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Abstract. We investigate the three-dimensional interior and exterior
Neumann-type boundary-value problems of statics of the thermo-electro-
magneto-elasticity theory. We construct explicitly the fundamental matrix
of the corresponding strongly elliptic non-self-adjoint 6× 6 matrix differen-
tial operator and study their properties near the origin and at infinity. We
apply the potential method and reduce the corresponding boundary-value
problems to the equivalent system of boundary integral equations. We have
found efficient asymptotic conditions at infinity which ensure the unique-
ness of solutions in the space of bounded vector functions. We analyze
the solvability of the resulting boundary integral equations in the Hölder
and Sobolev-Slobodetski spaces and prove the corresponding existence the-
orems. The necessary and sufficient conditions of solvability of the interior
Neumann-type boundary-value problem are written explicitly.
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îâäæñéâ. ïðŽðæŽöæ àŽéëçãèâñèæŽ êâæéŽêæï öæàŽ áŽ àŽîâ ïŽéàŽêäëéæ-
èâĲæŽêæ ŽéëùŽêâĲæ åâîéë-âèâóðîë-éŽàêâðë áîâçŽáëĲæï åâëîææï ïðŽðæçæï
àŽêðëèâĲâĲæïŽåãæï. öâïŽĲŽéæïæ ëìâîŽðëîæïŽåãæï, îëéâèæù ûŽîéëŽáàâêï
6 × 6 àŽêäëéæèâĲæï éŽðîæùñè ŽîŽåãæåöâñôèâĲñè, úèæâîŽá âèæòïñî áæ-
òâîâêùæŽèñî ëìâîŽðëîï, ùýŽáæ ïŽýæåŽŽ ŽàâĲñèæ òñêáŽéâêðñî ŽéëêŽýïêåŽ
éŽðîæùŽ áŽ áŽáàâêæèæŽ éæïæ Žïæéìðëðñîæ åãæïâĲâĲæ ïŽåŽãæïŽ áŽ ñïŽïîñ-
èëĲæï éæáŽéëöæ. ìëðâêùæŽèåŽ éâåëáæï àŽéëõâêâĲæå ïŽïŽäôãîë ŽéëùŽêâ-
Ĳæ áŽõãŽêæèæŽ âçãæãŽèâêðñî ïŽïŽäôãîë æêðâàîŽèñî (òïâãáëáæòâîâêùæ-
Žèñî) àŽêðëèâĲŽåŽ ïæïðâéŽäâ. àŽéëçãèâñèæŽ Žé æêðâàîŽèñîæ àŽêðëèâĲæï
ŽéëýïêŽáëĲæï ïŽçæåýæ áŽ áŽéðçæùâĲñèæŽ öâïŽĲŽéæïæ ïŽïŽäôãîë ŽéëùŽêâĲæï
ŽéëêŽýïêâĲæï ŽîïâĲëĲæï åâëîâéâĲæ ßâèáâîæïŽ áŽ ïëĲëèâã{ïèëĲëáâùçæï
òñêóùæñî ïæãîùââĲöæ. ŽôïŽêæöêŽãæŽ, îëé ùýŽáæ ïŽýæåŽŽ Žéëûâîæèæ êâæéŽêæï
öæàŽ ŽéëùŽêæï ŽîïâĲëĲæï ŽñùæèâĲâèæ áŽ ïŽçéŽîæïæ ìæîëĲâĲæ.
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1. Introduction

Modern industrial and technological processes apply widely, on the one
hand, composite materials with complex microstructure and, on the other
hand, complex composed structures consisting of materials having essen-
tially different physical properties (for example, piezoelectric, piezomag-
netic, hemitropic materials, two- and multi-component mixtures, nano-
materials, bio-materials, and solid structures constructed by composition of
these materials, such as, e.g., Smart Materials and other meta-materials).
Therefore the investigation and analysis of mathematical models describing
the mechanical, thermal, electric, magnetic and other physical properties of
such materials have a crucial importance for both fundamental research and
practical applications. In particular, the investigation of correctness of cor-
responding mathematical models (namely, existence, uniqueness, smooth-
ness, asymptotic properties and stability of solutions) and construction of
appropriate adequate numerical algorithms have a crucial role for funda-
mental research.

In the study of active material systems, there is significant interest in the
coupling effects between elastic, electric, magnetic and thermal fields. The
mathematical model of statics of the thermo-electro-magneto-elasticity the-
ory is described by the non-self-adjoint 6× 6 system of second order partial
differential equations with appropriate boundary conditions. The problem
is to determine three components of the elastic displacement vector, the
electric and magnetic scalar potential functions and the temperature dis-
tribution. Other field characteristics (e.g., mechanical stresses, electric and
magnetic fields, electric displacement vector, magnetic induction vector, and
heat flux vector) can be then determined by the gradient and constitutive
equations (for details see [2], [3], [4], [5], [6], [16], [21], [24], [27]).

For the equations of dynamics the uniqueness theorems of solutions for
some initial-boundary-value problems are well studied. In particular, in the
reference [16] the uniqueness theorem is proved without making restrictions
on the positive definiteness on the elastic moduli, while the uniqueness theo-
rems for the basic boundary-value problems (BVP) of statics of the thermo-
electro-magneto-elasticity theory are proved in [20]. Existence theorems for
the Dirichlet-type boundary-value problems are established in [19]. To the
best of our knowledge, the existence of solutions to the Neumann-type BVPs
of statics are not treated in the scientific literature.

In this paper, with the help of the potential method we reduce the three-
dimensional interior and exterior Neumann-type boundary-value problems
of the thermo-electro-magneto-elasticity theory to the equivalent 6× 6 sys-
tems of integral equations and analyze their solvability in the Hölder and
Sobolev-Slobodetski spaces and prove the corresponding uniqueness and ex-
istence theorems.

Essential difficulties arise in the study of exterior BVPs for unbounded
domains. The case is that one has to consider the problem in a class of
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vector functions which are bounded at infinity. This complicates the proof
of uniqueness and existence theorems since Green’s formulas do not hold
for such vector functions and analysis of null spaces of the corresponding
integral operators needs special consideration. We have found efficient and
natural asymptotic conditions at infinity which ensure the uniqueness of so-
lutions in the space of bounded vector functions. Moreover, for the interior
Neumann-type boundary-value problem, the complete system of linearly
independent solutions of the corresponding homogeneous adjoint integral
equation is constructed in polynomials and the necessary and sufficient con-
ditions of solvability of the problem are written explicitly.

2. Formulation of Problems

Here we collect the basic field equations of the thermo-electro-magneto-
elasticity theory and formulate the interior and exterior Neumann-type
boundary-value problems of statics.

2.1. Field equations. Throughout the paper u = (u1, u2, u3)> denotes the
displacement vector, σij is the mechanical stress tensor, εkj = 2−1(∂kuj +
∂juk) is the strain tensor, the vectors E = (E1, E2, E3)> and H =
(H1,H2,H3)> are electric and magnetic fields respectively, D=(D1,D2,D3)>

is the electric displacement vector and B = (B1, B2, B3)> is the mag-
netic induction vector, ϕ and ψ stand for the electric and magnetic po-
tentials and E = − gradϕ, H = − gradψ, ϑ is the temperature increment,
q = (q1, q2, q3)> is the heat flux vector, and S is the entropy density.

We employ also the notation ∂ = ∂x = (∂1, ∂2, ∂3), ∂j = ∂/∂xj , ∂t =
∂/∂t; the superscript (·)> denotes transposition operation. In what follows
the summation over the repeated indices is meant from 1 to 3, unless stated
otherwise.

In this subsection we collect the field equations of the linear theory of
thermo-electro-magneto-elasticity for a general anisotropic case and intro-
duce the corresponding matrix partial differential operators. To this end,
we recall here the basic relations of the theory:

Constitutive relations:

σrj = σjr = crjklεkl − elrjEl − qlrjHl − λrjϑ, r, j = 1, 2, 3, (2.1)

Dj = ejklεkl + κjlEl + ajlHl + pjϑ, j = 1, 2, 3, (2.2)

Bj = qjklεkl + ajlEl + µjlHl + mjϑ, j = 1, 2, 3, (2.3)

S = λklεkl + pkEk + mkHk + γϑ. (2.4)

Fourier Law:
qj = −ηjl∂lϑ, j = 1, 2, 3. (2.5)

Equations of motion:

∂jσrj + Xr = %∂2
t ur, r = 1, 2, 3. (2.6)
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Quasi-static equations for electro-magnetic fields where the rate of magnetic
field is small (electric field is curl free) and there is no electric current
(magnetic field is curl free):

∂jDj = %e, ∂jBj = 0. (2.7)

Linearized equation of the entropy balance:

T0∂tS −Q = −∂jqj . (2.8)

Here % is the mass density, %e is the electric density, crjkl are the elastic
constants, ejkl are the piezoelectric constants, qjkl are the piezomagnetic
constants, κjk are the dielectric (permittivity) constants, µjk are the mag-
netic permeability constants, ajk are the coupling coefficients connecting
electric and magnetic fields, pj and mj are constants characterizing the re-
lation between thermodynamic processes and electromagnetic effects, λjk

are the thermal strain constants, ηjk are the heat conductivity coefficients,
γ = %cT−1

0 is the thermal constant, T0 is the initial reference tempera-
ture, that is the temperature in the natural state in the absence of de-
formation and electromagnetic fields, c is the specific heat per unit mass,
X = (X1, X2, X3)> is a mass force density, Q is a heat source intensity.

The constants involved in these equations satisfy the symmetry condi-
tions:

crjkl = cjrkl = cklrj , eklj = ekjl,

qklj = qkjl, κkj = κjk, λkj = λjk,

µkj = µjk, ηkj = ηjk, akj = ajk,

r, j, k, l = 1, 2, 3. (2.9)

From physical considerations it follows that (see, e.g., [16], [27]):

crjklξrjξkl ≥ c0ξklξkl, κkjξkξj ≥ c1|ξ|2,
µkjξkξj ≥ c2|ξ|2, ηkjξkξj ≥ c3|ξ|2,

for all ξkj = ξjk ∈ R and for all ξ = (ξ1, ξ2, ξ3) ∈ R3,

(2.10)

where c0, c1, c2, and c3 are positive constants.
It is easy to see that due to the symmetry conditions (2.9)

crjklξrjξkl ≥ c0ξklξkl, κkjξkξj ≥ c1|ξ|2,
µkjξkξj ≥ c2|ξ|2, ηkjξkξj ≥ c3|ξ|2,

for all ξkj = ξjk ∈ C and for all ξ = (ξ1, ξ2, ξ3) ∈ C3.

More careful analysis related to the positive definiteness of the potential
energy and thermodynamical laws insure that for arbitrary ζ ′, ζ ′′ ∈ C3 and
θ ∈ C there is a positive constant δ0 depending on the material constants
such that (cf. [27])

κkjζ
′
kζ ′j + akj

(
ζ ′kζ ′′j + ζ ′kζ ′′j

)
+ µkjζ

′′
k ζ ′′j ± 2<[

θ(pjζ
′
j + mjζ

′′
j )

]
+ γ|θ|2 ≥

≥ δ0

(|ζ ′|2 + |ζ ′′|2 + |θ|2). (2.11)
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This condition is equivalent to positive definiteness of the matrix

Ξ :=




[κkj ]3×3 [akj ]3×3 [pj ]3×1

[akj ]3×3 [µkj ]3×3 [mj ]3×1

[pj ]1×3 [mj ]1×3 γ




7×7

.

In particular, it follows that the matrix

Λ :=

[
[κkj ]3×3 [akj ]3×3

[akj ]3×3 [µkj ]3×3

]

6×6

(2.12)

is positive definite, i.e.,

κkjζ
′
kζ ′j + akj

(
ζ ′kζ ′′j + ζ ′kζ ′′j

)
+ µkjζ

′′
k ζ ′′j ≥ κ(|ζ ′|2 + |ζ ′′|2)

with some positive constant κ depending on the material parameters in-
volved in (2.12). A sufficient condition for the quadratic form in the left
hand side of (2.11) to be positive definite then reads as ν2 < κγ

6 with
ν = max

{|p1|, |p2|, |p3|, |m1|, |m2|, |m3|
}
.

With the help of the symmetry conditions (2.9) we can rewrite the con-
stitutive relations (2.1)–(2.4) as follows

σrj = crjkl∂luk + elrj∂lϕ + qlrj∂lψ − λrjϑ, r, j = 1, 2, 3,

Dj = ejkl∂luk − κjl∂lϕ− ajl∂lψ + pjϑ, j = 1, 2, 3,

Bj = qjkl∂luk − ajl∂lϕ− µjl∂lψ + mjϑ, j = 1, 2, 3,

S = λkl∂luk − pl∂lϕ−ml∂lψ + γϑ.

In the theory of thermo-electro-magneto-elasticity the components of the
three-dimensional mechanical stress vector acting on a surface element with
a unit normal vector n = (n1, n2, n3) have the form

σrjnj = crjklnj∂luk + elrjnj∂lϕ + qlrjnj∂lψ − λrjnjϑ, r = 1, 2, 3,

while the normal components of the electric displacement vector, magnetic
induction vector and heat flux vector read as

Djnj = ejklnj∂luk − κjlnj∂lϕ− ajlnj∂lψ + pjnjϑ,

Bjnj = qjklnj∂luk − ajlnj∂lϕ− µjlnj∂lψ + mjnjϑ,

qjnj = −ηjlnj∂lϑ.

For convenience we introduce the following matrix differential operator

T (∂, n) =
[Tpq(∂, n)

]
6×6

:=

:=




[crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1 [−λrjnj ]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −pjnj

[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −mjnj

[0]1×3 0 0 ηjlnj∂l




6×6

. (2.13)
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Evidently, for a six vector U := (u, ϕ, ψ, ϑ)> we have

T (∂, n)U =
(
σ1jnj , σ2jnj , σ3jnj ,−Djnj ,−Bjnj ,−qjnj

)>
. (2.14)

The components of the vector T U given by (2.14) have the following physical
sense: the first three components correspond to the mechanical stress vector
in the theory of thermo-electro-magneto-elasticity, the forth, fifth and sixth
ones are respectively the normal components of the electric displacement
vector, magnetic induction vector and heat flux vector with opposite sign.

As we see, all the thermo-mechanical and electro-magnetic characteristics
can be determined by the six functions: the three displacement components
uj , j = 1, 2, 3, temperature distribution ϑ, and the electric and magnetic
potentials ϕ and ψ. Therefore, all the above field relations and the cor-
responding boundary-value problems we reformulate in terms of these six
functions.

First of all from the equations (2.1)–(2.8) we derive the basic linear sys-
tem of dynamics of the theory of thermo-electro-magneto-elasticity:

crjkl∂j∂luk(x, t) + elrj∂j∂lϕ(x, t) + qlrj∂j∂lψ(x, t)− λrj∂jϑ(x, t)−
−%∂2

t ur(x, t) = −Xr(x, t), r = 1, 2, 3,

−ejkl∂j∂luk(x, t)+κjl∂j∂lϕ(x, t)+ajl∂j∂lψ(x, t)−pj∂jϑ(x, t)=−%e(x, t),

−qjkl∂j∂luk(x, t) + ajl∂j∂lϕ(x, t) + µjl∂j∂lψ(x, t)−mj∂jϑ(x, t) = 0,

−T0λkl∂t∂luk(x, t) + T0pl∂t∂lϕ(x, t) + T0ml∂t∂lψ(x, t) + ηjl∂j∂lϑ(x, t)−
−T0γ∂tϑ(x, t) = −Q(x, t).

If all the functions involved in these equations are harmonic time dependent,
that is they can be represented as the product of a function of the spatial
variables (x1, x2, x3) and the multiplier exp{τt}, where τ = σ+ iω is a com-
plex parameter, we have then the pseudo-oscillation equations of the theory
of thermo-electro-magneto-elasticity. Note that the pseudo-oscillation equa-
tions can be obtained from the corresponding dynamical equations by the
Laplace transform. If τ is a pure imaginary number, τ = iω with the so
called frequency parameter ω ∈ R, we obtain the steady state oscillation
equations. Finally, if τ = 0 we get the equations of statics:

crjkl∂j∂luk(x) + elrj∂j∂lϕ(x) + qlrj∂j∂lψ(x)− λrj∂jϑ(x) =

= −Xr(x), r = 1, 2, 3,

−ejkl∂j∂luk(x) + κjl∂j∂lϕ(x) + ajl∂j∂lψ(x)− pj∂jϑ(x) = −%e(x),

−qjkl∂j∂luk(x) + ajl∂j∂lϕ(x) + µjl∂j∂lψ(x)−mj∂jϑ(x) = 0,

ηjl∂j∂lϑ(x) = −Q(x).

(2.15)

In matrix form these equations can be written as

A(∂)U(x) = Φ(x),

where

U = (u1, u2, u3, u4, u5, u6)> := (u, ϕ, ψ, ϑ)>,
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Φ = (Φ1, . . . , Φ6)> := (−X1,−X2,−X3,−%e, 0,−Q)>,

and A(∂) is the matrix differential operator generated by equations (2.15),

A(∂) = [Apq(∂)]6×6 :=

:=




[crjkl∂j∂l]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1 [−λrj∂j ]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −pj∂j

[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −mj∂j

[0]1×3 0 0 ηjl∂j∂l




6×6

. (2.16)

2.2. Formulation of the boundary-value problems. Let Ω+ be a boun-
ded domain in R3 with a smooth boundary S = ∂Ω+, Ω+ = Ω+ ∪ S, and
Ω− := R3 \ Ω+. Assume that the domains Ω± are filled by an anisotropic
homogeneous material with thermo-electro-magneto-elastic properties.

Throughout the paper n = (n1, n2, n3) stands for the outward unit nor-
mal vector with respect to Ω+ at the point x ∈ ∂Ω+.

Neumann-type problems (N)±: Find a regular solution vector U =
(u,ϕ,ψ,ϑ)> ∈ [C1(Ω+)]6 ∩ [C2(Ω+)]6 (resp. U ∈ [C1(Ω−)]6 ∩ [C2(Ω−)]6), to
the system of equations

A(∂)U = Φ in Ω±,

satisfying the Neumann-type boundary conditions
{T U

}± = f on S,

where A(∂) is a nonselfadjoint strongly elliptic matrix partial differential op-
erator generated by the equations of statics of the theory of thermo-electro-
magneto-elasticity defined in (2.16), while T (∂, n) is the matrix boundary
operator defined in (2.13). The symbols {·}± denote the one sided limits
(the trace operators) on ∂Ω± from Ω±.

In our analysis we need special asymptotic conditions at infinity in the
case of unbounded domains [20].

Definition 2.1. We say that a continuous vector U = (u, ϕ, ψ, ϑ)> ≡
(U1, · · · , U6)> in the domain Ω− has the property Z(Ω−) if the following
conditions are satisfied

Ũ(x) := (u(x), ϕ(x), ψ(x))> = O(1),

U6(x) = ϑ(x) = O(|x|−1),
as |x| → ∞,

lim
R→∞

1
4πR2

∫

ΣR

Uk(x) dΣR = 0, k = 1, 5,

where ΣR is a sphere centered at the origin and radius R.

In what follows we always assume that in the case of exterior boundary-
value problem a solution possesses Z(Ω−) property.
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2.3. Potentials and their properties. Denote by Γ(x) = [Γkj(x)]6×6 the
matrix of fundamental solutions of the operator A(∂), A(∂)Γ(x) = I6 δ(x),
where δ(·) is the Dirac’s delta distribution and I6 stands for the unit 6× 6
matrix. Applying the generalized Fourier transform technique, the funda-
mental matrix can be constructed explicitly,

Γ(x) = F−1
ξ→x[A−1(−i ξ)] , (2.17)

where F−1 is the generalized inverse Fourier transform and A−1(−i ξ) is
the matrix inverse to A(−i ξ). The properties of the fundamental matrix
near the origin and at infinity are established in [23]. The entries of the
fundamental matrix Γ(x) are homogeneous functions in x and at the origin
and at infinity the following asymptotic relations hold

Γ(x) =

[
[O(|x|−1)]5×5 [O(1)]5×1

[0]1×5 O(|x|−1)

]

6×6

.

Moreover, the columns of the matrix Γ(x) possess the property Z(R3 \{0}).
With the help of the fundamental matrix we construct the generalized single
and double layer potentials, and the Newton-type volume potentials,

V (h)(x) =
∫

S

Γ(x− y)h(y) dSy, x ∈ R3 \ S,

W (h)(x) =
∫

S

[P(∂y, n(y))Γ>(x− y)]> h(y) dSy, x ∈ R3 \ S,

NΩ±(g)(x) =
∫

Ω±

Γ(x− y) g(y) dy, x ∈ R3,

where S = ∂Ω± ∈ Cm, κ with integer m ≥ 1 and 0 < κ ≤ 1; h =
(h1, . . . , h6)> and g = (g1, · · · , g6)> are density vector-functions defined re-
spectively on S and in Ω±; the so called generalized stress operator P(∂, n),
associated with the adjoint differential operator A∗(∂) = A>(−∂), reads as

P(∂, n) =
[Ppq(∂, n)

]
6×6

=

=




[crjklnj∂l]3×3 [−elrjnj∂l]3×1 [−qlrjnj∂l]3×1 [0]3×1

[ejklnj∂l]1×3 κjlnj∂l ajlnj∂l 0

[qjklnj∂l]1×3 ajlnj∂l µjlnj∂l 0

[0]1×3 0 0 ηjlnj∂l




. (2.18)

The following properties of layer potentials immediately follow from their
definition.

Theorem 2.2. The generalized single and double layer potentials solve
the homogeneous differential equation A(∂)U = 0 in R3 \S and possess the
property Z(Ω−).
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In what follows by Lp, W r
p , Hs

p , and Bs
p,q (with r ≥ 0, s ∈ R, 1 < p < ∞,

1 ≤ q ≤ ∞) we denote the well-known Lebesgue, Sobolev–Slobodetski,
Bessel potential, and Besov function spaces, respectively (see, e.g., [29]).
Recall that Hr

2 = W r
2 = Br

2,2, Hs
2 = Bs

2,2, W t
p = Bt

p,p, and Hk
p = W k

p , for
any r ≥ 0, for any s ∈ R, for any positive and non-integer t, and for any
non-negative integer k.

With the help of Green’s formulas, one can derive general integral repre-
sentations of solutions to the homogeneous equation A(∂)U = 0 in Ω±. In
particular, the following theorems hold.

Theorem 2.3. Let S = ∂Ω+ ∈ C1,κ with 0 < κ ≤ 1 and U be a
regular solution to the homogeneous equation A(∂)U = 0 in Ω+ of the class
[C1(Ω+)]6∩[C2(Ω+)]6. Then there holds the integral representation formula

W ({U}+)(x)− V ({T U}+)(x) =

{
U(x) for x ∈ Ω+,

0 for x ∈ Ω−.

Theorem 2.4. Let S = ∂Ω− be C1,κ-smooth with 0 < κ ≤ 1 and let U
be a regular solution to the homogeneous equation A(∂)U = 0 in Ω− of the
class [C1(Ω−)]6 ∩ [C2(Ω−)]6 having the property Z(Ω−). Then there holds
the integral representation formula

−W ({U}−)(x) + V ({T U}−)(x) =

{
0 for x ∈ Ω+,

U(x) for x ∈ Ω−.

By standard limiting procedure, these formulas can be extended to Lip-
schitz domains and to solution vectors from the spaces [W 1

p (Ω+)]6 and
[W 1

p,loc(Ω
−)]6 ∩ Z(Ω−) with 1 < p < ∞ (cf., [12], [17], [25]).

The qualitative and mapping properties of the layer potentials are de-
scribed by the following theorems (cf. [7], [9], [15], [17], [23]).

Theorem 2.5. Let S = ∂Ω± ∈ Cm,κ with integers m ≥ 1 and k ≤
m− 1, and 0 < κ′ < κ ≤ 1. Then the operators

V : [Ck,κ′(S)]6→ [Ck+1,κ′(Ω±)]6, W : [Ck,κ′(S)]6→ [Ck,κ′(Ω±)]6 (2.19)

are continuous.
For any g ∈ [C0,κ′(S)]6, h ∈ [C1,κ′(S)]6, and any x ∈ S we have the

following jump relations:

{V (g)(x)}± = V (g)(x) = Hg(x), (2.20)
{T (∂x, n(x))V (g)(x)

}± =
[∓ 2−1I6 +K]

g(x), (2.21)

{W (g)(x)}± = [±2−1I6 +N ]g(x), (2.22)
{T (∂x, n(x))W (h)(x)

}+ =

= {T (∂x, n(x))W (h)(x)}− = Lh(x), m ≥ 2, (2.23)
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whereH is a weakly singular integral operator, K andN are singular integral
operators, and L is a singular integro-differential operator,

Hg(x) :=
∫

S

Γ(x− y)g(y) dSy,

Kg(x) :=
∫

S

T (∂x, n(x))Γ(x− y) g(y) dSy,

N g(x) :=
∫

S

[P(∂y, n(y))Γ>(x− y)
]>

g(y) dSy,

Lh(x) := lim
Ω±3z→x∈S

T (∂z, n(x))
∫

S

[P(∂y, n(y))Γ>(z−y)
]>

h(y) dSy.

(2.24)

Theorem 2.6. Let S be a Lipschitz surface. The operators V and W
can be extended to the continuous mappings

V : [H− 1
2

2 (S)]6 → [H1
2 (Ω+)]6, V : [H− 1

2
2 (S)]6 → [H1

2,loc(Ω
−)]6 ∩ Z(Ω−),

W : [H
1
2
2 (S)]6 → [H1

2 (Ω+)]6, W : [H
1
2
2 (S)]6 → [H1

2,loc(Ω
−)]6 ∩ Z(Ω−).

The jump relations (2.20)–(2.23) on S remain valid for the extended oper-
ators in the corresponding function spaces.

Theorem 2.7. Let S, m, κ, κ′ and k be as in Theorem 2.5. Then the
operators

H : [Ck,κ′(S)]6 → [Ck+1,κ′(S)]6, m ≥ 1, (2.25)

: [H− 1
2

2 (S)]6 → [H
1
2
2 (S)]6, m ≥ 1, (2.26)

K : [Ck,κ′(S)]6 → [Ck,κ′(S)]6, m ≥ 1, (2.27)

: [H− 1
2

2 (S)]6 → [H− 1
2

2 (S)]6, m ≥ 1, (2.28)

N : [Ck,κ′(S)]6 → [Ck,κ′(S)]6, m ≥ 1, (2.29)

: [H
1
2
2 (S)]6 → [H

1
2
2 (S)]6, m ≥ 1, (2.30)

L : [Ck,κ′(S)]6 → [Ck−1,κ′(S)]6, m ≥ 2, k ≥ 1, (2.31)

: [H
1
2
2 (S)]6 → [H− 1

2
2 (S)]6, m ≥ 2, (2.32)

are continuous. The operators (2.26), (2.28), (2.30), and (2.32) are bounded
if S is a Lipschitz surface.

Proofs of the above formulated theorems are word for word proofs of the
similar theorems in [8], [10], [11], [13], [14], [15], [22], [26].

The next assertion is a consequence of the general theory of elliptic pseu-
dodifferential operators on smooth manifolds without boundary (see, e.g.,
[1], [5], [9], [12], [28], and the references therein).
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Theorem 2.8. Let V , W , H, K, N and L be as in Theorems 2.5 and
let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, S ∈ C∞. The layer potential opera-
tors (2.19) and the boundary integral (pseudodifferential) operators (2.25)–
(2.32) can be extended to the following continuous operators

V : [Bs
p,p(S)]6 → [H

s+1+ 1
p

p (Ω+)]6, W : [Bs
p,p(S)]6 → [H

s+ 1
p

p (Ω+)]6,

V : [Bs
p,p(S)]6 → [H

s+1+ 1
p

p,loc (Ω−)]6, W : [Bs
p,p(S)]6 → [H

s+ 1
p

p,loc(Ω
−)]6,

H : [Hs
p(S)]6 → [Hs+1

p (S)]6, K : [Hs
p(S)]6 → [Hs

p(S)]6,

N : [Hs
p(S)]6 → [Hs

p(S)]6, L : [Hs+1
p (S)]6 → [Hs

p(S)]6.

The jump relations (2.20)–(2.23) remain valid for arbitrary g ∈ [Bs
p,q(S)]6

with s ∈ R if the limiting values (traces) on S are understood in the sense
described in [28].

Remark 2.9. Let either Φ ∈ [Lp(Ω+)]6 or Φ ∈ [Lp,comp(Ω−)]6, p > 1.
Then the Newtonian volume potentials NΩ±(Φ) possess the following prop-
erties (see, e.g., [18]):

NΩ+(Φ) ∈ [W 2
p (Ω+)]6, NΩ−(Φ) ∈ [W 2

p,loc(Ω
−)]6,

A(∂)NΩ±(Φ) = Φ almost everywhere in Ω±.

Therefore, without loss of generality, we can assume that in the formu-
lation of the Neumann-type problems the right hand side function in the
differential equations vanishes, Φ(x) = 0 in Ω±.

3. Investigation of the Exterior Neumann BVP

Let us consider the exterior Neumann-type BVP for the domain Ω−:

A(∂)U(x) = 0, x ∈ Ω−, (3.1)
{T (∂, n)U(x)

}− = F (x), x ∈ S. (3.2)

We assume that S ∈ C1,κ and F ∈ C0,κ′(S) with 0 < κ′ < κ ≤ 1. We inves-
tigate this problem in the space of regular vector functions [C1,κ′(Ω−)]6 ∩
[C2(Ω−)]6∩Z(Ω−). In [20] it is shown that the homogeneous version of the
exterior Neumann-type problem possesses only the trivial solution.

To prove the existence result, we look for a solution of the problem (3.1)–
(3.2) as the single layer potential

U(x) ≡ V (h)(x) =
∫

S

Γ(x− y)h(y) dSy, (3.3)

where Γ is defined by (2.17) and h = (h1, . . . , h6)> ∈ [C0,κ′(S)]6 is unknown
density. By Theorem 2.5 and in view of the boundary condition (3.2), we
get the following integral equation for the density vector h

[2−1I6 +K]h = F on S, (3.4)
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where K is a singular integral operator defined by (2.24). Note that the
operator 2−1I6 +K has the following mapping properties

2−1I6 +K : [C0,κ′(S)]6 → [C0,κ′(S)]6, (3.5)

: [L2(S)]6 → [L2(S)]6. (3.6)

These operators are compact perturbations of their counterpart operators
associated with the pseudo-oscillation equations which are studied in [23].
Applying the results obtained in [23] one can show that 2−1I6 + K is a
singular integral operator of normal type (i.e., its principal homogeneous
symbol matrix is non-degenerate) and its index equals to zero.

Let us show that the operators (3.5) and (3.6) have trivial null spaces. To
this end, it suffices to prove that the corresponding homogeneous integral
equation

[2−1I6 +K]h = 0 on S, (3.7)

has only the trivial solution in the appropriate space. Let h(0) ∈ [L2(S)]6

be a solution to equation (3.7). By the embedding theorems (see, e.g., [15],
Ch.4), we actually have that h(0) ∈ [C0,κ′(S)]6. Now we construct the
single layer potential U0(x) = V (h(0))(x). Evidently, U0 ∈ [C1,κ′(Ω±)]6 ∩
[C2(Ω±)]6 ∩ Z(Ω−) and the equation A(∂)U0 = 0 in Ω± is automatically
satisfied. Since h(0) solves equation (3.7), we have {T (∂, n)U0}− = [2−1I6+
K]h(0) = 0 on S. Therefore U0 is a solution to the homogeneous exterior
Neumann problem satisfying the property Z(Ω−). Consequently, due to the
uniqueness theorem [20], U0 = 0 in Ω−. Applying the continuity property of
the single layer potential we find: 0 = {U0}− = {U0}+ on S, yielding that
the vector U0 = V (h(0)) represents a solution to the homogeneous interior
Dirichlet problem. Now by the uniqueness theorem for the Dirichlet problem
[20], we deduce that U0 = 0 in Ω+. Thus U0 = 0 in Ω±. By virtue of the
jump formula

{T (∂, n)U0

}+ − {T (∂, n)U0

}− = −h(0) = 0 on S,

whence it follows that the null space of the operator 2−1I6 + K is trivial
and the operators (3.5) and (3.6) are invertible. As a ready consequence,
we finally conclude that the non-homogeneous integral equation (3.4) is
solvable for arbitrary right hand side vector F ∈ [C0,κ′(S)]6, which implies
the following existence result.

Theorem 3.1. Let m ≥ 0 be a nonnegative integer and 0 < κ′ <
κ ≤ 1. Further, let S ∈ Cm+1,κ and F ∈ [Cm,κ′(S)]6. Then the exterior
Neumann-type BVP (3.1)–(3.2) is uniquely solvable in the space of regular
vector functions, [Cm+1,κ′(Ω−)]6 ∩ [C2(Ω−)]6 ∩ Z(Ω−), and the solution is
representable by the single layer potential U(x) = V (h)(x) with the density
h = (h1, . . . , h6)> ∈ [Cm,κ′(S)]6 being a unique solution of the integral
equation (3.4).
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Remark 3.2. Let S be Lipschitz and F ∈ [
H−1/2(S)

]6
. Then by the

same approach as in the reference [17], the following propositions can be
established:

(i) the integral equation (3.4) is uniquely solvable in the space
[H−1/2(S)]6;

(ii) the exterior Neumann-type BVP (3.1)–(3.2) is uniquely solvable in
the space [H1

2,loc(Ω
−)]6 ∩ Z(Ω−) and the solution is representable

by the single layer potential (3.3), where the density vector h ∈
[H−1/2(S)]6 solves the integral equation (3.4).

4. Investigation of the Interior Neumann BVP

Before we go over to the interior Neumann problem we prove some pre-
liminary assertions needed in our analysis.

4.1. Some auxiliary results. Let us consider the adjoint operator A∗(∂)
to the operator A(∂)

A∗(∂) :=

:=




[ckjrl∂j∂l]3×3 [−ejkl∂j∂l]3×1 [−qjkl∂j∂l]3×1 [0]3×1

[elrj∂j∂l]1×3 κjl∂j∂l ajl∂j∂l 0

[qlrj∂j∂l]1×3 ajl∂j∂l µjl∂j∂l 0

[λrj∂j ]1×3 pj∂j mj∂j ηjl∂j∂l




6×6

. (4.1)

The corresponding matrix of fundamental solutions Γ∗(x−y) = [Γ(y−x)]>

has the following property at infinity

Γ∗(x− y) = Γ>(y − x) :=

[
[O(|x|−1)]5×5 [0]5×1

[O(1)]1×5 O(|x|−1)

]

6×6

as |x| → ∞. With the help of the fundamental matrix Γ∗(x−y) we construct
the single and double layer potentials, and the Newtonian volume potentials

V ∗(h∗)(x) ≡
∫

S

Γ∗(x− y)h∗(y) dSy, x ∈ R3 \ S, (4.2)

W ∗(h∗)(x) ≡
∫

S

[T (∂y, n(y))[Γ∗(x− y)]>
]>

h∗(y) dSy, x ∈ R3 \ S, (4.3)

N∗
Ω±(g∗)(x) ≡

∫

Ω±

Γ∗(x− y)g∗(y) dy, x ∈ R3,

where the density vector h∗ = (h∗1, . . . , h
∗
6)
> is defined on S, while g∗ =

(g∗1 , ..., g∗6)> is defined in Ω±. We assume that in the case of the domain Ω−

the vector g∗ has a compact support.
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It can be shown that the layer potentials V ∗ and W ∗ possess exactly the
same mapping properties and jump relations as the potentials V and W
(see Theorems 2.5–2.8). In particular,

{V ∗(h∗)}+ = {V ∗(h∗)}− = H∗h∗,
{W ∗(h∗)}± = ± 2−1 h∗ +K∗h∗, (4.4)

{PV ∗(h∗)
}± = ∓ 2−1 h∗ +N ∗h∗, (4.5)

where H∗ is a weakly singular integral operator, while K∗ and N ∗ are sin-
gular integral operators,

H∗h∗(x) :=
∫

S

Γ∗(x− y)h∗(y) dSy,

K∗h∗(x) :=
∫

S

[T (∂y, n(y))[Γ∗(x− y)]>
]>

h∗(y) dSy,

N ∗h∗(x) :=
∫

S

[P(∂x, n(x))Γ∗(x− y)]h∗(y) dSy.

(4.6)

Now we introduce a special class of vector functions which is a counterpart
of the class Z(Ω−).

Definition 4.1. We say that a continuous vector function U∗ =
(u∗, ϕ∗, ψ∗, ϑ∗)> has the property Z∗(Ω−) in the domain Ω−, if the fol-
lowing conditions are satisfied

Ũ∗(x) =
(
u∗(x), ϕ∗(x), ψ∗(x)

)> = O(|x|−1) as |x| → ∞,

ϑ∗(x) = O(1) as |x| → ∞,

lim
R→∞

1
4πR2

∫

ΣR

ϑ∗(x) dΣR = 0,

where ΣR is a sphere centered at the origin and radius R.

As in the case of usual layer potentials here we have the following

Theorem 4.2. The generalized single and double layer potentials, de-
fined by (4.2) and (4.3), solve the homogeneous differential equation
A∗(∂)U∗ = 0 in R3 \ S and possess the property Z∗(Ω−).

For an arbitrary regular solution to the equation A∗(∂)U∗(x) = 0 in Ω+

one can derive the following integral representation formula

W ∗({U∗}+)(x)− V ∗({PU∗}+)
(x) =

{
U∗(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(4.7)
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Similar representation formula holds also for an arbitrary regular solution to
the equation A∗(∂)U∗(x) = 0 in Ω− which possesses the property Z∗(Ω−):

−W ∗({U∗}−S
)
(x) + V ∗({PU∗}−S

)
(x) =

{
U∗(x), x ∈ Ω−,

0, x ∈ Ω+.
(4.8)

To derive this representation we denote Ω−R :=B(0, R)\Ω+, where B(0, R)
is a ball centered at the origin and radius R. Then in view of (4.7) we have

U∗(x) = −W ∗
S

({U∗}−S
)
(x) + V ∗

S

({PU∗}−S
)
(x) + Φ∗R(x), x ∈ Ω−R, (4.9)

0 = −W ∗
S

({U∗}−S
)
(x) + V ∗

S

({PU∗}−S
)
(x) + Φ∗R(x), x ∈ Ω+, (4.10)

where
Φ∗R(x) := W ∗

ΣR

(
U∗)(x)− V ∗

ΣR

(PU∗)(x). (4.11)
Here V ∗

M and W ∗
M denote the single and double layer potential operators

with integration surface M. Evidently

A∗(∂)Φ∗R(x) = 0, |x| < R. (4.12)

In turn, from (4.9) and (4.10) we get

Φ∗R(x) = U∗(x) + W ∗
S

({U∗}−S
)
(x)− V ∗

S

({PU∗}−S
)
(x), x ∈ Ω−R,

Φ∗R(x) = W ∗
S

({U∗}−S
)
(x)− V ∗

S

({PU∗}−S
)
(x), x ∈ Ω+,

(4.13)

whence the equality Φ∗R1
(x) = Φ∗R2

(x) follows for |x| < R1 < R2. We
assume that R1 and R2 are sufficiently large numbers. Therefore, for an
arbitrary fixed point x ∈ R3 the following limit exists

Φ∗(x) := lim
R→∞

Φ∗R(x) =

=

{
U∗(x) + W ∗

S

({U∗}−S
)
(x)− V ∗

S

({PU∗}−S
)
(x), x ∈ Ω−,

W ∗
S

({U∗}−S
)
(x)− V ∗

S

({PU∗}−S
)
(x), x ∈ Ω+,

(4.14)

and A∗(∂)Φ∗(x) = 0 for all x ∈ Ω+ ∪Ω−. On the other hand, for arbitrary
fixed point x ∈ R3 and a number R1, such that |x| < R1 and Ω+ ⊂ B(0, R1),
from (4.13) we have

Φ∗(x) = lim
R→∞

Φ∗R(x) = Φ∗R1
(x).

Now from (4.11)–(4.12) we deduce

A∗(∂)Φ∗(x) = 0 ∀x ∈ R3. (4.15)

Since U∗, W ∗, V ∗ ∈ Z∗(Ω−) we conclude from (4.14) that Φ∗(x) ∈ Z∗(R3).
In particular, we have

lim
R→∞

1
4πR2

∫

ΣR

Φ∗(x) dΣR = 0. (4.16)

Our goal is to show that

Φ∗(x) = 0 ∀x ∈ R3.
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Applying the generalized Fourier transform to equation (4.15) we get

A∗(−iξ)Φ̂∗(ξ) = 0, ξ ∈ R3,

where Φ̂∗(ξ) is the Fourier transform of Φ∗. Taking into account that
detA∗(−iξ) 6= 0 for all ξ ∈ R3 \ {0}, we conclude that the support of
the generalized functional Φ̂∗(ξ) is the origin and consequently

Φ̂∗(ξ) =
∑

|α|≤M

cαδ(α)(ξ),

where α is a multi-index, cα are arbitrary constant vectors and M is some
nonnegative integer. Then it follows that Φ∗(x) is polynomial in x and due
to the inclusion Φ∗ ∈ Z∗(Ω−), Φ∗(x) is bounded at infinity, i.e., Φ∗(x) =
const in R3. Therefore (4.16) implies that Φ∗(x) vanishes identically in R3.
This proves that the formula (4.8) holds.

Theorem 4.3. Let S ∈ C2,κ and h ∈ [
C1,κ′(S)

]6 with 0 < κ′ < κ ≤ 1.
Then for the double layer potential W ∗ defined by (4.3) there holds the
following formula (generalized Lyapunov–Tauber relation)

{PW ∗(h)
}+ =

{PW ∗(h)
}− on S, (4.17)

where the operator P is given by (2.18).

For h ∈ [H
1
2
2 (S)]6 the relation (4.17) also holds in the space [H− 1

2
2 (S)]6.

Proof. Since h ∈ [
C1,κ′(S)

]6, evidently U∗ := W ∗(h) ∈ [C1,κ′(Ω±)]6.
It is clear that the vector U∗ is a solution of the homogeneous equation
A∗(∂)U∗(x) = 0 in Ω+ ∪ Ω−, where the operator A∗(∂) is defined by (4.1).
With the help of (4.7) and (4.8), for the vector function U∗ we derive the
following representation formula

U∗(x) = W ∗([U∗]S)(x)− V ∗([PU∗]S
)
(x), x ∈ Ω+ ∪ Ω−, (4.18)

where

[U∗]S ≡ {U∗}+ − {U∗}− and [PU∗]S ≡ {PU∗}+ − {PU∗}− on S.

In view of the equality U∗ = W ∗(h), from (4.18) we get

W ∗(h)(x) = W ∗([W ∗(h)]S)(x)− V ∗([PW ∗(h)]S)(x), x ∈ Ω+ ∪ Ω−.

Using the jump relation (4.4), we find

[U∗]S = [W ∗(h)]S = {W ∗(h)}+ − {W ∗(h)}− = h.

Therefore

W ∗(h)(x) = W ∗(h)(x)− V ∗([PW ∗(h)]S)(x), x ∈ Ω+ ∪ Ω−,

i.e., V ∗(Φ∗)(x) = 0 in Ω+ ∪Ω−, where Φ∗ := [PW ∗(h)]S . With the help of
the jump relation (4.5) finally we arrive at the equation

0 = {PV ∗(Φ∗)}− − {PV ∗(Φ∗)}+ =

= Φ∗ = [PW ∗(h)]S = {PW ∗(h)}+ − {PW ∗(h)}−
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on S, which completes the proof for the regular case.
The second part of the theorem can be proved by standard limiting pro-

cedure. ¤

Let us consider the interior and exterior homogeneous Dirichlet BVPs
for the adjoint operator A∗(∂)

A∗(∂)U∗ = 0 in Ω±, (4.19)

{U∗}± = 0 on S. (4.20)

In the case of the interior problem, we assume that either U∗ is a regular
vector of the class [C1,κ′(Ω+)]6 or U∗ ∈ [W 1

2 (Ω+)]6, while in the case of
the exterior problem, we assume that either U∗ ∈ [C1,κ′(Ω−)]6 ∩Z∗(Ω−) or
U∗ ∈ [W 1

2,loc(Ω
−)]6 ∩ Z∗(Ω−).

Theorem 4.4. The interior and exterior homogeneous Dirichlet type
BVPs (4.19)–(4.20) have only the trivial solution in the appropriate spaces.

Proof. First we treat the exterior Dirichlet problem. In view of the structure
of the operator A∗(∂), it is easy to see that we can consider separately the
BVP for the vector function Ũ∗ = (u∗, ϕ∗, ψ∗)>, constructed by the first
five components of the solution vector U∗,

Ã∗(∂)Ũ∗(x) = 0, x ∈ Ω−, (4.21)

{Ũ∗(x)}− = 0, x ∈ S, (4.22)

where Ã∗(∂) is the 5× 5 matrix differential operator, obtained from A∗(∂)
by deleting the sixth column and the sixth row,

Ã∗(∂) :=




[ckjrl∂j∂l]3×3 [−ejkl∂j∂l]3×1 [−qjkl∂j∂l]3×1

[elrj∂j∂l]1×3 κjl∂j∂l ajl∂j∂l

[qlrj∂j∂l]1×3 ajl∂j∂l µjl∂j∂l




5×5

. (4.23)

With the help of Green’s identity in Ω−R = B(0, R)\Ω+, we have
∫

Ω−R

[
Ũ∗ · Ã∗(∂)Ũ∗ + Ẽ(Ũ∗, Ũ∗)

]
dx =

= −
∫

S

{Ũ∗}− · {P̃ (∂, n)Ũ∗}− dS +
∫

ΣR

Ũ∗ · P̃ (∂, n)Ũ∗ dΣR, (4.24)

where

P̃(∂, n) :=




[crjklnj∂l]3×3 [−elrjnj∂l]3×1 [−qlrjnj∂l]3×1

[ejklnj∂l]1×3 κjlnj∂l ajlnj∂l

[qjklnj∂l]1×3 ajlnj∂l µjlnj∂l




5×5

, (4.25)

and
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Ẽ(Ũ∗, Ũ∗) = crjkl∂lu
∗
k∂ju

∗
r + κjl∂lϕ

∗∂jϕ
∗+

+ ajl(∂lϕ
∗∂jψ

∗ + ∂jψ
∗∂lϕ

∗) + µjl∂lψ
∗∂jψ

∗. (4.26)

Due to the fact that U∗ has the property Z∗(Ω−), it follows that Ũ∗ =
O(|x|−1) and ∂jŨ

∗ = O(|x|−2) as |x| → ∞, j = 1, 2, 3. Therefore,
∣∣∣∣
∫

ΣR

Ũ∗ · P̃ (∂, n)Ũ∗ dΣR

∣∣∣∣ ≤

≤
∫

ΣR

C

R3
dΣR =

C

R3
4πR2 =

4πC

R
→ 0 as R →∞. (4.27)

Taking into account that Ẽ(Ũ∗, Ũ∗) ≥ 0, applying the relations (4.21),
(4.22), and (4.27), from (4.24) we conclude that Ẽ(Ũ∗, Ũ∗) = 0. Hence
in view of (2.10)-(2.11) it follows that Ũ∗ = (a×x+b, b4, b5), where a and b
are arbitrary constant vectors, and b4 and b5 are arbitrary scalar constants.
Here the symbol × denotes the cross product operation. Due to the bound-
ary condition (4.22) we get then a = b = 0 and b4 = b5 = 0, from which we
derive that Ũ∗ = 0. Since Ũ∗ vanishes in Ω−, from (4.19)–(4.20) we arrive
at the following boundary-value problem for ϑ∗,

ηkj∂k∂jϑ
∗ = 0 in Ω−,

{ϑ∗}− = 0 on S.
(4.28)

From boundedness of ϑ∗ at infinity and from (4.28) one can derive that
ϑ∗(x) = C + O(|x|−1), where C is an arbitrary constant. In view of U∗ ∈
Z∗(Ω−) we have C = 0 and ϑ∗(x) = O(|x|−1), ∂jϑ

∗(x) = O(|x|−2), j =
1, 2, 3. Therefore we can apply Green’s formula

∫

Ω−R

[
ϑ∗ ηkj∂k∂jϑ

∗ + ηkj∂kϑ∗ ∂jϑ
∗
]
dx =

= −
∫

S

{ϑ∗}−{
ηkjnk∂jϑ

∗}− dS +
∫

ΣR

ϑ∗ ηkjnk∂jϑ
∗ dΣR.

Passing to the limit as R →∞, we get
∫

Ω−

ηkj∂kϑ∗∂jϑ
∗ dx = 0.

Using the fact that the matrix [ηkj ]3×3 is positive definite, we conclude that
ϑ∗ = C1 = const and since ϑ∗(x) = O(|x|−1) as |x| → ∞, finally we get
that ϑ∗ = 0 in Ω−. Thus U∗ = 0 in Ω− which completes the proof for the
exterior problem.

The interior problem can be treated quite similarly. ¤
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4.2. Investigation of the interior Neumann BVP. First let us treat
the uniqueness question. To this end we consider the homogeneous interior
Neumann-type BVP

A(∂)U(x) = 0, x ∈ Ω+, (4.29)
{T (∂, n)U(x)

}+ = 0, x ∈ S = ∂Ω+. (4.30)

It can be shown that a general solution to the problem (4.29)-(4.30) can be
represented in the form (for details see [20])

U =
9∑

k=1

CkU (k) in Ω+, (4.31)

where Ck are arbitrary scalar constants and {U (k)}9k=1 is the basis in the
space of solution vectors of the homogeneous problem (4.29)–(4.30). They
can be constructed explicitly and read as

U (k) =
(
Ṽ (k), 0

)>
, k = 1, 8, U (9) =

(
Ṽ (9), 1

)>
, (4.32)

where U (k) = (u(k), ϕ(k), ψ(k), ϑ(k))>, Ṽ (k) = (u(k), ϕ(k), ψ(k))>,

Ṽ (1) = (0,−x3, x2, 0, 0)>, Ṽ (2) = (x3, 0,−x1, 0, 0)>,

Ṽ (3) = (−x2, x1, 0, 0, 0)>, Ṽ (4) = (1, 0, 0, 0, 0)>,

Ṽ (5) = (0, 1, 0, 0, 0)>, Ṽ (6) = (0, 0, 1, 0, 0)>,

Ṽ (7) = (0, 0, 0, 1, 0)>, Ṽ (8) = (0, 0, 0, 0, 1)>,

and Ṽ (9) is defined as

Ṽ (9) = (u(9), ϕ(9), ψ(9))>, u
(9)
k = bkqxq, k = 1, 2, 3,

ϕ(9) = cqxq, ψ(9) = dqxq,

with the twelve coefficients bkq = bqk, cq and dq, k, q = 1, 2, 3, defined by
the uniquely solvable linear algebraic system of equations

crjklbkl + elrjcl + qlrjdl = λrj , r, j = 1, 2, 3,

−ejklbkl + κjlcl + ajldl = pj , j = 1, 2, 3,

−qjklbkl + ajlcl + µjldl = mj , j = 1, 2, 3.

From (4.31) it follows that U can be alternatively written as

U = (Ṽ , 0)> + b6(Ṽ (9), 1)>

with Ṽ = (a × x + b, b4, b5)>, where a = (a1, a2, a3)> and b = (b1, b2, b3)>

are arbitrary constant vectors and b4, b5, b6 are arbitrary scalar constants.
Now, we start the investigation of the non-homogeneous interior Neu-

mann-type BVP

A(∂)U(x) = 0, x ∈ Ω+, (4.33)
{T (∂, n)U(x)

}+ = F (x), x ∈ S, (4.34)
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where U ∈ [C1,κ′(Ω+)]6∩[C2(Ω+)]6 is a sought for vector and F ∈ [C0,κ′(S)]6

is a given vector-function. It is clear that if the problem (4.33)–(4.34) is
solvable, then a solution is defined within a summand vector of type (4.31).

We look for a solution to the problem (4.33)–(4.34) in the form of the
single layer potential,

U(x) = V (h)(x), x ∈ Ω+, (4.35)

where h = (h1, . . . , h6)> ∈ [C0,κ′(S)]6 is an unknown density. From the
boundary condition (4.34) and by virtue of the jump relation (2.21) (see
Theorem 2.5) we get the following integral equation for the density vector h

[−2−1I6 +K]h = F on S, (4.36)

whereK is a singular integral operator defined by (2.24). Note that−2−1I6+
K is a singular integral operator of normal type with index zero (cf. [23]).
Now we investigate the null space Ker(−2−1I6+K). To this end, we consider
the homogeneous equation

[−2−1I6 +K]h = 0 on S (4.37)

and assume that a vector h(0) is a solution to (4.37), i.e., h(0)∈Ker(−2−1I6+
K). Since h(0) ∈ [C0,κ′(S)]6, it is evident that the corresponding single layer
potential U0(x) = V (h(0))(x) belongs to the space of regular vector func-
tions and solves the homogeneous equation A(∂)U0(x) = 0 in Ω+. Moreover,
{T (∂, n)U0(x)}+ = −2−1h(0) + Kh(0) = 0 on S due to (4.37), i.e., U0(x)
solves the homogeneous interior Neumann problem. Therefore, in accor-

dance to the above results, we can write U0(x) =
9∑

k=1

CkU (k)(x) in Ω+,

where Ck, k = 1, 9, are some constants, and the vectors U (k)(x) are defined
by (4.32). Hence we have

V (h(0))(x) =
9∑

k=1

CkU (k)(x), x ∈ Ω+.

If we take into account the jump relation (2.20), we derive that

{
V (h(0))(x)

}+ ≡ H(h(0))(x) =
9∑

k=1

CkU (k)(x), x ∈ S. (4.38)

The operators

H : [H− 1
2 (S)]6 → [H

1
2 (S)]6,

: [C0,κ′(S)]6 → [C1,κ′(S)]6

are invertible ([19], [23]). Therefore from (4.38) we obtain

h(0) =
9∑

k=1

Ckh(k)(x), x ∈ S,
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with

h(k) := H−1(U (k)), k = 1, 9. (4.39)

Further we show that the system of vectors {h(k)}9k=1 is linearly indepen-
dent. Let us assume the opposite. Then there exist constants ck, k = 1, 9,

such that
9∑

k=1

|ck| 6= 0 and the following equation

9∑

k=1

ckh(k) = 0 on S

holds, i.e.,
9∑

k=1

ckH−1(U (k)) = 0 on S. Hence we get

H−1
( 9∑

k=1

ckU (k)
)

= 0 on S,

and, consequently,
9∑

k=1

ckU (k)(x) = 0, x ∈ S. (4.40)

Now consider the vector

U∗(x) ≡
9∑

k=1

ckU (k)(x), x ∈ Ω+.

Since the vectors U (k) are solutions of the homogeneous equation (4.33), in
view of (4.40) we have

A(∂)U∗(x) = 0, x ∈ Ω+,

{U∗(x)}+ =
{ 9∑

k=1

ckU (k)(x)
}+

= 0, x ∈ S.

That is, U∗ is a solution of the homogeneous interior Dirichlet problem and
in accordance with the uniqueness theorem for the interior Dirichlet BVP
we conclude U∗(x) = 0 in Ω+, i.e.,

9∑

k=1

ckU (k)(x) = 0, x ∈ Ω+.

This contradicts to linear independence of the system {U (k)}9k=1. Thus, the
system of the vectors {h(k)}9k=1 is linearly independent which implies that

dim Ker(−2−1I6 +K) ≥ 9.

Next we show that
dim Ker(−2−1I6 +K) ≤ 9.

Let the equation (−2−1I6+K)h = 0 have a solution h(10) which is not repre-
sentable in the form of a linear combination of the system {h(k)}9k=1. Then
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the system {h(k)}10k=1 is linearly independent. It is easy to show that the
system of the corresponding single layer potentials V (k)(x) := V (h(k))(x),
k = 1, 10, x ∈ Ω+, is linearly independent as well. Indeed, let us assume
the opposite. Then there are constants ak, such that

U(x) :=
10∑

k=1

akV (k)(x) = 0, x ∈ Ω+, (4.41)

with
10∑

k=1

|ak| 6= 0. From (4.41) we then derive that {U(x)}+ = 0, x ∈ S.

Therefore,

{U}+ =
10∑

k=1

ak{V (k)}+ =
10∑

k=1

akH(h(k)) = H
( 10∑

k=1

akh(k)
)

= 0 on S.

Whence, due to the invertibility of the operator H, we get
10∑

k=1

akh(k) = 0 on S.

which contradicts to the linear independence of the system {h(k)}10k=1.
Thus the system {V (h(k))(x)}10k=1 is linearly independent.
On the other hand, we have

A(∂)V (k)(x) = 0, x ∈ Ω+,
{T V (k)

}+ = (−2−1I6 +K)h(k) = 0, x ∈ S,

since h(k), k = 1, 10, are solutions to the homogeneous equation (4.37).
Therefore, the vectors V (k), k = 1, 10, are solutions to the homogeneous
interior Neumann-type BVP and they can be expressed by linear combi-
nations of the vectors U (j), j = 1, 9, defined in (4.32). Whence it fol-
lows that the system {V (k)}10k=1 is linearly dependent and so is the system
{h(k)}10k=1 for an arbitrary solution h(10) of the equation (4.37). Conse-
quently, dim Ker(−2−1I6 +K) ≤ 9 implying that dim Ker(−2−1I6 +K) = 9.
We can consider the system h(1), . . . , h(9) defined in (4.39) as basis vectors
of the null space of the operator −2−1I6 +K. If h0 is a particular solution
to the nonhomogeneous integral equation (4.36), then a general solution of
the same equation is represented as

h = h0 +
9∑

k=1

ckh(k),

where ck are arbitrary constants.
For our further analysis we need also to study the homogeneous interior

Neumann-type BVP for the adjoint operator A∗(∂), which reads as follows

A∗(∂)U∗ = 0 in Ω+, (4.42)

{PU∗}+ = 0 on S = ∂Ω+; (4.43)
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here the adjoint operator A∗(∂) and the boundary operator P are defined
by (4.1) and (2.18) respectively.

Note that in the case of the problem (4.42)–(4.43) we get also two sepa-
rated problems:

a) For the vector function Ũ∗ ≡ (u∗, ϕ∗, ψ∗)>,

Ã∗(∂)Ũ∗ = 0 in Ω+, (4.44)
{P̃Ũ∗}+ = 0 on S, (4.45)

where Ã∗ and P̃ are defined by (4.23) and (4.25) respectively, and
b) For the function U∗

6 ≡ ϑ∗

λrj∂ju
∗
r + pj∂jϕ

∗ + mj∂jψ
∗ + ηjl∂j∂lϑ

∗ = 0 in Ω+, (4.46)

ηjlnj∂lϑ
∗ = 0 on S. (4.47)

For a regular solution vector Ũ∗ of the problem (4.44)–(4.45) we can write
the following Green’s identity∫

Ω+

[
Ũ∗ · Ã∗(∂)Ũ∗ + Ẽ(Ũ∗, Ũ∗)

]
dx =

∫

∂Ω+

{Ũ∗}+ · {P̃(∂, n)Ũ∗}+
dS, (4.48)

where Ẽ is given by (4.26). If we take into account the conditions (4.44)–
(4.45), from (4.48) we get ∫

Ω+

Ẽ(Ũ∗, Ũ∗) dx = 0.

Hence we have that ∂jϕ
∗ = 0, ∂jψ

∗ = 0, j = 1, 2, 3, and ∂lu
∗
k + ∂ju

∗
r = 0

in Ω+. Therefore, u∗(x) = a× x + b is a rigid displacement vector, ϕ∗ = b4

and ψ∗ = b5 are arbitrary constants in Ω+. It is evident that

λrj∂ju
∗
r =

1
2

λrj(∂ju
∗
r + ∂ru

∗
j ) = 0

and pj∂jϕ
∗ = mj∂jψ

∗ = 0. Then from (4.46)–(4.47) we get the following
BVP for the scalar function ϑ∗,

ηjl∂j∂lϑ
∗ = 0 in Ω+,

ηjlnj∂lϑ
∗ = 0 on S.

Using the following Green’s identity∫

Ω+

ηjl∂j∂lϑ
∗ ϑ∗ dx = −

∫

Ω+

ηjl∂lϑ
∗ ∂jϑ

∗ dx +
∫

∂Ω+

{ηjlnj∂lϑ
∗}+{∂jϑ

∗}+ dS,

we find ∫

Ω+

ηjl∂lϑ
∗ ∂jϑ

∗ dx = 0,

and by the positive definiteness of the matrix [ηjl]3×3 we get ∂jϑ
∗ = 0,

j = 1, 3, in Ω+, i.e., ϑ∗ = b6 = const in Ω+. Consequently, a general
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solution U∗ = (u∗, ϕ∗, ψ∗, ϑ∗)> of the adjoint homogeneous BVP (4.42)–
(4.43) can be represented as

U∗(x) =
9∑

k=1

CkU∗(k)(x), x ∈ Ω+,

where Ck are arbitrary scalar constants, while

U∗(1) = (0,−x3, x2, 0, 0, 0)>, U∗(2) = (x3, 0,−x1, 0, 0, 0)>,

U∗(3) = (−x2, x1, 0, 0, 0, 0)>, U∗(4) = (1, 0, 0, 0, 0, 0)>,

U∗(5) = (0, 1, 0, 0, 0, 0)>, U∗(6) = (0, 0, 1, 0, 0, 0)>,

U∗(7) = (0, 0, 0, 1, 0, 0)>, U∗(8) = (0, 0, 0, 0, 1, 0)>,

U∗(9) = (0, 0, 0, 0, 0, 1)>.

(4.49)

As we see, U∗(k) = U (k), k = 1, 8, where U (k), k = 1, 8, is given in (4.32).
One can easily check that the system {U∗(k)}9k=1 is linearly independent.
As a result we get the following

Proposition 4.5. The space of solutions of the adjoint homogeneous BVP
(4.42)–(4.43) is nine dimensional and an arbitrary solution can be repre-
sented as a linear combination of the vectors

{
U∗(k)

}9

k=1
, i.e., the system

{U∗(k)}9k=1 is a basis in the space of solutions to the homogeneous BVP
(4.42)–(4.43).

Now, we return to equation (4.36) and consider the corresponding homo-
geneous adjoint equation

(−2−1I6 +K∗)h∗ = 0 on S,

where K∗ is the adjoint operator to K defined by the duality relation,

(Kh, h∗)L2(S) = (h,K∗h∗)L2(S), ∀h, h∗ ∈ [L2(S)]6.

It is easy to show that the operator K∗ is the same as the operator given
by (4.6). In what follows we prove that dim Ker

(− 1
2 I6 +K∗) = 9.

Indeed, in accordance with Proposition 4.5 we have that A∗(∂)U∗(k) = 0
in Ω+ and {PU∗(k)}+ = 0 on S. Therefore from (4.7) we have

U∗(k)(x) = W ∗({U∗(k)}+)
(x), x ∈ Ω+. (4.50)

By the jump relations (4.4) we get

h∗(k) = 2−1 h∗(k) +K∗h∗(k) on S,

where
h∗(k) := {U∗(k)}+, k = 1, 9. (4.51)

Whence it follows that
(− 2−1 I6 +K∗)h∗(k) = 0, k = 1, 9.
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By Theorem 4.4 and the relations (4.50) and (4.51) we conclude that the
system

{
h∗(k)

}9

k=1
is linearly independent, and therefore

dimKer
(− 2−1 I6 +K∗) ≥ 9.

Now, let h∗(0) ∈ Ker
(− 2−1 I6 + K∗), i.e.,

(− 2−1 I6 + K∗)h∗(0) = 0. The
corresponding double layer potential U∗

0 (x) := W ∗(h∗(0))(x) is a solution to
the homogeneous equation A∗(∂)U∗

0 = 0 in Ω+. Moreover, {W ∗(h∗(0))}− =
−2−1 h∗(0) + K∗h∗(0) = 0 on S. Consequently, U∗

0 is a solution of the
homogeneous exterior Dirichlet BVP possessing the property Z∗(Ω−). With
the help of the uniqueness Theorem 4.4 we conclude that W ∗(h∗(0)) = 0 in
Ω−. Further,

{PW ∗(h∗(0))
}+ = {PW ∗(h∗(0))}− = 0 due to Theorem 4.3,

and for the vector function U∗
0 we arrive at the following BVP,

A∗(∂)U∗
0 = 0 in Ω+,

{PU∗
0

}+ = 0 on S.

Using Proposition 4.5 we can write

U∗
0 (x) = W ∗(h∗(0))(x) =

9∑

k=1

ckU∗(k)(x), x ∈ Ω+,

where ck are some constants. The jump relation for the double layer poten-
tial then gives

{
W ∗(h∗(0))(x)

}+ − {
W ∗(h∗(0))(x)

}−

= h∗(0)(x) =
9∑

k=1

ck

{
U∗(k)(x)

}+ =
9∑

k=1

ckh∗(k)(x), x ∈ S,

which implies that the system
{
h∗(k)

}9

k=1
represents a basis of the null space

Ker
(− 2−1 I6 +K∗). Whence it follows that dim Ker

(− 2−1 I6 +K∗) = 9.
Now we can formulate the following basic existence theorem for the in-

tegral equation (4.36) and the interior Neumann-type BVP.

Theorem 4.6. Let m ≥ 0 be a nonnegative integer and 0 < κ′ < κ ≤ 1.
Further, let S ∈ Cm+1,κ and F ∈ [Cm,κ′(S)]6. The necessary and sufficient
conditions for the integral equation (4.36) and the interior Neumann-type
BVP (4.33)–(4.34) to be solvable read as

∫

S

F (x) · h∗(k)(x) dS = 0, k = 1, 9, (4.52)

where the system {h∗(k)}9k=1 is defined explicitly by (4.51) and (4.49).
If these conditions are satisfied, then a solution vector to the interior

Neumann-type BVP is representable by the single layer potential (4.35),
where the density vector h ∈ [Cm,κ′(S)]6 is defined by the integral equa-
tion (4.36).



Einvestigation of Interior and Exterior Neumann-Type 125

A solution vector function U ∈ [Cm+1,κ′(Ω+)]6 is defined modulo a linear
combination of the vector functions {U (k)}9k=1 given by (4.32).

Remark 4.7. Similar to the exterior problem, if S is a Lipschitz surface,
F ∈ [

H−1/2(S)
]6

, and the conditions (4.52) is fulfilled, then

(i) the integral equation (4.36) is solvable in the space
[
H−1/2(S)

]6;
(ii) the interior Neumann-type BVP (4.33)-(4.34) is solvable in the

space
[
H1

2 (Ω+)
]6 and solutions are representable by the single layer

potential (4.35), where the density vector h ∈ [
H−1/2(S)

]6 solves
the integral equation (4.36);

(iii) A solution U ∈ [
H1

2 (Ω+)
]6 to the interior Neumann-type BVP

(4.33)-(4.34) is defined modulo a linear combination of the vector
functions

{
U (k)

}9

k=1
given by (4.32).
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lems of metallic and piezoelectric materials with regard to thermal stresses. Mem.
Differential Equations Math. Phys. 45 (2008), 7–74.

7. T. Buchukuri, O. Chkadua, and D. Natroshvili, Mixed boundary value prob-
lems of thermopiezoelectricity for solids with interior cracks, Integral Equations and
Operator Theory. 64 (2009), No. 4, 495–537.

8. M. Costabel, Boundary integral operators on Lipschitz domains: elementary results.
SIAM J. Math. Anal. 19 (1988), No. 3, 613–626.

9. R. Duduchava, The Green formula and layer potentials, Integral Equations and
Operator Theory. 41 (2001), No. 2, 127–178.

10. R. Duduchava, D. Natroshvili, and E. Shargorodsky, Boundary value problems
of the mathematical theory of cracks. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 39
(1990), 68–84.

11. R. Duduchava, D. Natroshvili, and E. Shargorodsky, Basic boundary value
problems of thermoelasticity for anisotropic bodies with cuts. I. Georgian Math. J.
2 (1995), No. 2, 123–140; II. Georgian Math. J. 2 (1995), No. 3, 259–276.

12. G. C. Hsiao and W. L. Wendland, Boundary integral equations. Applied Mathe-
matical Sciences, 164. Springer-Verlag, Berlin, 2008.



126 M. Mrevlishvili and D. Natroshvili

13. L. Jentsch and D. Natroshvili, Three-dimensional mathematical problems of ther-
moelasticity of anisotropic bodies. I. Mem. Differential Equations Math. Phys. 17
(1999), 7–126.

14. L. Jentsch and D. Natroshvili, Three-dimensional mathematical problems of ther-
moelasticity of anisotropic bodies. II. Mem. Differential Equations Math. Phys. 18
(1999), 1–50.

15. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze,
Three-dimensional problems of the mathematical theory of elasticity and thermoe-
lasticity. Translated from the second Russian edition. Edited by V. D. Kupradze.
North-Holland Series in Applied Mathematics and Mechanics, 25. North-Holland
Publishing Co., Amsterdam-New York, 1979.

16. J. Y. Li, Uniqueness and reciprocity theorems for linear thermo-electro-magneto-
elasticity. Quart. J. Mech. Appl. Math. 56 (2003), No. 1, 35–43.

17. W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge
University Press, Cambridge, 2000.
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