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Abstract. We consider Wiener–Hopf, Wiener–Hopf plus Hankel, and
Wiener–Hopf minus Hankel operators on weighted Lebesgue spaces and hav-
ing piecewise almost periodic Fourier symbols. The main results concern
conditions to ensure the Fredholm property and the lateral invertibility of
these operators. In addition, under the Fredholm property, conclusions
about the Fredholm index of those operators are also discussed.
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îâäæñéâ. øãâê ãæýæèŽãå ãæêâî-ßëòæï, ãæêâî-ßëò ìèñï ßâêèâèæïŽ áŽ
ãæêâî-ßëò éæêñï ßâêçâèæï ëìâîŽðëîâĲï ñĲŽê-ñĲŽê åæåóéæï ìâîæëáñèæ òñ-
îæâï ïæéĲëèëâĲæå ûëêæŽê èâĲâàæï ïæãîùââĲöæ. úæîæåŽáæ öâáâàâĲæ âýâĲŽ
ìæîëĲâĲï, îëéèâĲæù ñäîñêãâèõëòâê Žé ëìâîŽðëîâĲæï òîâáßëèéñîëĲŽïŽ
áŽ öâĲîñêâĲŽáëĲŽï. áŽéŽðâĲæå, òîâáßëèéñîëĲŽïåŽê âîåŽá, àŽêýæèñèæŽ
Žê ëìâîŽðëîâĲæï òîâáßëèéæï æêáâóïæ.
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1. Introduction

Wiener–Hopf and Hankel operators are known to be very important ob-
jects in the modeling of a great variety of applied problems. In fact, since
their first appearance in the first half of the twentieth century, advances on
the knowledge of their theory, consequent generalizations and their use have
been continuously increasing. This circumstance is not indifferent of the in-
terplay between these operators and singular integral operators – which can
be identified in different monographs on the subject (cf., e.g., [3], [10], [17],
[18]). Additionally, certain combinations of Wiener–Hopf and Hankel op-
erators have also proved to be quite useful in the applications (and several
examples of this can be seen e.g. in some wave diffraction problems when
analysed by an operator theory approach [15], [16], [22]). A great part of
the study in this kind of operators is concentrated in the description of their
Fredholm and invertibility properties. In particular, for several classes of the
so-called Fourier symbols of the operators, their Fredholm and invertibility
properties are already characterized (see e.g. [1]–[5], [7]–[14], [19]–[21] and
the references given there). Despite these advances, for some other classes
of Fourier symbols and more general spaces, a complete description of the
Fredholm and invertibility properties is still missing.

Within this scope, in the present paper we would like to consider Wiener–
Hopf, Wiener–Hopf plus Hankel and Wiener–Hopf minus Hankel operators
on weighted Lebesgue spaces and having piecewise-almost periodic Fourier
symbols (i.e., a certain combination of piecewise continuous elements with
almost periodic elements). The main efforts will be devoted to obtain in-
vertibility and Fredholm descriptions of these operators. In view of stating
the formal definitions of the operators under study, we will now introduce
some preliminary notation.

Let E be a connected subspace of R. A (Lebesgue) measurable function
w : E → [0,∞] is called a weight if w−1({0,∞}) has (Lebesgue) measure
zero. For 1 < p < ∞, we denote by Lp(R, w) the usual Lebesgue space with
the norm

‖f‖p,w :=
( ∫

R

|f(x)|pw(x)p dx

) 1
p

.

Additionally, Ap(R) will denote the set of all weights w on R for which the
Cauchy singular integral operator SR given by

(SRf)(x) = lim
ε→0

1
πi

∫

R\(x−ε,x+ε)

f(t)
t− x

dt, x ∈ R,

is bounded on the space Lp(R, w). The weights w ∈ Ap(R) are called
Muckenhoupt weights.

Let F denote the Fourier transformation. A function φ ∈ L∞(R) is a
Fourier multiplier on Lp(R, w) if the map f 7→ F−1φ · Ff maps L2(R) ∩
Lp(R, w) into itself and extends to a bounded operator on Lp(R, w) (notice
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that L2(R) ∩ Lp(R, w) is dense in Lp(R, w) whenever w belongs to Ap(R)).
We let Mp,w stand for the set of all Fourier multipliers on Lp(R, w). We will
denote by A0

p(R) the set of all weights w ∈ Ap(R) for which the functions
eλ : x 7→ eiλx belong to Mp,w for all λ ∈ R. Let J be the reflection operator
given by the rule Jϕ(x) = ϕ̃(x) = ϕ(−x), x ∈ R. We denote by Ae

p(R)
the subspace of all weights w ∈ Ap(R) for which Jw = w. Additionally, let
Ae,0

p (R) := A0
p(R) ∩Ae

p(R).
We shall use Lp

+(R, w) to denote the subspace of Lp(R, w) formed by all
the functions supported in the closure of R+ = (0,+∞).

In what follows we will consider Wiener–Hopf operators defined by

Wφ = r+F−1φ · F : Lp
+(R, w) → Lp(R+, w),

and so-called Wiener–Hopf–Hankel operators [5], [14], [16], [22] (i.e., Wie-
ner–Hopf plus Hankel and Wiener–Hopf minus Hankel operators) of the
form

Wφ ±Hφ : Lp
+(R, w) → Lp(R+, w) (1.1)

with Hφ being the Hankel operator defined by

Hφ = r+F−1φ · FJ.

Here, r+ represents the operator of restriction from Lp(R, w) into Lp(R+, w),
w ∈ Ae

p(R) and φ ∈Mp,w is the so-called Fourier symbol. For such Fourier
symbol and weight, the operators in (1.1) are bounded.

2. Auxiliary Material

2.1. The algebra of piecewise-almost periodic elements. In this sub-
section we will introduce the piecewise almost periodic elements (which will
take the role of Fourier symbols of our main operators), and consider already
some of their characteristics.

The smallest closed subalgebra of L∞(R) that contains all functions eλ :=
eiλx (x ∈ R) is denoted by AP and called the algebra of almost periodic
functions.

For φ ∈ AP , there exists a number

M(φ) := lim
T→∞

1
T

T∫

−T

φ(x) dx

which is called the (Bohr) mean value of φ.
Let GB denote the group of all invertible elements of a Banach algebra B.

Theorem 2.1 (Bohr). If φ ∈ GAP , then there exists a real number k(φ)
and a function ψ ∈ AP such that

φ(x) = eik(φ)xeψ(x) for all x ∈ R.
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The number k(φ) is uniquely determined and it is called the mean motion
of φ. Considering φ ∈ GAP , the mean motion of φ can be obtained by

k(φ) = lim
T→∞

(arg φ)(T )− (arg φ)(0)
T

, (2.2)

where arg φ is any continuous argument of φ. The geometric mean value of
the function φ is defined by d(φ) = eM(ψ).

For Ṙ = R ∪ {∞}, we denote by PC or PC(Ṙ) the algebra of all func-
tions ϕ ∈ L∞(R) for which the one-sided limits ϕ(x0 − 0) = lim

x→x0−0
ϕ(x),

ϕ(x0 + 0) = lim
x→x0+0

ϕ(x) exist for each x0 ∈ Ṙ, and by C(Ṙ) the set of all

(bounded and) continuous functions ϕ on the real line for which the two
limits ϕ(−∞) := lim

x→−∞
ϕ(x), ϕ(+∞) := lim

x→+∞
ϕ(x) exist and coincide. Let

C(R) := C(R)∩PC(Ṙ) and PC0 := {ϕ ∈ PC : ϕ(±∞) = 0}. We denote by
Cp,w(Ṙ) (PCp,w(Ṙ)) the closure inMp,w of the set of all functions φ ∈ C(Ṙ)
(resp. φ ∈ PC(Ṙ)) with finite total variation.

We define APp,w as the closure of the set of all almost periodic functions
in Mp,w. Let SAPp,w denote the smallest closed subalgebra of Mp,w that
contains Cp,w(R) and APp,w, and denote by PAPp,w the smallest closed
subalgebra of Mp,w that contains PCp,w and APp,w.

2.2. Operator relations. In order to relate operators and to transfer cer-
tain operator properties between different operators, we will be also using
some known operator relations.

Definition 2.2. Consider two bounded linear operators T : X1 → X2

and S : Y1 → Y2 acting between Banach spaces. We say that T and S are
equivalent, and denote this by T ∼ S, if there are two boundedly invertible
linear operators, E : Y2 → X2 and F : X1 → Y1, such that

T = E S F. (2.3)

If two operators are equivalent, then they belong to the same invertibil-
ity class. More precisely, one of these operators is invertible, left-invertible,
right-invertible or only generalized invertible, if and only if the other oper-
ator enjoys the same property.

Definition 2.3 ([6]). Let T : X1 → X2 and S : Y1 → Y2 be bounded
linear operators. We say that T is ∆–related after extension to S if there is
a bounded linear operator acting between Banach spaces T∆ : X1∆ → X2∆

and invertible bounded linear operators E and F such that[
T 0
0 T∆

]
= E

[
S 0
0 IZ

]
F, (2.4)

where Z is an additional Banach space and IZ represents the identity op-
erator in Z. In the particular case when T∆ : X1∆ → X2∆ = X1∆ is the
identity operator, we say that the operators T and S are equivalent after
extension and in such a case we will use the notation T

∗∼ S.
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In the following result, we describe a relation between Wiener–Hopf plus
Hankel operators and Wiener–Hopf operators within the present framework.
This result is well-known for non-weighted spaces (cf., e.g., [7, Theorem 2.1])
and the corresponding proof in the present case runs in a similar way. Any-
way, we choose to present here a complete proof of it for the reader conve-
nience.

Theorem 2.4. Let φ ∈ GMp,w with w ∈ Ae
p(R) and 1 < p < ∞. The

Wiener–Hopf plus Hankel operator

Wφ + Hφ : Lp
+(R, w) → Lp(R+, w)

is ∆-related after extension to the Wiener–Hopf operator

W
φφ̃−1 : Lp

+(R, w) → Lp(R+, w).

Proof. We shall use the characteristic functions χ± to the positive/negative
half-line.

Extending Wφ + Hφ on the left by the zero extension operator, `0 :
Lp(R+, w) → Lp

+(R, w), we obtain

Wφ + Hφ ∼ `0(Wφ + Hφ) : Lp
+(R, w) → Lp

+(R, w).

After this we will extend

`0(Wφ + Hφ) = χ+F−1(φ + φJ)F|χ+Lp(R,w)

to the full Lp(R, w) space by using the identity in Lp
−(R, w). Next, we will

extend the obtained operator to [Lp(R, w)]2 with the help of an auxiliary
paired operator:

Lφ = F−1(φ− φJ)Fχ+ + χ− : Lp(R, w) → Lp(R, w).

Altogether, we have



`0(Wφ + Hφ) 0 0
0 Iχ−Lp(R,w) 0
0 0 Lφ


 = E1WΦF1

with

E1 =
1
2

[
ILp(R,w) J
ILp(R,w) −J

]
,

F1 =
[
ILp(R,w) ILp(R,w)

J −J

] [
ILp(R,w) − χ−F−1(φ− φJ)Fχ+ 0

0 ILp(R,w)

]
,

Wφ =
[F−1φF 0
F−1φ̃F 1

]
χ+ +

[
1 F−1φF
0 F−1φ̃F

]
χ− =

=
[
1 F−1φF
0 F−1φ̃F

] (F−1ΨFχ+ + χ−
)

=

=
[
1 F−1φF
0 F−1φ̃F

] (
χ+F−1ΨFχ+ + χ−

)(
I[Lp(R,w)]2 + χ−F−1ΨFχ+

)
,
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where the operators χ+ and χ− are here defined on [Lp(R, w)]2 and

Ψ =

[
0 −φφ̃−1

1 φ̃−1

]
.

The paired operator

I[Lp(R,w)]2 + χ−F−1ΨFχ+ : [Lp(R, w)]2 → [Lp(R, w)]2

is an invertible operator with inverse given by

I[Lp(R,w)]2 − χ−F−1ΨFχ+ : [Lp(R, w)]2 → [Lp(R, w)]2.

Thus, we have demonstrated that Wφ+Hφ is ∆-related after extension with

WΨ = r+F−1ΨF : [Lp
+(R, w)]2 → [Lp(R+, w)]2.

Furthermore, we have
[
W

φφ̃−1 0
0 I[Lp(R+,w)]

]
=

= WΨ`0r+F−1

[
φ̃−1 1
−1 0

]
F`0 : [Lp(R+, w)]2 → [Lp(R+, w)]2

which shows an explicit equivalence after extension relation between W
φφ̃−1

and WΨ. This, together with the ∆-relation after extension between Wφ +
Hφ and WΨ, concludes the proof. ¤

Remark 2.5. From the proof of the last theorem we can also realize the
last result as an equivalence after extension between the diagonal matrix
operator diag[Wφ + Hφ, Wφ −Hφ] and W

φφ̃−1 .

3. Wiener–Hopf Operators on Weighted Lebesgue Spaces

3.1. Fredholm theory for Wiener–Hopf operators with piecewise
continuous symbols on weighted Lebesgue spaces. In the present
subsection we will recall a Fredholm characterization of Wiener–Hopf op-
erators with piecewise continuous Fourier symbols on weighted Lebesgue
spaces (which we will use later on).

Let ν ∈ (0, 1). The set {e2π(x+iν) : x ∈ R} is a ray starting at the origin
and making the angle 2πν ∈ (0, 2π) with the positive real half-line. For
z1, z2 ∈ C, the Möbius transform

Mz1,z2(ζ) :=
z2ζ − z1

ζ − 1

maps 0 to z1 and ∞ to z2. Thus,

A(z1, z2; ν) :=
{
Mz1,z2(e

2π(x+iν)) : x ∈ R} ∪ {z1, z2}
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is a circular arc between z1 and z2 (which contains its endpoints z1, z2).
Finally, given 0 < ν1 ≤ ν2 < 1, we put

H(z1, z2; ν1, ν2) :=
⋃

ν∈[ν1,ν2]

A(z1, z2; ν),

and refer to H(z1, z2; ν1, ν2) as the horn between z1 and z2 determined by
ν1 and ν2.

Let 1 < p < ∞ and w ∈ Ap(R). Then, each of the sets

Ix(p, w) :=
{
λ ∈ R : |(ξ − x)/(ξ + i)|λw(ξ) ∈ Ap(R)

}
, x ∈ R,

I∞(p, w) :=
{
λ ∈ R : |ξ + i|−λw(ξ) ∈ Ap(R)

} (3.5)

is an open interval of length no grater than 1 which contains the origin:

Ix(p, w) = (−ν−x (p, w), 1− ν+
x (p, w)), x ∈ Ṙ, (3.6)

with 0 < ν−x (p, w) ≤ ν+
x (p, w) < 1.

Theorem 3.1 ([3, Theorem 17.7]). Let 1 < p < ∞, w ∈ Ap(R), and let
ν±x (p, w) be defined by (3.5)–(3.6). If ψ ∈ PCp,w, then the operator Wψ is
Fredholm on the space Lp(R+, w) if and only if

0 /∈ ψ#
p,w(Ṙ) :=

( ⋃

x∈R
H

(
ψ(x− 0), ψ(x + 0); ν−∞(p, w), ν+

∞(p, w)
))
∪

∪H
(
ψ(+∞), ψ(−∞); ν−0 (p, w), ν+

0 (p, w)
)
.

If Wψ is Fredholm on the space Lp(R+, w), then

IndWψ = −windp,wψ, (3.7)

where windp,wψ is the winding number about the origin of the naturally
oriented curve

ψ0
p,w(Ṙ) :=

( ⋃

x∈R
A

(
ψ(x− 0), ψ(x + 0); ν0

∞(p, w)
))
∪

∪ A
(
ψ(+∞), ψ(−∞); ν0

0(p, w)
)
,

with

ν0
x(p, w) :=

ν−x (p, w) + ν+
x (p, w)

2
. (3.8)

Suppose that ψ ∈ PCp,w has only finitely many jumps at the points
Λψ ⊂ R and possibly at ∞. If 0 /∈ ψ#

p,w(Ṙ), then the Cauchy index indp,wψ
of ψ with respect to p and w is defined by

indp,wψ :=
∑

l

indlψ+
∑

x∈Λψ

(
− ν0

x(p, w)+
{

ν0
x(p, w)+

1
2π

arg
ψ(x+0)
ψ(x−0)

})
,

where l ranges over the connected components of R \ Λψ, {c} denotes the
fractional part of the real number c and indlψ stands for the increment of
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1
2π arg ψ on l, with arg ψ being any continuous argument of ψ on l. Addi-
tionally, we have that

windp,wψ = indp,wψ +
(
− ν0

∞(p, w) +
{

ν0
∞(p, w) +

1
2π

arg
ψ(−∞)
ψ(+∞)

})
.

Thus, we can also write (3.7) in the form

IndWψ =−
∑

l

indlψ+

+
∑

x∈Λψ∪{∞}

(
ν0

x(p, w)−
{

ν0
x(p, w) +

1
2π

arg
ψ(x + 0)
ψ(x− 0)

})
, (3.9)

where ψ(∞± 0) := ψ(∓∞).

3.2. Wiener–Hopf operators with semi-almost periodic symbols on
weighted Lebesgue spaces.

3.2.1. Representation of semi-almost periodic functions. The following the-
orem is an analogue of the corresponding classic Sarason’s result.

Theorem 3.2 ([13, Theorem 3.1.]). Let 1 < p < ∞, w ∈ A0
p(R) and

let u be a monotonically increasing real-valued function in C(R) such that
u(−∞) = 0 and u(+∞) = 1. Then, every function φ ∈ SAPp,w can be
uniquely represented in the form:

φ = (1− u)φ` + uφr + φ0,

where φ`, φr ∈ APp,w, φ0 ∈ Cp,w(Ṙ) and φ0(∞) = 0. The maps φ 7→ φ`

and φ 7→ φr are (continuous) Banach algebra homomorphisms of SAPp,w

onto APp,w of norm 1, where ‖φ‖p,w = ‖F−1φ · F‖L(Lp(R,w)).

3.2.2. Fredholm theory for Wiener–Hopf operators with semi-almost peri-
odic symbols on weighted Lebesgue spaces. Let us recall an analogue of
Duduchava–Saginashvili Theorem for weighted Lebesgue spaces Lp(R+, w)
with Muckenhoupt weights w ∈ A0

p(R).

Theorem 3.3 ([13, Proposition 4.7]). Let φ ∈ SAPp,w \ {0}, with 1 <
p < ∞ and w ∈ A0

p(R).
(a) If φ /∈ GSAP , then Wφ is not semi-Fredholm on Lp

+(R, w).
(b) If φ ∈ GSAP and k(φ`)k(φr) < 0, then Wφ is not semi-Fredholm

on Lp
+(R, w).

(c) If φ ∈ GSAP , k(φ`)k(φr) ≥ 0 and k(φ`) + k(φr) > 0, then Wφ is
properly n-normal on Lp

+(R, w) and left-invertible.
(d) If φ ∈ GSAP , k(φ`)k(φr) ≥ 0 and k(φ`) + k(φr) < 0, then Wφ is

properly d-normal on Lp
+(R, w) and right-invertible.

(e) If φ ∈ GSAP , k(φ`) = k(φr) = 0 and

0 /∈ H(
d(φr),d(φ`); ν−0 (p, w), ν+

0 (p, w)
)
,

then Wφ is Fredholm on Lp
+(R, w).
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(f) If φ ∈ GSAP , k(φ`) = k(φr) = 0 and

0 ∈ H(
d(φr),d(φ`); ν−0 (p, w), ν+

0 (p, w)),

then Wφ is not semi-Fredholm on Lp
+(R, w).

We would like to point out that although in [13, Proposition 4.7] do
not appear the above left and right-invertibility conclusions (here added in
propositions (c) and (d)), these lateral invertibility properties arise directly
from the use of Coburn-Simonenko Theorem (since we are considering scalar
Wiener–Hopf operators).

Lemma 3.4 ([3, Lemma 3.12]). Let A ⊂ (0,∞) be an unbounded set
and consider {Iα}α∈A := {(xα, yα)}α∈A to be a family of intervals such
that xα ≥ 0 and |Iα| = yα − xα → ∞ as α → ∞. If φ ∈ GSAP is such
that k(φ`) = k(φr) = 0 and arg φ is any continuous argument of φ, then the
limit

1
2π

lim
α→∞

1
|Iα|

∫

Iα

((arg φ)(x)− (arg φ)(−x)) dx (3.10)

exists, is finite and is independent of the particular choices of {(xα, yα)}α∈A

and arg φ.

For φ ∈ GSAP such that k(φ`) = k(φr) = 0, the value (3.10) is denoted
by ind φ and called the Cauchy index of φ. Following [19, Section 4.3] we
can generalize this notion of Cauchy index for SAP functions with k(φ`) +
k(φr) = 0.

The following theorem provides a formula for the Fredholm index of
Wiener–Hopf operators with semi-almost periodic symbols on Lp(R+, w).

Theorem 3.5 ([13, Theorem 4.8]). If φ ∈ GSAPp,w, k(φ`) = k(φr) = 0
and

0 /∈ H(
d(φr),d(φ`); ν−0 (p, w), ν+

0 (p, w)
)
,

then the operator Wφ is Fredholm and

IndWφ = −indφ + ν0
0(p, w)−

{
ν0
0(p, w) +

1
2π

arg
d(φ`)
d(φr)

}
, (3.11)

where

ν0
0(p, w) :=

ν−0 (p, w) + ν+
0 (p, w)

2
.

3.3. Wiener–Hopf operators with piecewise-almost periodic sym-
bols on weighted Lebesgue spaces. Motivated by the material in the
previous subsections, the main purpose of the present subsection will be
to establish an analogue invertibility and Fredholm description for Wiener–
Hopf operators acting between Lp spaces (1 < p < ∞) with Muckenhoupt
weights w ∈ A0

p(R), and with PAPp,w Fourier symbols.
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3.3.1. Representation of PAPp,w piecewise-almost periodic functions.

Theorem 3.6. Let w ∈ A0
p(R), and let u be a monotonically increasing

real-valued function in C(R) such that u(−∞) = 0 and u(+∞) = 1.
(i) If φ ∈ PAPp,w, then there are uniquely determined functions ϕr,

ϕ` ∈ APp,w and φ0 ∈ PC0
p,w such that

φ = (1− u)ϕ` + uϕr + φ0. (3.12)

(ii) If φ ∈ GPAPp,w, then there exists ϕ ∈ GSAPp,w and ψ ∈ GPCp,w

satisfying ψ(−∞) = ψ(+∞) = 1, such that φ = ϕψ and

Wφ = WϕWψ + K1 = WψWϕ + K2, (3.13)

with compact operators K1 and K2.
(iii) In addition, the ϕ` and ϕr elements used in (i) coincide with the

local representatives of ϕ ∈ GSAPp,w used in (ii) and their unique
existence is ensured by Theorem 3.2.

Proof. Part (i) is an immediate consequence of Theorem 3.2.
To prove part (ii), suppose that φ is in GPAPp,w and put f := (1 −

u)ϕ` + uϕr where the elements u, ϕ` and ϕr have the properties described
in (3.12). Then, φ = f + φ0 (with φ0 ∈ PC0

p,w). From the hypothesis
there is a constant C ∈ (0,∞) such that |f(x)| is bounded away from zero
for |x| > C, and therefore, we can find a function f0 ∈ C0

p,w(Ṙ) such that
ϕ := f + f0 ∈ GSAPp,w. Consequently, we have

φ = ϕ + φ0 − f0 = ϕ
(
1 + ϕ−1(φ0 − f0)

)
=: ϕψ,

and it is clear that ψ = ϕ−1φ ∈ GPCp,w and ψ(−∞) = ψ(+∞) = 1. Since
φ is continuous on R and ψ is continuous at ∞, we deduce that (3.13) holds
with compact operators K1 and K2.

The proposition (iii) follows immediately from the construction performed
for (ii). ¤

3.3.2. Fredholm theory of Wiener–Hopf operators with piecewise-almost pe-
riodic functions on weighted Lebesgue spaces. We are now in condition to
derive a Fredholm characterization for Wiener–Hopf operators with PAPp,w

Fourier symbols on weighted Lebesgue spaces.

Theorem 3.7. Consider w ∈ A0
p(R) and φ ∈ PAPp,w such that φ is not

identically zero.
(a) If φ ∈ GPAPp,w, k(φ`) = k(φr) = 0 and

0 /∈ φ#
p,w(Ṙ) ∪H(

d(φr),d(φ`); ν−0 (p, w), ν+
0 (p, w)

)
,

then Wφ is Fredholm on Lp(R+, w).
(b) If φ ∈ GPAPp,w, k(φ`)k(φr) ≥ 0, k(φ`) + k(φr) > 0 and 0 /∈

φ#
p,w(Ṙ), then Wφ is properly n-normal and left-invertible.

(c) If φ ∈ GPAPp,w, k(φ`)k(φr) ≥ 0, k(φ`) + k(φr) < 0 and 0 /∈
φ#

p,w(Ṙ), then Wφ is properly d-normal and right-invertible.
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(d) In all other cases, Wφ is not normally solvable.

Proof. If φ /∈ GPAPp,w, we see from [3, Corollary 2.8], that Wφ is not
normally solvable.

So, let us now assume that φ ∈ GPAPp,w. Then, we can write φ = ϕψ,
ϕ ∈ GSAPp,w and ψ ∈ GPCp,w (satisfying ψ(−∞) = ψ(+∞) = 1). Taking
into account (3.13), we see that Wφ is Fredholm if and only if both operators
Wϕ and Wψ are Fredholm –which by Theorem 3.1 and Theorem 3.3 happens
if conditions stated in part (a) are satisfied.

Having in mind (3.13) and since Wψ is Fredholm under the conditions
of parts (b) and (c) (cf. Theorem 3.1), we deduce that Wφ is properly n-
normal (resp. properly d-normal) if and only if so is Wϕ. Therefore, we
obtain part (b) (resp. part (c)) from Theorem 3.3 and Coburn–Simonenko
Theorem.

To complete the proof, we use the following fact: considering linear and
bounded operators A and B acting between Banach spaces (such that AB
can be computed), if AB is n-normal (resp. d-normal) then B is n-normal
(resp. A is d-normal). This, [3, Theorem 2.2] and (3.13) show that Wφ is
n-normal (resp. d-normal) if and only if so are both Wϕ and Wψ, and hence
we get part (d) for φ ∈ GPAP as a consequence of Coburn–Simonenko
Theorem and Theorems 3.1 and 3.3. ¤

Corollary 3.8. Let φ ∈ GPAPp,w. If Wφ is a Fredholm operator, then

IndWφ = IndWϕ + IndWψ = −
∑

l

indlψ − indϕ+

+
∑

x∈Λψ∪{∞}

(
ν0

x(p, w)−
{

ν0
x(p, w)− 1

2π
arg

ψ(x− 0)
ψ(x + 0)

})
+

+ ν0
0(p, w)−

{
ν0
0(p, w) +

1
2π

arg
d(ϕ`)
d(ϕr)

}
, (3.14)

where φ = ψϕ is a corresponding factorization in the sense of Theorem 3.6
(ii).

Proof. This is obtained by jointing together Theorem 3.6(ii) and formulas
(3.9) and (3.11). ¤

3.3.3. Example of an invertible Wiener–Hopf operator with a piecewise-al-
most periodic Fourier symbol on weighted Lebesgue spaces. Let p = 2 and
choose the weight function w(x) = |x| 14 . We will consider the function φ
(see Figure 1), given by

φ(x) = (1− u(x))3eeix

g(x) + u(x)ee−2ix

g(x) +
g(x)

x2 + 1
, (3.15)

where u is the real-valued function

u(x) =
1
2

+
1
π

tanh(x)
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Figure 1. The range of φ(x) for x between -100 and 100.

and g(x) =

{
ex + 1, if x < 0
e

2i
x−i , if x ≥ 0

.

76

-1

3

53 4
0

2

-2

1

1

2

-3

Figure 2. The range of ϕ(x) for x between -100 and 100.

It is clear that φ admits a factorization φ = ϕψ in the sense of Theo-
rem 3.6 (ii) with

ϕ(x) = (1− u(x))3eeix

+ u(x)ee−2ix

+
1

x2 + 1
, (3.16)

and ψ(x) = g(x).
The function ϕ (cf. Figure 2) is invertible and we have ϕ ∈ GSAP2,w.
The element ψ is also an invertible function (see Figure 3). Moreover,

ψ(−∞) = ψ(+∞) = 1. Observing that ϕ and ψ are invertible, one obtains
that φ is invertible.
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0,1

0
1,20,80,4

0,4
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0,3

Figure 3. The range of ψ(x) for x between -100 and 100.

From Theorem 3.6 (iii), we have that the almost periodic representatives
of φ ∈ GPAP2,w coincide with the almost periodic representatives of ϕ ∈
GSAP2,w. From the definition of k(φ), it results that k(φ`) = k(φr) = 0.

We have that

I0(2, |x| 14 ) =
{

µ ∈ R :
∣∣∣ ξ

ξ + i

∣∣∣
µ

|ξ| 14 ∈ A2(R)
}

=

=
{

µ ∈ R : −1
2

< µ +
1
4

<
1
2

}
=

=
(
− 3

4
, 1− 3

4

)
,

whence ν−0 (2, |x| 14 ) = ν+
0 (2, |x| 14 ) = 3

4 . In the same way, we obtain

ν−∞(2, |x| 14 ) = ν+
∞(2, |x| 14 ) =

1
4

.

Consequently, and observing that the only discontinuity point of φ is 0, we
have

φ#
p,w(Ṙ) = H

(
φ(0− 0), φ(0 + 0); ν−∞(2, |x| 14 ), ν+

∞(2, |x| 14 )
)
∪

∪H
(
φ(+∞), φ(−∞); ν−0 (2, |x| 14 ), ν+

0 (2, |x| 14 )
)

=

= H
(
2e + 1, 2e3 + e2;

1
4
,
1
4

)
∪H

(
1, 3;

3
4
,
3
4

)
=

= A
(
2e + 1, 2e3 + e2;

1
4

)
∪ A

(
1, 3;

3
4

)
.

Since d(φr) = 1 and d(φ`) = 3, it also results that

H
(
d(φr),d(φ`); ν−0 (2, |x| 14 ), ν+

0 (2, |x| 14 )
)

= H
(
1, 3;

3
4
,
3
4

)
= A

(
1, 3;

3
4

)
.
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Therefore, we have to consider the arcsA(2e+1, 2e3+e2; 1
4 ) andA(1, 3; 3

4 )
(see Figure 4).

40
0

30

-5

-10

20

-15

-20

10

Figure 4. The arcs A(2e + 1, 2e3 + e2; 1
4 ) and A(1, 3; 3

4 ).

Since these arcs do not contain the origin, the operator

Wφ : L2
+(R, |x| 14 ) → L2(R+, |x| 14 )

is a Fredholm operator (cf. Theorem 3.7 (a)).
Let us now compute the Fredholm index of this operator.
From the definition of ψ(x), we have that if x < 0 then arg ψ = 0, and if

x ≥ 0 then arg ψ = 2x
x2+1 . Thus, indlψ = 0 and consequently

∑
l

indlψ = 0.

The only point of discontinuity of ψ is zero and

ν0
0(2, |x| 14 ) =

ν−0 (2, |x| 14 ) + ν+
0 (2, |x| 14 )

2
=

3
4

.

Additionally, arg ψ(x+0)
ψ(x−0) = arg e2

2 = 0.
On the other hand, we have that indϕ = 0 and

arg
d(ϕ`)
d(ϕr)

= arg(3) = 0.

Using these results and substituting on formula (3.14), we obtain that

IndWφ = 0.

Consequently, putting together this information with Coburn–Simonenko
Theorem, we conclude that the Wiener–Hopf operator of this example is
invertible.



54 Lúıs P. Castro and Anabela S. Silva

4. Fredholm and Lateral Invertibility of
Wiener–Hopf–Hankel Operators with Piecewise-Almost

Periodic Functions on Weighted Lebesgue Spaces

We will turn now to Wiener–Hopf–Hankel operators with piecewise-al-
most periodic symbols on Lebesgue spaces with Muckenhoupt weights w∈
A0,e

p (R). Here, we are also looking for corresponding possible invertibility
and Fredholm properties. In fact, we will be able to identify conditions
under which the Wiener–Hopf plus/minus Hankel operators are left or right-
invertible (and not Fredholm) or have the Fredholm property.

4.1. Fredholm theory of Wiener–Hopf–Hankel operators with pie-
cewise-almost periodic functions on Lp(R+, w). We will now identify
conditions to ensure the Fredholm and lateral invertibility of our Wiener–
Hopf plus/minus Hankel operators.

Theorem 4.1. Let w ∈ Ae,0
p (R) and φ ∈ GPAPp,w (1 < p < ∞).

(a) If k(φ`) + k(φr) = 0 and

0 /∈ (φφ̃−1)#p,w(Ṙ) ∪H
(d(φr)
d(φ`)

,
d(φ`)
d(φr)

; ν−0 (p, w), ν+
0 (p, w)

)

then Wφ + Hφ and Wφ −Hφ are Fredholm operators.
(b) If k(φ`) + k(φr) > 0 and 0 /∈ (φφ̃−1)#p,w(Ṙ), then both operators

Wφ + Hφ and Wφ − Hφ are left-invertible (and at least one of the
operators Wφ + Hφ and Wφ −Hφ is properly n-normal).

(c) If k(φ`) + k(φr) < 0 and 0 /∈ (φφ̃−1)#p,w(Ṙ), then both operators
Wφ + Hφ and Wφ −Hφ are right-invertible (and at least one of the
operators Wφ + Hφ and Wφ −Hφ is properly d-normal).

(d) If k(φ`) + k(φr) = 0 and

0 ∈ (φφ̃−1)#p,w(Ṙ) ∪H
(d(φr)
d(φ`)

,
d(φ`)
d(φr)

; ν−0 (p, w), ν+
0 (p, w)

)
,

then at least one of the operators Wφ + Hφ and Wφ − Hφ is not
normally solvable on Lp

+(R, w).

Proof. From the definition of PAPp,w, we have the following representation
of φ:

φ = (1− u)φ` + uφr + φ0,

where φ`, φr ∈ APp,w, φ0 ∈ PCp,w(Ṙ), φ0(∞) = 0 and u is a monoton-
ically increasing real-valued function in C(R) satisfying u(−∞) = 0 and
u(+∞)= 1.

Taking into consideration Bohr’s theorem and the definition of the geo-
metric mean value, it follows that

φ` = ek(φ`)d(φ`)ew` ,

φr = ek(φr)d(φr)ewr ,
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with w`, wr ∈ APp,w, M(w`) = M(wr) = 0 (and d(φ`)d(φr) 6= 0). Thus,

φ = (1− u)d(φ`)ek(φ`)e
w` + ud(φr)ek(φr)e

wr + φ0. (4.17)

Due to the transfer of regularity properties from the Wiener–Hopf operator
Wφφ̃−1 to the Wiener–Hopf plus and minus Hankel operators Wφ ±Hφ, we
will study the regularity properties of the Wiener–Hopf operator Wφφ̃−1 :
Lp

+(R, w) → Lp(R+, w). In view of this, we obtain

φφ̃−1 =
(1− u)d(φ`)ek(φ`)e

w` + ud(φr)ek(φr)e
wr + φ0

(1− ũ)d(φ`)e−k(φ`)e
w̃` + ũd(φr)e−k(φr)ew̃r + φ̃0

(4.18)

being the almost periodic representatives of φφ̃−1 given by

(φφ̃−1)` =
d(φ`)
d(φr)

ek(φ`)+k(φr)e
w`−w̃r ,

(φφ̃−1)r =
d(φr)
d(φ`)

ek(φ`)+k(φr)e
wr−w̃` .

From this, taking into account that w`, wr ∈ APp,w are such that M(w`) =
M(wr) = 0 (which additionally implies that M(w̃`) = M(w̃r) = 0), we have

k
(
(φφ̃−1)`

)
= k

(
(φφ̃−1)r

)
= k(φ`) + k(φr), (4.19)

d
(
(φφ̃−1)`

)
=

d(φ`)
d(φr)

, d
(
(φφ̃−1)r

)
=

d(φr)
d(φ`)

. (4.20)

Applying now Theorem 3.7 to the Wiener–Hopf operator W
φφ̃−1 and having

in mind (4.19)–(4.20), it follows that:

(a) If k(φ`) + k(φr) < 0 and 0 /∈ (φφ̃−1)#p,w(Ṙ), then W
φφ̃−1 is properly

d-normal and right-invertible on Lp
+(R, w);

(b) If k(φ`) + k(φr) > 0 and 0 /∈ (φφ̃−1)#p,w(Ṙ), then W
φφ̃−1 is properly

n-normal and left-invertible on Lp
+(R, w);

(c) If k(φ`) + k(φr) = 0 and

0 /∈ (φφ̃−1)#p,w(Ṙ) ∪H
(d(φr)
d(φ`)

,
d(φ`)
d(φr)

; ν−0 (p, w), ν+
0 (p, w)

)
, (4.21)

then W
φφ̃−1 is a Fredholm operator on Lp

+(R, w);
(d) If k(φ`) + k(φr) = 0 and

0 ∈ (φφ̃−1)#p,w(Ṙ) ∪H
(d(φr)
d(φ`)

,
d(φ`)
d(φr)

; ν−0 (p, w), ν+
0 (p, w)

)
,

then W
φφ̃−1 is not normally solvable on Lp

+(R, w).

To arrive at the final assertion, we can interpret the ∆-relation after
extension between the Wiener–Hopf plus Hankel operator Wφ +Hφ and the
Wiener–Hopf operator W

φφ̃−1 as an equivalence after extension between
diag[Wφ + Hφ,Wφ −Hφ] and W

φφ̃−1 (cf. Remark 2.5).



56 Lúıs P. Castro and Anabela S. Silva

In this way, we get in cases (a) and (b) that diag[Wφ + Hφ,Wφ − Hφ]
is properly d-normal and right-invertible or properly n-normal and left-
invertible, respectively. This implies that – in the case (a) – at least one
of the operators Wφ + Hφ and Wφ −Hφ is properly d-normal and both are
right-invertible; in the case (b), at least one of the operators Wφ + Hφ and
Wφ −Hφ is properly n-normal and both operators are right-invertible.

The case (c) leads to the Fredholm property for both Wφ ±Hφ.
In case (d), we have that diag[Wφ+Hφ,Wφ−Hφ] is not normally solvable,

which implies that at least one of the operators Wφ + Hφ and Wφ −Hφ is
not normally solvable. ¤

4.2. A formula for the sum of the indices of Fredholm Wiener–
Hopf plus and minus Hankel operators.

Theorem 4.2. Let φ ∈ GPAPp,w. If Wφ + Hφ and Wφ −Hφ are both
Fredholm operators, then

Ind[Wφ+Hφ]+Ind[Wφ+Hφ]=IndWθ+IndWζ =−
∑

l

indlζ−indθ+

+
∑

x∈Λζ∪{∞}

(
ν0

x(p, w)−
{

ν0
x(p, w)− 1

2π
arg

ζ(x− 0)
ζ(x + 0)

})
+

+ ν0
0(p, w)−

{
ν0
0(p, w) +

1
2π

arg
d(θ`)
d(θr)

}
, (4.22)

where φφ̃−1 = ζθ is a corresponding factorization in the sense of Theo-
rem 3.6 (ii).

Proof. Let φ ∈ GPAPp,w such that Wφ + Hφ and Wφ −Hφ are both Fred-
holm.

Recalling that diag[Wφ +Hφ,Wφ−Hφ] is equivalent after extension with
Wφφ̃−1 (cf. Remark 2.5), it holds that

IndW
φφ̃−1 = Ind(Wφ + Hφ) + Ind(Wφ −Hφ). (4.23)

From the Fredholm index formula for the Wiener–Hopf operators with
PAPp,w Fourier symbols presented in Corollary 3.8, we have

IndW
φφ̃−1 = IndWθ + IndWζ , (4.24)

where φφ̃−1 = ζθ. Thus, combining (4.23) and (4.24), it follows

Ind[Wφ+Hφ]+Ind[Wφ+Hφ]=IndWθ+IndWζ =−
∑

l

indlζ−indθ+

+
∑

x∈Λζ∪{∞}

(
ν0

x(p, w)−
{

ν0
x(p, w)− 1

2π
arg

ζ(x− 0)
ζ(x + 0)

})
+

+ ν0
0(p, w)−

{
ν0
0(p, w) +

1
2π

arg
d(θ`)
d(θr)

}
. ¤
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We would like to remark that due to the method here used we are not
able to separate the Fredholm indices of both Wiener–Hopf plus and minus
Hankel operators. In view of this, we have the above dependence of both
symbols by means of the sum of the corresponding Fredholm indices.

-2 -1 1
0

-1

-2

1

2

2

0

Figure 5. The range of φ(x) defined in (4.25) (for x be-
tween -50 and 50).

4.3. An example within the Wiener–Hopf–Hankel framework. Let
p = 2, w(x) = |x| 15 and consider the function φ (see Figure 5) given by

φ(x) = (1− u(x))g(x)e−iπx + u(x) 2i g(x)eiπx, (4.25)

where

u(x) =
1
2

+
1
π

arctan(x) and g(x) =





1 +
1

x + i
, x ≥ 0

1 +
1

x− i
, x < 0

.

It is clear that φ admits a factorization φ = ϕψ in sense of Theorem 3.6
(ii), with

ϕ(x) = (1− u(x))e−iπx + u(x) 2i eiπx,

ψ(x) = g(x).

We observe that ϕ is an invertible function (ϕ ∈ GSAP2,w), cf. Figure 6,
and it is clear that ψ is also an invertible function (ψ ∈ GPC2,w); see
Figure 7. Moreover, ψ(±∞) = 1. It therefore follows that φ is invertible.

From the definition of mean motion, we have that k(φ`) + k(φr) = 0.
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Figure 6. The range of ϕ(x) (for x between -50 and 50).
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Figure 7. The range of ψ(x) (for x between -50 and 50).

Since φ = ϕψ, it results that φφ̃−1 = ϕϕ̃−1ψψ̃−1, with

ψψ̃−1(x) =





x2 + 2i

x2 − 2x + 2
, x < 0

1, x = 0
x2 − 2i

x2 − 2x + 2
, x > 0

.
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Recalling that p = 2 and w(x) = |x| 15 , we have

I0(x) =
{

µ ∈ R :
∣∣∣ ξ

ξ + i

∣∣∣
µ

|ξ| 15 ∈ A2(R)
}

=

=
{

µ ∈ R : −1
2

< µ +
1
5

<
1
2

}
=

=
{

µ ∈ R : − 7
10

< µ < 1− 7
10

}
.

Thus, ν−0 (2, |x| 15 ) = ν+
0 (2, |x| 15 ) = 7

10 . In the same way,

ν−∞(2, |x| 15 ) = ν+
∞(2, |x| 15 ) =

3
10

.

The only discontinuity point of φ and φφ̃−1 is 0. Then, we have

(φφ̃−1)#p,w(Ṙ) := H
(
φφ̃−1(0− 0), φφ̃−1(0 + 0); ν−∞(2, |x| 15 ), ν+

∞(2, |x| 15 )
)
∪

∪H
(
φφ̃−1(+∞), φφ̃−1(−∞); ν−0 (2, |x| 15 ), ν+

0 (2, |x| 15 )
)

=

= H
(
i,−i;

3
10

,
3
10

)
∪H

(
2i,−1

2
i;

7
10

,
7
10

)
=

= A
(
i,−i;

3
10

)
∪ A

(
2i,−1

2
i;

7
10

)
.

-1

0,80 0,4
0

-0,4

0,5

2

1,5

-0,5

1

Figure 8. The arcs A(i,−i; 3
10 ) and A(2i,− 1

2 i; 7
10 ).
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Additionally, since d(φr)
d(φ`)

= 2i and d(φ`)
d(φr) = − 1

2 i, we obtain

H
(d(φr)
d(φ`)

,
d(φ`)
d(φr)

; ν−0 (2, |x| 15 ), ν+
0 (2, |x| 15 )

)
=

= H
(
2i,−1

2
i;

7
10

,
7
10

)
= A

(
2i,−1

2
i;

7
10

)
.

Figure 8 shows the arcs A(i,−i; 7
10 ) and A(2i,− 1

2 i; 7
10 ). Since these arcs

do not contain the origin, the operators

Wφ ±Hφ : L2
+(R, |x| 15 ) → L2(R+, |x| 15 )

have the Fredholm property.
Let us calculate their Fredholm index sum.
If x < 0, we have arg(ψψ̃−1) = arctan( 2

x2 ), if x > 0, then

arg(ψψ̃−1) = arctan
(
− 2

x2

)
= − arctan

( 2
x2

)

and for x = 0, arg(ψψ̃−1) = 0. Therefore,
∑

`

ind`ψψ̃−1 = 0.

Additionally, arg ψψ̃−1(0−0)

ψψ̃−1(0+0)
= arg i

−i = 0. On the other hand, we have

indϕϕ̃−1 = 0 and

arg
d((ϕϕ̃−1)`)

d((ϕϕ̃−1)r)
= arg

((d(ϕ`)
d(ϕr)

)2)
= arg

(1
4

)
= 0.

Finally, using this data in the formula (4.22), we obtain

Ind[Wφ + Hφ] + Ind[Wφ + Hφ] = 0.
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