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G. Berikelashvili and M. Mirianashvili

ON A THREE LEVEL DIFFERENCE SCHEME FOR THE
REGULARIZED LONG WAVE EQUATION

Abstract. We consider an initial boundary-value problem for the Regu-
larized Long Wave equation. A three level conservative difference scheme
is studied. On the first level a two level scheme is used to find the values of
the unknown functions which ensures the expression of the initial energies
only by the initial data. The obtained algebraic equations are linear with
respect to the values of the unknown function for each new level. The use
of the Gronwall lemma does not require any restriction on mesh steps. It is
proved that the finite difference scheme converges with the rate O(τ 2 +h

2)
when the exact solution belongs to the Sobolev space W

3
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1. Introduction

We consider the Regularized Long Wave (RLW) equation

∂u

∂t
+
∂u

∂x
+ u

∂u

∂x
−

∂3u

∂x2∂t
= 0, (x, t) ∈ QT . (1.1)

The RLW equation was first put forward by Peregrine [1] as a model
for small-amplitude long waves on the water surface in a channel and later
by Benjamen et al. [2]. This equation describes phenomena with weak
nonlinearity and dispersion waves, including, e.g., ion-acoustic and magneto
hydrodynamic waves in plasma.
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In the domain QT := (0, a) × (0, T ), for the equation (1.1) we consider
the initial boundary-value problem with the following conditions

u(0, t) = u(a, t) = 0, t ∈ [0, T ), u(x, 0) = u0(x), x ∈ [0, a]. (1.2)

The numerical solution of the RLW equation has been the subject of
many papers. The first finite-difference scheme is given by Peregrine [1].
The schemes offered in [3], [4] are not conservative. The scheme in [5] is
conservative but the passage from one level to another requires iterations.

In [6] a three level difference scheme is presented for the problem (1.1),
(1.2). The scheme is conservative but in the equality of the discrete conser-
vation law the initial energy E0 depends explicitly not only on initial data.
Besides, the scheme for the first level is nonlinear with respect to the values
of the unknown function. Convergence with the rate O(h2 + τ2) is proved
under condition that the exact solution belongs to C4,3.

A three level scheme is considered in [7] and convergence with the rate
O(h2 + τ2) is shown when the exact solution belongs to C5. Stability is
proved for a sufficiently small mesh step. No way is offered for calculation of
the unknown function on the first level. The values of the unknown function
on the first level are involved in the expression of the initial energy.

In this paper the three level scheme has the same form as in [6], [7],
but the scheme for the first level linearly contains the values of the un-
known function. It is proved that the finite difference scheme converges
with the rate O(τ2 + h2) when the exact solution belongs to the Sobolev
space W 3

2 (QT ). The Steklov averaging operators are used for error estima-
tion.

The paper is organized as follows. In the next section we present the
statement of the problem and main results. Then, in Section 3, we pro-
pose auxiliary statements which are used in the proof of Theorem 2.2. In
Section 4 we give the results needed in the proof of Theorem 2.3.

2. Statement of the Problem and Main Results

Let QT be a rectangle where the problem (1.1), (1.2) is to be solved. We
assume that u ∈ W 3

2 (QT ). It is easy to show that in that case u ∈ C1(QT )
and u0 ∈ C

1(0, a).
For convenience we introduce the following notation:

xi = ih, tj = jτ, i = 1, 2, . . . , n, j = 1, 2, . . . , J,

where h = a/n and τ = T/J denote the spatial and temporal mesh sizes,

respectively. Let uj
i := u(xi, tj), U

j
i ∼ u(xi, tj),

(U j
i )x :=

U j
i+1 − U j

i

h
, (U j

i )x :=
U j

i − U j
i−1

h
, (U j

i ) ◦
x

:=
1

2

(
(U j

i )x + (U j
i )x

)
,

(U j
i )t :=

U j+1
i − U j

i

τ
, (U j

i )t :=
U j

i − U j−1
i

τ
, (U j

i ) ◦
t

:=
1

2

(
(U j

i )t + (U j
i )t

)
,
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(U j , V j) :=

n−1∑

i=1

hU j
i V

j
i , (U j , V j ] :=

n∑

i=1

hU j
i V

j
i ,

‖U j‖2 := (U j , U j), ‖U j ]|2 := (U j , U j ], ‖U j‖∞ = max
1≤i≤n−1

|U j
i |.

We approximate the problem (1.1), (1.2) with the help of the difference
scheme:

LU j
i := (U j

i ) ◦
t

+
1

2
(U j+1

i + U j−1
i ) ◦

x
+

+
1

6
(ΛU)j

i − (U j
i )

xx
◦

t
= 0, i = 1, n− 1, j = 1, J − 1, (2.1)

LU0
i := (U0

i )t +
1

2
(U1

i + U0
i ) ◦

x
+

+
1

6
(ΛU)0i − (U0

i )xxt = 0, i = 1, n− 1, (2.2)

U j
0 = U j

n = 0, j = 0, J, U0
i = u0(xi), i = 0, n, (2.3)

where

(ΛU)j
i := U j

i (U j+1
i + U j−1

i ) ◦
x

+ (U j
i (U j+1

i + U j−1
i )) ◦

x
, j = 1, J − 1,

(ΛU)0i := U0
i (U1

i + U0
i ) ◦

x
+ (U0

i (U1
i + U0

i )) ◦
x
.

It is well known (see, e.g., [8]) that the problem (1.1), (1.2) possesses
an invariant corresponding to the conservation of energy which can be ex-
pressed in the form

E(t) :=

a∫

0

(
u2 +

(∂u
∂x

)2)
dx = E(0).

The same property is kept for the difference scheme.

Theorem 2.1. The finite difference scheme (2.1)–(2.3) possesses the

following invariant

Ej := ‖U j‖2 + ‖U j
x]|2 = ‖u0‖

2 + ‖u0,x]|2 = E0, j = 1, 2, . . . . (2.4)

Proof. It is easy to check the validity of the following equalities:

(U j
◦

t
, U j+1 + U j−1) =

1

2τ

(
‖U j+1‖2 − ‖U j−1‖2

)
,

−(U j

xx
◦

t
, U j+1 + U j−1) =

1

2τ

(
‖U j+1

x ]|2 − ‖U j−1
x ]|2

)
,

(
(ΛU)j , U j+1 + U j−1

)
= 0,

(
(U j+1 + U j−1) ◦

x
, U j+1 + U j−1

)
= 0,

(U0
t , U

1 + U0) =

=
1

τ

(
‖U1‖2 − ‖U0‖2

)
− (U0

xxt, U
1 + U0) =

1

τ

(
‖U1

x ]|2 − ‖U0
x ]|2

)
,

(
(ΛU)0, U1 + U0

)
= 0,

(
(U1 + U0) ◦

x
, U1 + U0

)
= 0.
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Multiplying (2.1) by (U j+1 +U j−1) and (2.2) by (U1 +U0) and summing
over i, we obtain respectively:

‖U j+1‖2 + ‖U j+1
x ]|2 = ‖U j−1‖2 + ‖U j−1

x ]|2, j = 1, 2, . . . ,

and

‖U1‖2 + ‖U1
x ]|2 = ‖U0‖2 + ‖U0

x ]|2.

From these equalities it follows

‖U j‖2 + ‖U j
x]|2 = ‖U0‖2 + ‖U0

x ]|2, j = 1, 2, . . . , (2.5)

which proves (2.4). �

Let Z := U − u, where u is the exact solution of the problem (1.1), (1.2)
and U is the solution of the finite difference scheme (2.1)–(2.3). Substituting
U = Z+u into (2.1)–(2.3), we obtain the following problem for the error Z:

(Zj
i ) ◦

t
+

1

2
(Zj+1

i + Zj−1
i ) ◦

x
− (Zj

i )
xx

◦

t
=

= −
1

6

(
(ΛU)j

i − (Λu)j
i

)
−Luj

i , j = 1, 2, . . . , (2.6)

(Z0
i )t +

1

2
(Z1

i + Z0
i ) ◦

x
− (Z0

i )xxt = −
1

6

(
(ΛU)0i − (Λu)0i

)
−Lu0

i , (2.7)

Z0
i = 0, i = 0, 1, . . . , n, Zj

0 = Zj
n = 0, j = 0, 1, . . . , J. (2.8)

Theorem 2.2. For the solution of the problem (2.6)–(2.8) the following

estimates hold:

‖Z1‖2 + ‖Z1
x]|2 ≤ ‖τLu0‖2, (2.9)

‖Zj+1‖2 + ‖Zj+1
x ]|2 ≤

≤ 2 exp(c1T )
(
‖τLu0‖2 + 4Tτ

j∑

k=1

‖Luk‖2
)
, j = 1, 2, . . . , J − 1, (2.10)

where c1 := (4/T ) + (9Tc2∗).

Theorem 2.3. Let the exact solution of the initial-boundary value prob-

lem (1.1), (1.2) belong to W 3
2 (QT ). Then the discretization error of the finite

difference scheme (2.1)–(2.3) is determined by the estimate

‖Zj‖2 + ‖Zj
x]|2 ≤ c2(τ

2 + h2)2‖u‖2
W 3

2
(QT ),

where c2 denotes a positive constant independent of h and τ .

3. Auxiliary Statements and Proof of Theorem 2.2

Lemma 3.1. For the solution of the difference scheme (2.1)–(2.3), the

following estimates

‖U j‖2
∞ ≤ (a/4)‖U j

x]|2, ‖U j‖ ≤ c‖u′0‖L2(0,a)

are valid.
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Denote

Bj := ‖Zj‖2 + ‖Zj−1‖2 + ‖Zj
x]|2 + ‖Zj−1

x ]|2, j = 1, 2, . . . . (3.1)

Lemma 3.2. For the solution of the problem (2.7), (2.8), the following

identity is valid

B1 := ‖Z1‖2 + ‖Z1
x]|2 = −(τLU0, Z1).

Lemma 3.3. For the solution of the problem (2.6)–(2.8), the estimate

Bj+1 ≤ B1 +
τ

3

j∑

k=1

∣∣∣
(
(ΛU)k − (Λu)k, Zk+1 + Zk−1

)∣∣∣+

+ 2τ

j∑

k=1

∣∣(Luk, Zk+1 + Zk−1
)∣∣, j = 1, 2, . . . , (3.2)

is valid, where Bj is defined by the equality (3.1).

Now we intend to estimate the terms in the right-hand side of the in-
equality (3.2).

Lemma 3.4. The following inequalities

∣∣(Luk, Zk+1 + Zk−1)
∣∣ ≤ 1

4T

(
‖Zk+1‖2 + ‖Zk−1‖2

)
+ 2T‖Luk‖2, (3.3)

(
(ΛU)k − (Λu)k, Zk+1 + Zk−1

)
≤

3

2T

(
‖Zk+1‖2 + ‖Zk−1‖2

)
+

+
4Tc2∗

3
‖Zk

x ]|2 +
3

T

(
‖Zk+1

x ]|2 + ‖Zk−1
x ]|2

)
+

8Tc2∗
3

‖Zk‖2 (3.4)

are valid, where

c∗ := max
k

‖uk‖C .

Proof of Theorem 2.2. On the basis of (3.3) and (3.4), we get from (3.2):

Bj+1 ≤ B1 +
τ

3

j∑

k=1

( 3

2T

(
‖Zk+1‖2 + ‖Zk−1‖2

)
+

+
4Tc2∗

3
‖Zk

x ]|2 +
3

T

(
‖Zk+1

x ]|2 + ‖Zk−1
x ]|2

)
+

8Tc2∗
3

‖Zk‖2
)
+

+ 2τ

j∑

k=1

( 1

4T

(
‖Zk+1‖2 + ‖Zk−1‖2

)
+ 2T‖Luk‖2

)
.

Thus

Bj+1 ≤ B1 +
τ

T

(
‖Zj+1‖2 + ‖Zj+1

x ‖2
)
+

+
(2τ

T
+

8τT c2∗
9

) j∑

k=1

(
(‖Zk‖2 + ‖Zk

x ]|2
)

+ 4τT

j∑

k=1

‖Luk‖2.
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Taking into account that τ/T ≤ 0.5, we get

Bj+1 ≤ 2B1 + cτ

j∑

k=1

Bk +8τT

j∑

k=1

‖Luk‖2, c := (4/T )+ (16Tc2∗)/9. (3.5)

Let the inequalities

Bj+1 ≤ 2B1 + cτ

j∑

k=1

Bk + bτ

j∑

k=1

fk, j = 1, 2, . . . ,

be valid, where b, c, τ , Bk, fk are non-negative numbers. Then

Bj+1 ≤ 2(1 + cτ)j−1B1 + cτ(1 + cτ)j−1B1 + bτ

j∑

k=1

(1 + cτ)j−kfk,

and therefore

Bj+1 ≤ 2(1 + cτ)jB1 + bτ(1 + cτ)j

j∑

k=1

fk .

If j = 1, 2, . . . , J , J := T/τ , then

(1 + cτ)j < (1 + cτ)T/τ = (1 + cτ)(Tc)/(cτ) < ecT .

Thus

Bj+1 ≤ ecT
(
2B1 + bτ

j∑

k=1

fk

)
.

So (3.5) yields

Bj+1 ≤ ecT
(
2B1 + 8Tτ

j∑

k=1

‖Luk‖2
)
. (3.6)

According to Lemma 3.2, we have

B1 ≤ 0.5‖Z1‖2 + 0.5‖τLu0‖2 ≤ 0.5B1 + 0.5‖τLu0‖2,

i.e., (2.9) is true. On the basis of this inequality, the estimate (2.10) follows
from (3.6).

Theorem 2.2 is proved. �

4. Estimation of Truncation Errors and Proof of Theorem 2.3

In order to estimate the error, we will use the Steklov averaging operators:

(P̂u)i :=
1

h

xi+1∫

xi

u(x, t) dx, (P̌u)i :=
1

h

xi∫

xi−1

u(x, t) dx,

(
◦

P u)i := 0.5(P̂u+ P̌u)i, (Pu)i :=
1

h2

xi+1∫

xi−1

(h− |xi − x|)u(x, t) dx,
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(Ŝu)j :=
1

τ

tj+1∫

tj

u(x, t) dt, (Šu)j :=
1

τ

tj∫

tj−1

u(x, t) dt,

(
◦

S u)
j := 0.5(Ŝu+ Šu)j , (Su)j :=

1

τ2

tj+1∫

tj−1

(τ − |t− tj |)u(x, t) dt.

Represent the approximation error in a convenient form.

Lemma 4.1. If u is a solution to the problem (1.1), (1.2), then

Lu = ψ(1)

(∂u
∂t

)
+ ψ(2)

(∂u
∂x

)
+

1

6
ψ(3)(u) + ψ(2)

(
u
∂u

∂x

)
, t > 0, (4.1)

Lu = Φ(1)

(∂u
∂t

)
+ Φ(2)

(∂u
∂x

)
+

1

6
Φ(3)(u) + Φ(2)

(
u
∂u

∂x

)
, t = 0, (4.2)

where

ψ(1)(u) :=
◦

S (I − P)u, Iu := u, (4.3)

ψ(2)(u) := 0.5
◦

P (û+ ǔ)−P
◦

S u, (4.4)

ψ(3)(u) := τ2uu ◦
xtt

+ τ2(uutt) ◦x − h2u ◦
x
uxx − (3τ2/2)(u2) ◦

xtt
, (4.5)

Φ(1)(u) := Ŝ(I − P)u, (4.6)

Φ(2)(u) := 0.5
◦

P (u1 + u0)−PŜu, (4.7)

Φ(3)(u) := τuu ◦
xt

+ τ(uut) ◦x − h2u ◦
x
uxx − (3τ/2)(u)2◦

xt
. (4.8)

Now estimate the terms in the right-hand sides of (4.1), (4.2).
When estimating the truncation error, we will assume that the solution to

the problem (1.1), (1.2) u ∈ W 3
2 (QT ). In this case, on the basis of embedding

theorems we conclude that u ∈ C1(QT ). We denote

δ := max
(x,t)∈QT

(
|u|+

∣∣∣∂u
∂x

∣∣∣ +
∣∣∣∂u
∂t

∣∣∣
)
.

Also,

ei0 =
{
(x, t)| |x− xi| ≤ h, 0 ≤ t ≤ τ

}
,

eij =
{
(x, t)| |x− xi| ≤ h, |t− tj | ≤ τ

}
, j = 1, 2, . . . .

Lemma 4.2. For ψ(α) defined from the equalities (4.3)–(4.5), the follow-

ing estimates

‖ψ(1)(u
j)‖2 ≤ c

h4

τ

a∫

0

tj+1∫

tj−1

∣∣∣∂
2u

∂x2

∣∣∣
2

dxdt,

‖ψ(2)(u
j)‖2 ≤ c

h4 + τ4

τ

a∫

0

tj+1∫

tj−1

(∣∣∣∂
2u

∂x2

∣∣∣
2

+
∣∣∣∂

2u

∂t2

∣∣∣
2)
dxdt,



154

‖ψ(3)(u
j)‖2 ≤ c

h4+τ4

τ

a∫

0

tj+1∫

tj−1

(∣∣∣ ∂3u

∂x∂t2

∣∣∣
2

+
∣∣∣∂

2u

∂x2

∣∣∣
2

+
∣∣∣ ∂

2u

∂x∂t

∣∣∣
2

+
∣∣∣∂

2u

∂t2

∣∣∣
2)
dxdt

are valid, where the constant c > 0 does not depend on the mesh steps.

Lemma 4.3. For Φ(α) defined from (4.6)–(4.8), the following estimates

are valid

‖Φ(1)(u)‖
2 ≤ c

h4

τ

a∫

0

τ∫

0

∣∣∣∂
2u

∂x2

∣∣∣
2

dxdt,

‖Φ(2)(u)‖
2 ≤ c

h4 + τ4

τ

a∫

0

τ∫

0

(∣∣∣∂
2u

∂x2

∣∣∣
2

+
∣∣∣∂

2u

∂t2

∣∣∣
2)
dxdt,

‖Φ(3)(u)‖
2 ≤ cτ2‖u‖2

C1 + c
h4 + τ4

τ2
×

×

∫

QT

(∣∣∣ ∂3u

∂x∂t2

∣∣∣
2

+
∣∣∣ ∂3u

∂x2∂t

∣∣∣
2

+
∣∣∣∂

2u

∂x2

∣∣∣
2

+
∣∣∣∂

2u

∂t2

∣∣∣
2

+
∣∣∣ ∂

2u

∂x∂t

∣∣∣
2
)
dxdt,

where the constant c > 0 does not depend on the mesh steps.

Proof of Theorem 2.3. According to Lemmas 4.1 and 4.2,

‖Luj‖2 ≤ c
h4 + τ4

τ

a∫

0

tj+1∫

tj−1

(∣∣∣∂
2u

∂x2

∣∣∣
2

+
∣∣∣ ∂

2u

∂x∂t

∣∣∣
2

+

+
∣∣∣∂

2u

∂t2

∣∣∣
2

+
∣∣∣∂

3u

∂x3

∣∣∣
2

+
∣∣∣ ∂3u

∂x2∂t

∣∣∣
3

+
∣∣∣ ∂3u

∂x∂t2

∣∣∣
2
)
dxdt, j = 1, 2, . . . .

Via Lemmas 4.1 and 4.3 we get

‖Lu0‖2 ≤ c
h4 + τ4

τ2
×

×

∫

QT

(∣∣∣∂
2u

∂x2

∣∣∣
2

+
∣∣∣ ∂

2u

∂x∂t

∣∣∣
2

+
∣∣∣∂

2u

∂t2

∣∣∣
2

+
∣∣∣∂

3u

∂x3

∣∣∣
2

+
∣∣∣ ∂3u

∂x2∂t

∣∣∣
3

+
∣∣∣ ∂3u

∂x∂t2

∣∣∣
2
)
dxdt.

Therefore Theorem 2.3 follows from Theorem 2.2. �

References

1. D. H. Peregrine, Calculations of the development of an undular bore. J. Fluid
Mech. 25 (1966), 321–330.

2. T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves
in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272 (1972),
No. 1220, 47–78.

3. J. C. Eilbeck and G. R. McGuire, Numerical study of the regularized long-wave
equation. I. Numerical methods. J. Comput. Phys. 19 (1975), No. 1, 43–57.



155

4. J. C. Eilbeck and G. R. McGuire, Numerical study of the regularized long-wave
equation. II. Interaction of solitary waves. J. Comput. Phys. 23 (1977), No. 1, 63–73.

5. Q. Chang, G. Wang, and B. Guo, Conservative scheme for a model of nonlinear
dispersive waves and its solitary waves induced by boundary motion. J. Comput.
Phys. 93 (1991), No. 2, 360–375.

6. T. Wang and L. Zhang, New conservative schemes for regularized long wave equa-
tion. Numer. Math. J. Chin. Univ. (Engl. Ser.) 15 (2006), No. 4, 348–356.

7. A. Rashid, A three-levels finite difference method for nonlinear regularized long-wave
equation. Mem. Differential Equations Math. Phys. 34 (2005), 135–146.

8. P. J. Olver, Euler operators and conservation laws of the BBM equation. Math.
Proc. Cambridge Philos. Soc. 85 (1979), No. 1, 143–160.

(Received 16.09.2008)

Authors’ addresses:

G. Berikelashvili
A. Razmadze Mathematical Institute
1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: bergi@rmi.acnet.ge

M. Mirianashvili
N. Muskhelishvili Institute of Computational Mathematics
8, Akuri St., Tbilisi 0193
Georgia


