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RECONSTRUCTION OF ELASTIC OBSTACLES
FROM THE FAR-FIELD DATA OF SCATTERED
ACOUSTIC WAVES



Abstract. We consider the inverse problem for an elastic body emerged
in a fluid due to an acoustic wave. The shape of this obstacle is to be recon-
structed from the far-field pattern of the scattered wave. For the numerical
solution in the two-dimensional case, we compare a simple Newton type it-
eration method with the Kirsch—Kress algorithm. Our computational tests
reveal that the Kirsch—Kress method converges faster for obstacles with
very smooth boundaries. The simple Newton method, however, is more
stable in the case of not so smooth domains and more robust with respect
to measurement errors.
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1. INTRODUCTION

If an elastic body is subject to an acoustic wave propagating through
the surrounding fluid, then an elastic wave is generated inside the body,
and the acoustic wave is perturbed (cf. Figure 1). The wave perturbation
is characterized by the asymptotics of the scattered field, namely, the far-
field pattern. Suppose the material properties of body and surrounding
fluid are known. Then the usual inverse problem of obstacle scattering is
to determine the shape of the body from measured far-field data generated
by plane waves incident from one or from a finite number of directions.
This problem is extremely ill-posed such that regularization techniques are
needed for the solution.

Scattered Field

S

Incident Acoustic Wave

Compressible Fluid
Q°= IR\ (QUT)

FIGURE 1. Acoustic wave and obstacle.

Clearly, the same numerical methods used for the inverse problems for
obstacles with sound-hard and sound-soft boundaries or for penetrable ob-
stacles can be adapted to the scattering by elastic bodies. Among the
available numerical methods, in recent years sampling and factorization
methods are very popular (cf. e.g. [12]). Without any a priori informa-
tion about geometrical details like connectivity components or holes, these
methods provide good approximations for the shape of the obstacle. The
case of acoustic scattering by elastic bodies in [17] is treated by the lin-
ear sampling method. Classical methods such as in [3], [15] (cf. [4] for the
case of scattering by elastic obstacles) generally require more information
on the geometry of the obstacle. For instance, the boundary of the ob-
stacle is required to be homeomorphic to a circle for 2-D and to a sphere
for 3-D problems, respectively. Starting from a reasonable initial guess,
the parametrization of the obstacle boundary is approximated in a Newton
type iteration. Though the accuracy of the reconstructed solution is always
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limited by the ill-posedness, we expect the classical Newton approach to be
more accurate than the factorization methods. To avoid the solution of di-
rect problems in each step of iteration, besides the boundaries also the wave
field can be included into the components of the iterative solutions. For
instance, a method proposed by Kirsch and Kress (cf. e.g. [13], [3], [25] and
cf. [5] for the case of scattering by elastic obstacles) represents the waves
by potentials with generating layer functions defined over artificial curves.
Note that, for inverse problems in acoustic scattering by elastic obstacles,
difficulties with unpleasant eigensolutions of the direct problem, referred to
as Jones modes, can be avoided if the Kirsch—-Kress method is applied.

In this paper we consider the two-dimensional case and compare the sim-
ple Newton method of [4] with the Kirsch-Kress method of [5] for which
we present numerical results for the first time. We implement the same
parametrization for the approximate boundary curves iterated by both nu-
merical methods. For a simple egg shaped domain and for a nonconvex
domain, we apply the Newton method and the Kirsch—Kress algorithm.
The numerical tests show that the Kirsch-Kress method is more accurate
due to the better approximation of the fields by potentials in the case of
analytic boundaries. Unfortunately, this method is related to an integral
equation approach for the direct problem. If the latter integral equation
is severely ill-posed, then the Kirsch—Kress algorithm is divergent. Conse-
quently, this method diverges if the curves for the potential representations
are too far from the boundary curve of the true obstacle or if the latter
curve has large Fourier coefficients. In particular, for the reconstruction of
the nonconvex obstacle, the Kirsch—-Kress method is divergent. To obtain
a convergent version of this method, we use a variant with updated curves
for the potential representations during the iteration. For transmission and
boundary value problems in acoustic scattering, a comparable update of
curves has been proposed in [24] (cf. also the curve updates in [21, Chapter
5] and [15]). Furthermore, our numerical examples reveal that the Kirsch—
Kress method is more sensitive with respect to noise in the far-field data,
which is also typical for a higher degree of ill-posedness. Finally, we present
an example for the reconstruction of an obstacle with Jones modes. Both
methods converge for this case.

We start discussing the solution of the direct problem in Section 2. Using
the direct solution, we introduce the two numerical schemes for the inverse
problem in Section 3. Then we recall the convergence results from [4],
[5]. In Section 4 we discuss some details of the implementation. For the
least squares problem of the Kirsch-Kress method, we give the formulas for
the functional and its gradients in the appendix. Finally, we present the
numerical results in Section 5.

2. DIRECT PROBLEM: ELASTIC OBSTACLE IN FLUID

Suppose a bounded elastic body is emerged in a homogeneous compress-
ible inviscid fluid. We denote the domain of the body by 2, its boundary
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FIGURE 2. Domains.

curve by I' (cf. Figure 2), and assume that an incoming plane wave is mov-
ing in the exterior Q¢ := R?\ Q toward the body. This wave is scattered by
the body and generates an elastic wave inside the body. Mathematically,
the acoustic wave is described by the pressure perturbation p over ¢ and
by the displacement function u on 2. The displacement fulfills the Navier
(time-harmonic Lamé) equation

Atu(z) + owu(z) =0, = €Q, (1)

Au(z) := pAu(z) + (A + p)VIV - u(z))].
Here w is the frequency, o the density of body, and A,y are the Lamé
constants. The total pressure p is the sum of the incoming wave p"¢ and the

scattered wave p® which satisfies the Helmholtz equation and the radiation
condition at infinity

Ap*(z) + ko "p*(2) = 0, z € Q°, (2)

a = o(j|7/?), |a| — oo, (3)

— - Vp®(z) — iky,p®(x
|z|

where k2 = w?/c? is the wave number and c the speed of sound. The

pressure and the displacement field are coupled through the transmission

conditions

~

U(ZC) . V(LL‘) — QfLQ {apasiilf) + 3#;;(&0) }, zel, (4)
tlul(z) = — {p*(x) + p"“(2) }v(z), = €T, ()
ou

t{u)(z) :==2u e + AV - u]y}r + pv x [V x u]|r,
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v x [V x u]|F = (Vl(azzul 0y up)

Vz(azl’U,Q - amzul)) |
Here oy is the density of the fluid and v denotes the unit normal at the
points of I' exterior with respect to €.

For numerical computations, we truncate the exterior domain ¢ to
the annular domain Qg with the outer boundary Ty (cf. Figure 2). The
Helmholtz equation (2) is solved over Qg, and a non-local boundary condi-
tion is imposed on I'y (cf. the boundary integral equation techniques in [11]).
Using standard techniques, the boundary value problem can be reformulated
in a variational form and solved by the finite element method (cf. [10], [16],
[4]). Suppose the boundary I' of the obstacle is piecewise smooth and choose
the auxiliary curve I'g such that the corresponding interior domain has no
Dirichlet eigenvalue equal to k2 for the negative Laplacian. Then existence
and uniqueness of the variational solutions as well as the convergence of the
finite element method (cf. [4]) can be shown whenever there is no nontrivial
solution ug of

Aug(z) + pwug(z) =0, 7€ Q,
tluo)(z) =0, = €T, (6)
uo(z) - v=0, zel.

Note that nontrivial solutions of (6) are called Jones modes, and a frequency
w, for which the given domain  has a nontrivial solution of (6), is called
Jones frequency. It is known that domains with Jones frequencies exist but
are exceptional. More precisely, Hargé [8] has shown that the set of domains
with Jones frequencies is nowhere dense in a certain metric, and Natroshvili
et al. [19] have proved that domains with two non-parallel flat faces have
no Jones frequencies. An example of a two-dimensional domain with Jones
frequency w is the disk Q; := {z € R? : |z| <r;} withr; = 1\/u/o Y.
Here Y is any of the positive roots of the equation rJj(r) = Ji(r), and .J;
is the Bessel function of order one. One Jones mode over €); is defined by

wo(@) = Ji (w\/gﬂ) (;%g') L reqy M)

Note that the smallest positive root of rJi(r) = Ji(r) is r§ = 5.135622... .
Three-dimensional Jones modes are described, e.g., in [19].

Alternatively to the finite element solution, the complete pressure func-
tion and the displacement field can be approximated by potentials with
sources over auxiliary curves (cf. Figure 3). We introduce the curve T
“close” to I', but inside 2, and the curve I'e in Qg surrounding I'. We
represent the pressure and the displacement by

p*(z) = [Vi¥%;](z), =€ Q°, u(z)=[VE](x), z€Q (8)
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FicURE 3. Domains and auxiliary curves

with a scalar layer function ¢; and a vector layer ¢.. The potentials are
defined by

[Veep] () = / p(1)G(x. v ko)dny, « € R2, (9)
A

Gla,yi ko) = 7 H (kulz = y)), (10)

Ve (z) = / Gy, pyu(y)dny, = € R?, (11)
A

1
Gd(y)x) = ; <G(x>y;ks)6ij +

i
S

1 (Gl ysks) — Gla,yiky)) |
k2 O0x;0x;

ij=1

where the wave numbers k), and k, are defined by gw® = (A 4 2u)k} = pk?
and Hél) is the Hankel function of the first kind and of order 0. The
layer functions in (8) are chosen such that the corresponding pressure and
displacements fields satisfy the transmission conditions (4) and (5). In other

words, to get a good approximate solution we have to solve the integral
equations

tVE G () + Vil (2)v(z) = —p™v(z), z €T,  (12)

0w?u(@) - VB (@) — (Vs (@) = p™(a), s el (13)
Numerical methods based on the discretization of (9), (11), (12) and (13)
are well-known to exhibit high rates of convergence (cf. e.g. Sect. 9.8 in [6]

and [2], [7], [9]). However, for not so simple geometries, an appropriate
choice of I'; and T'. and an appropriate quadrature of the integrals is not
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FIGURE 4. Geometry of scatterer.

trivial. A bad choice may lead to extremely ill-posed equations (12), (13)
and to false results.

For a point x tending to infinity, the scattered pressure field p*(x) is
known to have the following asymptotics

. eikw|z\ (T 1
p (@ZW}? (E)-i-(')(W)v |z| — oo, (14)

6177/4 s it
e Fev et o (y) dr,y.

oo ity __
pe) = \/871'ka
The function F[p®](t) := p>(el!) is called the far-field pattern of the scat-
tered field. This is the entity which can be measured.

In order to prepare the numerical results for the inverse problem, we con-
clude this section by the computation of the corresponding direct problem.
If we choose the nonconvex domain with boundary curve I' according to
Figure 4, the constants

w= g Kz, 0=6.75-10"8 kg/m®,
A = 1.287373095 Pa,  p = 0.66315 Pa, (15)
¢ = 1500 m/s, of =2.5-107% kg/m®,

and the direction of the incoming plane wave equal to v = (1,0) T, then we
get by the finite element method [4] the far-field pattern plotted in Figure
5.

3. INVERSE PROBLEM AND ITERATIVE APPROXIMATION

Now we suppose that the boundary curve I' of the obstacle is star-shaped
and included between the inner curve I'; := {z € R? : |z| = r;} and the
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FIGURE 5. Far-field pattern.

outer curve I', := {z € R? : |z| =r.}, i.e.,

o0
D= {r(t)e' : 0<t<2r}, r(t)=do+ Y {a;cos(jt)+b;sin(jt)} (16)
j=1
with the constraint r; < r(t) < r., 0 <t < 27. To avoid this constraint, we
can use the parametrization I' = I'"
Te +7i Te—T;
% ~~—" arctan(r(t)). (17)
Having in mind this representation, the star-shaped curve is uniquely de-
termined by the real valued function r or, equivalently, by the Fourier co-
efficients {@;,b;}. The direct problem of the previous section defines a
continuous mapping (cf. [4])

F:HE[0,20] — L2,,.[0,27], T+ p™,

per per

where p> = F|p°] is the far-field of the scattered field p®, and p® is the
pressure part of the solution (p®,u) to the direct problem (1), (2), (4), (5),
and (3) including the interface I' = I'" and a fixed incoming plane wave
pi"*c. The space H;gf [0, 27] is the periodic Sobolev space of order 1 +¢ > 1
over the interval [0,2n]. L2[0,27] is the corresponding Lebesgue space.
Now the inverse problem is the following: For a given far-field pattern p*°,
find the shape of the obstacle with boundary r,,; such that the scattered
field corresponding to the fixed incoming plane wave p'™° has the far-field
pattern p*°, i.e., such that F(rs,) = p™. To our knowledge, results on the
uniqueness of the solution rg,; are not known yet. For the case of far-field

"= {T(t)e: 0<t<2orm}, F(t):=
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data given in all directions of incidence, we refer to the theoretical results
n [18], [17].

We now define three different optimization problems equivalent to the
inverse problem. Numerical algorithms for the inverse problem can be de-
rived simply by applying numerical minimization schemes to the optimiza-
tion problems. More precisely, the minimization schemes are applied to
regularized modifications of the optimization problems.

The first optimization problem is to find a least-squares solution r;,;.,
i.e., a minimizer of the following problem

. . o2
reHzlgigf[O,Qw] F®), Ty w) = [[F ) = 2% g ey
Since the inverse problem is ill-posed and since the measured far-field data
is given with noise, we replace the last optimization problem by
: 1 1 o oo 2 2

reH,l,IZI'}f[O,%r] j’y (I‘), j’y (I’) T HF(I‘) _pnoisy HLQ[O,Qﬂ] +7||I'HH‘1)jf [0,27]° (18)
where v is a small positive regularization parameter. As usual this pa-
rameter is to be chosen in dependence on the noise level. To guarantee
convergence for noise level tending to zero and for v — 0, we suppose

[0 = syl 20,00 < 7 (19)
for a constant ¢ independent of 4. The first numerical algorithm (cf. [4])
consists now in discretizing the mapping F' by finite elements and applying a
Gauss—Newton method to determine a minimizer of (18). This is a modified
Newton method for the operator equation F(rse1) = pp5,;s,, which we shall
call the simple Newton iteration.

Theorem 3.1 ([4]). Suppose Ty is chosen such that the corresponding inte-
rior domain has no Dirichlet eigenvalue equal to k2, for the negative Lapla-
ctan. Then we have:
(i) For any v > 0, there is a minimizer v of (18).
(ii) Suppose the far-field pattern p> is the exact pattern for a fized so-
lution t* of the inverse problem, i.e., F(r*) = p> and J3(r*) = 0.
Then, for € > 0 and for any set of minimizers x7, there exists a

subsequence v’ converging weakly in H;;tf [0,27] and strongly in

H;jfl [0,27], 0 < €' < g, to a solution r** of (18) with v = 0 and,
therewith, to a solution of the inverse problem.

(iil) If, additionally to the assumptions of (iii), the solution r* of the
inverse problem is unique, then we even get that r7 tends to r*

weakly in HF<[0,27] and strongly in H':¢'0,2x], 0 < &’ < e.

per per

Unfortunately, for the first method the computation of F' requires a so-
lution of a direct problem. In particular, if the curve I' is the boundary of a
domain with Jones frequency or close to such a boundary, the direct solution
by finite elements is not easy. One way would be to compute with slightly
modified frequencies. However, it might be difficult to check whether the
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curve is “close” to the boundary of a domain with Jones frequency and to
choose a modified frequency appropriately.

In order to motivate the second numerical method, the Kirsch—Kress
algorithm, which corresponds to a third optimization problem, we introduce
a second intermediate optimization method first. The plan is to define a
method, where a solution of the direct method is not needed. Therefore,
besides the unknown curve I' the pressure p® and the displacement field
u are included into the set of optimization “parameters”. Additionally to
the term of the least squares deviation of F[p°] from pf%, . new terms
are needed which enforce the fulfillment of the equations (1), (2), (4), (5),
and (3) at least approximately. Hence, the regularized second optimization
problem is to find a minimizer (rin, Umin, Pmin) Of

inf Jf (r,u,p%), (20)
reH2L5 10,27, we[HY(Q)]2, p*eH (Qp)
T3 (x,u,p%) = || Flp®] pfﬁoz’sy”iqo,zﬂ] + A+ ow “H[H @pT
S S 2
+ HAP +ku’p HHH(QR)+

+ || t[u] + {p® +pmc}VH[2H*1/2(F)]2+

1 8 S 6 inc
2{ i vl P
ofw v v H~=1/2(T")

2
ac S
H 0,p°] + = Lp] N,

v -

+ Cw||r||H2+s[o,2ﬁ] + C2V||UHH1(Q) + CWHPSH%MQR),

Ko i= [ 2O ) ey

To

where ¢; > 0, i = 1,2,3, are calibration constants and v is a small posi-
tive regularization parameter. Of course, this is a theoretical optimization
problem only. For a numerical realization, the operators should be replaced
by those of the variational formulation. However, it is clearly seen that
the price for avoiding a solution of the direct problem is an increase in the
number of the optimization “parameters”. The numerical solution of the
discretized optimization problem (20) is higher dimensional and might be
more involved than that for the case of (18).

The third optimization problem is a modification of (20). The optimiza-
tion “parameters” u and p® are replaced by the layer functions ¢; and g,
of the potential representations (8). In other words, in the numerical dis-
cretization the finite elements over the domains 2 and Qg are replaced by
lower dimensional boundary elements over the curves I'; and I'.. Instead of
the terms in J2 enforcing the conditions (1), (2), (4), (5), and (3), we only
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need terms enforcing (12) and (13). Hence, the regularized third optimiza-
tion problem is to find a minimizer (Cyin, ©imin, Pe,min) Of

inf T, 00 e)s (21)
reHLLE[0,27], @ €H- M), Fe€[H1(T,)]?

2
F[Vr{lf@i] _p?:?)zsy L2[0727T]

+ ’YH‘Pz’”%I—l(Fi) + ’)’”856”[2}1—1(1“6)]2+

j’?(rv Pis 956) =cC

‘ 2
+ Ht[VF{fgﬁe} + [Vlgic‘pi]y Py L2(Tr)

. 2
+opv vt - auured - o

(22)

where v is a small positive regularization parameter and ¢ a positive cal-
ibration constant. We choose the layers ¢; min and @e min in an unusual
Sobolev space of negative order to enable approximations by Dirac-delta
functionals, i.e., by the method of fundamental solutions. Though the num-
ber of optimization parameters in a discretization of (21) is larger than that
in a discretization of (18), the objective functional j,f’ is simpler than j,yl.
Applying an optimization scheme like the conjugate gradient method or
the Levenberg—Marquardt algorithm to (21), we arrive at the Kirsch—Kress
method. Note that the accuracy of the solution of this method is limited by
the accuracy of solving the integral equations (12) and (13) with a Tikhonov
regularization. To improve this, the curves I'; and T, can be updated dur-
ing the iterative solution of the optimization problem (compare the iterative
schemes in [21], [24], [15]).

L2(rvy’

Theorem 3.2 ([5]). Suppose k2 is not a Dirichlet eigenvalue for the nega-
tive Laplacian in the interior of T'; and that p® is the exact far-field pattern
of a scattered field p* corresponding to some T* . Then we have:

(i) For any v > 0, there is a minimizer (r7,¢],3)) of (21).

(i) For any set of minimizers (v7,p;,Fl), there exists a subsequence

(r7m, oI, FIm) such that ¥ converges weakly in H;$E[0,27T] and

strongly in H;Z;.E, [0,27], 0 < &’ < g, to a solution r** of the inverse
problem.

(iii) If, additionally, the solution r* of the inverse problem is unique,
then we even get that 7 tends to r* weakly in H'F¢[0,27] and

per
strongly in H}T<'[0,27], 0 < &’ <e.

per

Formulas for the discretization of the optimization problem (21) and for
the derivatives of the objective functional are presented in Section 6.

4. SOME DETAILS OF THE IMPLEMENTATION

For the solution of the optimization problems, a lot of numerical opti-
mization schemes are available (cf. [20]). Unfortunately, global methods
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which yield the global minimum are often very slow. We recommend gra-
dient based local optimization schemes. They provide local minimizers,
i.e. solutions with minimal value of the objective functional in a neighbour-
hood of the minimizer. In general, it cannot be guaranteed that the local
minimizer is the global minimizer. However, using a good initial guess, the
local minimizer will coincide with the global. In particular, we have tested
the Gauss—Newton method, the Levenberg-Marquardt algorithm (cf. [14]),
and the conjugate gradient method. The last method has been tested for
the Kirsch—Kress method to avoid the solution of linear systems in the size
of the direct problem.

In order to compute derivatives of the objective functionals in case of
the simple Newton iteration the calculus of shape derivatives can be applied.
The derivatives result from solving the finite element system of the direct
problem with new right-hand side vectors. This is fast if the finite element
system is solved by an LU factorization for sparse systems (cf. [22], [4]).
The derivatives for the Kirsch-Kress method can be obtained by a simple
differentiation of the kernel functions in the potential representations. Since
the elasticity kernel contains second-order derivatives of the acoustic kernel
and since the terms enforcing the transmission conditions contain first-order
derivatives of the elastic potential, we need fourth order derivatives of the
acoustic kernel. We present the needed formulas in Section 6.

Normally, quadrature rules are needed if the layer functions ¢; and
P in the potential representation (8) are approximated by functions of a
finite dimensional space. The potential integrals of these functions must
be approximated by appropriate quadratures. However, in the case of the
Kirsch—Kress method we can approximate the layer functions by linear com-
binations of Dirac delta functions

M
; 21K
Qi ~ Qi M = me(sa:i,na bm S (Ca Tk = Tieltna tm = ﬁv (23)
k=1
M
956 ~ QBe,M = Z CK(SIE,,‘” Cx € (C27 Te,k = Teeltm' (24)
k=1

This works since the potential operators are smoothing operators from the
curve ['., IT'; to I'. Only in the case that I, or I'; is close to ', a trigonometric
or spline approximation of ¢; and g, together with an accurate quadrature
must be employed.

Another important issue is the scaling of the optimization scheme. In-
deed, the number of necessary iterations depends on the conditioning of the
optimization problem. Using an appropriate scaling, the conditioning can
be essentially improved. The first choice is, of course, the natural scaling.
The far-field values should be scaled such that the measurement uncertain-
ties of the scaled far-field values coincide, and the parameters should be
scaled in accordance with the accuracy requirements. A scaling different
from the natural one is chosen not to improve the reconstruction operator,
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but to speed up the optimization algorithm. This calibration may include
different constants in front of the individual terms in the objective func-
tional (cf. the factors ¢ and v in the definition of J?) and the replacement
of the optimization parameters by the products of these parameters with
convenient constants. The constants can be chosen, e.g., to minimize the
conditioning of the Jacobian of the mapping that maps the parameters to
the far-field values. Alternatively, the constants can be chosen by checking
typical test examples with known solution. To improve the conditioning of
the optimization in the Kirsch—Kress method, we have replaced the “opti-
mization parameters” r, ¢;, and g, by the parameters

v =r/ce, ol =¢i/ci, F=Fe/ce. (25)

5. NUMERICAL RESULTS

initial_solution

T
r R curve i
6 e - in.circle
ex.circle -------
a4t SR 4
| \ |
3 \
i [ \
> 0f | | | 1
b /
B /
5 | / 4
4t — 4
6 F - 4
1 1 1 1 1 1 1 1 1
8 6 4 2 0 2 4 6 8

T

curve
in.circle
ex.circle --—-----

FIGURE 6. Initial solution and egg shaped domain.

5.1. The curves for the numerical examples and some technical
details. We have employed (i) the simple Newton iteration and (ii) the
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Kirsch—Kress method, both with a circle as initial solution, to reconstruct
two different obstacles. The first is an easy egg shaped domain (cf. Figure 6)
with a boundary given by (17), by r; = 2, 7. = 6, and by the fast decaying
Fourier coefficients

ag= 0,
a1=-1, @ = 0.1, a3 = 0.01, a = —0.001, a;=0.0001, (26)
bi= 1, by = 0.1, by = 001, by = 0.001, bs=0.0001.

The second body is the nonconvex obstacle from the end of Section 2 (cf. Fig-
ure 7), and its boundary is given by r; = 2, r. = 6 and by the Fourier
coeflicients

ap= 0,

Gi= 1, @ = 0.10, @3 = 0.040, @ = 0.016, @5=0.008,
bi=—1, by = 0.02, by = —1.500, by = —0.010, bs=0.008.
(27)

Clearly, both obstacles are defined by a truncated Fourier series and are
analytic. However, the egg shaped domain is smoother since the nonzero
Fourier coefficients have the strong decay property [a;| < 1077 and |§)\]\ <
10~7. More precisely, the norms

N 1 & o 1 o~
el o= [T +5 3 r =210 45 32l 7>
J]1= 1=

of analytic functions are smaller for the egg shaped domain than for the
nonconvex example. Note that ||r||, is the norm

|a0|2+2r 2ﬂ‘ ’ +Z ’

of the analytic extension

2

o0~ N

4 ib. L
[CL +1 J:|Q—je—1jt

z = pel »—>a0+2[ }g]e”t
j=1
of the function e — r(t) = > a; cos(jt) + Zgj sin(jt) onto the annular
J J
domain {z € C: 1/r <|z| <r}.

In all computations, we have chosen the physical constants in accordance
with (15). The incoming plane wave has been fixed to p™"¢(z) := 1,0 e
Moreover, for all initial curves and all iterative solutions, we have fixed
the zeroth Fourier coefficient @y to zero. The “measured” far-field data
{p>=(k/M"),k =1,...,M"}, M"” = 80 (cf. Figure 5) has been simulated
by the piecewise linear finite element method (FEM) described in Section 2.
To avoid what is called an inverse crime, we have chosen the meshsize of the
FEM grid (determined by NETGEN [23]) for the far-field computation by
a factor of at least 0.25 smaller than that of the FEM grids involved in the
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FIGURE 7. Initial solution and nonconvex domain.

inverse algorithms. Our tests have revealed that the far-field of the FEM
method is more reliable than that computed by the regularized system (12)—
(13). The scaling parameters ¢, ¢, ¢;, and ¢, for the Kirsch-Kress method
(cf. (25) and the definition of J?) have been determined experimentally
such that the reconstruction by Gauss—Newton iteration converges with the
smallest number of iteration steps. For example, for the egg shaped domain
and M = M’ = 44 points of discretization for the approximate integration
over I, T';, T, (cf. the discretized objective functional in (A.6)), these values
are ¢ = 4000, ¢, = 1, ¢; = 0.1, and ¢, = 0.005.

5.2. Convergence of the simple Newton iteration. The results for the
egg shaped domain and for the simple Newton iteration have been similar to
those presented in [4], where the constants where slightly different and the
obstacle was similar to our nonconvex body. After a small number (< 20)
of iterations, the algorithm reconstructs the obstacle. The regularization
parameter v can even be set to zero, which is not surprising since only
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10 unknown real parameters are reconstructed from 160 real measurement
values. The left Table 1 exhibits the meshsize h, the number of Gauss—
Newton iterations it, and the accuracy err := [T — Trpal|r~0,2) of the
reconstruction rpgys. The first row contains the accuracy of the initial
guess. For the nonconvex obstacle, the results are similar (cf. right Table
1). Most of the computing time is spent on the evaluation of the objective
functional including the solution of a direct problem. Therefore, it is not
necessary to replace the expensive Gauss—Newton iteration by a different
optimization scheme.

‘h H err ‘Zt‘

1.2596 | 0 L h [ err [at]
0.5 0.0759 | 6 15733 | 0
0.25 0.0247 | 8 0.25 1.1435 | 20
0.125 | 0.00876 | 8 0.125 | 0.00924 | 17
0.0625 | 0.00329 | 10 0.0625 | 0.00401 | 15
0.03125 || 0.00156 | 10 0.03125 || 0.00157 | 18

TABLE 1. Reconstruction by simple Newton iteration for
egg shaped domain (left) and for nonconvex domain (right).

5.3. Convergence of the Kirsch—Kress algorithm. We have started
the tests of the Kirsch—Kress method with the nonconvex domain. However,
the optimization algorithms did not converge. To fix the problem, we have
checked the solution of the corresponding direct problem. We have observed
that the far-field of the solution computed by (8), (12), and (13) did not
match that of the FEM. Even a Tikhonov regularization in accordance with
the last four terms of the functional j$ did not help. Only a regularization
with a truncated singular value decomposition and a well-chosen truncation
parameter led to the correct far field. In other words, the reason for the
divergence of the Kirsch—Kress method is the high degree of ill-posedness
of the system (12), (13). On the other hand, if we commit the inverse crime
and take the incorrect far-field data computed by solving (12), (13), then
the Kirsch—Kress algorithm does converge.

To show the convergence of the Kirsch—Kress method with FEM gen-
erated far-field data, we consider the egg shaped domain. This time the
solution curve has a higher degree of smoothness, and the direct solution of
(12), (13) together with a Tikhonov regularization yields a far-field solution
close to that of the FEM. Table 2 shows that the Kirsch—Kress method
converges for the egg shaped domain. Indeed, the table shows the regu-
larization parameter 7, the error ||¥ — Txx|/r 0,2+] Of the Kirsch-Kress
reconstruction rgx, and the number of necessary iteration steps. These
depend on the number of discretization points M = M’ for the approxi-
mate integration over T', T';, T'. (cf. the discretized objective functional in
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FIGURE 8. Initial solution with Fourier coefficients a;}, b}

and nonconvex domain with modified curves I'; and I',.

(A.6)) and on the choice of the optimization method. In particular, we have
checked the Gauss—Newton method with experimentally chosen regulariza-
tion parameter v (GNw), the Levenberg-Marquardt method with the same
regularization parameter (LMw), and the Levenberg-Marquardt method
without regularization (LMo). The results show much better approxima-
tions than for the simple Newton iteration. Unfortunately, the conjugate
gradient method did not converge.

To get convergence of the Kirsch—Kress method also for the nonconvex
domain of Figure 7, we have changed the curves T'; and T'. (cf. Figure 8).
If these are closer to the curve I'", then the degree of ill-posedness of the
operators in (12), (13) is reduced. We have chosen the initial guess of the
Fourier coefficients as

ad= 0.0,

al= 13, a3=-0.10, a}= 0.1, a3=-0.05, ai= 0.018, (28)
W=-08, = 005 B=-17 0= 0.03, b =-0.020.



Reconstruction of Elastic Obstacle

6 curve' — ] 6 curve'— ]
in.curve --- in.curve -
excurve excurve

4t B at B

2F B 2F B

o B oF B

2t i 2L 1

4l 1 4l 1

6 B s B

8 5 - 2 3 2 a 6 8 8 6 -4 2 0 2 4 6 8
L curve'— ] [ curve'— |

° in.curve --- ° in.curve -
excurve excurve

4t B 4t B

2F B 2F B

o B o B

2t i 2L 1

at i 4l 1

6 B 6 B

8 6 -4 2 0 2 4 6 8 8 6 -4 2 0 2 4 6 8
L ] [ curve'— ]

° © in.curve -
excurve excurve

4t B 4t B

2b B 20 B

oF B oF B

2t i 2L 1

4t i 4l 1

6 B 6 B

8 6 4 2 0 2 4 6 8 8 6 P 2 0 2 4 6 8
L 1 L curve'— ]

° ° in.curve -
excurve excurve

at B at B

24 B 2b B

o B oF B

2L 1 2L 1

4t i 4l 1

61 B 61 B

8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 a 6 8

FiGure 9. Kirsch-—Kress steps
vex domain.

1-4 to reconstruct noncon-

81



82 J. Elschner, G. C. Hsiao, and A. Rathsfeld

6 curve'— ] 6 curve'— ]
in.curve ------- in.curve -
excurve excurve

at B at R

20 R 24 R

oF B oF B

2t i 2L 1

4t i 4l 1

1 sl 1
8 6 6 8 8 6 6 8
s ] s curve'— ]
in.curve -
excurve excurve

4t B 4t B

2F B 2F B

o B oF B

2t i 2L 1

at i 4l 1

st i s 1

8 6 6 8 8 6 6 8
L ] [ curve 1
© 6 in.curve -
excurve excurve

4t B 4t B

2b B 2b B

oF B ob B

2t i 2k 1

at i 4l 1

st i sl 1

8 6 6 8 8 6 6 8

or in.curve 1 or in.curve - 1
excurve excurve

at R 4t R

20 B 2b B

oF B oF B

2t i 2L 1

4t i alb 1

61 B 61 B

8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8

F1cURE 10. Kirsch-Kress steps 5-8 to reconstruct noncon-
vex domain.



Reconstruction of Elastic Obstacle

83

number of 0% GNw LMw LMo
pnts. M =M’
1.2596 (0)[1.2596 (0)[1.2596 (0)
22 4-10% {[0.05427  (13)]0.05461 (30)0.06793  (30)
44 0.25-10~12 ||0.002136 (13)]0.002007  (320)|0.002095  (320)
88 4-10-14([0.0002126 (13)]0.0002107  (80)|0.0001997 (160)
TABLE 2. Reconstruction accuracy (number of iterations)

in dependence on the optimization method and on the num-
ber of discretization points for the egg shaped domain.

Since the iteration, with this initial solution, converged to a false local
minimum, we have introduced an initial solution closer to the true solution
n (27). We have checked the initial solution

1,4 -~ . ~ 1 ~ .

L= i(a?—&—ai), i=0,...,5, bf:= 5@—&—@), i=1,...,5

and observed convergence. In particular, we had to choose a larger number
of discretization points on the curves I', I';, I',, namely M = M’ = 352. We
have set the regularization parameter v = 10~® and the scaling constants
to ¢ = 10000, ¢, = 1, ¢; = 1, and ¢, = 0.2. For the initial solution {a},b}},
we got the reconstructed curve within 11 iterations of the Gauss-Newton
method. The error ||T — T Lo[0,2x] = 0.296 of the initial parametrization
r;n; with Fourier coefficients 6}, bg has been reduced to
0.000279.

ar

a

[*—TkK [ L[0,20) =

5.4. Kirsch—Kress algorithm with updated representation curves.
Now we suppose that, for the reconstruction of the nonconvex domain, we
have an initial solution like the disk on the left in Figure 7. In order to have
the curves I'; and I, close to the iterate I'™, we have to update I'; and I',
during the iteration process. More precisely, in each step of the iteration,
we proceed as follows:

e We choose I'; =TI and I', = I'"e withr; =r,_1 —0.5and r, =
rn—1+0.5 (cf. (17)). Thus I'; and T'. deviate from the curve I'*»-1
of the previous step by the same amount as the fixed curves I'; and
T’ from the true solution I'" on the right in Figure 8.

o With these I'; and I'. we perform a single step of the Gauss-Newton
iteration and get the new solution [*n.

e If the resulting '™ is enclosed between I'; and T';, then we choose
the new iterate r,, = r},. If not, then we reduce the step of iteration.
In other words, we choose r,, = 1,1 +27™[r), —rp_1] with m > 1
the smallest integer such that I'"™" is enclosed between I'; and T'.

If the iterative solutions '™ stay between I'; and T'. and if the steps of
iteration [r,, — r,_1] are small, then we fix the actual I'; and T, and per-
form a larger number of Gauss—Newton steps.Applying this strategy to the



84 J. Elschner, G. C. Hsiao, and A. Rathsfeld

eeeeee

ssssss

FIGURE 11. Kirsch-Kress steps 9-10 to reconstruct non-
convex domain.

reconstruction of our nonconvex domain, we need 9 Gauss—Newton steps
with updated I'; and I'. and a final Gauss—Newton step (7 iterations) with
fixed T'; and I'.. The Kirsch—-Kress method reduces the initial deviation
It — Tinill Looo,20) = 1.57 to a reconstruction accuracy ||¥ — Tk k| r=[0,25 =
0.00032. The initial solutions and the next iterative solutions of each step
are shown in Figures 9-11.

5.5. Reconstruction of curve with reduced number of nonzero Fou-
rier coefficients. Surely, one reason for the good reconstruction is that
the boundary of the unknown obstacle (cf. (16) and (17)) can be exactly
represented by the numerical ansatz for the parametrization including ten
nonzero Fourier coefficients (cf. (26) and (27)). In many applications, the
boundary of the obstacle can only be approximated by the numerical ansatz.
To check our method for such a situation, we have slightly modified the
nonconvex curve by adding the small Fourier coefficients

46=0.004, @7=0.001, bg=-0.004, by=0.001

to the set of nonzero coefficients in (27). With this boundary curve, we have
generated far-field data. For the numerical reconstruction, however, we still
use the ten nonzero Fourier coeflicients a;, 77\,-, i =1,...,5. Note that the
radial deviation of the unknown curve with fourteen nonzero coefficients
from that with the ten is 0.0075. The reconstruction error for the simple
Newton iteration is shown in Table 3 and is only slightly larger then that in
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the right Table 1. Note that the initial solution for the results of Table 3 was
chosen as @) := 0.75a; and 77\? :=0.75b;, i = 1,...,5. A reconstruction with
a similar accuracy but starting from the initial solution @) := 0 and 3? =0
was possible only over the finest grid with meshsize h = 0.03125. If the
far-field data for the nonconvex obstacle with the fourteen nonzero Fourier
coefficients is used in the Kirsch—Kress method based on ten nonzero Fourier
coefficients, then the starting error 0.296 of the initial solution (cf. the left
picture in Figure 8) is reduced to 0.00898 after 12 iterations.

[h ] [ 05 | 025 [ 0125 | 0.0625 | 0.03125 |
err [ 1.57 [ 0.1147 [ 0.03812 [ 0.01878 [ 0.01688 | 0.01678
it 0 7 8 7 7 7

TABLE 3. Reconstruction of nonconvex domain by simple
Newton iteration, far-field data generated from 14 Fourier
coefficients.

5.6. Reconstruction of obstacle with Jones mode. Next we check the
convergence of our methods in the case of a domain with Jones modes.
For 7"9 = 5.135622... as well as w, u, and p from (15), we reconstruct the
disk Q; == {z € R?: |z| <15}, 7 = 2y/u/o 19 (cf. the Jones mode
in (7)). We choose the curves I'; = I'™ and I', = I by r; = r; — 2,
r. = ry+ 2, and define the initial solution by (27). The initial and the
true solution curves are shown in Figure 12. Applying the Kirsch—Kress
algorithm with 176 discretization points per curve, with v = 4 - 1074, and
with the scaling constants ¢ = 200, ¢, = 200, ¢; = 5, ¢ = 0.05, the true
solution is reconstructed after 8 iterations. The starting error 1.26 of the
initial solution is reduced to 0.000814. The simple Newton type iteration
method should converge only, if the included solver of the direct problem
provides a partial solution for domains with Jones modes and an accurate
solution for domains close to domains with Jones modes. In particular, an
iterative solver might diverge. We have employed the direct solver of [22].
Due to discretization errors, the FEM matrices have small eigenvalues, but
are not singular. The stable solver provides good solutions, and the simple
Newton type iteration converges even for the reconstruction of the domain
Q. Choosing the regularization parameter v = 0, we get a reconstruction
accuracy of 0.000492 after 13 iterations.

5.7. Noisy far-field data. Finally, we have checked perturbed far-field
data. For different values of €, we have added a random number, uniformly
distributed in [—¢, €], to the far-field values of the egg shaped domain. Ta-
bles 4 show the reconstruction accuracy depending on ¢ for the simple New-
ton iteration with FEM stepsize 0.03125 and for the Kirsch—Kress method
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FIGURE 12. Initial solution with Fourier coefficients (27)
and disk with Jones frequency.

with a number of discretization points M = M’ = 44, respectively. Ob-
viously, the simple Newton iteration is much more robust with respect to
random perturbations. For the Kirsch-Kress method with M = M’ = 352
points applied to the nonconvex domain (cf. Figure 8), the test results are
shown in Table 5.

5.8. Conclusions. Summarizing the results, the advantage of the Kirsch—
Kress method is the high accuracy of reconstruction for obstacles with
smooth boundaries and, consequently, the fast computation time. More-
over, the method works well even if domains with Jones mode solutions
appear. Note that the simple Newton method is based on the solution of
the direct problem, which leads to singular or almost singular linear systems
if the domain is an obstacle having Jones modes or if it is close to such an
obstacle. The solver for this system must return a particular solution. An
iterative scheme with preconditioner might diverge.
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c FFroml=]
0. 0.001568
0.001 0.002637 [« v [ 17— Trrllr> |
0.005 0.007156 0. 0.25-10 2| 0.002136
0.01 0.01368 0.0001 | 0.25-10-1° || 0.003640
0.05 0.05433 0.001 |0.25-10"7 0.02041
0.1 0.1087 0.003 | 0.25-1076 0.05686
0.2 0.2339 0.005 1-10°6 0.09997

TABLE 4. Reconstruction error of the egg shaped domain
depending on the stochastic perturbation of the far-field
data for simple Newton iteration and v = 0 (left) and for
Kirsch-Kress method (right).

L e [ v [IF—Frrlle [ it]
0.00000 | 108 0.00028 11
0.00010 | 108 0.0141 13
0.00025 | 10~8 0.0345 11
0.00100 | 10—8 0.113 8
0.00250 | 10~6 0.187 9
TABLE 5. Reconstruction error of the Kirsch—Kress

method depending on the stochastic perturbation of the
far-field data, nonconvex domain.

Unfortunately, a successful run of the Kirsch-Kress method requires an
optimal choice of the scaling constants. Additionally, the curves for the
potential representations must be chosen properly, i.e., sufficiently close to
the boundary of the iterative solution or to the boundary of the true ob-
stacle. Heuristically, the closeness requirement depends on the degree of
smoothness measured by the norms of analyticity of the parametrization
functions. Eventually, the curves of the potential representation must be
updated during the iteration. However, the closer these curves are the larger
is the number of subdivision points and the number of degrees of freedom
needed for the numerical discretization. The actual curves for the potential
representation, the actual scaling constants, and the actual number of dis-
cretization points should be determined beforehand by test computations
for known obstacles. A final disadvantage of the Kirsch—Kress method is its
higher sensitivity with respect to noisy far-field data.

6. DERIVATIVES OF THE 2D DISCRETIZED OBJECTIVE FUNCTIONAL

6.1. Derivatives of the points at the parameterized curve and of
the normal vector with respect to the Fourier coefficients. To define
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the objective functional of the discretized optimization problem (cf. (A.6))
and to get formulas for its derivatives, we need formulas for the parametriza-
tion, the normal, the incoming wave, the Green kernels, and for their deriva-
tives. Since the derivation is straightforward, we only present the results.

Here we start with formulas for the parameterization point z,(¢) :=
T(¢) exp(i¢) (cf. 17) on the approximate interface, for the normal v at z, ,
and for their derivatives with respect to the Fourier coefficients. Clearly, the
set of coefficients is to be truncated such that we can compute with a finite
set of parameters {ao,aj@- : j=1,2,...,n}. To simplify the formulas, we
set N = 2n+1 and collect these Fourier coefficients in the set {a, : ¢ € In}
and write the parametric representation as

2e(€) i= r(0)eiS, p(¢):= LT Te T T arctan( 3 amL(g)). (A1)

2 s
veIn

Here ¢,(¢) = cos(j¢) if a, = @; and ¢,(¢) = sin(j¢) if a, = Zj, For the
derivatives, we arrive at

> a ()

IJ(C) _ Te — T4 LElN 7
T 1+ (2 adl)
LEIN
0 _ Te — T4 M(C)
90, "= T 1 (5 a, e (Q))°
Veln
0 _Te—Ti ¥.(C) i
Oa, () T 14 ( g a,/’(/JL/(C))Q c
9 Te = Ti ACS)
€)= -
da, ' @ 1+ ( /g aL'wL'(C))2
[ Z ab”‘/}Z’(C)] [ Z au%/(@] %(C)
_27"3—7‘1' Veln veln -
i [1 +( Z aL’¢L’(C)) ]

Veln

A normal 7 to the curve at z,({) and the unit normal v are given by

)
le=i7/20/(() +x(¢)] s(¢) ’
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The derivatives of these entities can be computed by the formulas

iy(xr(o) iﬂei(c—w/%_,_ 9 r(Q) i

Oa, ~ 9a, s(0) da, s(C) “
9 r'(¢) _ 8ar'(Q) 17(0{2r'(€)0a,r'(¢) +2r(¢)0a,r(O)} _
da, s(C) s(¢) 2 s(¢)?
_ 9,7 Y(O{r'(©)0a,r'(O) +r(¢)8a,r(O) }
s(¢) s(¢)? ’
0 r(¢) _ 0a,r(Q) r(O{r'()0,1"(¢) +1(0)da,r()}
da, s(C)  s(C) s(¢)? '

6.2. Values and derivatives of incoming wave and kernel functions.
Suppose v*™¢ is the direction of the incoming wave, then

kov'™C.x

inc(
)

p"e(z) = €

aszmc(x) _ ik’weik“’v 'z[vinc]j ,
On, D" () = K" ] 7]
For the derivatives of the acoustic Green kernel, we obtain (cf. [1])
i
Ga,y) = Hy' (klz — ),
H3Y (1) = Jo(t) + 1o (1),

02, G (,y) :% (HY (ke — ) B2

)

|z — y|
[HEVY (1) = — Ju(t) — iYa(t),
ik yi —
8ij(x, y) =7 [Hé1>]’(k|33 —y|) (|;5—?JJ) ,
ik x—y26;0 — 2(x; — y;)(x —y,
8a:jaELG(xﬂy) :Z [H(gl)]l(k|x - yl) | | Jl |ZZ7 (_jy|3 j)( l> )
ik?

IR @ gy & Y@ )
4 0 ( |$ y‘) ‘.’I? . y|2
For the third order derivatives, we observe

a{L’m aﬂ?j a{m G($7 y) =

= ik (ke y|>{ CENEENAETA

(@m — Ym )00 + (21 — y1)djm + (2 — ¥5)1m
- +
dlz —y|?

+%[H(()1)}/(k|m o y){ (xm - ym)('rj - yj)(l’l - yl) [8 _ k’2|3) _ y‘Q] _

2 2|z —y|®
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(@m = Ym0+ (@ — y)djm + (5 — Yj)0um
z =yl ’

Oyp, Oz, O,y G(:v, y) =

— ikZHél)(k|$ _ Z/|){ (yj - xj)(y;_z:i;l'l(ym - Im)

o (ynL_:Em)éj,l_"(yl _zl)éj,m+(yj _"L’j)alvm }_|_

4|z —y[?
ik oy (Ym =) Wi =)W —m1) 1 2 27
+5 [Ho ' (klz —yl) 2z — o 8 — K|z —y[?]

(Ym — xm )00 + (Y1 — 21)0jm + (Y5 — 5)01,m
lz -yl

The fourth order derivatives take the form
By, Dy, O, 0, G, y) = K2 HY (k|2 — y|)x
X{ (yl - xl)(ym - -’I/‘m)(sn;j

|z —yl*

(5 — 25) (Y — Tm)On,i
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+ +
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For the derivatives of the elastic Green kernel, we conclude

1 1
[GEl(xa y)]j,l = E G(SU, Y; ks)(sj,l + W amj C{)MG(SU, Y; ks)_
1
- ? a:cj arlG(xa Y; kp)’
1
ayWL [Gel(x7 y)]]vl = ; 8ymG(I’ Y; k )6] l + 6ym6xj 8le(x Y; k )

k2 8U77L8$1811G(x Y; k )’

ay" 8y’" [Gel (3?, y)]j’l = ; aﬁ‘lnaymG(xa Y; ks)(;j,l"‘
1
+ Tk% aynaym alj ale(ZC7 Y; ks)_

1
? aynaym 817]’ aml G(x7 Y; kp)a

2
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tu .
1 (016G (@, )11 = 0, G (@, )

2
Zvjay,,ﬁyj (RN

By, ty G (2, )]0 = 2 +
Zujaynay, (2, 9)]2.

2 [8ym O (G @)1 + 0, D3, [G (2, | v

L (20000 C @ 20,016 .l
"\ (00,006 =04, 0 (G 0 )]2))

0y, |G ()] u)
+

By, ty |Gz, y)]. = 24 (8 Gz, )]
Ym, xz, 2,1

A0 (G (@)t + s [G7 (,9)]2 (gljm) "

2,m



92 J. Elschner, G. C. Hsiao, and A. Rathsfeld

2. (O (G (@, )] = 0, [ G ()11 )

Tt l l
61.m (00 G (0, )1 = 0, [G ()]

6.3. Least squares approach for the Gauss-Newton algorithm. Sup-
pose Iy is the index set of the Fourier coefficients from 6.1 and the layer
functions of the Kirsch-Kress method are approximated by (23), (24). Fur-
thermore, suppose the L? norms on I'* and [0,27] in j,f’ are discretized
by

MI
2 ir 21K
||fH%2(Fr) ~ Z |f(xr7f€)| y Lre t= r(r.)e’™, T, = M (A.4)
k=1
M//

2 2TK
, Og 1=

=

(A.5)

||9||2L2[0,27r] ~ Z ‘9(%)
k=1
Then the discretized objective functional for (21) is of the form
T aan (it Fer o) = MG (2o (aen )R, (46)
M= ((Mae), (M), (M ), (M), (M),

R = ((Ri)s (Ra), (Roa), (Ran): (Rsn) )

where
1

Rl)ﬁ = Wp%%isy(aﬁ’)?

RQ,N’ = Oa
Ry =0, (A7)
Rawry =0,

RE’),H’ = 07

in/4 M

=
V8Tk M

K'=1,...,M,
M P
M((bn)> (cn), (ab))g’n,,l = \/—% Zlog sin? ull % ])[cﬁh, (A.10)
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M((0x) (ex): (@) 4 = F Z [t (G s wer)e] | +

1
N VM’ ,; bNG(xr’Kl’Iiv") [V(xr,m’)]z-i-

4 pmc(xr,n’ ) [V(xr,rc’)]l

(A.11)

M
M((bﬁ)’(cfi)a(aL) Z xrn : Ie oy Lr k! )CK*

r@wa Zb 6V(w )G xr75/7xi7,€)—

a plnc( /)
VM wa2 ’

Here we define the expression {logsin®(70/M)} as 0. This leads to the
following formulas for the derivatives. For the first components, we get

) M eim/4 cos (— kel 'ﬂﬁz‘,n) '
a[% b,;] (( K)? (CH)7 (ab))l,n/ - \/WT /]W// sin (_ kweian’ . 901',,@) )

9 eim/4 (— sin (— kel wm)> ’

K =1,..., M.  (A.12)

m M ((bn)v (Cn)v (aL)) 1,k W

For the second components, we obtain

] T
0 7 [ logsin?
a[%e bﬁ] M((bﬂ)7 (Cﬁ)v (ab ( )) ’

log sin® — A ) )

Cos (— kel . acm)

%\%

0

m/\/‘((bn),(cn) (GL !

%\5

For the third components, we have

L c a :ﬂ
oo ey M (Ox) (ex): (@) g 00 = T

0
o e (a _ :
O[Sm [c,.]i] M((e), (e0). L))S’H/’l/ VM (logsin2 (ﬂﬁ 71{})51 1/) .
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The derivatives of the fourth components take the form

B
oot M) () () =
1 (%eG(x,W/,xi,,.i)[u(xr,,g/)]l)T
VM S G (T Tiw) [V (Trer ) |1 ’
9

b ] M((bn)v (CN)V (G’L))47n’,l =

9[Sm by,
. 1 —S‘In G(xr,n’axi,n)[y(xr,n’)]l T

VM \ Re Gaew, i) V(@) )
0

oy M (0 (@) (@) o =
.
1 ({twm’<[%Gd(%mx”v“')]m,z)m]l,)

T\, (90 G )], ]

md 1’

M((bﬁ)7 (05)7 (ab))4,n’,l’ =
T

N a1

{t“’m' ( [Re G<! (e, T w)] m7l)m:| 1%

0
Oa M((bﬁ)7 (65)7 (a’['))4,lﬂ’,l =
M

- 1 el 8

= A0 ;grad Tyt [ta;m, G (xemxr’,ﬁ,)cﬁ”l Tm[xr’”'H
1 < 5

+ \/ﬁ 1;1 bngrad Ty n! I:G(wr,li'7 -Ti,n)] 870% [xr,m’] [V(-Tr,m’)] l+
1 < P

+ m};b/{(}(mr,n’yxi,n) 870% [V(xr,/{’)]l‘f'
1 inc 0

- VM grad Teyw! [p (xr"{/)] 87% [xr,n/] [V(xr,n’)}l‘f'

T 0

pinc(xrﬁ,) — [1/(39,.7,{/)]1.
da

:

#K v
Finally, for the fifth components, we obtain

0

O[Re by] M

—~

(bi)s (ex)s (aL))5’,{/ =
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_ I/ /)éRerrn/amzr@) !
- V waZ l/ Ty /)\ﬂnGmronzn) ’

5y M((Br): (e0): (@) o =
I/(.L )\SInCTY Ty ks T n) N
VM wa2 u(acr /)%GG Ty k' Lg n) 7

a[%e [CH}Z] ab))t') K’

1 (u(mm (gcg (G @e i), J)m)

VM V(Tppr) - <\Ym [Gel(xrﬁ”x"’“)}m’l)

M ((bm)’ (CH)? (ab)>57,{/ =

_ 1 <_V(=Tr,l€') ' (%m [Gel(mr’“”xi”“)]mal)m)

v M’ ]/(:Er’,@/) . <§Re [Gel(xrﬁﬁ/,xiy,{)} m,l)
0

Fa- M0, (e, (), =

Z Gel {,Ce 571.1‘ K/ )CH} a(zb [V(xl‘,li/)]—’—

0
v(Zypr) - grad . [Gez(xe,mxr,,i/)cﬁ] Pa [

1 inc
i B )] o )]

v(xp)-grad , X

r,w/

1
/M/ waQ

X [grad mm,pmc(xrﬁﬁ,)] -

wr,n’}_
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