution of the equation (2.23) in the strip Y25 /4 5/r We obtain the
equality

Y(@1,t) — (Ksyp)(21,t) =
:f(xlat)+ / B(xlat;ylayé)wO(ylayé) dyl dyéa
S_1/'+(p)\QP,<5/k

which by virtue of the estimate (2.32) is likewise uniquely solvable in the
space C'(Xgs /k,s/k)- In addition, the given solution is a continuous extension
of the solution vy from the strip X5/, to the strip ¥os5/x 5/x. Continuing
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this process in the strips Yss/k,26/k5 - - - » 25,((k—1)/k)5, We can construct in
the space C'(X5) a solution 1) of the equation (2.23) whose uniqueness follows
from Lemma 2.3. Tt can be easily seen that if f(y1,0) =0, —0co < y1 < +00,
then ¥(y1,0) =0, —oo < y1 < +00, as well. Thus according to Remark 2.3
Lemma 2.4 is proved. O
Below under C*(X) it is meant the Banach space of k times continu-
ously differentiable functions in the closed strip X5 with the finite norm

02 (Y1, )
Wl e, = D, sup W < +oo, k>0.

a1tas<k (ylayé)EES

Lemma 2.5. Under the conditions of Lemma 2.4, if C¥(Zs), then a
continuous bounded solution 1 of the equation (2.23) belongs to the space

CF(s).

Proof. For the sake of simplicity, we restrict ourselves to the consideration
of the case k = 1. By (2.25), (2.26) and (2.29), we have

(K9)(x1,t) = / B(z1,t;y1,y5)¢ (Y1, y3) dy1 dys =

= /B(:cl,t;:c;g +tz1, tzo)(x1 + tzl,tzg)t2 dz1 dzg =

Q3
= t/G(Zl, Zg)’lﬂ(ﬂ?l + 121, tZQ) dzy dzs, (234)
Q3
where Q3 @ —v2 < 21 < /2,0 < 2, < (1/2)z%+ 1, 47G(21, 22) =
—2(1 — 25 — 22/2)72 — 23(2 — 22)[22 —1—23/2] Y1 — 29 — 22/2)~ % From

(2.34), for ¢ € C'(X5) we obtain

w — /G(Zl,ZQ)w(:Cl —+ tZl,tZQ) le d22+

ot
—l—t/G 21, 22 (331 +ta, tZQ) dz1 dzo+
Oy
tz1,t
+t / G(z1,22)22 W deydes = Jy +tJy +tJ5,  (2.35)
S, Y2
O(K)(x1,1)
— " = tJs. 2.36
0, 2 (2.36)

Comparing with (2.28) and taking into account that |z1] < v/2, 0 <
zo < 1 when (21, 22) € Q3, we can see that

2
Ji, Jo < e, J3§\/§c, chT\/_ (2.37)

v
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By (2.22), (2.24) and Lemma 2.4 we have

f(y1,0) =9¥(y1,0) =0, —oo <y < 00, (2.38)
and hence for 1) € C1(3;) we obtain

’L/) y17
yla y2 ay2

(2.39)
(1, 15)| < vbll—— , |¢(a:1 +t21, te)| < tH oY .
S pllees,,) — lloyy ey
From (2.35)—(2.39) we find that
K?ZJ (581 t) (K?ﬁ) T1,t
K)o )+ [ A< 5
|( ) (z1,t |+ + ||¢||c(2,) oyl
+vai 52| H H 2| /Gw dz d
aylom) T laglos) Tilaylow, | 166G 2 dadz <
< 3et o e
= OC |:||’L/)||c(z:t) ayl =) ay2 C(Et):|

= 3Ct||¢||cl(zt)) (xla ) € Xs. (240)
Due to (2.40), for the norm of the operator K : C*(X5) — C*(Zs) the

estimate

< 3cd

TS
holds, from which it follows that Lemma 2.5 is valid for § < 1/(3¢). If
d > 1/(3c¢), then our reasoning is the same as in proving Lemmas 2.3 and
2.4. The case k > 1 is considered analogously. Thus the proof of Lemma 2.5
is complete. (Il

Let D, := {(v1,%2,t) € D; t < 7}, 7 = const > 0. Under C*(D)
we mean the space of k times continuously differentiable in D functions for
which the norm

olelu(x, t)
PR o e I B

la|<k (z,t)€D~ O0z{' 0xy? 0tes

is finite for every 7 > 0; here © = (z1, z2), @ = (a1, a2, a3), |a] = a1 +as +
as. For k = 0, instead of C°(D) we write C(D).

In accordance with Remarks 2.1, if y; and y} are rectangular coordinates
on S1, then we assume that Si, := {(y1,95) € S1: y5 <7}, 7 = const > 0.
Denote by C*(S7) the space of k times continuously differentiable in Sy
functions for which the norm

W, , = 3 sup

|a\<k (ylayg)ESh—

0“2 (y1, y5)

Oyt Oy <0

is finite for 7 > 0. For k = 0, instead of C°(S;) we write C(S1). Analogously
we introduce the space C*(S7).



98 S. Kharibegashuvili

From Lemmas 2.2 and 2.3 immediately follows

Lemma 2.6. The problem (2.1)~(2.3) cannot have more than one gen-
eralized solution of the class C(D).

To construct a generalized solution of the class C(D) of the problem
(2.1)—(2.3), of the functions ¢ and p in the boundary conditions (2.2) and
(2.3) it is required that p € C'(S2), u € C1(S1), and as is mentioned above,
without restriction of generality we assume that these functions satisfy the
equalities (2.22). In this case f € C*(S;), and by Lemma 2.5 the solution v
of the equation (2.23) belongs to the space C1(S;) and satisfies the equality
(2.38).

Let us show that the function

o OE(r,t,T)
Ui(z,t) :==2 / P N ds (2.41)
Szt

and its derivative OU;/0t, belong to the space C(D), where the surfaces
St i =1,2, Sy and the function E(r,t,7) are defined above (see the
equalities (2.4)-(2.7)). Indeed, the fact that U; € C(D) follows from Lem-
ma 2.1. Taking into account (2.38) and integrating the right-hand side of

(2.41) by parts, we obtain

_ oy _
Ui(z,t) = -2 / 5N E(r,t,7)ds =
Syt

T1+4/t2—a3 o(x,y1,t)
= -2 / d / a—¢E(rtT)d’ (2.42)
Y1 ON IE2) Yo, .
T1—/t2—x2 0
where o(z,y1,t) = [—(y1 — 21)?/(t — x2) + t + 22]/V2. Denote by 72,
the part of the parabola y5 — o(z,y1,t) = 0 lying on S;yt. Since o(z,y1,1)
for y1 = 1 £ /12 — 23 and E(r,t,7)|,1, = 0, from (2.42) it follows that

oU /0t = =2 [ (9¢/ON)(OE(r,t,7)/0t)ds = 2(Tod/ON)(x,t), where Tj
S

is the operator from Lemma 2.1. Therefore by Lemma 2.1 the function

0U, /0t belongs to C(D), and by the equalities (2.10) and (2.38) we have

V2t
W) [ )
ot oN 2T
0
V2t
/ (2.43)
- / WELY) s — gy V2D, (2.1) € S,
; 6?}2
AU, (z, 1)

o =0, (Z‘,t) € 5.
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Similarly, by Remark 2.2, the function

OE(r,t,
Us(z,t) =2 / ® % ds (2.44)
S

and its derivative OUs /0t belong to the space C(D), where
6U2($,t) aUg(m,t)

T = (,0(1‘17 \/it), (Z‘,t) € SQ; T =0, (Z‘,t) € 5. (245)
Consider now the function
0
u(z,t) == (&) (UL (2, t) + Un(a, 1)) (2.46)

which by virtue of the above-said belongs to the space C(D). By (2.43)-
(2.46) and Remark 2.1, we have

u|s1 =1, u‘SQ =, (2.47)
t
E
/u(xl,mg,T)dT:2/w%ds+2/@%d(ﬁ:
T2 Sat e
OE(r,t,T)
=2 —=ds. 2.4
/ U N ds (2.48)
Szt

It follows from (2.22), (2.48) and Lemma 2.2 that the function u(x,t)
defined by the formula (2.46) is a generalized solution of the equation (2.1) of
the class C(D), and from the equalities (2.23) and (2.47) it follows that this
function satisfies the conditions (2.2) and (2.3). Consequently, the function
u(x,t) constructed by the formula (2.46) is a generalized solution of the
problem (2.1)-(2.3) of the class C(D). Thus with regard for Lemma 2.6
and Remark 2.3 we have the following

Theorem 2.1. For every p € C'(S1) and ¢ € C*(S2) the problem
(2.1)~(2.3) has a unique generalized solution of the class C(D).

Remark 2.6. On the basis of Lemma 2.5 we can show that if ¢ €
CH+1(Sy) and p € CF+1(Sy), k > 1, then the solution of the problem
(2.1)—(2.3) whose existence is stated in Theorem 2.1 will belong to the class
C*(D), and hence for k > 2 it will be a classical one.



CHAPTER 4

The Characteristic Cauchy Problem for
Multi-Dimensional Wave Equations with
Power Nonlinearity

1. Nonexistence of Global Solutions of the Characteristic
Cauchy Problem for the Wave Equation with Power
Nonlinearity of Type A|u|®

1.1. Statement of the problem. For a nonlinear wave equation of
the type

DU = Utt*AU:A|U|a+F, (11)

where A and « are given positive constants, F'is a given and u is an unknown
real function, we consider the characteristic Cauchy problem on finding in

the light cone of the future D : t > |z|, z = (x1,...,2,), n > 1, a solution
u(x,t) of the equation (1.1) by the boundary condition

ul,, =f (1.2)
Here f is a given real function on the characteristic conic surface 9D : ¢ =
|z|, A is the Laplace operator with respect to the variables 1, ..., z,.

Below it will be shown that under certain conditions imposed on the
nonlinearity exponent « and on the functions F' and f, the problem (1.1),
(1.2) has no global solution, although, as it will be proved, this problem is
locally solvable.

To introduce the definition of weak generalized solution of the problem
(1.1),(1.2), it should be noted that if u € C?(D) is a classical solution
of that problem, then multiplying both parts of the equation (1.1) by an
arbitrary function ¢ € C''(D) with a bounded support with respect to the
variable r = (£ + |z|?)'/2, i.e. equal to zero for sufficiently large r, after
integration by parts we obtain

ou

N ds—/utgot dxdt—&—/Vquodatdtz
D

oD D

:)\/|u|"‘<p dxdt+/F<p dx dt, (1.3)
D D

100
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n
o _ 9 _ -9 ivati i .
where IN = Vn+1 3 Z Vi g7 18 the derivative with respect to the conor

i=1
mal, v = (v1,...,Vn,Vnt1) is the unit vector of the outer normal to 9D,
)

_ (0
V= (oo a0m)-
Taking into account that on the conic surface D : ¢ = |z| the derivative
n
d

5. 1s an inner differential
i

with respect to the conormal % = Un+1 %— Sy
i=1

operator, the equality (1.3) by virtue of (1.2) can be written as

f/utcpt da:dt+/Vqua drdt =
D D

:)\/|u|a<pd:cdt+/Fcpdxdtf/%cpds. (1.4)
D D oD

The equality (1.4) is basic in the definition of generalized solution of
the problem (1.1),(1.2).

Definition 1.1. For F € ZQy]OC(D) and f € WQI’IOC((?D), the function
U € Lo joe(D) N WQI’IOC(D) is said to be a weak generalized solution of the
problem (1.1), (1.2) if for every function ¢ € C'*(D) with a bounded support
with respect to the variable r = (t* + |z|?)'/2 the integral equality (1.4) is
fulfilled. Such a solution will be also called a global solution of the problem
(1.1),(1.2).

Here the space Ly joc(D) (WQ{IOC(E)D)) consists of the functions F (f)
whose restriction to the set DN {t < 7} (0D N{t < 7}) for every 7 > 0
belongs to the space La(D N{t < 7}) (W3(dD N {t < 7})). The spaces
Za,loc(D) and Wzl,loc(D) are determined analogously. The space W3 (Q2) is
the well-known Sobolev space [84, p. 56].

For the equation (1.1), the characteristic problem in the conic domain
D.=Dn{t <7}, 7=const >0, ie D;: |x|] <t<rT,is formulated
analogously. Assume S, = 9D NAJD,, ie. S, t=lz|,t <.

Definition 1.2. Let F € Ly(D,) and f € W3 (S;). Then the function
u € Lo(Dy) N WH(D;) is said to be a weak generalized solution of the
equation (1.1) in the domain D, satisfying instead of (1.2) the boundary
condition u|g, = f, if for every function ¢ € C*(D-) such that ¢|sp 5. =0
the integral equality

— / urpr dedt + | VuVe drdt =
oD, D,

a of
7)\/|u| cpd:cdt+/Fg0dxdt7/a—Ncpds (1.5)
ST

T D

is fulfilled.
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1.2. The nonexistence of a global solution of the problem (1.1),
(1.2).

Theorem 1.1. Let
f€Lawe(D), F|,>0 (1.6)

and
of

f € W2 loc aD f‘@D a or lap =

(1.7)

Then if the nonlinearity exponent o in the equation (1.1) satisfies the in-
equalities

n+1
n—1"
then the problem (1.1),(1.2) cannot have a global (if I = 0 and f =
nontrivial) weak generalized solution u € L 1oc(D) N W21 loc(D).

l<a<

(1.8)

Proof. It should be noted that the inequality 5£| op = 0 in the condi-
tion (1.7) is understood in a generalized sense, i.e. by the assumption

f e W21710C(8D) there exists the nonnegative generalized derivative % €

ZgyloC(D), and hence for every function ¢ € C(9D), ¥ > 0, with a bounded
support with respect to the variable r the inequality

/g—fwdszo (1.9)

oD

holds.

Here we apply the method of test functions [101, pp. 10-12]. As-
sume that under the conditions of Theorem 1.1 there exists a nontrivial
global weak generalized solution u € L 10c(D) N W21 loc (D) of the problem
(1.1),(1.2).

Assuming that in the integral equality (1.4) ¢ € C%(D) and
diam supp ¢ < 400, and integrating the left-hand side of that equality by
parts, with regard for the boundary condition (1.2) we obtain

—/utgot dxdt+/Vqu0 dz dt =
D

/uDgo da:dt—/ TP s = /uDap dz dt — /f Op ds. (1.10)
D

D

Taking now into account that the derivative with respect to the conor-
mal /0N coincides on 9D with that with respect to the spherical variable
r = (t* + |z*)'/? with the minus sign and taking as the test function in
(1.4) the function ¢(x,t) = o[R™2(t? +|z|?)], where ¢y € C?((—o0, +00)),
wo >0, vy <0, po(o) =1for 0 < o <1 and po(c) = 0 for o > 2,
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R = const > 0 [101, p. 22], by virtue of (1.6), (1.7) and (1.9) we have

/F(pdxdt>0 /f&pd /a ods < 0. (1.11)
By (1.10) and (1.11), from (1.4) it follows that
/uDgp dx dt > )\/ |u|%p dx dt. (1.12)
D D

Using the Holder inequality

1/ /a1 1
/glgg drdt < (/|g1|0‘ da:dt) (/|92|a d:cdt) , —+ =1
a o«
D D

D
we find that

/chp drdt < / (|u|<pi)(<p*i|Dcp|) dx dt <

D D

1/ o , 1/a’
< (/|u|aga d:cdt) </¢*?|Dcp|a d:cdt) =
D D
|D<,0|“ 1o
«
= (/|u| <pda:dt (D o e dt) . (1.13)

It follows from (1.12) and (1.13) that

ol 1/e
o dedt)

)\/|u|o‘<p dxdt < (/|u|a90 dxdt)l/a(/ |Ea
D D D

whence

/|u|a<p dz dt < A~ /' “”' dz dt. (1.14)

After the change of variables ¢ = R&p, * = RE, we obtain p(x,t) =
o(&3 +1¢[?) and

IDsola e di — /I2 1—n)phy +4AR2(t? — |z[*) |

RQa/ a’—1 dx dt =
n+1—2a’ 21_”’90/—’_452_5290”0/
= Rni—2 200 = me a,(_(f %) d¢ dgy.  (1.15)

2
1<[&o P +H]€)P <2, 0
£o<|€]
As is known [101, p. 22], the test function ¢(z,t) = po[R™2(t* + |x|?)]
with the above-mentioned properties exists, and its integrals in the right-
hand side of (1.14) and (1.15) are finite.
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From (1.14) and (1.15) it follows that

/ lu|®p dxdt < CR™1—2 (1.16)
D

with a positive constant C' independent of R. Passing in (1.16) to limit as
R — oo, when n+1—2a’ < 0 which for n > 1 is equivalent to the condition

n+1
/|u|“ dxdt =0,
D

a < 55 we obtain
but this contradicts our assumption. The limiting case in the condition
(1.8) when n 4+ 1 — 20/ =0, i.e. for @ = 241, is similar to that considered
in [101, p. 23]. Thus Theorem 1.1 is proved completely. O
Remark 1.1. Despite the fact that under the conditions of Theorem 1.1
the problem (1.1),(1.2) cannot have a global solution, there may exist a
local solution of the characteristic problem in the domain D, in the sense
of Definition 1.2, i.e. of the problem

Ou(z,t) = Mu(z,t)|* + F(z,t), (z,t) € D, (1.17)
u(z,t) = f(z,t), (z,t) €S;. (1.18)

Therefore there naturally arises the question on the estimation of the value
7 =T such that for 7 < T a solution of the problem (1.17),(1.18) exists in
the domain D., while for 7 > T no solution of that problem exists in the
space Lo (D) N W3 (D).

Assume that u € Lo (D,) NW3(D,) is a solution of the problem (1.17),
(1.18) in the domain D, in the sense of the integral equality (1.5). As a
test function in the equality (1.5) we take the function ¢(z,t) = @o[Z (> +
|z?)], where the function ¢y € C?((—00,+00)) is introduced in proving
Theorem 1.1. Obviously this function satisfies all the conditions quoted in
Definition 1.2. Integrating the left-hand side (1.5) by parts, just as in (1.10)
we obtain

/chpdxdt:
D,
_ « 890 8f
7)\/|u| gad:cdtJr/Fcpd:cdt+/faNdsf/aNgads. (1.19)
D, , S, S,

By (1.6) and (1.7), similarly to (1.11) the inequalities

Oy of
> —_— > —_— < .
/Fcpd:cdt_(), /fé?NdS_O’ /aNgads_() (1.20)
ST

T T

are valid.
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Assuming that the functions F', f and ¢ are fixed, we introduce a
function of one variable 7,

~(r) = /Fgodxdt+/f Op ds — g]{f@ds 7> 0. (1.21)

, 3.

Due to the absolute continuity of the integral and the inequalities (1.20),

the function (7) from (1.21) is nonnegative, continuous and nondecreasing,
and

limO ~(1) = 0. (1.22)
Taking into account (1.21), we rewrite the equality (1.19) in the form
)\/ |u|“p dzdt = /u[kp dx dt — (7). (1.23)
D. D.

If in the Young inequality with the parameter € > 0
@

’ ;
ab<aa +ﬁba, abZO, (6% 705—1

we take a = |u|p/®, b= Eﬁl, then with regard for %’ = a — 1 we obtain

o 8¢l _ g a 1 |Og
|u|:](p| = |u|<p1/ . 1/a << |u| o+ e T ol . (1.24)

By (1.24), from (1.23) we have
£ 1 Do
()\ - E) / |u|*p dx dt < g / o dx dt — (1),

D. D.

whence for ¢ < A« it follows

[l a
o < — . (1.2
/|u| o drdt < Do = aga, 1/ —— dxdt )\af{_:,y(T) (1.25)
D,

Since o = %5, a = ﬁ and 0<rr€11<1§a W = ﬁ is achieved
for e = A, from (1.25) it follows that
o | wl" o
|u|“p dz dt < dx dt — ~ ~(7). (1.26)
D,

According to the properties of the function g, the test function ¢(z,t)=
wo[Z (12 + |2|*)] equals to 0 for r = (2 + |22)1/2 > 7. Therefore after the

change of variables t = v/27&, = V/27€, just as when obtaining (1.15)
we can easily verify that

o' 0 o ,
/' P gt — / |(pf|_1 dodt = (V27)"H2 50 (1.27)

r=(t2+]z[2)1/2 <7
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where

2(1 — n)pp + 4(&& — 1€)ep|”
s001’71

ny = d§ d&p < +o0.
1<]60|2+€]2<2
By virtue of (1.27), from the inequality (1.26) and the fact that pg(c) =1
for 0 < ¢ <1 we obtain

/ |u|® dxdt < / lu|“p dzdt < (\/_QT;# y — %/7(7). (1.28)
r<Z D,
In the case a < Z—ﬂ, i.e. for n +1—2a’ < 0, the equation
9(1) = @\ﬂ s — %Ify(r) =0 (1.29)
has a unique positive root 7 = 79 > 0 since the function ¢1(r) =

2 nt1-—2a’ . oy s . . . .
% 2 is positive, continuous and strictly decreasing on the inter-

val (0, 400) with lirnogl (1) = 400 and lirf_l g1(7) = 0, while the function
T— T—1T0C

~(7) is, as is mentioned above, nonnegative, continuous and nondecreasing.

In addition, since we assume that at least one of the functions F' and f is

nontrivial, we have lir+n ~v(1) > 0. Moreover, g(t) < 0 for 7 > 79 and
T— 100

g(t) > 0 for 0 < 7 < 79. Consequently, for 7 > 79 the right-hand side
of (1.28) is negative, but this is impossible. Therefore if a solution of the
problem (1.17), (1.18) exists in the domain D, then 7 < 75 without fail,
and hence for the value 7 =T from Remark 1.1 the estimate

T § 70, (130)
is valid, where 7¢ is the unique positive root of the equation (1.29).
In the limiting case a = %, ie. forn+1—2a"=0,if
. >0
Jim (1) > =5 (1.31)

then arguing word for word as in the case a < Z—ﬂ, we again arrive at the
estimate (1.30) in which 7y is the least positive root of the equation (1.29)

which by (1.31) does exist.

Remark 1.2. Under the conditions (1.6) and (1.7) of Theorem 1.1 the
right-hand sides in the equation (1.1) and in the boundary conditions (1.2),
as well as the derivative %; are nonnegative. Therefore for n = 2 and
n = 3, by the well-known properties of solutions of the linear characteristic
problem [24, p. 745], [10, p. 84] a solution wu(x,t) of the nonlinear problem
(1.1),(1.2) will likewise be nonnegative. But in this case, for @ = 1 this
solution will satisfy the following linear problem:

Ou = Au + F,

“}aD:f7
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which is globally solvable in the corresponding function spaces.

Remark 1.3. In case 0 < a < 1 the problem (1.1),(1.2) may have
more than one global solution. For example, for F' = 0 and f = 0 the
conditions (1.6) and (1.7) are fulfilled, but the problem (1.1),(1.2) has,
besides the trivial solution, an infinite set of global linearly independent
solutions u, (x, t) depending on a parameter o > 0 and given by the formula

o (x, 1) = {ﬁ[@ e R

0, lz| <t <o+ |z,

2(n+1)}

where 8 = AT= [(1 oy + . It can be easily seen that u,(x,t) €
zg7loc(D)ﬂW21’10C( ) and, moreover, u,(z,t) € C(D), but for 1/2 < a < 1

the function u, (z,t) belongs to C2(D).

Remark 1.4. The conclusion of Theorem 1.1 ceases to be valid if instead

of (1.8) the inequality a > "—1‘1 is fulfilled and simultaneously only the
first of the conditions (1.7) violates, i.e. flop > 0. Indeed, the function
u(w,t) = —e(1+12 — |Jc|2)ﬁ7 e = const > 0, is a global classical and hence
a generalized solution of the problem (1.1),(1.2) for f = —¢ (%‘BD =0)
and F = [2e 28 — 4e (CEyE JF—t;‘ﬁ\‘W Ae](1+82 — |Jc|2)ﬁ7 where, as it

can be easily verified, F|p > 0 1fa > "H and 0 < e < {2 [Wr:%%}}ﬁ
Note that the inequality n + 1 — =% > O is equivalent to o > "H

Remark 1.5. The conclusion of Theorem 1.1 ceases likewise to be valid if
violates only the second of the conditions (1.7), i.e. the condition f |8D > 0.

Indeed, the function u(z,t) = ﬁ[(t+1)2—|x|2]ﬁ, where 8 = A% [(1_a)2 +
2(71_+11]—m7 is a global classical solution of the problem (1.1),(1.2) for

l—«

F=0and f = ulgp: 1=|s| = B[t +1)* - 27 > 0.

1.3. Local solvability of the characteristic Cauchy problem.
Below we will restrict ourselves to the consideration of the problem (1.17),
(1.18) in the domain D under the homogeneous boundary condition (1.18),
ie.

ulg =0. (1.32)

First of all, we consider the linear case, when in the equation (1.17) the

parameter A\ = 0, i.e. we consider the linear boundary value problem
Lu(z,t) = F(x,t), (x,t) € Dy, (1.33)

u(z,t) =0, (x,t) €S-, (1.34)

where for convenience we introduce the notation L = D( = % — A).
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Definition 1.3. Let F € Ly(D,). The function v € Wi(D,,S,) =
{u € WJ(D;) : uls, = 0} is said to be a strong generalized solution
of the problem (1.33),(1.34) if there exists a sequence of functions u,, €

W2(D,) N Wi(D,,S,) such that

dim = ull,y =0, T [|Lu — F 0.

La(Dr)

To obtain the required a priori estimate for the solution v € W2(D,)
of the problem (1.33), (1.34), we will use the considerations from [61]. Mul-
tiplying both parts of the equation (1.33) by 2u; and integrating over the
domain Ds, 0 < § < 7, after simple transformations together with integra-
tion by parts and conditions (1.34), we obtain the equality

/ {uf + zn:ui] dx = 2/Fut dz dt, (1.35)
i=1

Qs = Ds

where Q5 = D, N {t = §}. Under the notation w(6) = [ [uf + 3 u?2 ] dz,
Qs i=1

with regard for the inequality 2Fu; < eu? + %FQ for every € = const > 0,

from (1.35) we have

1
w(d) <e [ w(o)do + - | F|1 0<é<T. (1.36)

La(Dg)’

o—_.

From (1.36), taking into account that ||F||i2(D6) as a function of § is

nondecreasing, by Gronwall’s lemma [44, p. 13], we have
1 2
w(d) < - HF||L2(D6) exp de,

whence with regard for the fact that inf 2;& = ed is achieved for € = %

e>0
we find that
w(5) < ed|| F|?

La(Dg)’
In its turn, it follows that

/ uf + > u2 | dodt = / w(o)do < er*|FI2 |
D, =1 0
and hence

<Vert|F| (1.37)

g,

Here we have used the fact that in the space W(D,, S;) the norm

n 1/2
2, .2 2
Hu”wg(m) < {/ [u + uj +z;ux} da:dt}

.
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is equivalent to the norm

I {/ {ut2+zn:u2} d:cdt}l/Q.

i=1

-

Since the space C§°(D;) is dense in La(D.), for the given F' € Lo(D;)
there exists a sequence of functions F,, € C5°(D;) such that lim |F,, —

F||L2(D7')
domain D, and leaving for it the same notation, we have F,,, € C*°(R),
for which supp F,,, C D, where Ri‘“ = R"' N {t > 0}. Denote by u,
a solution of the Cauchy problem Lu,, = Fy,, tm|t=0 = 0, 8—g§’l|tzo = 0.
As is known, the solution of that problem exists, is unique and belongs to
the space C‘X’(RT'I), and since supp Fy,, C D, um|i=0 = 0, 6gt’" o =0,
according to the geometry of the domain of dependence of a solution of the
wave equation we have supp u,,, C D : t > |z| [48, p. 191]. Leaving for the

restriction of the function wu,, on the domain D, the same notation, we can
see that u,,, € W2(D,) "\W(D,,S,), and by (1.37) we find that

< \/ET”Fm _leHLQ(DT)' (138)

= 0. For fixed m, extending the function F}, by zero outside the

lwm — wm, |l L
Wi (Dr.Sr)

Since the sequence {F},} is fundamental in Lo(D,), by virtue of (1.38)

the sequence {u, } is likewise fundamental in the complete space W3(D,, S.).

Therefore there exists a function v € Wi(D,,S,) such that lim [u,;, —
m—00

ull = 0, and as far as Lu,, = F,, — F in the space Ly(D,),

Wi(Dr,5r)
this function is, according to Definition 1.3, a strong generalized solution
of the problem (1.33),(1.34). The uniqueness of a strong generalized solu-

tion of the problem (1.33),(1.34) from the space W3(D,,S,) follows from
the a priori estimate (1.37). Consequently, for a solution u of the problem

(1.33),(1.34) we can write v = L™'F, where L™ : Lo(D,;) — Wi(D,,S,)
is a linear continuous operator whose norm by virtue of (1.37) admits the
estimate

L7 <+er. (1.39)

° =
La(Dr)—WL(Dr,S7)

Remark 1.6. The embedding operator [ : VIO/%(DT,ST) — L¢(D;) is a

linear continuous compact operator for 1 < ¢ < % when n > 1 [84,

p. 81]. At the same time, the Nemytski operator T' : Ly(D,) — Lao(D,),
acting by the formula Tu = Au|® is continuous and bounded if ¢ > 2« [79,

p. 349], [82, pp. 66, 67]. Thus if & < 25 ie. 2a < %, there exists a
number ¢ such that 1 < 2a < ¢ < 24D and hence the operator

n—1

To = TI: Wi(D,,S,) — Ly(Dy) (1.40)
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is continuous and compact. In addition, from v € W3(D,,S,) it follows
u € Lo(D;). Everywhere above we assumed that o > 1.
Definition 1.4. Let F € Ly(D;) and 1 < a < 25 The function

o
u € W(D,,S;) is said to be a strong generalized solution of the non-
linear problem (1.17),(1.32) if there exists a sequence of functions u,, €

W3(D;) N Wi(D;,S;) such that u,, — u in the space Wi(D,,S;) and
[Lty, — Mum|®] — F in the space Lo(D;). Moreover, the convergence of
the sequence {\|u,,|“} to the function A|u|® in the space La(D,) as wy, — u

in the space W3(D-, S;) follows from Remark 1.6, and since |u|® € L2(D.),
by the boundedness of the domain D, the function u belongs to Lo (D;) all
the more.

Remark 1.7. Tt can be easily verified that by Remark 1.6, for 1 < a <
Z—ﬂ, if u is a strong generalized solution of the problem (1.17),(1.32) in the
sense of Definition 1.4, then this solution is a weak generalized solution of
that problem for f = 0 in the sense of Definition 1.2, i.e. in the sense of the
integral identity (1.5).

Remark 1.8. Note that for F' € Ly(D;), 1 < a < Z—ﬂ, the function

u € Wi(D;,S;) is a strong generalized solution of the problem (1.17), (1.32)
if and only if u is a solution of the following functional equation

uw=L""(Aju|*+ F) (1.41)

in the space Wi(D,, S;).
We rewrite the equation (1.41) as follows:

u = Au + ug, (1.42)

where A = L™y : Wi(D,,S,) — Wi(D,,S;) by virtue of (1.39), (1.40)
and Remark 1.6 is a continuous and compact operator acting in the space

WL(D.,S,), and uo = L~'F € W(D-, S,).
Remark 1.9. Let B(0,z22) := {u € I/(I)/é(DT,ST) e < 2}

be a closed (convex) ball in the Hilbert space Wi(D,, S;) of radius 25 > 0,

with center in the zero. Since the operator A : Wi(D,,S,) — Wi(D,,S,)

forl <a< Z—J_r} is continuous and compact, by the Schauder principle for

the equation (1.42) to be solvable it is sufficient to prove that the operator
Aj, acting by the formula A;u = Agu+ ug, transforms the ball B(0, z2) into
itself for some zo > 0 [120, p. 370]. Towards this end, below we will indicate

the needed estimate for || Aul| , .
W (Dr.S7)
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If u € Wi(D,, S;), then we denote by @ the function which is the even
continuation of the function u through the plane ¢t = 7 into the domain
Dr: 1<t <21 — |2, ie.

i t) = {u(a:,t), (z,t) € D,

u(z, 2T —t), (x,t) € Di
and u(z,t) = u(z,t) for t = 7, |x| < 7 in the sense of the trace theory.
Obviously & € W(D,), where D, : |z| <t < 2r — |z|. It is clear that

D.=D;U{(z,t): t=r7, || <T}UD:.
Using the inequality [127, p. 258]

/|u| 4 < (mes ) o]l oy p> 1,
Q

and taking into account the equalities

lall? o = 2lull

Lp(Dr) Lp(Dr)” ||u||v%é(5 *2”u”& )

r 3(Dr.57)

from the well-known multiplicative inequality [84, p. 78]

~ ~ (o)
o]l 0 < Bllvalll o0l Yo e Wa(Q), @c R™,

~ (1 1)(1 1)—1’ ~  (n+1)m

o = m =

r p/\r m n+l-—m’
forQ:ﬁTCR”*l,Uzﬂ,rzl,m:2and1<p§%,Where
[ = const > 0 does not depend on v and 7, we obtain the inequality

1,1 1 °
lullz, b,y < co(mes D, )7 T 7FT 2||u||VOV1(D o Yue Wi(D,,S;), (1.43)
L(Dr .5y

where ¢y = const > 0 is independent of w.
Taking into account that mes D, = n—“’_ﬁ 77+, where w, is the volume
of the unit ball in R™, from (1.43) for p = 2a we obtain

el cmry <

< ol nr D (F+a=8) |y VueWh(D.,S,),  (1.44)

W3(Dr,S7)
where Za,n = (n—ﬂﬂT)(ﬁ'Fm_i).
For ||Toull,,p.,, where u € W5(D,,S;) and the operator Ty acts by
the formula (1.40), by virtue of (1.44) we have the estimate

20 1/2 a
[Touly,, < A[ [l dwat] " <A, ., <
D
< Marm 2= ge  (145)

wi(Dr,Sr)
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where {q ,, = [cozﬁx,n]a.

Now from (1.39) and (1.45) for || Aul| o, , where Au = L™ 'Tyu,
Wi(Dr,Sr)
the estimate ’
[Aul < |IL7H| - 1Toull ., p,, <
Wi(Dr,57) Ly(Dr)—W}(Dr,S7)
[e]
< Ve My D (3 + 2= ) g o Vue WD, S,) (1.46)
W3(Dr,S7)
is valid. Note that i + #—1 — % > 0 for a < Z—J_r}
Consider the equation
az®+b=z (1.47)
with respect to the unknown z, where
0= Ve o Geras=d)  po P, L (148)

For 7 > 0 it is obvious that @ > 0 and b > 0. A simple analysis, similar to
that carried out for o = 3 in [120, pp. 373, 374], shows that:

(1) for b = 0, along with the zero root z; = 0 the equation (1.47) has
only one positive root zo = a_ﬁ;

(2) if b > 0, then for 0 < b < by, where

by = [ofﬁ —ofﬁ]a*ﬁ, (1.49)

the equation (1.47) has two positive roots z; and 29, 0 < z1 < z9. For b = by
these roots get equal, and we have one positive root

21 =29 = 29 = (aa)fﬁ;

(3) for b > by, the equation (1.47) has no nonnegative roots.
Note that for 0 < b < by the inequalities

1
21 < 29 = (@a)” & T < 29

hold.

Owing to (1.48) and (1.49), the condition b < by is equivalent to the
condition

1 N
\/ET”F”LQ(DT) < [\/E)\ga,nTlJra(nJrl)(iJrﬁi%)} el [Oéiﬁ — Oziﬁ],
that is,
||F||L2(D,_) S 771,)\,04T7a7l7 Ay > 07 (150)

where

— L _a—ﬁ}()\ga,n)—ﬁexp[——(l—k ! >i|a

a—1

Tn,\a = [Oé

—1+L[1+ ( +1)(i+ : 1)}
n =TT on 2% n+1 2/

Because of the absolute continuity of the Lebesgue integral, we have
limO IF],,p,, = 0. At the same time limO T7% = 400. Therefore there
T— T T—
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exists a number 7 = 71 (F), 0 < 71 < 400, such that the inequality (1.50)
holds for

0<7<n(F). (1.51)

Let us now show that if the condition (1.51) is fulfilled, the operator

Ayu = Au+ vy : Wi(D,,S;) — W3i(D,,S,) transforms the ball B(0, zo)
mentioned in Remark 1.9 into itself, where z5 is the maximal positive root
of the equation (1.47). Indeed, if u € B(0,z22), then by (1.46)—(1.48) we
have
JArll, <alul®  +b<ag+b=z
wi(

Dr,Sr wi(Dr,Sr)

Thus by Remarks 1.7-1.9, the following theorem is valid.

Theorem 1.2. Let F € EQJOC(D), 1 < o< 2 and for the value

n—1’
T the condition (1.51) be fulfilled. Then the problem (1.17),(1.32) in the
domain D, has at least one strong generalized solution u € Wi(D,,S,) in
the sense of Definition 1.4, which is at the same time a weak generalized

solution of that problem in the sense of Definition 1.2.

Remark 1.10. Note that for 1 < a < % the uniqueness of a solution
of the problem (1.17),(1.32) in the domain D, can be proved in a more

narrow than W3(D,, S;) space of functions

n
El = {u € Wi(D,,S,): esssupp / [uf + Zuzq} dr < —l—oo}.
o<t : )
o<o= Q,=DN{t=c} i=1

Remark 1.11. It is easily seen that the value ¢ = T considered in Remark
1.1 is contained in the interval [, 70], by virtue of the estimates (1.30) and
(1.51).

2. The Existence or Nonexistence of Global Solutions of the
Characteristic Cauchy Problem for the Wave Equation with
Power Nonlinearity of Type —\|ulPu

2.1. Statement of the problem. Consider a nonlinear wave equa-

tion of the type
0%u
where f and F' are given real functions, f is a nonlinear function, and u is
n
. _ 82
an unknown real function, A = Z 97

=1
For the equation (2.1) we consider the characteristic Cauchy problem

on finding in the truncated light cone of the future Dy : |z| < ¢t < T,
x = (x1,...,2Zp), n > 1, T = const > 0, a solution u(z,t) of that equation
by the boundary condition

U‘ST =9, (22)
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where ¢ is a given real function on the characteristic surface St : t = ||,
t < T. Considering the case T' = 400, we assume that Do, : t > |z| and
Soo = 0D : t = |z

Below we will distinguish particular cases for the nonlinear function
f = f(u), when in some cases the problem (2.1),(2.2) is globally solvable,
while in other cases such solvability does not take place.

2.2. The global solvability of the problem. Consider the case

f(u) = —Alu|Pu, where A # 0 and p > 0 are given real numbers. In this
case the equation (2.1) takes the form
2
Lu:= ??T;L — Au = —Alu|Pu+ F, (2.3)

where for convenience we introduce the notation L = 0. As is known, the
equation (2.3) arises in the relativistic quantum mechanics [87], [110], [112],
[114].

For the sake of simplicity, we assume that the boundary condition (2.2)
is homogeneous, i.e.

ulg, =0 (2.4)
Assume VIO/%(DT,ST) = {u € WH(Dr) : u|s; = 0}, where W} (Dr) is
the known Sobolev space.

Remark 2.1. The embedding operator I : I;@(DT,ST) — Ly(Dr) is

linear continuous compact for 1 < ¢ < %, when n > 1 [84, p. 81].
At same time, the Nemytski operator K : Lq(Dr) — Lo(Dr), acting by
the formula Ku = —A|u|Pu is continuous and bounded if ¢ > 2(p + 1) [79,

p. 349], [82, p. 66, 67]. Thus if p < 27, i.e. 2(p+ 1) < 22D then there

. 2(n+1
exists a number ¢ such that 1 < 2(p+1) < ¢ < %, and hence the
operator
Ko=KI:W3(D,,S;) — Lo(Dr) (2.5)

is continuous and compact. In addition, from u € W3(D,,S;) it all the
more follows that u € L,+1(D). As is mentioned above, here and in what
follows we assume p > 0.

Definition 2.1. Let F € Ly(Dr) and 0 < p < n31' The function

o
u € Wi(D;,S;) is said to be a strong generalized solution of the nonlinear
problem (2.3), (2.4) in the domain Dr, if there exists a sequence of functions

um € C*(D;,S;) = {u € C*(Dr) : ul|s, = 0} such that u,, — u in

the space W3(D,,S,) and [Lty, + Aum|Pu,] — F in the space La(Dr).
In addition, the convergence of the sequence {\|um,|Pum,} to the function

Alu[Pu in the space La(Dr), as um — u in the space W(D-, S ), follows
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from Remark 2.1, and since |u[P*! € Ly(D7), due to the boundedness of
the domain Dy, the function u belongs to Ly41 (D) all the more.

Definition 2.2. Let 0 < p < —2-, F € Ly 1oc(Do) and F € Lo(Dr)
for every T' > 0. We say that the problem (2.3),(2.4) is globally solvable,
if for every T' > 0 this problem has a strong generalized solution from the

space VIO/%(DT, S7) in the domain Dr.

Lemma 2.1. Let A > 0,0 < p < % and F € Lyo(Dr). Then for

every strong generalized solution uw € Wi(D,,S;) of the problem (2.3), (2.4)
in the domain Dt the estimate

STy, (2.6)

lull,
wi(Dr,57
is valid.

Proof. Let u € W(D,,S;) be a strong generalized solution of the problem
(2.3),(2.4). By Definition 2.1 and Remark 2.1, there exists a sequence of

o __
functions u,, € C*(D,,Sr) such that
. B _ : b _
nlirxgo||um u”v‘?@(Dr,sT)i 0, W%gnoo||Lum+)\|um| Uum—Fll,p,,=0. (2.7)

o __
We can consider the function wu,, € C’Q(DT,ST) as a solution of the
problem

Lty + AN [P, = Fiy,
g, = 0. (2.9)

Here
Fry = Ly + Nt [P, (2.10)

Oum,

Multiplying both parts of the equation (2.8) by “= and integrating
over the domain D, 0 < 7 < T, we obtain

1 [0 [Oum\? ou A B
- = (=2 dedt— [ Aup —= dedt + —— | = |um|PT? dadt =
Q/é)t(é)t) “ /“ ar +p+2/6t|u| v
D, D, D,

Oup,
~ [ r, 2 g, 2.11
/ o (2.11)

D,

Assume Q, := DyN{¢t =7} and denote by v = (v1, ..., Vs, V) the unit
vector of the outer normal to St \ {(0,...,0,0)}. Taking into account the
equalities (2.9) and v|q. = (0,...,0,1) and integrating by parts, we get

[y

D, 0D,
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Oum \ 2 Oum \ 2
- (G s f (G

/(at) H/ at ) 10

Qr Sr
9 +2 +2 +2
a|um|p dx dt = [um [P vods = [ |um|PT de,

oD, Q.

0% Uy, O, Oy, Oy, 1 0 /0um\?2
Gl 1 dt = Gm gs—= [ £ da dt =
/aﬁ ot /é)xi ot 1Y 2/&3(%) .

K2

D, oD, D,
Oup, aum 1 Oty \ 2 B
B ox; Ot vids = 2 / ( 0x; ) vods =
D, oD,
Ouy, Oy, 1 Ot \ 2 1 Oum \ 2
- / or, ot ”st*§/<axi) ”Odsfi/(aa:i) d,
D, S, Q-

whence by virtue of (2.11) we obtain

/F agm dz dt =
D,
/21/0 {; (86)1;7? a;—tmyi)Q + ((‘fht_m) (Vo 2 VJQ)] ds+

1 Oum - Oum\ 2 A
Q 1= o,

-

Since S is a characteristic surface, we have

n
(yg -3 VJ?) = 0. (2.13)
j=1 Sr
Taking into account that (1/0 % ez %), i = 1,...,n, is an inner

differential operator on S,, owing to (2.9) we have

(G =),

By (2.13) and (2.14), from (2.12) we obtain

/[(ag—:)gjti(%;?ﬂ dx+z%/|um|p+2dx:
P J

-

=0, i=1,...,n. (2.14)

Ouy,
=2 [ F, 2 g ar. 2.1
/ o (2.15)

D,

Under the notation w(d) = [ [(675—{‘)2 + i (%)2} dz, taking into
Qs i
A

Oun, Oun,
account that 32 > 0 and the inequality 2F,, %= < s( T ) + %Fﬁl,
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which is valid for every e = const > 0, we have

s
1
w(d) < E/w(a) do + - |\Fm||§2w5), 0<d<T. (2.16)
0
From (2.16), bearing in mind that HFmHi?(DE) as a function of ¢ is

nondecreasing, by the Gronwall lemma [44, p. 13] we find that

La(Dg)

1
W) < 2 I1Full?,, expe,

whence with regard for the fact that inf0 %;Lés = ed which is achieved for
e>

e = 1, we obtain
w(d) < ed|| F? 0<d<T. (2.17)

La(Dg)’

From (2.17) in its turn it follows that
Oum\2 = [ O\ 2
U |2 = / {(—m) + ( m) } dr dt =
L (G R ¢

T
= /w(é) dé < eT?| Fp?
0

La(Dp)’

and thus
<SVeT|Fullymp,,- (2.18)

llumll o
W5 (Dr,ST)

Here we have used the fact that in the space W(Dr, St) the norm

Il i,y = { / [uQ + (%)2 + zn: (35_)2] dxdt}l/Q
i=1 ¢

T

is equivalent to the norm

= { [ [ 35 (2] e

Dt

1/2

t —_—
since from the equalities u|s, = 0 and u(z,t) = [ % dr, (z,t) € Dr,
||

valid for every function u € C?(D,, S, ), we obtain the inequality [84, p. 63]

ou\ 2
2 < 72
/u (x,t) dedt <T /(01?) dzx dt.

DT DT

In view of (2.7) and (2.10), passing in the inequality (2.18) to limit as
m — 00, we obtain (2.6), which proves the lemma. O
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Remark 2.2. Before we proceed to considering the question on the solv-
ability of the nonlinear problem (2.3),(2.4), we have to consider the same
question for the linear case, when in the equation (2.3) the parameter A = 0,
i.e. for the problem

Lu(z,t) = F(x,t), (z,t) € Dp,
(x,1) = F(a,t), (2,t) (2.19)
u(z,t) =0, (z,t) € Sr.
In this case, for F' € La(Dr) we analogously introduce the notion of a strong
generalized solution u € W3(Dy, St) of the problem (2.19) for which there
exists a sequence of functions u,, € C?(D,,S;) such that lim |u, —
ull o,
W3(Dr,ST)
that as is seen from the proof of Lemma 2.1, the a priori estimate (2.6) is
likewise valid for a strong generalized solution of the problem (2.19).

= 0. Moreover, it should be noted

=0, n}E»noo HLum - F||L2(DT)

Since the space C§°(Dr) of infinitely differentiable in Dy functions with
bounded support is dense in La (D7), for the given F' € Lo(Dr) there exists

a sequence of functions F,, € C§°(Dr) such that lim ||F,, —F|, =0.
m—00 2(D1)

For m fixed, extending the function F,, by zero outside the domain Dp
and preserving for it the same notation, we will have F,, € C=(R"!) and
supp Fy, C Do, where RTFI = R""1 N {t > 0}. Denote by u,, the solution
of the Cauchy problem Lu,, = Fy,, tm|i=0 = 0, 65;" +—o = 0, which, as is
known, exists, is unique and belongs to the space C’OO(RIH) [48, p. 192].

In addition, since supp Fy,, C Doo, Uml|t=0 = 0, 8—55& i—o = 0, in view of
the geometry of the domain of dependence of a solution of the linear wave
equation we have supp u,,, C D [48, p. 191]. Preserving for the restriction

of the function u,, to the domain D the same notation, we easily see that
o —
um € C*(D,, S;), and by (2.6) and Remark 2.2 we have

[t — uell , | <VeT||Fn = Fill yyo,y- (2:20)
w3

(Dp,ST)

Since the sequence {F,,} is fundamental in Lo(Dr), by virtue of (2.20) the
sequence {u,,} is likewise fundamental in the complete space W3(Dr, St).
Therefore there exists a function u € Wi(Dr, St) such that lim ||Ju,;, —

ul| =0, and as far as Lu,, = F,, — F in the space Ly(Dr), this

Wi(Dp.s7)
function will, by Remark 2.2, be a strong generalized solution of the problem
(2.19). The uniqueness of that solution in the space Wi(Dr, S7) follows
from the a priori estimate (2.6). Consequently, for the solution u = L~'F
of the problem (2.19) we can write u = L™'F, where L™ : Ly(Dr) —

o
W3(Dr, St) is a linear continuous operator whose norm, by virtue of (2.6),

admits the estimate
Tl < VT, (2:21)

o
Lo(Dp)—W3(Dp,ST)
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Remark 2.3. In view of (2.21) for F € Lao(Dr), 0 < p < % and

Remark 2.1 we can see that the function u € Wi(Dr, St) is a strong gen-
eralized solution of the problem (2.3),(2.4) if and only if w is a solution of
the following functional equation

u =LY (=Nul[Pu+ F) (2.22)

in the space Wi(Dr, St).
We rewrite the equation (2.22) in the form
u= Au:= L Y (Kou+ F), (2.23)

[e]
where the operator Ko : Wi(Dr,St) — Lo(Dr) from (2.5) is, by Re-
mark 2.1, continuous and compact. Consequently, by (2.21) the operator

A:W3(Dr,Sr) — Wi(Dr, St) is likewise continuous and compact. At the
same time, by Lemma 2.1, for an arbitrary parameter 7 € [0, 1] and for every
solution of the equation with the parameter u = 7 Au the a priori estimate

[Jull <c||F|,,p,, is valid with a positive constant ¢ independent
Wi(Dp.Sp 2T

of u, 7 and F. Therefore by the Leray—Schauder theorem [120, p. 375] the
equation (2.23) and hence the problem (2.3), (2.4) has at least one solution

u € W%(DT, ST).
Thus the following theorem is valid.

Theorem 2.1. Let A > 0, 0 < p < =25, F € Lajoc(Dso) and F €

Lo(Dy) for every T > 0. Then the problem (2.3), (2.4) is globally solvable,
i.e. for every T > 0 this problem has a strong generalized solution u €

W3(Dr, St) in the domain Dr.

2.3. Absence of the global solvability. Below we will restrict our-
selves to the consideration of the case where in the equation (2.3) the pa-
rameter A < 0 and the spatial dimension n = 2.

Definition 2.3. Let F € C(Dr). A function u is said to be a strong

generalized continuous solution of the problem (1.19) if u € C? (D,,S;) =
{u € C*(D) : wu|s, = 0} and there exists a sequence of functions wu,, €

C%*(D,, S;) such that lim ||w,, —ul| =0and lim |Lu,,—F]|| =0.

c(Dr) c@r)

Introduce into consideration the domain D,o 0 = {(z,t) € R®: |z| <
t < t9— |z —2°} which for (z°,¢°) € Dr is bounded below by the light cone
of the future S, with the vertex at the origin and above by the light cone
of the past S, ;0 1 t = t0 — |z — x| with the vertex at the point (z°,tY).

Lemma 2.2. Letn =2, F € C(D,,S,). Then there exists a unique
strong generalized continuous solution of the problem (2.19) for which the
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integral representation

_ 1 F(& 1)
u(z,t) = 27TD/ N ST d¢dr, (z,t) € Dr, (2.24)

and the estimate
<c|F|

c@r) — c(@r)

[l (2.25)

are valid with a positive constant c independent of F'.

Proof. Without restriction of generality, we can assume that the function
F e 8’(ET, S;) is extended into the domain D, so that F' € 8’(500, Soo)-
Indeed, if (z,t) € Do \ Dr, we can take F(z,t) = F(L2,T). Assume
Drys:|z|+0 <t <T, where 0 < § = const < %T. Obviously, Dy s C Dr.
Since F' € C(Dr) and F|g, = 0 for some vanishing, strictly monotonically
decreasing sequence of positive numbers {dx}, there exists a sequence of
functions {F}} such that

Fy. € COO(ET), supka C ET,ék; k= 1,2,...,

lim [Py~ Fl o =0. (2.26)

c(Dr)

Indeed, let @5 € C([0,+00)) be a nondecreasing continuous function of
one variable such that ¢s(7) = 0 for 0 < 7 < 26 and ¢s(7) = 1 for ¢ > 34.

Assume Fs(x,t) = @s(t — |z|)F(x,t), (x,t) € Dr. Since F € C(Dr) and
F|s,; =0, as it can be easily verified,
Fs € C(Dy), suppFs C Dras, Jim |Fs — F|| =0. (227

c(Dr)

Now we apply the averaging operation and assume

Gl 1) = g*”/ﬁ;(g,r)p(”” —¢
R3

(D) dedr, e = (V215

3

where

pECS(R?), /pdxdt:L p>0, suppp:{(m,t)ERsz x2+t2§1}.
R3

From (2.27) and averaging properties [48, p. 9] it follows that the se-
quence Fy, = Gs,, k = 1,2,..., satisfies (2.26). Extending the function Fj
by zero into the layer A : 0 < t < T and preserving for it the same notation,
we have Iy, € C*°(Ar), where supp F, C Drs, C Dr, k =1,2,.... There-
fore analogously as in proving Lemma 2.1, for the solution of the Cauchy
problem Luy = Fj, uglt=0 = 0, %Lt’“ o = 0 in the layer Ar which exists,
is unique and belongs to the space C"X’(KT) we have suppur C Dp, and all

the more uy, € 8’2(37,57), k=1,2,....
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On the other hand, since supp F, C Dr and Fj, € C‘X’(XT), for the
solution wug of the Cauchy problem by the Poisson formula the integral
representation [124, p. 227]

o i Fk(ga’r)
uk(x,t) = or / \/(t = 7-)2 = |x = €|2 dédr, (Sﬂ,t) € Drp, (228)
Dg ¢

is valid and the estimate [124, p. 215]

T2
lukllom,, < 5 1Fklcem,, (2.29)
holds. .
In view of (2.27) and (2.29), the sequence {u} C C?(D,,S,) is fun-
damental in the space C(D,,S;). Therefore it tends to some function

u € C(D,,S,) in that space. For the function u by (2.28) the represen-
tation (2.24) is valid and the estimate (2.25) holds. Thus we have proved

the solvability of the problem (2.19) in the space C (D, S, ).
As for the uniqueness of a strong generalized continuous solution of
the problem (2.19), it follows from the following considerations. Let u €

C(D,,S;), F =0, and there exist a sequence of functions u;, € C?(D-, S;)

such that klingo lug — u||c(5T) =0, klirgo|\Luk|\ = 0. This implies

= 0 and kllngo|\Luk||L2(DT) = 0. Since we can

c(@Dr)

that khj& luk — UHL2(DT)

consider the function us, € C?(Dr, St) as a strong generalized solution of

the problem (2.19) for Fy, = Luy from the space Wi(Dr, St), according
to Remark 2.2 the estimate |ugl ., < VeT|Lug|,,y,, is valid.
WD )

=0, and hence

o

Therefore lim || Luyl|
k—oo Wé (Dr.ST)

Lo(py = 0 implies klingo [l ||

lim |jugll, ., = 0. Taking into account that lim |juy—ul, ., , =0, we
k—00 2(Pr k00 2(D7)
obtain v = 0. Thus Lemma 2.2 is proved completely. g

Lemma 2.3. Letn =2, A <0, F € C(Dr,St) and F > 0. Then if
u € C?(Dr) is a classical solution of the problem (2.3),(2.4), then u > 0 in
the domain D.

Proof. If u € C%(Dr) is a classical solution of the problem (2.3),(2.4),
then u € C?(Dr, St), and since F € C(Dr, St), the right-hand side G =
—Au[Pu+F of the equation (2.3) belongs to the space C(Dr, St). Consider

the function u € C?(Dr, St) as a classical solution of the problem (2.19)
for F =G, ie.

Lu=G, u|y, =0. (2.30)

St
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This function will, all the more, be a strong generalized continuous solution

of the problem (2.30). Therefore taking into account that G € C(Dr, St),
according to Lemma 2.2 for the function u the integral representation

|ulu
u(z,t) dédr + Fy(z,t 2.31
o / T R (23D
holds. Here
§n)
Fo(x,t) d¢ dr. 2.32
T oon / \/t—T — |z —¢&)? - (2.32)
Consider now the integral equatlon

Jov -
v(x,t) = dédr + Fy(z,t), (z,t) € Dy, (2.33
@o= [ S dCdr 4 Rola ), (5.0 €Dr (239
with respect to the unknown function v, where g9 = fﬁ |u|P.  As far

o
as go, F € C(Dr,Sr) and the operator in the right-hand side of (2.33)
is a Volterra type integral operator with weak singularity, the equation
(2.33) is uniquely solvable in the space C(D7). In addition, a solution v
of the equation (2.33) can be obtained by the Picard method of successive
approximations:

vo =0, vppil(z,t)= / NG T?g”f — e dr + Fo(z,t),  (2.34)

k=1,2,....

Indeed, let Q, = Dr N {t = 7}, wm|5T = Umi1 — Um (w0|5T _

Fo), wmlpocicrnBy = 05 Am(t) = ﬂ%(wm(x7t)|7 m = 0,1,..., b =
4 t

t
S g0]| oy, = 270190 o, - Then if Baeo(t) = bg (t=r) " p(r)ar,

In<1 V 1—|n[?

B > 0, then taking into account the equality Bj

t
{1
T)"P=Lo(1) dr [44, p. 206], by virtue of (2.34) we have

me 1

577‘

|w (2, t)]

=&

90! [1m_1]
dr d¢ <
/ Y e

0 |z— £\<t T

A (1)
_||go|\c(D)/ | -

0 |z—E|<t—T
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t

dny d
ool (€= Ama(rar [ T -

0 Inl<1
- B2)\m—1(t)7 ($,t) S DT;

whence
Am(t) < Bodpm—1(t) < - < BJ' () =
t
1 m 2m—1
= T@m) (bT'2))™(t — ) Ao(T)dr <
0
t
b 2m—1 _rm _
< gy | ¢~ vl 47 = Fgrig Vol =
0
- (bTQ)m
(27’71)' ||F0||C(BT)’
and hence
()"
meHc(ﬁT = ”/\ch([o,T]) = (2m)' HFOHC(ﬁT)'
o0
Therefore the series v = lim v, = vo+ Y. w, converges in the class
m—00 m:O

C(Dr), and its sum is a solution of the equation (2.33). The uniqueness of
the solution of the equation (2.33) in the space C (D7) is proved analogously.

Since A < 0, we have go = —5= u[P > 0, and by (2.32) the function
Fy > 0 because by the condition we have F' > 0. Therefore the successive
approximations vy from (2.34) are nonnegative, and as far as klirrgo lvg —

| = 0, the solution v > 0 in the domain Dr. Now it remains only

¢(Dr)
to note that the function u by virtue of (2.31) is a solution of the equation
(2.33), and due to the unique solvability of that equation, u = v > 0 in the

domain Dr. Thus Lemma 2.3 is proved. (]

Remark 2.4. As is seen from the proof, Lemma 2.3 is likewise valid if
instead of the condition F' > 0 we require fulfilment of the weaker condition
Fy > 0, where the function Fp is given by the formula (2.32).

Lemma 2.4. Letn =2, F € C(Dr, St) andu € C*(Dr) be a classical
solution of the problem (2.3),(2.4). Then if for some point (z°,t%) € Drp
the function F\on’to =0, then also U‘on,to =0, where Dyo o = {(ac,t) €
R3: o] <t <t®— |z —al}.

Proof. Since F|p , , = 0, by the representation (2.24) and Lemma 2.2
a solution u of the problem (2.3),(2.4) in the domain D,o ;0 satisfies the
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integral equation

gO €7 (57 )
u(z,t) dédr, (x,t) € Dyo 40, 2.35
s V=P Ldr, (@) o (235)
where gy = f)\|u|p . Taking into account that

dédr <

i” / \/(t—T)Zm— jz — £

S%/dT / \/th |:cf§|2 B

0 lz—&|<t—T

1 dn $m+2
= — [ ™t —1)d = ,
2w/T (E=m)dr / - P (m+1)(m+2)
0 Inl<1

from (2.34) using the method of mathematical induction we easily get

2k

t
| (33 t)|<MMk (2]{3)', (mat)EDa:U,toa k:1727-~-7

where M = max |u(x,t)| = |Jul]
Dr
k — oo this implies that u|p_,

c(Dp)’

M; = max|go(z,t)|. Therefore, as
D

T
= 0. Thus Lemma 2.4 is proved. (|
Let cr and pr(x) be respectively the first eigenvalue and eigenfunction
of the Dirichlet problem in the circle Qg : z? 4+ 23 < R?. Consequently,

(Apr +crer)|g, =0, @R[y, =0 (2.36)

In addition, as is known, cg > 0, and changing the sign and making the
corresponding normalization we can assume that [111, p. 25]

,t0

PR|g, > 0, /ch dr =1. (2.37)
Qr

Theorem 2.2. Letn =2, A< 0,p >0, F € C(Dy), supp FNSe = @
and F > 0. Then if the condition

T 7 / dt / F2TE, )1 () d = +o0 (2.38)

is fulfilled, then there exists a number Ty = To(F') > 0 such that Jfor T'> Ty
the problem (2.3),(2.4) cannot have a classical solution w € C?(Dr) in the
domain Dr.

Proof. Assume that the problem (2.3),(2.4) has a classical solution u €
C(Dr) in the domain Dp. Since supp F'N Sy, = &, there exists a positive
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number § < 7'/2 such that F|y, (g, = 0, where Us(St) : |z| <t < |z|+ 4,
t < T, whence, according to Lemma 2.4 we get

U|U6(ST) =0. (239)
Next, as far as by the condition we have F' > 0, by Lemma 2.3 we find
u|§T > 0. (2.40)

Therefore extending the functions F' and u by zero outside the domain Dy
into the layer A7 : 0 < ¢t < T and preserving for them the same notation,
we find that u € C?(Ar) is a classical solution of the equation (2.3) in the
layer Ap, which by virtue of A < 0 and (2.40) can be written as

ugy — Au = | NuP™ + F(a,t), (x,t) € Arp. (2.41)
By (2.39),

suppu C Drs, Drs={(z,t) €R*: |z|+ 5 <t <T}. (2.42)
Below without restriction of generality we assume that A = —1 and,
consequently, |A| = 1, since the case A < 0, A # —1, owing to p > 0
is reduced to the case A = —1 by introducing a new unknown function

v = |A|"/Pu. In addition, the function v will satisfy the condition
v — Av = 0P 4 (NVYPE(z, 1), (2,t) € Ar. (2.43)

In accordance with (2.43), below instead of (2.3) we will consider the
equation
u — Au = Pt + F(x,t), (z,t) € Ap. (2.44)

We take R > T and introduce into consideration the functions

E(t):/u(x,t)goR(a:)da?, fR(t)Z/F(x,t)goR(x)dx, 0<¢<T. (245)

QR QR
It is clear that £ € C?([0,71), fr € C([0,T]), and the function E > 0,
by (2.40).
In view of (2.36), (2.42) and (2.45), integration by parts yields
/Awa dx = /uAgoR dr = —cp / upgrdr = —crkb. (2.46)
Qr Qr Qr

By virtue of (2.37), (2.40) and p > 0, using Jensen’s inequality [111,
p. 26] we obtain

p+1
/upHch dx > (/ung da:) = Epti, (2.47)
Qr Qr
It easily follows from (2.42) and (2.44)—(2.47) that
E" +cpE>FEPT™ 4 fr, 0<t<T, (2.48)

E(0)=0, E'(0)=0. (2.49)
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To investigate the problem (2.48),(2.49) we use the method of test
functions [101, pp. 10-12]. Towards this end, we take Ty, 0 < Ty < T, and
consider a nonnegative test function ¢ € C%([0,T]) such that

0<y <1, ¢p(t)=1, 0<t<Ty, v¥(T)=0, k=0,1,2.  (250)

It follows from (2.48)—(2.50) that

/Ep“(t dt</E t) + cry(t)] d —/fR(t)w(t)dt. (2.51)

If in the Young inequality with the parameter e > 0, ab < £a” +
L__p' a,b>0, o = Wetakea—p+1 o —&,a—Ez/)pﬂ

alea’ —1 1 ’

b= WHervl and take into account that & = —L- = o/ — 1, then we get
P p+l
E" + cry| =
1z o
o W erd] _ £ pa L [v"+cry|
= Ey wl/a = a E w + ale’—1 wa’fl ’ (252)

By (2.52), from (2.51) we have

T

T
3 o 1 " + cryp|®
(17 E)/E bdt < a/ga,_lf e dtf/f t)dt. (2.53)
0

0

Bearing in mind that min [“_1 =
0<e<aq 7€ €%

from (2.53) and (2.50) we find that

1} = 1, which is achieved for e = 1,

T

/E“ dt</W+c U, /fR t. (2.54)

0

Now as the test function 1 we take the function of the type

t
W) =o(r), 7=, 0STST= A0 (2.55)
where
Yo € C2([0,71]), 0<to <1, who(r)=1, 0<7<1,
0 (2.56)
wO (Tl) = 07 k = 07 172
It can be easily seen that
C1 C1 c1 1 T

=SSz vrW =g o1(%) (2.57)

Owing to (2.55), (2.56), (2.57) and taking into account that " (t) = 0
for 0 <t <7Tj and fr > 0 since F' > 0, as well as the well-known inequality
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la + b|o‘/ < 20‘/_1(|a|"‘/ + |b|"), from (2.54) we obtain

/E“ dt</ o dH/WJﬂ a’O/TfR(t)w(t) dt <

: a//wdt+T [ 172 46(0) + enbo(o)l” d //f (t)dt <
=cC 7 T —Q R <
) ' (o ()T
0 1 0
/ 9a’'—1 7 |w//(7.)|a/ , ) i
<cpTi+ 7 / v dT+T2‘X—1c“/ T)dr—
R 7T | Tyt R [ @)
n o’ 20/71 i W)//( )|a’
70// t dt< 01/ + 7 / 0 - 7 dT+
/ fR( ) — T120z —1 T12a —1 J (Qbo(T))‘* ]
20/_10‘1)/ Tl
t et (m—1) - a'/fR(t) dt. (2.58)
1
0

Now we put R=T, 11 =2,1e Ty = %T. Then the inequality (2.58)

takes the form
2

1T

’ a 1 1-20" a’—1 a’—1

/E dt§<§T) [ (14291 42 / a, —dr—

0 1

i
1 20’1 2
—o/<§ T) / Frt)dt, 20/ —1= % . (2.59)
0

As is known, the function 1)y with the properties (2.56) for which the

integral
2

/ a,1d7<+oo

1

(2.60)

is finite does exist.
With regard for (2.4

17 1
T)= /fT(t)dt: /dt/F(:c,t)gaT(x)dx:
= [ [ o k() /dt [rosnon ao

0 Qr

If the condition (2.38) is fulfilled, then due to (2.59), (2.60) and (2.61)
there exists a number T" = T > 0 such that the right-hand side of the

5) and (2.57), we have

Wl
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inequality (2.59) is negative, but this is impossible because the left-hand
side of the inequality (2.59) is nonnegative. Thus for T = T, and hence for
T > Ty, the problem (2.3), (2.4) cannot have a classical solution u € C?(Dr)
in the domain Dp. Thus Theorem 2.2 is proved completely. O

Corollary 2.1. Let n=2, A<0, F€C(Dy), supp F N Soe =2, F# 0
and F > 0. Then if 0 < p < 2, then there exists a number To = To(F) > 0
such that for T > Ty the problem (2.3), (2.4) cannot have a classical solution
u € C*(Dr) in the domain Dr.

Indeed, since F' # 0 and F' > 0, there exists a point Py(2°,t) € D,
such that F(2°,¢°) > 0. Without restriction of generality, we can assume
that the point Py lies on the t-axis, i.e. 2% = 0; otherwise, this can be
achieved by the Lorentz transformation under which the equation (2.3) is
invariant and the characteristic cone S, : ¢ = |z| remains unchanged [24,
p. 744]. Since F(0,t°) > 0 and F € C(Dy), there exist numbers t° > 0,
g0 > 0 and o > 0 such that F(z,t) > o for |z| < g, [t — t°] < g9. We take
T > 2(tY 4 &¢). Then for |z| < g it is obvious that |z/T| < 1/2. If we

introduce the notation mg = ‘ ‘inf/ ©1(n), then since ¢1(z) > 0 in the unit
n|<1/2
circle 1 : |z| < 1, we have mg > 0, and by (2.61) we get

. 3T 04
B(T) = TQ/dt F(x, t)apl( )dxzﬁ dt/Fxtapl )dx>
0 Qr t0—e |z|<eo
t +e 2
> T2 dt / omy dm—m.

t0—e |z|<eo

Consequently,
T

pt2 p£2 1 4 2-p

T dt | F(2T¢,t)(&)dE =T"2 B(2T) > §7T€00'm()T v

The above expression for 0 < p < 2 immediately results in (2.38), and
by Theorem 2.2 the problem (2.3),(2.4) cannot have a classical solution
u € C%(Dr) in the domain Dy for T > Ty.

Corollary 2.2. Letn =2, A <0, F € C(Dy), suppF N Se = @
and F > 0. Assume that F(xz,t) > ~v(t) > 0 for |z| < e(t) < t, t > 6, and

sup ( ) = gy < 1, where ~(t) and €(t) are given continuous functions with
t>5
~v(t) > 0 and e(t) > 0. Then if the condition

T

lim T%TP/EQ(t)V(t) dt = 400 (2.62)

T—4oc0
5
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is fulfilled, then there exists a number Ty = To(F') > 0 such that JforT'> Ty
the problem (2.3),(2.4) cannot have a classical solution uw € C?(Dr) in the
domain Dr.

Indeed, for |z| < £(t), t < 37T we have || < E(T—t) = E(t—t)% < 3 eo.
Since | inf 1(n) =mo > 0, by virtue of (2.61) we have
n<sz¢€o
17 17
1 T 1 T
B(T)= T2 dt [ F(x,t) ¢ (T) dx > T2 dt ~v(t) 1 (?) dx >
0 Qr 5 |z|<e(t)
iT iT
mo o
zﬁ/dt y(t) dx:—Q/EQ(t)q/(t) dt
6 |z|<e(t) 4
Therefore
T T
75" [t [Fere e ds =1 en =TT (200
0 o 5

whence by (2.62) it follows (2.38), and the conclusion of Theorem 2.2 is
valid.

Remark 2.5. The inequality (2.59) allows one to estimate the time
interval after which a solution ceases to exist. Indeed, assume that

1
5t

]. 2a’ -1 ’ ’_ o —
X(T)=081t1pTa’(§t) /ft(T) dr, X =cf (1427 +2% " (o),
<t<
0
where o/ = %1, and the finite positive number (1)) is given by the

equality (2.60). Since F € C(Dy,), the function x(T) on the interval 0 <

T < 400 is continuous and nondecreasing, and owing to (2.38) and (2.61),

we have Tlim X(T) = +oo. Therefore since %imox(T ) = 0, the equation
— 400 —

x(T) = x, is solvable. Denote by T' = T3 that root of the above equation
for which x(T') > x(T1) for T} < T < T} + €, where ¢ is a sufficiently small
positive number. It becomes now clear that the problem (2.3), (2.4) cannot
have a classical solution in the domain Dp for T" > T7, since in that case
the right-hand side of the inequality (2.59) would be negative.
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