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Let D1 and D2 be finite domains in the three-dimensional Euclidean space R
3 with

compact boundaries ∂D1, ∂D2 (∂D1 ∈ C∞), and let there exist a surface S0 of the class

C∞ of dimension 2, which divides the domain D2 into two subdomains D
(1)
2 and D

(2)
2

with the C∞ boundaries ∂D
(1)
2 and ∂D

(2)
2 (D

(1)
2 ∩D

(2)
2 = ∅, D

(1)
2 ∩D

(2)
2 = S0). Then

∂S0 is the boundary of the surface S0 (∂S0 ⊂ ∂D2), representing 1-dimensional closed
cuspidal edge, where ∂S0 is the crack edge.

Let the domains D1 and D2 have the contact on the 2-dimensional manifolds S
(1)
0

and S
(2)
0 of the class C∞, i.e. ∂D1 ∩ ∂D2 = S

(1)
0 ∪ S

(2)
0 , D1 ∩D2 = ∅, S

(1)
0 ∩S

(2)
0 = ∅

and S1 = ∂D1\(S
(1)
0 ∪S

(2)
0 ). Then ∂D

(1)
2 = S

(1)
2 ∪S

(1)
0 ∪S

(2)
0 , ∂D

(2)
2 = S

(2)
2 ∪S

(2)
0 ∪S0.

Suppose that the domains Dq , q = 1, 2, are filled with different anisotropic homoge-
neous elastic materials.

The basic dynamic equations of elasticity for anisotropic homogeneous elastic media
are written as

A(q)(∂x)u(q)(x, t) −
∂2u(q)(x, t)

∂t2
= F (q)(x, t), (x, t) ∈ Dq × [0, +∞), q = 1, 2,

where u(q) = (u
(q)
1 , u

(q)
2 , u

(q)
3 ) is the displacement vector, F (q) = (F

(q)
1 , F

(q)
2 , F

(q)
3 ) is the

mass force to Dq , and A(q)(∂x) is the matrix differential operator

A(q)(∂x) = ‖A
(q)
jk (∂x)‖3×3, A

(q)
jk (∂x) = a

(q)
ijlk∂i∂l, ∂i =

∂

∂xi
, q = 1, 2;

a
(q)
ijlk are elastic constants satisfying the conditions

a
(q)
ijlk = a

(q)
lkij = a

(q)
ijkl.

Under repeated indices we understand the summation from 1 to 3.
It is assumed that the quadratic forms

a
(q)
ijlkξijξlk, ξij = ξji, q = 1, 2,

with respect to the variables ξij are positive definite.
We introduce the differential stress operator

T (q) = T (q)(∂y , n(y)) =
∥

∥T
(q)
jk (∂y , n(y))

∥

∥

3×3
, T

(q)
jk (∂y , n(y)) = a

(q)
ijlkni(y)∂l , q = 1, 2,

n(y) = (n1(y), n2(y), n3(y)) is the unit normal of the manifold ∂D1 at a point y ∈ ∂D1

(external with respect to D1) and a point y ∈ ∂D2 (internal with respect to D2).

The operators A(q)(∂x), q = 1, 2, are strongly elliptic.
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Let B be a Banach space, Cm
a ([0, +∞), B) denote the set of all m-times continuously

differentiable B-valued functions on [0,+∞) satisfying the conditions

∂lu(t)

∂tl
= 0, l = 0, . . . , m,

∥

∥

∥

∂lu(t)

∂tl

∥

∥

∥

B

= O(eαt) ∀α > a > 0, l = 0, . . . , m.

Define Cm
0,a([0, +∞), B) as the set of all m-times continuously differentiable B-valued

functions on [0,+∞) satisfying the conditions

∂lu(t)

∂tl
= 0, l = 0, . . . ,m− 2,

∥

∥

∥

∂lu(t)

∂tl

∥

∥

∥

B

= O(eat), l = 0, . . . ,m.

(For the definition of these spaces, see [1].)
We have studied the solvability and asymptotics of solutions of the following wedge-

type boundary-contact dynamic problems in the spaces
◦
Cm

a ([0,+∞),W 1
p (Dq)), q = 1, 2.

The boundary-contact dynamic problem with the Neumann boundary con-
ditions:






























































A(q)(∂x)u(q)(x, t) −
∂2u(q)(x, t)

∂t2
= F (q)(x, t), (x, t) ∈ Dq × [0,+∞), q = 1, 2,

{

T (1)u(1)(y, t)
}+

= ϕ1(y, t), (y, t) ∈ S1 × [0,+∞),
{

T (2)u(2)(y, t)
}+

= ϕ2(y, t), (y, t) ∈ S
(1)
2 × [0,+∞),

{

T (2)u(2)(y, t)
}+

= ϕ3(y, t), (y, t) ∈ S
(2)
2 × [0,+∞),

{

u(1)(y, t)
}+

−
{

u(2)(y, t)
}+

= fi(y, t), (y, t) ∈ S
(i)
0 × [0,+∞), i = 1, 2,

{

T (1)u(1)(y, t)
}+

−
{

T (2)u(2)(y, t)
}+

= hi(y, t), (y, t) ∈ S
(i)
0 × [0,+∞), i = 1, 2,

u(q)(x, 0) =
∂u(q)(x, 0)

∂t
= 0, x ∈ Dq , q = 1, 2,

where the symbol { }+ denotes the trace on ∂Dq , q = 1, 2,

F (q) ∈ CM
0,a([0, +∞), Lmax{p,2}(Dq)), q = 1, 2,

ϕ1 ∈ CM+2
0,a ([0, +∞), B

−1/p
p,p (S1)), ϕ2 ∈ CM+2

0,a ([0,+∞), B
−1/p
p,p (S

(1)
2 )),

ϕ3 ∈ CM+2
0,a ([0, +∞), B

−1/p
p,p (S

(2)
2 )), fi ∈ CM+2

0,a ([0,+∞), B
1/p′

p,p (S
(i)
0 )), i = 1, 2,

hi ∈ CM+2
0,a ([0,+∞), B

−1/p
p,p (S

(i)
0 )), i = 1, 2, p′ =

p

p− 1
, 1 < p < ∞, M > m + 4;

here B
−1/p
p,p and B

1/p′

p,p are the Besov spaces.
The boundary-contact dynamic problem with mixed boundary conditions:































































A(q)(∂x)u(q)(x, t) −
∂2u(q)(x, t)

∂t2
= F (q)(x, t), (x, t) ∈ Dq × [0,+∞), q = 1, 2,

{

u(1)(y, t)
}+

= ϕ1(y, t), (y, t) ∈ S1 × [0,+∞),
{

T (2)u(2)(y, t)
}+

= ϕ2(y, t), (y, t) ∈ S
(1)
2 × [0,+∞),

{

T (2)u(2)(y, t)
}+

= ϕ3(y, t), (y, t) ∈ S
(2)
2 × [0,+∞),

{

u(1)(y, t)
}+

−
{

u(2)(y, t)
}+

= fi(y, t), (y, t) ∈ S
(i)
0 × [0,+∞), i = 1, 2,

{

T (1)u(1)(y, t)
}+

−
{

T (2)u(2)(y, t)
}+

= hi(y, t), (y, t) ∈ S
(i)
0 × [0,+∞), i = 1, 2,

u(q)(x, 0) =
∂u(q)(x, 0)

∂t
= 0, x ∈ Dq , q = 1, 2,

where

F (q) ∈ CM
0,a([0, +∞), Lmax{p,2}(Dq)), q = 1, 2,

ϕ1 ∈ CM+2
0,a ([0, +∞), B

1/p′

p,p (S1)), ϕ2 ∈ CM+2
0,a ([0,+∞), B

−1/p
p,p (S

(1)
2 )),

ϕ3 ∈ CM+2
0,a ([0, +∞), B

−1/p
p,p (S

(2)
2 )), fi ∈ CM+2

0,a ([0,+∞), B
1/p′

p,p (S
(i)
0 )), i = 1, 2,

hi ∈ CM+2
0,a ([0,+∞), B

−1/p
p,p (S

(i)
0 )), i = 1, 2, p′ =

p

p− 1
, 1 < p < ∞, M > m + 4.
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In the formulation of dynamic problems it is assumed that the crack and contact
surfaces do not depend on the time parameter t.

Theorems on the existence and uniqueness of solutions of the considered boundary-
contact dynamic problems are obtained by using the Laplace transformation, the poten-
tial theory and the general theory of pseudo-differential equations on a manifold with
boundary.

The following theorems hold.

Theorem 1. Let 4/3 < p < 4, a > 0, m ≥ 2,

F (q) ∈ Cm+5
0,a ([0,+∞), Lmax{p,2}(Dq)), q = 1, 2,

ϕ1 ∈ Cm+7
0,a ([0, +∞), B

−1/p
p,p (S1)), ϕ2 ∈ Cm+7

0,a ([0,+∞), B
−1/p
p,p (S

(1)
2 )),

ϕ3 ∈ Cm+7
0,a ([0, +∞), B

−1/p
p,p (S

(2)
2 )), fi ∈ Cm+7

0,a ([0, +∞), B
1/p′

p,p (S
(i)
0 )), i = 1, 2,

hi ∈ Cm+7
0,a ([0,+∞), B

−1/p
p,p (S

(i)
0 )), i = 1, 2.

Then the boundary-contact dynamic problem with Neumann boundary conditions has a

unique solution in the spaces
◦
Cm

a ([0, +∞),W 1
p (Dq)), q = 1, 2.

Theorem 2. Let 4/3 < α < p < β < 4, a > 0, m ≥ 2,

F (q) ∈ Cm+5
0,a ([0,+∞), Lmax{p,2}(Dq)), q = 1, 2,

ϕ1 ∈ Cm+7
0,a ([0, +∞), B

1/p′

p,p (S1)), ϕ2 ∈ Cm+7
0,a ([0, +∞), B

−1/p
p,p (S

(1)
2 )),

ϕ3 ∈ Cm+7
0,a ([0, +∞), B

−1/p
p,p (S

(2)
2 )), fi ∈ Cm+7

0,a ([0, +∞), B
1/p′

p,p (S
(i)
0 )), i = 1, 2,

hi ∈ Cm+7
0,a ([0,+∞), B

−1/p
p,p (S

(i)
0 )), i = 1, 2.

Then the boundary-contact dynamic problem with mixed boundary conditions has a

unique solution in the spaces
◦
Cm

a ([0, +∞),W 1
p (Dq)), q = 1, 2.

Note that α and β depend on the elastic constants as well as on the geometry of the

contact boundaries ∂S
(1)
0 , ∂S

(2)
0 .

For sufficiently smooth data of these problems by using the asymptotic expansion of
solutions of strongly elliptic pseudo-differential equations obtained in [2] and also that of
potential-type functions (see [3]), we obtain a complete asymptotics of solutions near the
contact boundaries and near the cuspidal edge (crack edge).

In the asymptotic expansion of solutions of these dynamic problems the time parame-
ter t appears only in asymptotic coefficients. Therefore so formulated dynamic problems
have mechanical meaning because the time parameter t appears in particular in the first
coefficient. The fulfilment of the fracture criterion depends on the first coefficient. In this
case, the so-called Griffits criterion can be formulated as a problem of finding a moment
of time after which fracture begins.

The singularity of solutions of the boundary-contact problem with Neumann boundary
conditions is 1/2. The necessary and sufficient conditions for vanishing oscillation of
solutions are found near the contact boundaries. In these asymptotic expansions the step
is one.

The singularity of solutions of the boundary-contact problem with mixed boundary
conditions near the cuspidal edge (crack edge) is 1/2. The singularity of solutions near
the contact boundaries has following properties:

1) The singularity γ of solutions depends on the elastic constants, and also on the
geometry of the contact boundaries, and can take any values from the interval (0, 1/2);
the classes of isotropic (with elastic constants µq , λq , q = 1, 2) and transversally-isotropic

(with elastic constants c
(q)
11 , c

(q)
33 , c

(q)
13 , c

(q)
55 , c

(q)
66 in the conditions c

(q)
11 = c

(q)
33 , q = 1, 2)

bodies are found when oscillation of solutions vanishes near the contact boundaries. In
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such cases, the effective formulas are obtained for calculation of singularities of solutions

near the contact boundaries ∂S
(i)
0 , i = 1, 2:

γ =
1

2
−

1

π
arctg

√

µ2

µ1
(the isotropic case)

and

γ =
1

2
−

1

π
arctg 4

√

√

√

√

c
(2)
55 c

(2)
66

c
(1)
55 c

(1)
66

(the transversally-isotropic case).

Note that the first three terms have no logarithms. It should also be noted that these
classes are found only for spatial problems, since oscillation of solutions does not vanish
in plane problems.

In the transversally-isotropic case we assume that the neighborhood of the contact
boundaries is parallel to the isotropic plane.

2) In the general case (in particular, in the transversally-isotropic case, where c
(q)
11 6=

c
(q)
33 , q = 1, 2) we have found a class of anisotropic bodies when the oscillation in the

asymptotic expansion vanishes and singularities of solutions are calculated by a simple

formula near ∂S
(i)
0 , i = 1, 2,

γi =
1

2
− sup

∂S
(i)
0

1≤j≤3

1

π
arctg

1
√

αjβj

, i = 1, 2,

where αj > 0, βj > 0, j = 1, 2, 3, are the eigenvalues of the principal homogeneous
symbol of the Poincaré–Steklov operators.

3) If the domains are filled with the same material, the singularities of the first and
second terms are 1/4 and 3/4, respectively; these terms are free from logarithms, and the
oscillation does not vanish. In the asymptotic expansion the step is one-half.

Asymptotic properties of the same kind for the static problems of couple-stress elas-
ticity were obtained in [4].
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