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Abstract. We consider a class of pseudodifferential operators with
operator-valued symbols a = a(z,¢) having power growth with respect to
the variables x and . Moreover we consider the symbols analytically ex-
tended with respect to £ onto a tube domain in C" with a base being a ball
in R™ with a radius depending on the variable x.

The main results of the paper are the Fredholm theory of pseudodiffer-
ential operators with operator valued symbols and exponential estimates at
infinity of solutions of pseudodifferential equations Op(a)u = f.

We apply these results to Schrodinger operators with operator-valued po-
tentials and to the spectral properties of Schrodinger operators in quantum
waveguides.
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1. INTRODUCTION

We consider the class of pseudodifferential operators

(Op(a)u)(a:):(Qﬂ')_”/df/a(m,f)u(y)ei(x_y)'f dy, uwe SR", Hy), (1)

Rn R™

with symbols a with values in the space of bounded linear operators acting
from a Hilbert space H; into a Hilbert space Ha. In (1), S(R™, H;) is the
space of Hj-valued infinitely differentiable functions rapidly decreasing with
all their derivatives. We consider the symbols which can have a power
growth at infinity with respect to the variables x and £. Moreover, we
suppose that the symbol a can be analytically extended with respect to &
onto a tube domain R"™ + i{n € R™ : |n| < b(x)}, where b is a continuous
positive function.

The main results of the paper are the Fredholm theory of pseudodifferen-
tial operators and exponential estimates at infinity of solutions of pseudodif-
ferential equations Op(a)u = f. We apply these results to the Schrodinger
operators with operator-valued potentials and discuss applications to quan-
tum waveguides.

Our approach is based on the construction of the local inverse operator
at infinity and on estimates of commutators of pseudodifferential operators
with exponential weights (First the idea of this approach for scalar pseudo-
differential operators with bounded symbols appeared in the paper [20], and
later also for scalar pseudodifferential operators with symbols admitting a
power, exponential and super-exponential grows and local discontinuities in
[31], [32], [34]. [35].)

Estimates of exponential decay are intensively studied in the literature.
We would like to emphasize Agmon’s monograph [1] where the exponen-
tial estimates of the behavior of solutions of second order elliptic operators
have been obtained in terms of a special metric (now called the Agmon
metric). See also [4], [18], [19], [16], [20], [24], [25], [28], [31], [32], [5], [6],
[35]. In [36], [37] the authors established the relation between the essen-
tial spectrum of pseudodifferential operators and exponential decay of their
solutions at infinity. The recent paper [33] is devoted to local exponential es-
timates of solutions of finite-dimensional h-pseudodifferential operators with
applications to the tunnel effect for Schrodinger, Dirac and Klein—-Gordon
operators.

It turns out that many problems in mathematical physics are reduced to
the study of associated pseudodifferential operators with operator-valued
symbols. In particular, this happens for problems of wave propagation in
acoustic, electromagnetic and quantum waveguides (see for instance [3] and
references cited there).

This paper is organized as follows. In Section 2 we present some auxil-
iary facts on operator-valued pseudodifferential operators. Some standard
references for the theory of pseudodifferential operators are [17], [39], [40],
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whereas operator-valued pseudodifferential operators have been studied in
[21], [22]. The approach in the latter books follows ideas by Hoérmander
and employs a special partition of unity connected with a metric defining
the class of pseudodifferential operators. We will follow here the approach
of [30], which based on the notion of a formal symbol. A main point is the
representation of the symbol of a product of pseudodifferential operators
and of a double pseudodifferential operators in form of an operator-valued
double oscillatory integral. This approach allows us to extend the theory
of scalar pseudodifferential operators to pseudodifferential operators with
operator-valued symbols, and it provides us with an pseudodifferential op-
erator calculus which is convenient for applications.

In Section 3 we examine the local invertibility at infinity of operator-
valued pseudodifferential operators in suitable spaces and discuss their Fred-
holm property. Section 4 is devoted to the exponential estimates at infinity
of solutions of operator-valued pseudodifferential operators. In the conclud-
ing Section 5 we study the Fredholm property of Schrodinger operators and
derive exponential estimates at infinity of solutions of Schrodinger equations
with operator-valued increasing potentials. These general results are then
applied to the Fredholm property of Schrodinger operators with increasing
potentials for quantum waveguides, for which we obtain exponential esti-
mates of eigenfunctions. Note that spectral problems for quantum waveg-
uides have attracted many attention in the last time. See, for instance, [3],
110, [13], [9]

2. PSEUDODIFFERENTIAL OPERATORS WITH OPERATOR VALUED
SYMBOLS AND ITS FREDHOLM PROPERTIES

2.1. Notations.

e Given Banach spaces X, Y, we denote the Banach space of all
bounded linear operators acting from X in Y by £(X,Y). In case
X =Y, we simply write £(X).

e Let x = (21,...,2,) € R™. Then we denote by & = (&1,...,&,) €
R"™ the points of the dual space with respect to the scalar product
(,8) =x-E=m& + -+ z,&n.

e Forj=1,...,n,let 0, := % and Dy, 1= —i % . More generally,
given a multi-index o = (a1,...,q,), set |a] := a3 + -+ + @, and

Oy =03} ---0y» and Dy := D7!---Dg".
o Let (&) := (1 +|¢>)Y/2 for £ € R™.
e Let X be a Banach space. We denote by
(i) C(R™, X) the set of all infinitely differentiable functions on
R™ with values in X;
(ii) C§°(R™, X) the set of all functions in C*°(R"™, X) with compact
supports;
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(iii) Cpov(R™, X) the set of all functions a € C*°(R", X) such that
for some N > 0

sup Z NH(@;’.‘a)(aj)Hx < 00
x€Q|a\§k

for every k € Ny := NU {0}, We will write Cp;°(R", X) if
N =0.
(iv) S(R™, X) the set of all functions a € C*°(R"™, X) such that

sup (o) 3 [[(@Ra)@)]x <
|| <k

for every k € Ng.
In each case, we omit X whenever X = C.
e Let H be a Hilbert space and u € S(R™,H). Then we denote by

(6) = (Pu)(©) = [ u(w)e = s
R"n,
the Fourier transform of u. Note that F' : S(R", H) — S(R", H) is
an isomorphism with inverse

(F~'a)(z) = (2m)™" / u(g)e ™ de.
RTL
We write S’(R™,H) for the space of distributions over S(R™,H)
and define the Fourier transform of distributions in S’(R™,H) via
duality. Note that F': S'(R", H) — S'(R", H) is an isomorphism.
e In what follows we consider separable Hilbert spaces H only.

2.2. Oscillatory vector-valued integrals. 1°. Let B be a Banach space,
and let a be a function in C*°(R™ x R™, B) for which there exist my, ma € R
such that

o= Y suwp [£0da(e. 0|, 1) O <00 (2)

la|<r, |6]<t B XR"

for all r, t € Ny. Further let x € C§°(R™ x R™) be such that x(z,&) =1 for
all points (z, ) in a neighborhood of the origin. Let R > 0. In what follows
we call xg(z,€) := x(z/R,{/R) a cut-off function.

Proposition 1. Let a € C*°(R"™ xR", B) satisfy the estimates (2). Then
the limit

Z(a) := lim (2m)~" // xr(z, &)a(z, £)e™ ¢ du d¢

R—oo
R2n

exists in the norm topology of B and

m) " [ [ 1070, () (D ala, e ¢ dode

R2n
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for all
2k1>n+m1, 2ko > n + mo. (3)

This limit is independent on k1, ko satisfying (3) and the choice of x. More-
over,

IZ@ls<c Y s [ogafate, 6|, e =

la|<2k1, [B]<2k2
= C\a|2k1’2k2. (4)
The element Z(a) € B is called the oscillatory integral.

In what follows the double integral

// a(x,&)e ¢ dr dé

R2n

is understood as oscillatory.
Proposition 2. Let a € C*°(R", B) and for all 3
107a(2) |5 < Cala)™, N > 0.
Then, for each x € R",

(2m)" // a(z +y)e ¥ dydé = a(x). (5)
RQ’IL

Propositions 1 and 2 are proved as in the scalar case by integrating by
parts (see for instance [30]).

2.3. Pseudodifferential operators. Let 7 and H’ be Hilbert spaces. A
function p € C°(R™ x R™, L(H', H)) is said to be a weight function in the
class O(H,H’) if the operator p(x,n) is invertible for each (z,7) € R™ x R™
and for all «, 3 there are constants C,g > 0 such that
_ o N
[pw.motoep(e +y v, < Cos 0+ Iyl 1),

_ N
H (050 p(x +y.&+m)p 1(y,77)HE(H) < Cap(1+ Iyl + Inl)
for some N > 0 and arbitrary pairs (z,&), (y,n) € R" x R™.

Example 3. We give an important example of a weight function. Let
L be an unbounded self-adjoint positive operator in a Hilbert space H with
a dense in ‘H domain Dy and L > 601, E,, pu € [0,00) be the family of
the spectral projectors of the self-adjoint operator L. Then the operator
L™ m > 0 is defined by means of the spectral decomposition as

+oo
L™y = /,udeMu
d
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with domain
“+o0
Dpm = {u eH: / w2 ||dEul3, < oo}.
5

One can introduce in Dy= the structure of the Hilbert space Hym= by the

scalar product
+oo

(U V) Hpm = /qum (dE,u,v)n.

5
We denote by H -~ the dual space to Hpm=,m > 0 with respect to the scalar
product (u,v)s. Note that the operator L™ : Hym — H is an isomorphism
of the Hilbert spaces with inverse L™ : H — Hpm. Let

(.6 = ({9 +a@) I+ L), meR,
where g(z) > 1 for all x € R™ and

|00q(x +y)g~ " (z)] < Cpq(z)(y)", r>0, C>0. (7)
Inequality (7) implies that for every pu >0
p+q(z+y) < p+Cqlx)(y)” < Cy)" (1 +q(@)), (8)
and
(E4m) + 1 <V2EM) + 1 <V2m) (&) + ). (9)
Applying (8) and (9) we obtain that for every u > 0
(€+n) +a(z+y)+p < Cn)y) (€ +alx) +p). (10)

It follows from (10) that for every m € R

(E+m+a@+y)+p)" <C™y) ™ (&) +q(@)+p)™. (1)
The spectral representation for p™(x,£), m € R

P8 = [ (€ +ale)+ )" dE,
R
yields the estimates
™ (2, €)™ @ + v, €+ ) o,y =
= ||L"p™ (x, )p~ " (x + Y. & + 77)L_mHi(H) =<
_ ‘(<§+n>+q(ﬂs+y)+u)m
=~ Sup m
nelsoo) ! ((€) +a(@) + p)
In the same way we obtain that
o™ (@ ™ (& + 1.6+ )|y < CORH )M

and corresponding estimates (6) for derivatives. Hence p™ € O(Hpm,H)
for every m € R.

| <))
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Let now M1, Hj, He and H, be Hilbert spaces and p; € O(H1, H}) and
p2 € O(Ha, HYy). We say that a function a : R" x R® — L(H;,Hz) belongs
to S(p1,p2) if

|a‘|l1,12 =

=) sup |[py (2, )00 a(x, E)p1 (2,) | 3 405y <00 (13)
\a|§ll,|3|§52(Z,§)€R"XR”

for every Iy, I € Ng. The semi-norms |a|, ;, define a Frechet topology on
S(p1,p2). The (operator-valued) functions in S(p1,p2) are called symbols.

With each symbol a € S(p1,p2), we associate the pseudodifferential op-
erator Op(a) which acts at u € S(R™, H;) by

Op(ayu(z) = (27) " / ale, €)a(€)e™ € de =

R

— 2m)" / e / a(e, u(y) @ Edy.  (14)
R®  Rn

We denote the set of all pseudodifferential operators with symbols in
S(p1,p2) by OPS(p1,p2).

We will also need double symbols and their associated double pseudo-
differential operators. Let again p;1 € O(H1,H}) and p2 € O(Ha, Hj). A
function a : R™ x R™ x R® — L(H1,Hs) is said to belong to the class
Sa(p1,p2) of double symbols if there exist N > 0 such that

= E S -N
l1,l2,l3 sup <y> %
3
la|<l1,[BI<I2, |7|§13(I,y,§)eR n

X sz(x,ﬁ)flafaga?a(z,x +%§)P1(%§)HL(H/1)H/2) <00 (15)

for each Iy, la, I3 € Ng. We correspond to each double symbol a € S4(p1,p2)
the double pseudodifferential operator

Opala)u(z) = (2r)™ / e / a(e,y, uy)e=VEdy,  (16)

R R

la

u € S(R™, H;) and denote the class of all double pseudodifferential operators
by OPS4(p1,p2). Note that the estimates (6) and (13) imply that if a €
S(p1,p2) or Sq(p1,p2) there exist M > 0, N > 0 and constants C,g and
Caps~ such that

10202 a(, )| g, 24,y < Can(1+ Ll + 1) (17)

and
1020702 a(2,5,6) | £ 34, 10y < Cosy (L + 12l + €)Y )™ (18)

for all multiindeces «, 3, .
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Integrating by parts one can prove as in the scalar case that the pseu-
dodifferential operators (14) and (16) can be written of the form of double
oscillatory integrals depending on the parameter x € R™,

«mwmxm=<%r“//au@mw+ym%“dam (19)

R2n

Ops(@u)(@) = @0 [ [ aleo+ v Quta+y)e e agay,  (20)
R2n

and that the operators Op(a) and Opg(a) in (19) and (20) are defined on

O (R™, Hy ).

For £ € R", define e¢ : R" — C by eg(z) := €. Let now A be a
continuous linear operator from Cp°(R", Hy) to Cp%y(R", 'Hz), N > 0, and
let (z,£) € R™ x R™. Then there is a bounded linear operator o4(z,¢) :
‘H1 — Ho such that

ee(x)[Alee ® )| (x) = galz,&)p (21)
for every ¢ € Hy. The function o4 : R™ x R™ — L(H1, Hz) is then called

the formal symbol of A.
We will suppose that there exists N > 0,C > 0 such that

loa(@, )l ey 1) < C(1+ || + €)™ (22)

Proposition 4. Let A : C°(R”,’H1) — S’(R", H2) be a continuous
linear operator with a formal symbol o4. Then A acts at functions u €

S(Rn7 Hl) via
@4u>cr>::<2w>-”L/?ﬁwfaA<x,£>a<s>dg. (23)

RTL
Proof. Let u € S(R™, Hy). Then

u(w) = (27)" / (€ ee(w) de.

R"'L
Let {¢;} be an orthonormal basis of H; and write u(§) = > u;(§)¢; with
j=1

Fourier coefficients u;(&) = (u(§), d)]) . Hence,

(Au)(z Aleg ® ¢;))(x) d€ =

Qe Coa(x,&)e; dE =

u Mg u

Soalz, E)u(€) de. (24)

0[5
o
/
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The last integral exists according to estimate (22). O

Proposition 5. Let A = Op(a) € OPS(p1,p2). Then A has a formal
symbol o4 which coincides with a.

Proof. Let £ € R™ and ¢ € H;. Then, by (19),

(A(ec ® @) (2) = (2m) ™" // az,n)e! @V Ee= N dy dy =
R2n

= eS2m) ™ [ | alw, &+ n)pe ¥ dpdy.  (25)
Il

Using equality (5) we obtain from (25)

O-A(‘T7§)90 = e_ixlfA(eE ® 90)(37) = a(x7§)50

which gives the assertion. |

The next propositions describe the main properties of pseudodifferential
operators with operator-valued symbols.

Proposition 6. Every operator in OPS(p1,p2) is bounded from
S(Rn7H1) to S(Rn,Hz)

The proof makes use of estimates (17) and runs completely similar to the
proof for scalar pseudodifferential operators (see, for instance, [30]).

Hence the composition of pseudodifferential operators is well defined.
But below we will prove that the product of pseudodifferential operators is
a pseudodifferential operator again.

Proposition 7.

(i) Let A" = Op(a1) € OPS(p1,p2) and A? = Op(as) € OPS(p2,p3).
Then A%2A' € OPS(p1, p3), and the symbol of A2A! is given by

"A“‘l(“””’@:(%)fn/ / an(z, €+ n)ar(z +y, e dydy.  (26)

R2n

(ii) Let A = Opg(a) € OPS4(p1,p2). Then A € OPS(p1,p2), and the
symbol of A is given by

oa(z, &) = (2m)™" // a(z, x4y, &+n)e” Y dydn. (27)
R2n

The double integrals in (26), (27) are understood as oscillatory in-
tegrals.

Proof. The proof mimics the proof for the scalar case (see [30]).
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(i) Let ¢ € H;. Then, applying formula (5) we obtain
oaza1(2,8)p = e Ay A (ecd)] () =
— e Ay (-, )ecd) () =
= (2n) " [ [ axlo.mar(y. eI g dydn =

R2n

=(2m)™" // az(z, &+ n)ay(z +y,E)e V¢ dy d.
RQT},

Hence, formula (26) holds. Further we have to show that
oazar(w,§) = (2m) "X
<[ Jlo) 2 (D {(0) D, as(a, 4 mas (. ey, (25)
R2n

Application of the Leibnitz formula leads to the estimates

D3 (@, )T, 5 (a0, E)pa (2, €) = (2m) / / ()2 )25 (2, €) x

R2n
x OYas(w, & +m)yar(x +y, E)pi (z,E)e” " dydn.  (29)
Applying the next estimates following from (6)
I3 (2, )ps (@, & +m)|| < Cln)™,
D5 (2, € + mpa(, )| < O™
P2 (z + ., pa(z, &)|| < Cly)™>,
[p1 (& +y, Opr (2, )| < Cly)™,
and choosing 2k, > n+ M + Mo, 2ks > n+ Mo+ M3, we obtain the estimate

(30)

||p§1($7E)I’y,(s(xag)pl(xa€)||B(H;7Hé) é C|a2|l1,l2|a1|l1,l2a
for some [y,l5 € N. In the same way one can show that
Hpgl(l',g)afagUAzAl (‘1675)]91({)375)”3(%/177_{&) < C|a2|l1,l2|a’1|l1,l27

for some [y, I, € N.
(ii) Following the proof of (i) we have to estimate the integrals

Py (2,8 T 5(z, &)pi(x, ) = (2m) 7" X
X//<y>‘2'“ (n)~2py (2, £)0) 0% alx, x+y, E+n)p1 (x, eV dy dn. (31)

R2n

Applying (30) and the estimate
P2 (2, 6 +mO alz, -y, E+mpr (2, 6+ £iggr 44y <Claliy o (W)Y
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and choosing 2k; > n+ N, 2ky > n + M7 + M5 we obtain
‘{P;l(xa g)I’y,J(xv g)pl(xv g) ||£(HI1,H’2) S C|a‘1170,l3'
In the same way we obtain the estimate

Hpgl(xa5)858?0—14(56)g)pl(mag)HE(H/UHé) < C|a|ll>l2,lz' U

An operator A* is called the formal adjoint to the operator A €
OPS(p1,p2) if, for arbitrary functions v € S(R"™, H;) and v € S(R™, Ha),
<AU, U)LQ(R”,'HQ) = <’LL, A*U>L2(Rn,'H1) . (32)

Proposition 8. Let A = Op(a) €OPS(p1,p2). Then A* € OPS(p3,p?),
and the symbol of A* is given by

oarw) = a7 [ [ @@yt nee I ayds @)
R2n
where
(a(@, u, )y, = (u,a*(z,§)v)n,
for all u € Hy and v € Ha. The double integrals in (33) are understood as
oscillatory integrals.

The assertion of Proposition 8 follows from Proposition 7 (ii).
By Proposition 8 and formula (32), one can think of operators in
OPS(p1,p2) as acting from S'(R™, H;) to S'(R™, Ha).

Theorem 9 (Calderon—Vaillancourt). If A= Op(a) € OPS(Iy,, In,) :=
OPS(H1,Hz), then A is bounded as operator from L*(R™,Hy) to
L?(R™,H3), and there exists constants C > 0 and 2ky, 2ky > n such that

Mllewee .o <C Z sup ||“E§;($a§)||L(H1,Hz).
| <2k1,|B| <2k, (PE)ER

Proposition 10 (Beals). Let A = Op(a) € OPS(H1,Hz) be invertible
as operator from L?(R™,H;) to L?(R™, H3). Then A~! € OPS(Hz, H1).

2.4. Sobolev spaces H(R",p). Let p € O(H',’H). We denote by py, h >
0 the symbol py,(z, &) = p(z, hE).

Proposition 11. . Let p € O(H;1,H2). Then for every h > 0
Op(pr)Op(p, ") = Ity + hOP(r7),
Op(py, ) Op(pn) = In¢, +hOp(r3),
where Op(ri) € OPS(H;,H;), j=1,2, and

(34)

sup [ Op(r}) o,y < 00, §=1,2.
h>0

For the proof see [33], Proposition 7 and Corollary 14.
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Corollary 12. For h > 0 small enough
Op(p)Op(pn) ™" = Intz, Op(pn) "' Op(pr) = In,, (35)

where

Op(pn) ™" = Op(p;, ") Ing, + hOp(r7)) " = (Ing, + hOp(r},)) " Op(p; ).

In what follows for p € O(H1, Hza) we fix h > 0, such that there exists
Op(pn)~*.

We denote by H(R" py) the Banach space which is the closure of
S(R™,’H) with respect to the norm

1wl & pr) = 1OP(PR)U]| L2 (R 27 -

It turns out that then Op(py,) : H(R™, py) — L*(R™,'H;) is an isomorphism.
Using these facts one easily gets the following versions of Proposition 9 and
10, respectively.

Proposition 13. Let Op(a) € OPS(p1,p2). Then Op(a) is bounded as
operator from H(R™,p1 ;) to H(R",ps ), and

1,125

Al (21 (R p1p) H (B o)) < Cla
where C' > 0 and l1,l> € N are independent of A.

Proposition 14. Let A = Op(a) € OPS(p1,p2) be invertible as operator
from H(R™,p1 ) to H(R™, pay). Then A=t € OPS(p2, p1).

Let a € Cg°(R™) and H be a Hilbert space. In what follows we write aly
for the operator of multiplication by a acting on S’(RY,H). Note that this
operator is bounded on H(R",py,) for every weight function p € O(H, H’).

We note one more import property of operators in OPS(p1,p2) which
follows easily from Propositions 7 (i) and 13.

Proposition 15. Let A = Op(a) € OPS(p1,p2). Further let ¢ €
C?(R™) and set pgr(z) = ¢(x/R). Then, with [A,¢r] = Aprln, —
QDRIHQA

Rh—I»noo WA’ ('OR]HL‘(H(R”»Pl,h,),H(R”7P2,h)) =0 (36)
2.5. Pseudodifferential operators with slowly oscillating symbols.
We say that a symbol a € S(p1,p2) is slowly oscillating at infinity if, for all

multi-indices «, £,

||p51(x7£)8ga?a(w7f)p1($7£)”[l(}{/177_‘/2) é gﬁ(x)v (37)
where
Jim Cay(x) =0 (38)

for all multi-indices «, § with 8 # 0. We denote this class of symbols
by Ss(p1,p2) and write OP S (p1,p2) for the corresponding class of pseu-
dodifferential operators. Furthermore, let S°(p1,p2) refer to the subset of
Ssi1(p1,p2) of all symbols such that (38) holds for all multi-indices «, 8.
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Similarly, a double symbol a € Sy(p1,p2) is called slowly oscillating at
infinity if, for all mutli-indices «, 8 and some N > 0

||p;1(x,§)8§8§‘a(x7:c + yvf)pl(x’§)||cm;,w2) < Zﬁ(x) <y>N

)

where

lim C¢4(z) =0

Tr— 00

for all multi-indices «, 8 with 8 # 0. We denote the set of all slowly
oscillating double symbols by Sy si(p1,p2) and write OPSq ¢ (p1, p2) for the
corresponding class of double pseudodifferential operators.

The next proposition describes some properties of pseudodifferential op-
erators with operator-valued slowly oscillating at infinity symbols which will
be needed in what follows.

Proposition 16.

(i) Let A'=0p(a1) € OPSq(p1,p2) and A*=0p(as) € OPSq(p2,p3)-
Then A2A' € OPSq(p1,ps), and

T A2A1 (l’,f) - a2($,§)a1($,€) + T’(I',E),

where r € S°(p1, p3).
(ii) Let A= Opgq(a) € OPSq s1(p1,p2). Then A € OPSq(p1,p2), and

oalz, &) = alz,z,&) +r(x,§),

where 7 € S%(p1, p2).
(iii) Let A = Op(a) € OPS(p1,p2). Then A* € OPS(p5,pt), and

T A* (xag) = a’*(xaxag) + 7“(3375),
where 7 € S°(p3, p}).

Proof. We prove (i). Statements (ii), (iii) are proved in the similar way. We
use the representation (26) for o 42 41

opzp(7,8) = (2m)" // az(x, & +n)ar(z +y,&)e Y dydn. (39)
RQTL

For obtain estimate (37) for o 424: we have to estimate the integrals

Ioz,ﬁ,'y,(;(xv 5) =

- <2w>*7] /<y>*2’“<n>*2’€2658§a2<x,s+n>a;a§a1<z+y,s>e*w dy di,

R2n
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for |8] > 1 or |y| > 1. Let 2ky > n+ 14+ My + My, 2k > n+ 1+ My + Ms,
Then similar to the proof of Proposition 7 we obtain

Hp3_1('r’ 5)10175»’%5(:6’ §)p1 (.’,E, g)HL"(H/llez) S

SC// <y>72k17M17M2<n>72k227M37]\/[2X

R2n
x ||p5 ! (2, € + n)0L 0 as(w, & + m)p2(x, & + )|
< ||py (x4 y,€)070az(x + y, pr(z + v, &) || dydn <

Col(z+
< CCl5(z) sup M. (40)
yER™ (v)
Estimate (40) shows that
. —1 —
wlggo gseu]lgl de (:L’, g)IOLﬂ,’Yﬁ (:L’, 5)}71 (:L’, 5) HL(H/I,H’Q) =0.
Hence 04241 € OPSg(p1,ps). Further, by the Lagrange formula
n 1
e & ) = azle, &)+ Dy [ Ogaaw & omyds.  (a)
j=1 0

Substituting (41) in (39) and applying formula (5) we obtain
TA2A1 (l‘, g) = CLQ(JZ, §)a1(1‘, f) + T(ﬂ]‘, f)a

where

r(a,€) = (2m) "

1

n

X Z/ da//%az(w‘,fﬂL 1) Dyjar(x +y, E)e™ W dydy.  (42)
j:10 R2n

Because the integral (42) contains the derivative of a1(€ Sg(p1,p2)) with

respect to z one can prove that r € S°(py, p3) following to the proof that

O A2 A1 EOPSSl(phpg). O

3. INVERTIBILITY AT INFINITY AND FREDHOLM PROPERTY OF
PSEUDODIFFERENTIAL OPERATORS

Let x € C§°(R™) be a function such that x(z) = 1if |z| <1 and x(z) =0
if |x] > 2. Set ¢ :=1— x and, for R > 0, xg(x) := x(z/R) and ¢g(z) :=
¢(z/R). Further let

Br:={z €R": |z| < R} and Bj:={ze€R": |z| > R}.

We say that an operator A : H(R",p;) — H(R™, ps) is locally invertible
at infinity if there is an Ry > 0 such that, for every R > Ry, there are
operators L and Ry such that

LrAPrRIN, = ¢rIn, and ¢rRARR = ¢rln,. (43)
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Operators L and Rr with these properties are called locally left and right
inverses of A, respectively.

Theorem 17. Let A = Op(a) € OPSg(p1,p2). Assume there is a
constant Ro > 0 such that the operator a(x,£) : H1 — Ha is invertible for
every (z,§) € By x R"™ and that

sup oy M@, €)a( 2, &) T p2(2, ©)| figgs 2y < 00
(z,§)€BR xR™ £(Hy 1)

Then the operator A : H(R™,p1 ) — H(R",pay) is locally invertible at
nfinity.

Proof. Given ¢ as above, choose ¢ € Cs°(R") such that p¢ = ¢, and set
vr(z) := ¢(x/R) for R > Ry. Condition (43) implies that the function
br(r,€) := pr(z)a(z, &)t belongs to S(p2,p1). Hence, and by Proposition
16 (1),

Op(br)Op(a)drIn, = (I, + Op(ar)VrIn,)ORIN, ,
where g € S°(p1,p2). Moreover, one can prove that for all multi-indices
a? 57

. -1 YoXate —
Jim sup [lpr (@, 070 ar (@ p1 (O] gy =0

uniformly with respect to R > Ry. It follows from Proposition 13 that there
exists an R’ > Ry such that

10p(ar) VRT3, || (bR p1)) <1
for every R > R’. Hence,

(I, + OP(QR)wRI%h)710p(bR)Op(a)¢RIH1 = ¢rln,, (44)

and Op(a) is locally invertible from the left at infinity, with a local left
inverse operator given by

-1

L = (I, + Op(qr)¥rIn,)  Op(br) € OPS(p2,p1).
In the same way, a local right inverse operator Rr € OPS(ps,p1) can be
constructed. It follows from the definition of the operators Lz and R that

sup [|Lrllc(m®n pan) HE®R p1p)) < OO

R>Ry (45)
sup | Rellcca®n psn), m® pr)) < 0
R>Ry

which finishes the proof. O

We say that a linear operator A : H(R"™,p1 ) — H(R",ps ) is locally
Fredholm if, for every R > 0, there exist bounded linear operators Lg, Dpg :
H(R",pap) — H(R™,p1) and compact operators Ty, : H(R™,p1p) —
HR",p1,) and T7 : HR", pa,p,) — H(R™,p2 ) such that

ERA¢RIH1 = ¢R[H1 + T}/% and gbRADR = ¢RIH2 + Tg (46)
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Theorem 18. Let A = Op(a) € OPS(p1,p2) an operator which satis-
fies the conditions of Theorem 17. If A is a locally Fredholm operator, then
A has the Fredholm property as operator from H(R™, p1,p) to H(R™, p2p).

Proof. Let Ry be such that for every R > Ry there exist local inverse
operators Lr,Rr € OPS(p2,p1) of A. Set Ar := Brédrln, + LrXRrIH,-
Then ArA = I, + T+ Qr where Qg := Br[¢r, Al +Br[xr, A] and where
Tp : HR™, p1p) — HR™, p1 5) is compact. Proposition 7 implies that

Hm 167 Alll 2z s 118 020 =

= B (10w Al ot ), 1@ oy =0 (47)
From (47) and (45) we conclude that [|Qr||z(z®rn p,)) < 1 for large enough
R > 0. Hence, A'p := (I, + Qr) ' AR is a left regularizator of A whenever
Ry is large enough. In the same way, a regularizator from the right-hand
side can be found. O

4. PSEUDODIFFERENTIAL OPERATORS WITH ANALYTICAL SYMBOLS AND
EXPONENTIAL ESTIMATES

4.1. Operators and weight spaces. In this section we consider the weight
functions of the form

pr(z,€) = (&) +q(@) I +T, (48)

where T is a self-adjoint operator in a Hilbert space H with a dense domain
Dr. We suppose that T is positively defined. Let Hym,m € R be the Hilbert
spaces introduced in Example 7, g(z) > 1 for every z € R™. Moreover,
q € C*(R"™) and

0% a(x +y)a ' (2)] < Caly)",r 2 0. (49)
The estimate (49) implies the estimate
|07q(x)| < Cag(). (50)

In what follows we consider the weight functions of the form p(z,&) =
P (z,§). We say that the such weight function p € O(T™, q).
Let a € S(pi,p2) where p; € O(T]mj,q), j = 1,2. We denote by
S(p1,p2, Bag(z)) the class of symbols such that:
(1) for every x € R™ the operator-valued function £ — a(z,§) can
be extended analytically with respect to £ into the tube domain
R™ + i Bgq(z), where Bgqz) = {n € R" : |n| < dq(x)}, d > 0.
(2) for arbitrary multi-indices «, ( there exists a constant C,g such
that

Ipy " (2, & + im0 0g alw, € + impr (@, & + i) £y, 1) <
< Cap(& + in) ™1 (51)
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for all (x,£ +1in) € R™ x (R™ + iBgq(s)), where

pile € +im) = (L+ 1€+ nP)* + g (0) + T) "

We denote by OPS(p1,p2, Bigx)) the class of pseudodifferential
operators with symbols in S(p1,p2, Bag(z))-

If in estimates (51) Cop = Capg(z) and wlingo Cop(x) =0for B #0
then we denote the corresponding classes of symbols and operators
by Ssl(p17p27 qu(z))

We say that a positive C*®-function w(x) = e*(®) is a weight in the
class R(dq) if v € C*(R™) and

102 (Vo(x))| < Cadg(z), Co=1 (52)

for every a and every point x € R"™. We say that a weight w is
slowly oscillating if there exists ¢ € (0, 1] such that

02(Vu(z))| < Cadg"1*!(z). (53)
We denote by Ry (dg) the class of slowly oscillating weights.

Theorem 19.

(i)

Let a € S(p1,p2, Bag(z)) where p; € O(ijﬁq),j =1,2 and w =
expv € R(dq). Then w'Op(a)wl = Opy(a,) € OPSy(p1,p2),
where

aw(z,y,8) = alz,§ +iby(z,y)),

and
1
0 (z,y) = / (Vo) (1 = t)er + ty) dt.
0
Let a € Sq(p1,p2, Bag(z)) where p; € O™(Ty,q;),j =1,2 and w =

exXpuv € Rsl(dq) Then wilOp(a)wI = Op(dw) € OPSsl(plaPQ)
where

ay(2,8) = a(z, £+ iVo(z)) +r(x,€), (54)
and r € S°(p1,p2).

Proof. (i) Let w = expv € R(u). By the theorem of the mean value there
exists to € [0, 1] such that

Hence 6, (z,y) € B

Ow(z,y) = (Vo) ((1 = to)z + toy)-

Lu(z) for every pair (z,y). As in the scalar case (see [32])

we prove that

(w Op(@w)pta) = (2n) " [ de [ala,é o+ i) ute)e =< dy

R R
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for u € S(R™,H1). The next step is to prove that the function (z,y,&) —
aw(x,y, &) satisfies estimates (15). Applying formulas

Oy (aw (2, & +iV0(x + toy))) = Onpaw (@, € + i0u(2,y))+

+1 Z O, Gy (:17, &+ iVou(x + toy)) W , (55)
k
k=1
Oys (aw (z,& +iVu(z + tgy))) =
= iZ@gkaw (z, & +iVo(z + toy)) w. (56)

k=1 O

Taking into account that 0, (z,z +y) = Vou(z + toy), estimates (51), and
the Leibnitz formula we obtain

Hp2_1 (z,&+iVu(z + toy))afﬁg‘a(x, £+ iVu(z + toy)) %

<
)) HE(H’I,H’Z) o

< Cla(e+iVu@ +toy)) V(e + toy)|? < Clyg (57)

X p1 (amf +iVu(x + toy

for all a, 8 with some constants C’(’lﬁ. Estimate (49) and spectral decompo-
sition for the operator T yield the estimate

for some C' > 0 and N > 0. Then estimates (57), (58) imply that
93" (@ )08 0 au (@, 2 + 1, p1 (2, )| s 3y < Conply)™

for some Copg > 0 and M > 0. Hence a,, € Sq(p1,p2).
(ii) Let now a € Ss(p1,p2, 1) and w € Rg(dg). Again applying the
definition of Sg;(p1,p2, 1) and estimate (53) we obtain as in (57)
-1 . 3 ao .
Hp2 (z,& +iVu(z + toy)) 0,0 a(z, £ + iVu(x + toy)) x

<
))Hﬁ(H;,H;) -

x p1(z, & +iVo(z + toy
< Cls(@)(€+iVo(z + toy)) Vo + toy)|® < Clg(x), (59)
where
lim C/,4(x) =0,
if 8 # 0. Estimates (58), (59) imply that
||pQ_1 (z, g)&f@?aw (z,2 4y, )p1(,§) HE(H) < Caﬁ($)<y>M7

where lim Cyg(x) = 0 if § # 0. Formula (54) now follows from Proposi-
tion 16 (ii). O
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4.2. Exponential estimates. For a C*°-weight w, let H(R", p;,, w) denote
the space of distributions with norm

”uHH(R",ph,w) = ku”H(R",ph) < 0. (60)

Theorem 20. Let a € S(p1,n,P2,h, Bag(z)) where pj € O( ,q), ] =
1,2 and w = expv € R(dq). Then the operator Op(a) : H(R ,p1 hyW) —
H(R”7 Do, W) s bounded.

Theorem 21. Let a € Sq(p1, P2, Big(z)) where p; € O(T]mj,q), ji=1,2
and w = expv € Rg(p) be a weight with lim v(z) = +oo. Assume that

the operators a(xz,x,§ + itVu(x)) are invertible for all enough large x, all
EeR”, te[-1,1], and

lim sup ||p1_1(33,{)ail(x,ﬁ—kitVU(a:))pg(x,§)HL(H) < 0. (61)

T00 (g t)exR™ x[—1,1]

Finally, let A = Op(a) be locally Fredholm as operator from H(R™ py p) to
H(R", p2p).

If f € HR™, pap,w) then every solution of the equation Au = f, which
a priori belongs to H(R™, p1 p,w™'), a posteriori belongs to H(R™, p1 p,w).

Proof. Condition (61) implies that the operators A, are locally invertible
at infinity, and the local Fredholm property of A moreover implies that these
operators are locally Fredholm for each t € [—1,1]. Hence, by Theorem 18,
each operator A, : H(R™,p1 5) — L*(R™, pa ) has the Fredholm property.
Note that the symbol of A, is given by

oa,.(z,8)=(2m)™" / / a(z,y, &+ ithy(z,y))e W dyde.  (62)

R2n

This formula shows that the mapping [~1,1] — S(p1,p2), t = 04, is
continuous. Thus, and by Proposition 13, the mapping

[_17 1} - E(H(Rnapl,h)a H(Rnap2,h))a t— Awt

is continuous. This shows that the Fredholm index of the operator A,: :
H(R™,p1) — H(R™,py) does not depend on t € [—1,1]. Hence, the operator
A, considered as operator from H(R",p; p,w) to H(R",psp,w), and the
same operator A, but now considered as operator from H(R™, p; 5, w™ ) to
H(R™, pap,w™!), are Fredholm with the same Fredholm indices. Further,
since H(R"™,pp,w) is a dense subset of H(R", py,w™?t) for j = 1,2, we
conclude that the kernel of A, considered as operator from H(R"™,py p,w)
to H(R", pap, w), coincides with the kernel of A, now considered as operator
from H(R™, py p,w™ ') to HR", pa p,w™!). Finally, if u € H(R™, py p,w™ ")
is a solution of the equation Au = f with f € H(R",pyp,w), then u €
H(R™, p1 p,w™ ") (see, for instance, [23, p. 308]). O
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5. SCHRODINGER OPERATORS WITH OPERATOR-VALUED POTENTIALS

5.1. Fredholm property. Let T be a positive self-adjoint operator on a
separable Hilbert space H with a dense domain Dr. Suppose that, for each
x € R™ we are given a bounded linear operator L(z) : Dpij2 — Dp-1/2
which is symmetric on D12, i.e.,

(L(x)p,¥),, = (@, L(x)y),, forall ¢, ¢ € Dyija.
We assume that the function « — L(x) is strongly differentiable and that

sup (T + <x>m[)—1/2afL(x)(T+ <x>m[)_1/2H5(H) <oo, m>0 (63)

rER™

for every multiindex 3. Moreover, we suppose that

(T+«@WU*”%fLuMT+«mmU*”ﬂLm):0 (64)

lim

if 5 0.
We consider the Schrodinger operator
(Hu)(z) := =0y, p7* () 0y, u(z) + L(z)u(z), = €R™, (65)
on the Hilbert space L?(R", H) of vector-functions with values in H. In (65)

and in what follows, we make use of the Einstein summation convention.
We will assume that p/* € Cp°(R™, L(H)) and

lim 8,,p"%(x) =0 for I =1,...,n; (66)

p¥(x) = (p?*(x))*, and there is a C' > 0 such that, for every ¢ € H,

(7" (2)¢5€n0, 001 > CIEP 0l (67)
Let
) . 1/2
p(@,€) = (I + @)™ 1+T) ",
and write H(R™, p) for the Hilbert space with norm
]l 2 (®n pp) 2= 1OP(PR)ull L2 (R7 3) 5
for fixed h > 0 enough small. The estimates (63), (64) and (66) imply that
H is a pseudodifferential operator in the class OPSg(p~t, p) with symbol
9p’* ()
81’]‘
The following theorem states conditions of the Fredholmness of the operator
H:H(R"py) — HR",p,").
Theorem 22. Let conditions (63)—(67) hold, and assume there are con-
stants R > 0 and C' > 0 such that
R(L(2)p, p)r = A((T+ (@)™ D)@, 0),,, 7>0 (68)
for every x € By and every vector ¢ € Dpije. If the operator H :

H(R",py) — H(R™,p, ') is locally Fredholm, then it is already a Fredholm
operator.

ow(x, &) = p?*(2)€;& + i £k + L(z).
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Proof. Conditions (67) and (68) imply that there exist C' > 0 and R > 0
such that, for every x € By, and every ¢ € Dyi/2,

Ron (@, e, 0)y 2 C(((EP + @™+ T)gp) . (69)
It follows from estimate (69) that, for every x € B} and every ¢ € H,
R((167 + @™ 1 +T) " onle. (2 + @)™ 1+ 1) vp) >
> Cllvl3 (70)
This estimate yields that the operator
) —1/2 ) —1/2
(2 + @mn+7) oo (&8 + @1 +7)

is invertible on H for every = € B}; and every { € R™ and that

—1/2 —-1/2

/2 _ 1/2
swp || (gl @™ 1+T) o e, ) (P + @)™ 1+1) )| <
(z,6)EBy xR" L(H)
<Cc™h (71)
Hence, the conditions of Theorem 18 are satisfied, and H has the Fredholm
property as operator from H(R"™, py) to H(R",pgl). a

5.2. Exponential estimates.
Theorem 23. Let

Hu(z) = —Au(z) + L(z)u(z) = f(x), (72)

be the Schridinger equation with potential x — L(x) satisfies conditions
(63), (64) and (68). Let w(x) = exp d(x)mT“ be the weight, where

ﬁ

™o

and f € HR™, pp,w). Then every solution of the equation (72) a priory in
the space H(R™, pp,w™1) a posteriori belongs to the space H(R™, py,w).

Proof. We have
R(ou(e,e+itVe(@)e, )2 (1672 (5) (2" 1+ Da)e, o) 2
> (Il + (v - thQ(%)2)<:v>m)I+Tso,so> >

> C{(IEf* + (&)™) T + T, ), (73)

for some C' > 0 and for every ¢ € Dpi/2. As in the proof of Theorem 22,
we conclude from (73) that

—e, €¢>0

sup (P + ey 1+ 1) 0 (2, € + it () «
(,6,t)EBR xR™ x[—1,1]

< (16 + ™I+ 1)) < oo
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Thus, all conditions of Theorem 21 are satisfied. O

5.3. Quantum waveguides. Let D be a bounded domain in R with a
sufficiently regular boundary, and let ® be a real valued function in the
space C*°(II), where II = R™ x D. We suppose that for all 3, there exist
Cpy > 0 such that

0207z, y)| < Con ()™, 5 € (0,1, (74)

We consider the spectral problem for the Schrédinger equation in the
quantum waveguide, i.e. the problem

((H - )‘I)u) (m,y) = (_ Ay — Ay + (I)(:L‘,y) - )‘)u(xvy) =0, (75)
(z,y) eR" x D =:1I, u|,, =0, keN.

This problem describes the bound states of a quantum system with the
electric potential ® on the configuration space II. We suppose that
liminf inf ®(x,y){(z)”"™ >~ > 0. (76)
r—o0 yeD
The operator H— \I can be realized as a pseudodifferential operator with
operator-valued symbol op_x7(z, &) = |€2T + Ly(x), where

(La(z)e)(y) = (= Ay + @(z) — AI)@(y) for y €D, ¢|,, =0

is the operator of the Dirichlet problem in D depending on the parameter
x € R™, where (®(z)p)(x) := ®(z,y)p(y) for y € D.

Let T be the operator of the Dirichlet problem for the Laplacian —A, in
the domain D, considered as an unbounded operator on H = L?(D) with
domain H2(D) = {¢ € H*(D) : y|op = 0} where H*(D) is the standard
Sobolev space on D. It is well-known that 7" is a positive define operator.

We set p(z,&) = (€2 + (z)™)I + T)/2. Then

[ @ ) 0%0g o (e, O (. 9)| < Cap

L(L2(D)) —
for all o, 3. Hence o7 € S(p~!, p). Moreover one can prove that condi-
tion (76) provides that og_x; € S (p~t,p).

Let Hy(R,p) is the set of the distributions u € S’(R™, H) such that

o0,

lell e gy = || (=028 + (@)™ + T)M20

L2 (R™,H)

where h > 0 is small enough such that Op(h?|¢|?> + (z)™ + T)'/? is invert-
ible operator. One can prove that the Hj(R"™, p) within equivalent norms
coincides with the closure of C5°(II) in the norm

1/
lszge zy = (Nl gy + @) ull 2 )
Consider now the problem of Fredholmness of the operator

H — Al : Hy(R",p) — Hp(R™,p~ ).
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Theorem 24. The operator H — X\ : Hy(R™,p) — Hp(R™,p~!) is a
Fredholm operator for every \ € C.

Proof. Tt follows from standard local elliptic estimates for the Dirichlet
problem in bounded domains that the operator H — AT : H(R",py) —
H(R",p; ) is locally Fredholm. Conditions (76) implies condition (68) of
Theorem 22. Hence H — AI is locally invertible at infinity for every A € C.
It implies by Theorem 18 that H — Al : H(R",p,) — H(R",p; ") is the
Fredhom operator for every A € C. O

Note that the operator H can be considered as an unbounded closed
operator in L?(II) with the domain H(R"™, p;,). Theorem 24 has the following
corollary.

Corollary 25. The operator H as unbounded has a discrete spectrum.

Proof. Let A\ < pu = infy; ®(x,y). Then H — A\ : H(R", p,) — H(R",p, ")
is inverible. Hence by the Theorem on the Analytic Fredholmness H — A\ :
H(R" py) — H(R", p;1) is invertible for all A € R except of a discrete set
A of points A for which ker(H — AI) has a finite dimension. Taking into
account that the spectrum of H as unbounded operator coincides with the
spectrum of H as a bounded operator acting from H(R™, p;,) in H(R", pgl),
and that H— AT is a Fredholm operator as unbounded if and only if H— AT :
H(R™, pp) — H(]R",p,:l) is a Fredholm operator we obtain the assertion of
the corollary. (Il

Theorem 23 implies the exponential estimates of eigenfunctions of H.

Theorem 26. FEvery eigenfunction uy of the operator H belongs to
m—+42
H(R"™, pp,w), where w(x) = exp d{x) > with

val

d= — -, €¢>0.
5 +1

In particular
/‘uA(xay)’%%(m)% dx dy < oo.
m
Example 27. Let the potential ® be of the form
(I)(xay) = \I’(xvy) + |CE|27

where U € Cp°(II). Hence (75) is a spectral problem for a perturbed Har-
monic oscillator in the wavegide II. In this case p(x,£) = (1 + [£]? + |z|? +
T)'/2. The unbounded operator H with domain H(R™,p,) has a discrete
spectrum and the eigenfunctions u) satisfies the estimates

/|uA(m7y)\2e(1*5)‘“’|2 dz dy < oo.
i
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