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Abstract. We consider a class of pseudodifferential operators with
operator-valued symbols a = a(x, ξ) having power growth with respect to
the variables x and ξ. Moreover we consider the symbols analytically ex-
tended with respect to ξ onto a tube domain in Cn with a base being a ball
in Rn with a radius depending on the variable x.

The main results of the paper are the Fredholm theory of pseudodiffer-
ential operators with operator valued symbols and exponential estimates at
infinity of solutions of pseudodifferential equations Op(a)u = f .

We apply these results to Schrödinger operators with operator-valued po-
tentials and to the spectral properties of Schrödinger operators in quantum
waveguides.
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îâäæñéâ. øãâê àŽêãæýæèŽãå òïâãáëáæòâîâêùæŽèñî ëìâîŽðëîâĲï ëìâ-
îŽðëîñè éêæöãêâèëĲâĲæŽêæ ïæéĲëèëâĲæå a = a(x, ξ), îëéâèåŽù Žóãå ýŽîæ-
ïýëãŽêæ äîáŽ x áŽ ξ ùãèŽáâĲæï éæéŽîå. ñòîë éâðæù, øãâê àŽêãæýæèŽãå ïæ-
éĲëèëâĲï, îëéèâĲæù ñöãâĲâê ŽêŽèæäñî àŽàîúâèâĲŽï ξ ùãèŽáæï éæéŽîå éæ-
èæïâĲî Žîâäâ Cn-öæ, îëéèæï òñúâ ûŽîéëŽáàâêï Ĳæîåãï Rn-öæ áŽ Žé Ĳæîåãæï
îŽáæñïæ áŽéëçæáâĲñèæŽ x ùãèŽáäâ.

êŽöîëéæï úæîæåŽáæ öâáâàæŽ ëìâîŽðëîñè éêæöãêâèëĲâĲæŽêæ ïæéĲëèëâĲæï
éóëêâ òïâãáëáæòâîâêùæŽèñîæ ëìâîŽðëîâĲæïåãæï òîâáßëèéæï åâëîæŽ áŽ
Op(a)u = f òïâãáëáæòâîâêùæŽèñîæ àŽêðëèâĲâĲæï ŽéëêŽýïêâĲæï âóïìëêâê-
ùæŽèñîæ öâòŽïâĲâĲæ ñïŽïîñèëĲŽöæ.

éæôâĲñè öâáâàâĲï ãæõâêâĲå ëìâîŽðëîñè éêæöãêâèëĲâĲæŽĲæ ìëðâêùæŽèâ-
Ĳæï éóëêâ öîëáæêàâîæï ëìâîŽðëîâĲæïŽåãæï áŽ çãŽêðñîæ ðŽèôâĲæï àŽéðŽ-
îâĲöæ öîëáæêàâîæï ëìâîŽðëîâĲæï ïìâóðîŽèñîæ åãæïâĲâĲæïŽåãæï.
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1. Introduction

We consider the class of pseudodifferential operators

(Op(a)u)(x)=(2π)−n

∫

Rn

dξ

∫

Rn

a(x, ξ)u(y)ei(x−y)·ξ dy, u ∈ S(Rn,H1), (1)

with symbols a with values in the space of bounded linear operators acting
from a Hilbert space H1 into a Hilbert space H2. In (1), S(Rn,H1) is the
space of H1-valued infinitely differentiable functions rapidly decreasing with
all their derivatives. We consider the symbols which can have a power
growth at infinity with respect to the variables x and ξ. Moreover, we
suppose that the symbol a can be analytically extended with respect to ξ
onto a tube domain Rn + i{η ∈ Rn : |η| < b(x)}, where b is a continuous
positive function.

The main results of the paper are the Fredholm theory of pseudodifferen-
tial operators and exponential estimates at infinity of solutions of pseudodif-
ferential equations Op(a)u = f . We apply these results to the Schrödinger
operators with operator-valued potentials and discuss applications to quan-
tum waveguides.

Our approach is based on the construction of the local inverse operator
at infinity and on estimates of commutators of pseudodifferential operators
with exponential weights (First the idea of this approach for scalar pseudo-
differential operators with bounded symbols appeared in the paper [20], and
later also for scalar pseudodifferential operators with symbols admitting a
power, exponential and super-exponential grows and local discontinuities in
[31], [32], [34]. [35].)

Estimates of exponential decay are intensively studied in the literature.
We would like to emphasize Agmon’s monograph [1] where the exponen-
tial estimates of the behavior of solutions of second order elliptic operators
have been obtained in terms of a special metric (now called the Agmon
metric). See also [4], [18], [19], [16], [20], [24], [25], [28], [31], [32], [5], [6],
[35]. In [36], [37] the authors established the relation between the essen-
tial spectrum of pseudodifferential operators and exponential decay of their
solutions at infinity. The recent paper [33] is devoted to local exponential es-
timates of solutions of finite-dimensional h-pseudodifferential operators with
applications to the tunnel effect for Schrödinger, Dirac and Klein–Gordon
operators.

It turns out that many problems in mathematical physics are reduced to
the study of associated pseudodifferential operators with operator-valued
symbols. In particular, this happens for problems of wave propagation in
acoustic, electromagnetic and quantum waveguides (see for instance [3] and
references cited there).

This paper is organized as follows. In Section 2 we present some auxil-
iary facts on operator-valued pseudodifferential operators. Some standard
references for the theory of pseudodifferential operators are [17], [39], [40],
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whereas operator-valued pseudodifferential operators have been studied in
[21], [22]. The approach in the latter books follows ideas by Hörmander
and employs a special partition of unity connected with a metric defining
the class of pseudodifferential operators. We will follow here the approach
of [30], which based on the notion of a formal symbol. A main point is the
representation of the symbol of a product of pseudodifferential operators
and of a double pseudodifferential operators in form of an operator-valued
double oscillatory integral. This approach allows us to extend the theory
of scalar pseudodifferential operators to pseudodifferential operators with
operator-valued symbols, and it provides us with an pseudodifferential op-
erator calculus which is convenient for applications.

In Section 3 we examine the local invertibility at infinity of operator-
valued pseudodifferential operators in suitable spaces and discuss their Fred-
holm property. Section 4 is devoted to the exponential estimates at infinity
of solutions of operator-valued pseudodifferential operators. In the conclud-
ing Section 5 we study the Fredholm property of Schrödinger operators and
derive exponential estimates at infinity of solutions of Schrödinger equations
with operator-valued increasing potentials. These general results are then
applied to the Fredholm property of Schrödinger operators with increasing
potentials for quantum waveguides, for which we obtain exponential esti-
mates of eigenfunctions. Note that spectral problems for quantum waveg-
uides have attracted many attention in the last time. See, for instance, [3],
[10], [13], [9].

2. Pseudodifferential Operators with Operator Valued
Symbols and its Fredholm Properties

2.1. Notations.

• Given Banach spaces X, Y , we denote the Banach space of all
bounded linear operators acting from X in Y by L(X, Y ). In case
X = Y , we simply write L(X).

• Let x = (x1, . . . , xn) ∈ Rn. Then we denote by ξ = (ξ1, . . . , ξn) ∈
Rn the points of the dual space with respect to the scalar product
〈x, ξ〉 = x · ξ = x1ξ1 + · · ·+ xnξn.

• For j = 1, . . . , n, let ∂xj := ∂
∂xj

and Dxj := −i ∂
∂xj

. More generally,
given a multi-index α = (α1, . . . , αn), set |α| := α1 + · · ·+ αn and

∂α
x := ∂α1

x1
· · · ∂αn

xn
and Dα

x := Dα1
x1
· · ·Dαn

xn
.

• Let 〈ξ〉 := (1 + |ξ|2)1/2 for ξ ∈ Rn.
• Let X be a Banach space. We denote by

(i) C∞(Rn, X) the set of all infinitely differentiable functions on
Rn with values in X;

(ii) C∞0 (Rn, X) the set of all functions in C∞(Rn, X) with compact
supports;
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(iii) C∞b,N (Rn, X) the set of all functions a ∈ C∞(Rn, X) such that
for some N ≥ 0

sup
x∈Ω

∑

|α|≤k

〈x〉−N
∥∥(∂α

x a)(x)
∥∥

X
< ∞

for every k ∈ N0 := N ∪ {0}. We will write C∞b (Rn, X) if
N = 0.

(iv) S(Rn, X) the set of all functions a ∈ C∞(Rn, X) such that

sup
x∈Rn

〈x〉k
∑

|α|≤k

∥∥(∂α
x a)(x)

∥∥
X

< ∞

for every k ∈ N0.
In each case, we omit X whenever X = C.

• Let H be a Hilbert space and u ∈ S(Rn,H). Then we denote by

û(ξ) = (Fu)(ξ) :=
∫

Rn

u(x)e−ix·ξ dx

the Fourier transform of u. Note that F : S(Rn,H) → S(Rn,H) is
an isomorphism with inverse

(F−1û)(x) = (2π)−n

∫

Rn

û(ξ)eix·ξ dξ.

We write S′(Rn,H) for the space of distributions over S(Rn,H)
and define the Fourier transform of distributions in S′(Rn,H) via
duality. Note that F : S′(Rn,H) → S′(Rn,H) is an isomorphism.

• In what follows we consider separable Hilbert spaces H only.

2.2. Oscillatory vector-valued integrals. 10. Let B be a Banach space,
and let a be a function in C∞(Rn×Rn, B) for which there exist m1, m2 ∈ R
such that

|a|r,t :=
∑

|α|≤r, |β|≤t

sup
Rn×Rn

∥∥∂α
ξ ∂β

xa(x, ξ)
∥∥

B
〈x〉−m1〈ξ〉−m2 < ∞ (2)

for all r, t ∈ N0. Further let χ ∈ C∞0 (Rn ×Rn) be such that χ(x, ξ) = 1 for
all points (x, ξ) in a neighborhood of the origin. Let R > 0. In what follows
we call χR(x, ξ) := χ(x/R, ξ/R) a cut-off function.

Proposition 1. Let a ∈ C∞(Rn×Rn, B) satisfy the estimates (2). Then
the limit

I(a) := lim
R→∞

(2π)−n

∫ ∫

R2n

χR(x, ξ)a(x, ξ)e−ix·ξ dx dξ

exists in the norm topology of B and

I(a) = (2π)−n

∫ ∫

R2n

〈ξ〉−2k2〈Dx〉2k2
{〈x〉−2k1〈Dξ〉2k1a(x, ξ)

}
e−ix·ξ dx dξ
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for all
2k1 > n + m1, 2k2 > n + m2. (3)

This limit is independent on k1, k2 satisfying (3) and the choice of χ. More-
over,

‖I(a)‖B ≤ C
∑

|α|≤2k1, |β|≤2k2

sup
Rn×Rn

∥∥∂α
ξ ∂β

x a(x, ξ)
∥∥

B
〈x〉−m1〈ξ〉−m2 =

= C|a|2k1,2k2 . (4)

The element I(a) ∈ B is called the oscillatory integral.

In what follows the double integral
∫ ∫

R2n

a(x, ξ)e−ix·ξ dx dξ

is understood as oscillatory.

Proposition 2. Let a ∈ C∞(Rn, B) and for all β

‖∂β
xa(x)‖B ≤ Cβ〈x〉N , N > 0.

Then, for each x ∈ Rn,

(2π)−n

∫ ∫

R2n

a(x + y)e−iy·ξ dy dξ = a(x). (5)

Propositions 1 and 2 are proved as in the scalar case by integrating by
parts (see for instance [30]).

2.3. Pseudodifferential operators. Let H and H′ be Hilbert spaces. A
function p ∈ C∞(Rn × Rn,L(H′,H)) is said to be a weight function in the
class O(H,H′) if the operator p(x, η) is invertible for each (x, η) ∈ Rn×Rn

and for all α, β there are constants Cαβ > 0 such that
∥∥∥p(y, η)−1∂β

x∂α
ξ p(x + y, ξ + η)

∥∥∥
L(H′)

≤ Cαβ

(
1 + |y|+ |η|)N

,

∥∥∥
(
∂β

x∂α
ξ p(x + y, ξ + η)

)
p−1(y, η)

∥∥∥
L(H)

≤ Cαβ

(
1 + |y|+ |η|)N

(6)

for some N > 0 and arbitrary pairs (x, ξ), (y, η) ∈ Rn × Rn.

Example 3. We give an important example of a weight function. Let
L be an unbounded self-adjoint positive operator in a Hilbert space H with
a dense in H domain DL and L ≥ δI, Eµ, µ ∈ [δ,∞) be the family of
the spectral projectors of the self-adjoint operator L. Then the operator
Lm,m ≥ 0 is defined by means of the spectral decomposition as

Lmu =

+∞∫

δ

µm dEµu
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with domain

DLm =
{

u ∈ H :

+∞∫

δ

µ2m ‖dEµu‖2H < ∞
}

.

One can introduce in DLm the structure of the Hilbert space HLm by the
scalar product

〈u, v〉HLm =

+∞∫

δ

µ2m 〈dEµu, v〉H.

We denote byHL−m the dual space toHLm , m > 0 with respect to the scalar
product 〈u, v〉H. Note that the operator Lm : HLm → H is an isomorphism
of the Hilbert spaces with inverse L−m : H → HLm . Let

pm(x, ξ) =
((〈ξ〉+ q(x)

)
I + L

)m

,m ∈ R,

where q(x) ≥ 1 for all x ∈ Rn and
∣∣∂β

x q(x + y)q−1(x)
∣∣ ≤ Cβq(x)〈y〉r, r > 0, C > 0. (7)

Inequality (7) implies that for every µ ≥ 0

µ + q(x + y) ≤ µ + Cq(x)〈y〉r ≤ C〈y〉r(µ + q(x)), (8)

and
〈ξ + η〉+ µ ≤

√
2 〈ξ〉〈η〉+ µ ≤

√
2 〈η〉(〈ξ〉+ µ

)
. (9)

Applying (8) and (9) we obtain that for every µ ≥ 0

〈ξ + η〉+ q(x + y) + µ ≤ C〈η〉〈y〉r(〈ξ〉+ q(x) + µ
)
. (10)

It follows from (10) that for every m ∈ R
(〈ξ + η〉+ q(x + y) + µ

)m ≤ C〈η〉|m|〈y〉|m|r(〈ξ〉+ q(x) + µ
)m

. (11)

The spectral representation for pm(x, ξ), m ∈ R

pm(x, ξ) =
∫

R+

(〈ξ〉+ q(x) + µ
)m

dEµ

yields the estimates
∥∥pm(x, ξ)−1pm(x + y, ξ + η)

∥∥2

L(Hm)
=

=
∥∥Lmpm(x, ξ)p−m(x + y, ξ + η)L−m

∥∥2

L(H)
≤

≤ sup
µ∈[δ,∞)

∣∣∣
(〈ξ + η〉+ q(x + y) + µ

)m

(〈ξ〉+ q(x) + µ
)m

∣∣∣ ≤ C〈η〉|m|〈y〉|m|r. (12)

In the same way we obtain that
∥∥p−m(x, ξ)pm(x + y, ξ + η)

∥∥2

L(H)
≤ C〈η〉|m|〈y〉|m|r

and corresponding estimates (6) for derivatives. Hence pm ∈ O(HLm ,H)
for every m ∈ R.
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Let now H1, H′1, H2 and H′2 be Hilbert spaces and p1 ∈ O(H1,H′1) and
p2 ∈ O(H2,H′2). We say that a function a : Rn × Rn → L(H1,H2) belongs
to S(p1, p2) if

|a|l1,l2 :=

:=
∑

|α|≤l1, |β|≤l2

sup
(x,ξ)∈Rn×Rn

∥∥p−1
2 (x, ξ)∂β

x ∂α
ξ a(x, ξ)p1(x, ξ)

∥∥
L(H′1,H′2)

<∞ (13)

for every l1, l2 ∈ N0. The semi-norms |a|l1,l2 define a Frechet topology on
S(p1, p2). The (operator-valued) functions in S(p1, p2) are called symbols.

With each symbol a ∈ S(p1, p2), we associate the pseudodifferential op-
erator Op(a) which acts at u ∈ S(Rn,H1) by

Op(a)u(x) = (2π)−n

∫

Rn

a(x, ξ)û(ξ)eix·ξ dξ =

= (2π)−n

∫

Rn

dξ

∫

Rn

a(x, ξ)u(y)ei(x−y)·ξ dy. (14)

We denote the set of all pseudodifferential operators with symbols in
S(p1, p2) by OPS(p1, p2).

We will also need double symbols and their associated double pseudo-
differential operators. Let again p1 ∈ O(H1,H′1) and p2 ∈ O(H2,H′2). A
function a : Rn × Rn × Rn → L(H1,H2) is said to belong to the class
Sd(p1, p2) of double symbols if there exist N > 0 such that

|a|l1,l2,l3 =
∑

|α|≤l1, |β|≤l2, |γ|≤l3

sup
(x,y,ξ)∈R3n

〈y〉−N×

×
∥∥p2(x, ξ)−1∂β

x ∂γ
y ∂α

ξ a(x, x + y, ξ)p1(x, ξ)
∥∥
L(H′1,H′2)

< ∞ (15)

for each l1, l2, l3 ∈ N0. We correspond to each double symbol a ∈ Sd(p1, p2)
the double pseudodifferential operator

Opd(a)u(x) := (2π)−n

∫

Rn

dξ

∫

Rn

a(x, y, ξ)u(y)ei(x−y)·ξ dy, (16)

u ∈ S(Rn,H1) and denote the class of all double pseudodifferential operators
by OPSd(p1, p2). Note that the estimates (6) and (13) imply that if a ∈
S(p1, p2) or Sd(p1, p2) there exist M > 0, N > 0 and constants Cαβ and
Cαβγ such that

∥∥∂β
x ∂α

ξ a(x, ξ)
∥∥
L(H1,H2)

≤ Cαβ

(
1 + |x|+ |ξ|)N (17)

and ∥∥∂β
x ∂γ

y ∂α
ξ a(x, y, ξ)

∥∥
L(H1,H2)

≤ Cαβγ

(
1 + |x|+ |ξ|)N 〈y〉M (18)

for all multiindeces α, β, γ.
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Integrating by parts one can prove as in the scalar case that the pseu-
dodifferential operators (14) and (16) can be written of the form of double
oscillatory integrals depending on the parameter x ∈ Rn,

(Op(a)u)(x) = (2π)−n

∫ ∫

R2n

a(x, ξ)u(x + y)e−iy·ξ dξ dy, (19)

(Opd(a)u)(x) = (2π)−n

∫ ∫

R2n

a(x, x + y, ξ)u(x + y)e−iy·ξ dξ dy, (20)

and that the operators Op(a) and Opd(a) in (19) and (20) are defined on
C∞b (Rn,H1).

For ξ ∈ Rn, define eξ : Rn → C by eξ(x) := eix·ξ. Let now A be a
continuous linear operator from C∞b (Rn,H1) to C∞b,N (Rn,H2), N ≥ 0, and
let (x, ξ) ∈ Rn × Rn. Then there is a bounded linear operator σA(x, ξ) :
H1 → H2 such that

e−ξ(x)
[
A(eξ ⊗ ϕ)

]
(x) = σA(x, ξ)ϕ (21)

for every ϕ ∈ H1. The function σA : Rn × Rn → L(H1,H2) is then called
the formal symbol of A.

We will suppose that there exists N ≥ 0, C > 0 such that

‖σA(x, ξ)‖L(H1,H2) ≤ C
(
1 + |x|+ |ξ|)N

. (22)

Proposition 4. Let A : C∞b (Rn,H1) → S′(Rn,H2) be a continuous
linear operator with a formal symbol σA. Then A acts at functions u ∈
S(Rn,H1) via

(Au)(x) = (2π)−n

∫

Rn

eix·ξσA(x, ξ)û(ξ) dξ. (23)

Proof. Let u ∈ S(Rn,H1). Then

u(x) = (2π)−n

∫

Rn

û(ξ)eξ(x) dξ.

Let {φj} be an orthonormal basis of H1 and write û(ξ) =
∞∑

j=1

ûj(ξ)φj with

Fourier coefficients ûj(ξ) = 〈û(ξ), φj〉H1 . Hence,

(Au)(x) = (2π)−n

∫

Rn

∞∑

j=1

ûj(ξ)(A(eξ ⊗ φj))(x) dξ =

= (2π)−n

∫

Rn

∞∑

j=1

ûj(ξ)eix·ξσA(x, ξ)φj dξ =

= (2π)−n

∫

Rn

eix·ξσA(x, ξ)û(ξ) dξ. (24)
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The last integral exists according to estimate (22). ¤

Proposition 5. Let A = Op(a) ∈ OPS(p1, p2). Then A has a formal
symbol σA which coincides with a.

Proof. Let ξ ∈ Rn and ϕ ∈ H1. Then, by (19),

(
A(eξ ⊗ ϕ)

)
(x) = (2π)−n

∫ ∫

R2n

a(x, η)ϕei(x+y)·ξe−iy·η dη dy =

= eix·ξ(2π)−n

∫ ∫

R2n

a(x, ξ + η)ϕe−iy·η dη dy. (25)

Using equality (5) we obtain from (25)

σA(x, ξ)ϕ = e−ix·ξA(eξ ⊗ ϕ)(x) = a(x, ξ)ϕ

which gives the assertion. ¤

The next propositions describe the main properties of pseudodifferential
operators with operator-valued symbols.

Proposition 6. Every operator in OPS(p1, p2) is bounded from
S(Rn,H1) to S(Rn,H2).

The proof makes use of estimates (17) and runs completely similar to the
proof for scalar pseudodifferential operators (see, for instance, [30]).

Hence the composition of pseudodifferential operators is well defined.
But below we will prove that the product of pseudodifferential operators is
a pseudodifferential operator again.

Proposition 7.

(i) Let A1 = Op(a1) ∈ OPS(p1, p2) and A2 = Op(a2) ∈ OPS(p2, p3).
Then A2A1 ∈ OPS(p1, p3), and the symbol of A2A1 is given by

σA2A1(x, ξ) = (2π)−n

∫ ∫

R2n

a2(x, ξ + η)a1(x + y, ξ)e−iy·η dy dη. (26)

(ii) Let A = Opd(a) ∈ OPSd(p1, p2). Then A ∈ OPS(p1, p2), and the
symbol of A is given by

σA(x, ξ) = (2π)−n

∫ ∫

R2n

a(x, x + y, ξ + η)e−iy·η dy dη. (27)

The double integrals in (26), (27) are understood as oscillatory in-
tegrals.

Proof. The proof mimics the proof for the scalar case (see [30]).
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(i) Let ϕ ∈ H1. Then, applying formula (5) we obtain

σA2A1(x, ξ)φ = e−ix·ξA2

[
A1(eξφ)

]
(x) =

= e−ix·ξA2(a1(·, ξ)eξφ)(x) =

= (2π)−n

∫ ∫

R2n

a2(x, η)a1(y, ξ)e−i(x−y)·(ξ−η)φ dy dη =

= (2π)−n

∫ ∫

R2n

a2(x, ξ + η)a1(x + y, ξ)e−iy·ηφ dy dη.

Hence, formula (26) holds. Further we have to show that

σA2A1(x, ξ) = (2π)−n×

×
∫∫

R2n

〈y〉−2k1〈Dη〉2k1

{
〈η〉−2k2〈Dy〉2k2a2(x, ξ+η)a1(x+y, ξ)

}
e−iy·ηdydη. (28)

Application of the Leibnitz formula leads to the estimates

p−1
3 (x, ξ)Iγ,δ(x, ξ)p1(x, ξ) = (2π)−n

∫ ∫

R2n

〈y〉−2k1〈η〉−2k2p−1
3 (x, ξ)×

× ∂γ
η a2(x, ξ + η)∂δ

ya1(x + y, ξ)p1(x, ξ)e−iy·η dy dη. (29)

Applying the next estimates following from (6)
∥∥p−1

3 (x, ξ)p3(x, ξ + η)
∥∥ ≤ C〈η〉M3 ,

∥∥p−1
2 (x, ξ + η)p2(x, ξ)

∥∥ ≤ C〈η〉M2 ,
∥∥p−1

2 (x + y, ξ)p2(x, ξ)
∥∥ ≤ C〈y〉M2 ,

∥∥p−1
1 (x + y, ξ)p1(x, ξ)‖ ≤ C〈y〉M1 ,

(30)

and choosing 2k1 > n+M1+M2, 2k2 > n+M2+M3, we obtain the estimate
∥∥p−1

3 (x, ξ)Iγ,δ(x, ξ)p1(x, ξ)
∥∥
B(H′1,H′3)

≤ C|a2|l1,l2 |a1|l1,l2 ,

for some l1, l2 ∈ N. In the same way one can show that
∥∥p−1

3 (x, ξ)∂β
x ∂α

ξ σA2A1(x, ξ)p1(x, ξ)
∥∥
B(H′1,H′3)

≤ C|a2|l1,l2 |a1|l1,l2 ,

for some l1, l2 ∈ N.
(ii) Following the proof of (i) we have to estimate the integrals

p−1
2 (x, ξ)Iγ,δ(x, ξ)p1(x, ξ) = (2π)−n×

×
∫ ∫

R2n

〈y〉−2k1〈η〉−2k2p−1
2 (x, ξ)∂γ

η ∂δ
ya(x, x+y, ξ+η)p1(x, ξ)e−iy·η dy dη. (31)

Applying (30) and the estimate
∥∥p−1

2 (x, ξ+η)∂γ
η ∂δ

xa(x, x+y, ξ+η)p1(x, ξ+η)
∥∥
L(H′1,H′2)

≤C|a|l1,0,l3〈y〉N ,
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and choosing 2k1 > n + N , 2k2 > n + M1 + M2 we obtain
∥∥p−1

2 (x, ξ)Iγ,δ(x, ξ)p1(x, ξ)
∥∥
L(H′1,H′2)

≤ C|a|l1,0,l3 .

In the same way we obtain the estimate
∥∥p−1

2 (x, ξ)∂β
x ∂α

ξ σA(x, ξ)p1(x, ξ)
∥∥
L(H′1,H′3)

≤ C|a|l1,l2,l3 . ¤

An operator A∗ is called the formal adjoint to the operator A ∈
OPS(p1, p2) if, for arbitrary functions u ∈ S(Rn,H1) and v ∈ S(Rn,H2),

〈Au, v〉L2(Rn,H2) = 〈u, A∗v〉L2(Rn,H1). (32)

Proposition 8. Let A = Op(a)∈OPS(p1, p2). Then A∗ ∈ OPS(p∗2, p
∗
1),

and the symbol of A∗ is given by

σA∗(x, ξ) = (2π)−n

∫ ∫

R2n

a∗(x + y, ξ + η)ei(x−y)·ξ dy dξ, (33)

where
〈a(x, ξ)u, v〉H2 = 〈u, a∗(x, ξ)v〉H1

for all u ∈ H1 and v ∈ H2. The double integrals in (33) are understood as
oscillatory integrals.

The assertion of Proposition 8 follows from Proposition 7 (ii).
By Proposition 8 and formula (32), one can think of operators in

OPS(p1, p2) as acting from S′(Rn,H1) to S′(Rn,H2).

Theorem 9 (Calderon–Vaillancourt). If A= Op(a) ∈ OPS(IH1 , IH2) :=
OPS(H1,H2), then A is bounded as operator from L2(Rn,H1) to
L2(Rn,H2), and there exists constants C > 0 and 2k1, 2k2 > n such that

‖A‖L(L2(Rn,H1),L2(Rn,H2))≤C
∑

|α|≤2k1,|β|≤2k2

sup
(x,ξ)∈R2n

∥∥a
(β)
(α)(x, ξ)

∥∥
L(H1,H2)

.

Proposition 10 (Beals). Let A = Op(a) ∈ OPS(H1,H2) be invertible
as operator from L2(Rn,H1) to L2(Rn,H2). Then A−1 ∈ OPS(H2,H1).

2.4. Sobolev spaces H(Rn, ph). Let p ∈ O(H′,H). We denote by ph, h >
0 the symbol ph(x, ξ) = p(x, hξ).

Proposition 11. . Let p ∈ O(H1,H2). Then for every h > 0

Op(ph)Op(p−1
h ) = IH2 + hOp(r2

h),

Op(p−1
h )Op(ph) = IH1 + hOp(r1

h),
(34)

where Op(rj
h) ∈ OPS(Hj ,Hj), j = 1, 2, and

sup
h>0

‖Op(rj
h)‖L(Hj)

< ∞, j = 1, 2.

For the proof see [33], Proposition 7 and Corollary 14.
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Corollary 12. For h > 0 small enough

Op(ph)Op(ph)−1 = IH2 , Op(ph)−1Op(ph) = IH1 , (35)

where

Op(ph)−1 = Op(p−1
h )(IH2 + hOp(r2

h))−1 = (IH2 + hOp(r1
h))−1Op(p−1

h ).

In what follows for p ∈ O(H1,H2) we fix h > 0, such that there exists
Op(ph)−1.

We denote by H(Rn, ph) the Banach space which is the closure of
S(Rn,H) with respect to the norm

‖u‖H(Rn,ph) := ‖Op(ph)u‖L2(Rn,H′).

It turns out that then Op(ph) : H(Rn, ph) → L2(Rn,H1) is an isomorphism.
Using these facts one easily gets the following versions of Proposition 9 and
10, respectively.

Proposition 13. Let Op(a) ∈ OPS(p1, p2). Then Op(a) is bounded as
operator from H(Rn, p1,h) to H(Rn, p2,h), and

‖A‖L(H(Rn,p1,h),H(Rn,p2,h)) ≤ C|a|l1,l2 ,

where C > 0 and l1, l2 ∈ N are independent of A.

Proposition 14. Let A = Op(a) ∈ OPS(p1, p2) be invertible as operator
from H(Rn, p1,h) to H(Rn, p2,h). Then A−1 ∈ OPS(p2, p1).

Let a ∈ C∞b (Rn) and H be a Hilbert space. In what follows we write aIH
for the operator of multiplication by a acting on S′(RN ,H). Note that this
operator is bounded on H(Rn, ph) for every weight function p ∈ O(H,H′).

We note one more import property of operators in OPS(p1, p2) which
follows easily from Propositions 7 (i) and 13.

Proposition 15. Let A = Op(a) ∈ OPS(p1, p2). Further let ϕ ∈
C∞b (Rn) and set ϕR(x) := ϕ(x/R). Then, with [A,ϕR] := AϕRIH1 −
ϕRIH2A

lim
R→∞

∥∥[A,ϕR]
∥∥
L(H(Rn,p1,h),H(Rn,p2,h))

= 0. (36)

2.5. Pseudodifferential operators with slowly oscillating symbols.
We say that a symbol a ∈ S(p1, p2) is slowly oscillating at infinity if, for all
multi-indices α, β,

∥∥p−1
2 (x, ξ)∂β

x ∂α
ξ a(x, ξ)p1(x, ξ)

∥∥
L(H′1,H′2)

≤ Ca
αβ(x), (37)

where
lim

x→∞
Ca

αβ(x) = 0 (38)

for all multi-indices α, β with β 6= 0. We denote this class of symbols
by Ssl(p1, p2) and write OPSsl(p1, p2) for the corresponding class of pseu-
dodifferential operators. Furthermore, let S0(p1, p2) refer to the subset of
Ssl(p1, p2) of all symbols such that (38) holds for all multi-indices α, β.
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Similarly, a double symbol a ∈ Sd(p1, p2) is called slowly oscillating at
infinity if, for all mutli-indices α, β and some N > 0

∥∥p−1
2 (x, ξ)∂β

x∂α
ξ a(x, x + y, ξ)p1(x, ξ)

∥∥
L(H′1,H′2)

≤ Ca
αβ(x) 〈y〉N ,

where

lim
x→∞

Ca
αβ(x) = 0

for all multi-indices α, β with β 6= 0. We denote the set of all slowly
oscillating double symbols by Sd,sl(p1, p2) and write OPSd,sl(p1, p2) for the
corresponding class of double pseudodifferential operators.

The next proposition describes some properties of pseudodifferential op-
erators with operator-valued slowly oscillating at infinity symbols which will
be needed in what follows.

Proposition 16.

(i) Let A1 =Op(a1) ∈ OPSsl(p1, p2) and A2 =Op(a2) ∈ OPSsl(p2, p3).
Then A2A1 ∈ OPSsl(p1, p3), and

σA2A1(x, ξ) = a2(x, ξ)a1(x, ξ) + r(x, ξ),

where r ∈ S0(p1, p3).
(ii) Let A = Opd(a) ∈ OPSd,sl(p1, p2). Then A ∈ OPSsl(p1, p2), and

σA(x, ξ) = a(x, x, ξ) + r(x, ξ),

where r ∈ S0(p1, p2).
(iii) Let A = Op(a) ∈ OPS(p1, p2). Then A∗ ∈ OPS(p∗2, p

∗
1), and

σA∗(x, ξ) = a∗(x, x, ξ) + r(x, ξ),

where r ∈ S0(p∗2, p
∗
1).

Proof. We prove (i). Statements (ii), (iii) are proved in the similar way. We
use the representation (26) for σA2A1

σA2A1(x, ξ) = (2π)−n

∫ ∫

R2n

a2(x, ξ + η)a1(x + y, ξ)e−iy·η dy dη. (39)

For obtain estimate (37) for σA2A1 we have to estimate the integrals

Iα,β,γ,δ(x, ξ) =

= (2π)−n

∫ ∫

R2n

〈y〉−2k1〈η〉−2k2∂β
x∂α

ξ a2(x, ξ+η)∂γ
x∂δ

ξa1(x+y, ξ)e−iy·η dy dη,
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for |β| ≥ 1 or |γ| ≥ 1. Let 2k1 > n + 1 + M1 + M2, 2k2 > n + 1 + M2 + M3,
Then similar to the proof of Proposition 7 we obtain

∥∥p−1
3 (x, ξ)Iα,β,γ,δ(x, ξ)p1(x, ξ)

∥∥
L(H′1,H′2)

≤

≤ C

∫ ∫

R2n

〈y〉−2k1−M1−M2〈η〉−2k2−M3−M2×

× ∥∥p−1
3 (x, ξ + η)∂β

x∂α
ξ a2(x, ξ + η)p2(x, ξ + η)

∥∥×
× ∥∥p−1

2 (x + y, ξ)∂γ
x∂δ

ξa2(x + y, ξ)p1(x + y, ξ)
∥∥ dy dη ≤

≤ CCa2
αβ(x) sup

y∈Rn

Ca1
γδ (x + y)
〈y〉 . (40)

Estimate (40) shows that

lim
x→∞

sup
ξ∈Rn

∥∥p−1
3 (x, ξ)Iα,β,γ,δ(x, ξ)p1(x, ξ)

∥∥
L(H′1,H′2)

= 0.

Hence σA2A1 ∈ OPSsl(p1, p3). Further, by the Lagrange formula

a2(x, ξ + η) = a2(x, ξ) +
n∑

j=1

ηj

1∫

0

∂ξj a2(x, ξ + θη) dθ. (41)

Substituting (41) in (39) and applying formula (5) we obtain

σA2A1(x, ξ) = a2(x, ξ)a1(x, ξ) + r(x, ξ),

where

r(x, ξ) = (2π)−n×

×
n∑

j=1

1∫

0

dθ

∫ ∫

R2n

∂ξj a2(x, ξ + θη)Dxj a1(x + y, ξ)e−iy·η dy dη. (42)

Because the integral (42) contains the derivative of a1(∈ Ssl(p1, p2)) with
respect to x one can prove that r ∈ S0(p1, p3) following to the proof that
σA2A1 ∈ OPSsl(p1, p3). ¤

3. Invertibility at Infinity and Fredholm Property of
Pseudodifferential Operators

Let χ ∈ C∞0 (Rn) be a function such that χ(x) = 1 if |x| ≤ 1 and χ(x) = 0
if |x| ≥ 2. Set φ := 1 − χ and, for R > 0, χR(x) := χ(x/R) and φR(x) :=
φ(x/R). Further let

BR :=
{
x ∈ Rn : |x| < R

}
and B′

R :=
{
x ∈ Rn : |x| > R

}
.

We say that an operator A : H(Rn, p1) → H(Rn, p2) is locally invertible
at infinity if there is an R0 > 0 such that, for every R > R0, there are
operators LR and RR such that

LRAφRIH1 = φRIH1 and φRARR = φRIH2 . (43)
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Operators LR and RR with these properties are called locally left and right
inverses of A, respectively.

Theorem 17. Let A = Op(a) ∈ OPSsl(p1, p2). Assume there is a
constant R0 > 0 such that the operator a(x, ξ) : H1 → H2 is invertible for
every (x, ξ) ∈ B′

R0
× Rn and that

sup
(x,ξ)∈B′R0

×Rn

∥∥p−1
1 (x, ξ)a(x, ξ)−1p2(x, ξ)

∥∥
L(H′2,H′1)

< ∞.

Then the operator A : H(Rn, p1,h) → H(Rn, p2,h) is locally invertible at
infinity.

Proof. Given φ as above, choose ϕ ∈ C∞b (Rn) such that ϕφ = φ, and set
ϕR(x) := ϕ(x/R) for R > R0. Condition (43) implies that the function
bR(x, ξ) := ϕR(x)a(x, ξ)−1 belongs to S(p2, p1). Hence, and by Proposition
16 (i),

Op(bR)Op(a)φRIH1 = (IH1 + Op(qR)ψRIH1)φRIH1 ,

where qR ∈ S0(p1, p2). Moreover, one can prove that for all multi-indices
α, β,

lim
x→∞

sup
ξ∈Rn

∥∥p−1
1 (x, ξ)∂β

x∂α
ξ qR(x, ξ)p1(x, ξ)

∥∥
L(H′1)

= 0

uniformly with respect to R > R0. It follows from Proposition 13 that there
exists an R′ > R0 such that

‖Op(qR)ψRIH1‖L(H(Rn,p1)) < 1

for every R > R′. Hence,
(
IH1 + Op(qR)ψRIH1

)−1
Op(bR)Op(a)φRIH1 = φRIH1 , (44)

and Op(a) is locally invertible from the left at infinity, with a local left
inverse operator given by

LR :=
(
IH1 + Op(qR)ψRIH1

)−1
Op(bR) ∈ OPS(p2, p1).

In the same way, a local right inverse operator RR ∈ OPS(p2, p1) can be
constructed. It follows from the definition of the operators LR and RR that

sup
R>R0

‖LR‖L(H(Rn,p2,h),H(Rn,p1,h)) < ∞,

sup
R>R0

‖RR‖L(H(Rn,p2,h),H(Rn,p1,)) < ∞ (45)

which finishes the proof. ¤

We say that a linear operator A : H(Rn, p1,h) → H(Rn, p2,h) is locally
Fredholm if, for every R > 0, there exist bounded linear operators LR,DR :
H(Rn, p2,h) → H(Rn, p1,h) and compact operators T ′R : H(Rn, p1,h) →
H(Rn, p1,h) and T ′′R : H(Rn, p2,h) → H(Rn, p2,h) such that

LRAφRIH1 = φRIH1 + T ′R and φRADR = φRIH2 + T ′′R. (46)



Pseudodifferential Operators with Operator Valued Symbols 143

Theorem 18. Let A = Op(a) ∈ OPSsl(p1, p2) an operator which satis-
fies the conditions of Theorem 17. If A is a locally Fredholm operator, then
A has the Fredholm property as operator from H(Rn, p1,h) to H(Rn, p2,h).

Proof. Let R0 be such that for every R > R0 there exist local inverse
operators LR,RR ∈ OPS(p2, p1) of A. Set ΛR := BRφRIH2 + LRχRIH2 .
Then ΛRA = IH1 +T ′R +QR where QR := BR[φR, A]+BR[χR, A] and where
T ′R : H(Rn, p1,h) → H(Rn, p1,h) is compact. Proposition 7 implies that

lim
R→0

∥∥[φR, A]
∥∥
L(H(Rn,p1,h),H(Rn,p2,h))

=

= lim
R→0

∥∥[χR, A]
∥∥
L(H(Rn,p1,h),H(Rn,p2,h))

= 0. (47)

From (47) and (45) we conclude that ‖QR‖L(H(Rn,p1)) < 1 for large enough
R > 0. Hence, Λ′R := (IH1 +QR)−1ΛR is a left regularizator of A whenever
R0 is large enough. In the same way, a regularizator from the right-hand
side can be found. ¤

4. Pseudodifferential Operators with Analytical Symbols and
Exponential Estimates

4.1. Operators and weight spaces. In this section we consider the weight
functions of the form

pT (x, ξ) =
(〈ξ〉+ q(x)

)
I + T, (48)

where T is a self-adjoint operator in a Hilbert space H with a dense domain
DT . We suppose that T is positively defined. LetHT m ,m ∈ R be the Hilbert
spaces introduced in Example 7, q(x) ≥ 1 for every x ∈ Rn. Moreover,
q ∈ C∞(Rn) and

∣∣∂α
x q(x + y)q−1(x)

∣∣ ≤ Cα〈y〉r, r ≥ 0. (49)

The estimate (49) implies the estimate
∣∣∂α

x q(x)
∣∣ ≤ Cαq(x). (50)

In what follows we consider the weight functions of the form p(x, ξ) =
pm

T (x, ξ). We say that the such weight function p ∈ O(Tm, q).
Let a ∈ S(p1, p2) where pj ∈ O(Tmj

j , q), j = 1, 2. We denote by
S(p1, p2, Bdq(x)) the class of symbols such that:

(1) for every x ∈ Rn the operator-valued function ξ 7→ a(x, ξ) can
be extended analytically with respect to ξ into the tube domain
Rn + iBdq(x), where Bdq(x) = {η ∈ Rn : |η| < dq(x)}, d > 0.

(2) for arbitrary multi-indices α, β there exists a constant Cαβ such
that

∥∥p−1
2 (x, ξ + iη)∂β

x ∂α
ξ a(x, ξ + iη)p1(x, ξ + iη)

∥∥
L(H′1,H′2)

≤
≤ Cαβ〈ξ + iη〉−|α| (51)
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for all (x, ξ + iη) ∈ Rn × (Rn + iBdq(x)), where

pj(x, ξ + iη) =
((

1 + |ξ|2 + |η|2)1/2 + qj(x) + Tj

)m

.

We denote by OPS(p1, p2, Bdq(x)) the class of pseudodifferential
operators with symbols in S(p1, p2, Bdq(x)).

(3) If in estimates (51) Cαβ = Cαβ(x) and lim
x→∞

Cαβ(x) = 0 for β 6= 0
then we denote the corresponding classes of symbols and operators
by Ssl(p1, p2, Bdq(x)).

(4) We say that a positive C∞-function w(x) = ev(x) is a weight in the
class R(dq) if v ∈ C∞(Rn) and

∣∣∂α
x (∇v(x))

∣∣ < Cαdq(x), C0 = 1 (52)

for every α and every point x ∈ Rn. We say that a weight w is
slowly oscillating if there exists δ ∈ (0, 1] such that

∣∣∂α
x (∇v(x))

∣∣ ≤ Cαdq1−δ|α|(x). (53)

We denote by Rsl(dq) the class of slowly oscillating weights.

Theorem 19.

(i) Let a ∈ S(p1, p2, Bdq(x)) where pj ∈ O(Tmj

j , q), j = 1, 2 and w =
exp v ∈ R(dq). Then w−1Op(a)wI = Opd(aw) ∈ OPSd(p1, p2),
where

aw(x, y, ξ) = a(x, ξ + iθw(x, y)),

and

θw(x, y) =

1∫

0

(∇v)((1− t)x + ty) dt.

(ii) Let a ∈ Ssl(p1, p2, Bdq(x)) where pj ∈ Omj (Tj , qj), j = 1, 2 and w =
exp v ∈ Rsl(dq). Then w−1Op(a)wI = Op(ãw) ∈ OPSsl(p1, p2)
where

ãw(x, ξ) = a
(
x, ξ + i∇v(x)

)
+ r(x, ξ), (54)

and r ∈ S0(p1, p2).

Proof. (i) Let w = exp v ∈ R(µ). By the theorem of the mean value there
exists t0 ∈ [0, 1] such that

θw(x, y) = (∇v)((1− t0)x + t0y).

Hence θw(x, y) ∈ Bµ(x) for every pair (x, y). As in the scalar case (see [32])
we prove that

(w−1Op(a)w)ϕ(x) = (2π)−n

∫

Rn

dξ

∫

Rn

a
(
x, ξ + iθw(x, y)

)
u(y)ei(x−y)·ξ dy
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for u ∈ S(Rn,H1). The next step is to prove that the function (x, y, ξ) →
aw(x, y, ξ) satisfies estimates (15). Applying formulas

∂xk

(
aw(x, ξ + i∇v(x + t0y))

)
= ∂xk

aw(x, ξ + iθw(x, y))+

+i

n∑

k=1

∂ξk
aw

(
x, ξ + i∇v(x + t0y)

) ∂∇v(x + t0y)
∂xk

, (55)

∂yk

(
aw(x, ξ + i∇v(x + t0y))

)
=

= i

n∑

k=1

∂ξk
aw

(
x, ξ + i∇v(x + t0y)

) ∂∇v(x + t0y)
∂yk

. (56)

Taking into account that θw(x, x + y ) = ∇v(x + t0y), estimates (51), and
the Leibnitz formula we obtain

∥∥∥p−1
2

(
x, ξ + i∇v(x + t0y)

)
∂β

x ∂α
ξ a

(
x, ξ + i∇v(x + t0y)

)×

× p1

(
x, ξ + i∇v(x + t0y)

)∥∥∥
L(H′1,H′2)

≤

≤ C ′αβ

〈
ξ + i∇v(x + t0y)

〉−|β||∇v(x + t0y)|β ≤ C ′αβ (57)

for all α, β with some constants C ′αβ . Estimate (49) and spectral decompo-
sition for the operator T yield the estimate

∥∥p
(
x, ξ + i∇v(x + t0y)

)
p−1(x, ξ)

∥∥
L(H)

≤ C〈y〉N , (58)

for some C > 0 and N > 0. Then estimates (57), (58) imply that
∥∥p−1

2 (x, ξ)∂β
x∂α

ξ aw(x, x + y, ξ)p1(x, ξ)
∥∥
L(H)

≤ Cαβ〈y〉M

for some Cαβ > 0 and M > 0. Hence aw ∈ Sd(p1, p2).
(ii) Let now a ∈ Ssl(p1, p2, µ) and w ∈ Rsl(dq). Again applying the

definition of Ssl(p1, p2, µ) and estimate (53) we obtain as in (57)
∥∥∥p−1

2

(
x, ξ + i∇v(x + t0y)

)
∂β

x ∂α
ξ a

(
x, ξ + i∇v(x + t0y)

)×

× p1

(
x, ξ + i∇v(x + t0y)

)∥∥∥
L(H′1,H′2)

≤

≤ C ′αβ(x)
〈
ξ + i∇v(x + t0y)

〉−|β||∇v(x + t0y)|β ≤ C ′αβ(x), (59)

where
lim

x→∞
C ′αβ(x) = 0,

if β 6= 0. Estimates (58), (59) imply that
∥∥p−1

2 (x, ξ)∂β
x ∂α

ξ aw(x, x + y, ξ)p1(x, ξ)
∥∥
L(H)

≤ Cαβ(x)〈y〉M ,

where lim
x→∞

Cαβ(x) = 0 if β 6= 0. Formula (54) now follows from Proposi-

tion 16 (ii). ¤
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4.2. Exponential estimates. For a C∞-weight w, let H(Rn, ph, w) denote
the space of distributions with norm

‖u‖H(Rn,ph,w) := ‖wu‖
H(Rn,ph) < ∞. (60)

Theorem 20. Let a ∈ S(p1,h, p2,h, Bdq(x)) where pj ∈ O(Tmj

j , q), j =
1, 2 and w = exp v ∈ R(dq). Then the operator Op(a) : H(Rn, p1,h, w) →
H(Rn, p2,h, w) is bounded.

Theorem 21. Let a ∈ Ssl(p1, p2, Bdq(x)) where pj ∈ O(Tmj

j , q), j = 1, 2
and w = exp v ∈ Rsl(µ) be a weight with lim

x→∞
v(x) = +∞. Assume that

the operators a(x, x, ξ + it∇v(x)) are invertible for all enough large x, all
ξ ∈ Rn, t ∈ [−1, 1], and

lim
x→∞

sup
(ξ,t)∈×Rn×[−1,1]

∥∥p−1
1 (x, ξ)a−1(x, ξ + it∇v(x))p2(x, ξ)

∥∥
L(H)

< ∞. (61)

Finally, let A = Op(a) be locally Fredholm as operator from H(Rn, p1,h) to
H(Rn, p2,h).

If f ∈ H(Rn, p2,h, w) then every solution of the equation Au = f , which
a priori belongs to H(Rn, p1,h, w−1), a posteriori belongs to H(Rn, p1,h, w).

Proof. Condition (61) implies that the operators Awt are locally invertible
at infinity, and the local Fredholm property of A moreover implies that these
operators are locally Fredholm for each t ∈ [−1, 1]. Hence, by Theorem 18,
each operator Awt : H(Rn, p1,h) → L2(Rn, p2,h) has the Fredholm property.
Note that the symbol of Awt is given by

σAwt (x, ξ) = (2π)−n

∫ ∫

R2n

a(x, y, ξ + itθw(x, y))e−iy·ξ dy dξ. (62)

This formula shows that the mapping [−1, 1] → S(p1, p2), t 7→ σAwt is
continuous. Thus, and by Proposition 13, the mapping

[−1, 1] → L(H(Rn, p1,h),H(Rn, p2,h)), t 7→ Awt

is continuous. This shows that the Fredholm index of the operator Awt :
H(Rn, p1) → H(Rn, p2) does not depend on t ∈ [−1, 1]. Hence, the operator
A, considered as operator from H(Rn, p1,h, w) to H(Rn, p2,h, w), and the
same operator A, but now considered as operator from H(Rn, p1,h, w−1) to
H(Rn, p2,h, w−1), are Fredholm with the same Fredholm indices. Further,
since H(Rn, ph, w) is a dense subset of H(Rn, ph, w−1) for j = 1, 2, we
conclude that the kernel of A, considered as operator from H(Rn, p1,h, w)
to H(Rn, p2,h, w), coincides with the kernel of A, now considered as operator
from H(Rn, p1,h, w−1) to H(Rn, p2,h, w−1). Finally, if u ∈ H(Rn, p1,h, w−1)
is a solution of the equation Au = f with f ∈ H(Rn, p2,h, w), then u ∈
H(Rn, p1,h, w−1) (see, for instance, [23, p. 308]). ¤
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5. Schrödinger Operators with Operator-Valued Potentials

5.1. Fredholm property. Let T be a positive self-adjoint operator on a
separable Hilbert space H with a dense domain DT . Suppose that, for each
x ∈ Rn, we are given a bounded linear operator L(x) : DT 1/2 → DT−1/2

which is symmetric on DT 1/2 , i.e.,〈
L(x)ϕ,ψ

〉
H =

〈
ϕ,L(x)ψ

〉
H for all ϕ, ψ ∈ DT 1/2 .

We assume that the function x 7→ L(x) is strongly differentiable and that

sup
x∈Rn

∥∥∥
(
T + 〈x〉mI

)−1/2
∂β

x L(x)
(
T + 〈x〉mI

)−1/2
∥∥∥
L(H)

< ∞, m ≥ 0 (63)

for every multiindex β. Moreover, we suppose that

lim
x→∞

∥∥∥
(
T + 〈x〉mI

)−1/2
∂β

x L(x)
(
T + 〈x〉mI

)−1/2
∥∥∥
L(H)

= 0 (64)

if β 6= 0.
We consider the Schrödinger operator

(Hu)(x) := −∂xj ρ
jk(x)∂xk

u(x) + L(x)u(x), x ∈ Rn, (65)

on the Hilbert space L2(Rn,H) of vector-functions with values in H. In (65)
and in what follows, we make use of the Einstein summation convention.
We will assume that ρjk ∈ C∞b (Rn,L(H)) and

lim
x→∞

∂xl
ρjk(x) = 0 for l = 1, . . . , n; (66)

ρkj(x) = (ρjk(x))∗, and there is a C > 0 such that, for every ϕ ∈ H,

〈ρjk(x)ξjξkϕ,ϕ〉H ≥ C|ξ|2‖ϕ‖2H. (67)

Let

p(x, ξ) :=
((|ξ|2 + 〈x〉m)

I + T
)1/2

,

and write H(Rn, p) for the Hilbert space with norm

‖u‖H(Rn,ph) := ‖Op(ph)u‖L2(Rn,H),

for fixed h > 0 enough small. The estimates (63), (64) and (66) imply that
H is a pseudodifferential operator in the class OPSsl(p−1, p) with symbol

σH(x, ξ) = ρjk(x)ξjξk + i
∂ρjk(x)

∂xj
ξk + L(x).

The following theorem states conditions of the Fredholmness of the operator
H : H(Rn, ph) → H(Rn, p−1

h ).

Theorem 22. Let conditions (63)–(67) hold, and assume there are con-
stants R > 0 and C > 0 such that

R〈L(x)ϕ,ϕ〉H ≥ γ
〈(

T + 〈x〉mI
)
ϕ,ϕ

〉
H, γ > 0 (68)

for every x ∈ B′
R and every vector ϕ ∈ DT 1/2 . If the operator H :

H(Rn, ph) → H(Rn, p−1
h ) is locally Fredholm, then it is already a Fredholm

operator.
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Proof. Conditions (67) and (68) imply that there exist C > 0 and R > 0
such that, for every x ∈ B′

R and every ϕ ∈ DT 1/2 ,

R
〈
σH(x, ξ)ϕ,ϕ

〉
H ≥ C

〈((|ξ|2 + 〈x〉m)
I + T

)
ϕ,ϕ

〉
H

. (69)

It follows from estimate (69) that, for every x ∈ B′
R and every ψ ∈ H,

R
〈((|ξ|2 + 〈x〉m)

I + T
)−1/2

σH(x, ξ)
((|ξ|2 + 〈x〉m)

I + T
)−1/2

ψ, ψ
〉
H
≥

≥ C‖ψ‖2H. (70)

This estimate yields that the operator
((|ξ|2 + 〈x〉mI

)
+ T

)−1/2

σH(x, ξ)
((|ξ|2 + 〈x〉mI

)
I + T

)−1/2

is invertible on H for every x ∈ B′
R and every ξ ∈ Rn and that

sup
(x,ξ)∈B′R×Rn

∥∥∥
((|ξ|2+〈x〉m)

I+T
)1/2

σ−1
H (x, ξ)

((|ξ|2+〈x〉m)
I+T

)1/2
∥∥∥
L(H)

<

< C−1. (71)

Hence, the conditions of Theorem 18 are satisfied, and H has the Fredholm
property as operator from H(Rn, ph) to H(Rn, p−1

h ). ¤
5.2. Exponential estimates.

Theorem 23. Let

Hu(x) = −∆u(x) + L(x)u(x) = f(x), (72)

be the Schrödinger equation with potential x → L(x) satisfies conditions
(63), (64) and (68). Let w(x) = exp d〈x〉m+2

2 be the weight, where

d =
√

γ
m
2 + 1

− ε, ε > 0

and f ∈ H(Rn, ph, w). Then every solution of the equation (72) a priory in
the space H(Rn, ph, w−1) a posteriori belongs to the space H(Rn, ph, w).

Proof. We have

R
〈
σH(x, ξ+it∇v(x))ϕ,ϕ

〉≥
〈(
|ξ|2−t2d2

(m

2

)2

〈x〉m
)
I+L(x)ϕ,ϕ

〉
≥

≥
〈(
|ξ|2 +

(
γ − t2d2

(m

2

)2)
〈x〉m

)
I + Tϕ, ϕ

〉
≥

≥ C
〈(|ξ|2 + 〈x〉m)

I + Tϕ, ϕ
〉
, (73)

for some C > 0 and for every ϕ ∈ DT 1/2 . As in the proof of Theorem 22,
we conclude from (73) that

sup
(x,ξ,t)∈B′R×Rn×[−1,1]

∥∥∥
((|ξ|2 + 〈x〉m)

I + T
)1/2

σ−1
H

(
x, ξ + it∇v(x)

)×

× ((|ξ|2 + 〈x〉m)
I + T

)1/2
∥∥∥
L(H)

< ∞.
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Thus, all conditions of Theorem 21 are satisfied. ¤

5.3. Quantum waveguides. Let D be a bounded domain in Rm
y with a

sufficiently regular boundary, and let Φ be a real valued function in the
space C∞(Π), where Π = Rn × D. We suppose that for all β, γ there exist
Cβγ > 0 such that

∣∣∂β
x ∂γ

y Φ(x, y)
∣∣ ≤ Cβγ〈x〉m−δ|β|, δ ∈ (0, 1]. (74)

We consider the spectral problem for the Schrödinger equation in the
quantum waveguide, i.e. the problem

(
(H− λI)u

)
(x, y) =

(−∆x −∆y + Φ(x, y)− λ
)
u(x, y) = 0, (75)

(x, y) ∈ Rn ×D =: Π, u
∣∣
∂D = 0, k ∈ N.

This problem describes the bound states of a quantum system with the
electric potential Φ on the configuration space Π. We suppose that

lim inf
x→∞

inf
y∈D

Φ(x, y)〈x〉−m ≥ γ > 0. (76)

The operator H−λI can be realized as a pseudodifferential operator with
operator-valued symbol σH−λI(x, ξ) = |ξ|2I + Lλ(x), where

(
Lλ(x)ϕ

)
(y) =

(−∆y + Φ̃(x)− λI
)
ϕ(y) for y ∈ D, ϕ

∣∣
∂D = 0

is the operator of the Dirichlet problem in D depending on the parameter
x ∈ Rn, where (Φ̃(x)ϕ)(x) := Φ(x, y)ϕ(y) for y ∈ D.

Let T be the operator of the Dirichlet problem for the Laplacian −∆y in
the domain D, considered as an unbounded operator on H = L2(D) with
domain H̊2(D) =

{
ϕ ∈ H2(D) : ϕ|∂D = 0

}
where H2(D) is the standard

Sobolev space on D. It is well-known that T is a positive define operator.
We set p(x, ξ) = ((ξ2 + 〈x〉m)I + T )1/2. Then

∥∥∥p−1(x, ξ)∂β
x∂α

ξ σH−λI(x, ξ)p−1(x, ξ)
∥∥∥
L(L2(D))

≤ Cαβ

for all α, β. Hence σH−λI ∈ S(p−1, p). Moreover one can prove that condi-
tion (76) provides that σH−λI ∈ Ssl(p−1, p).

Let Hh(R, p) is the set of the distributions u ∈ S′(Rn,H) such that

‖u‖Hh(Rn,p) :=
∥∥∥(−h2∆x + 〈x〉m + T )1/2u

∥∥∥
L2(Rn,H)

< ∞,

where h > 0 is small enough such that Op(h2|ξ|2 + 〈x〉m + T )1/2 is invert-
ible operator. One can prove that the Hh(Rn, p) within equivalent norms
coincides with the closure of C∞0 (Π) in the norm

‖u‖H(Rn,p) =
(
‖u‖2

H̊1(Π)
+ ‖〈x〉mu‖L2(Π)

)1/2

.

Consider now the problem of Fredholmness of the operator

H− λI : Hh(Rn, p) → Hh(Rn, p−1).
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Theorem 24. The operator H − λI : Hh(Rn, p) → Hh(Rn, p−1) is a
Fredholm operator for every λ ∈ C.

Proof. It follows from standard local elliptic estimates for the Dirichlet
problem in bounded domains that the operator H − λI : H(Rn, ph) →
H(Rn, p−1

h ) is locally Fredholm. Conditions (76) implies condition (68) of
Theorem 22. Hence H− λI is locally invertible at infinity for every λ ∈ C.
It implies by Theorem 18 that H − λI : H(Rn, ph) → H(Rn, p−1

h ) is the
Fredhom operator for every λ ∈ C. ¤

Note that the operator H can be considered as an unbounded closed
operator in L2(Π) with the domain H(Rn, ph). Theorem 24 has the following
corollary.

Corollary 25. The operator H as unbounded has a discrete spectrum.

Proof. Let λ < µ = infΠ Φ(x, y). Then H − λI : H(Rn, ph) → H(Rn, p−1
h )

is inverible. Hence by the Theorem on the Analytic Fredholmness H− λI :
H(Rn, ph) → H(Rn, p−1

h ) is invertible for all λ ∈ R except of a discrete set
Λ of points λ for which ker(H − λI) has a finite dimension. Taking into
account that the spectrum of H as unbounded operator coincides with the
spectrum of H as a bounded operator acting from H(Rn, ph) in H(Rn, p−1

h ),
and that H−λI is a Fredholm operator as unbounded if and only if H−λI :
H(Rn, ph) → H(Rn, p−1

h ) is a Fredholm operator we obtain the assertion of
the corollary. ¤

Theorem 23 implies the exponential estimates of eigenfunctions of H.

Theorem 26. Every eigenfunction uλ of the operator H belongs to
H(Rn, ph, w), where w(x) = exp d〈x〉m+2

2 with

d =
√

γ
m
2 + 1

− ε, ε > 0.

In particular ∫

Π

∣∣uλ(x, y)
∣∣2e2d〈x〉m+2

2 dx dy < ∞.

Example 27. Let the potential Φ be of the form

Φ(x, y) = Ψ(x, y) + |x|2,
where Ψ ∈ C∞b (Π). Hence (75) is a spectral problem for a perturbed Har-
monic oscillator in the wavegide Π. In this case p(x, ξ) = (1 + |ξ|2 + |x|2 +
T )1/2. The unbounded operator H with domain H(Rn, ph) has a discrete
spectrum and the eigenfunctions uλ satisfies the estimates

∫

Π

|uλ(x, y)|2e(1−ε)|x|2 dx dy < ∞.
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13. T. Ekholm and H. Kovařık, Stability of the magnetic Schrödinger operator in a
waveguide. Comm. Partial Differential Equations 30 (2005), No. 4-6, 539–565.
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Journées “Equations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1994), Exp.
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