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SOME MULTI–POINT BOUNDARY VALUE PROBLEMS
FOR SECOND ORDER SINGULAR DIFFERENTIAL

EQUATIONS

Abstract. For second order nonlinear differential equations with non-
integrable singularities with respect to the time variable, unimprovable
sufficient conditions for solvability and unique solvability of multi-point
boundary value problems are established.

îâäæñéâ. éâëîâ îæàæï ŽîŽûîòæãæ áæòâîâêùæŽèñîæ àŽêðëèâ-
ĲâĲæïŽåãæï ŽîŽæêðâàîâĲŽáæ ïæêàñèŽîëĲâĲæå áîëæåæ ùãèŽáæï éæ-
éŽîå áŽáàâêæèæŽ éîŽãŽèûâîðæèëãŽê ïŽïŽäôãîë ŽéëùŽêŽåŽ Žéë-
ýïêŽáëĲæïŽ áŽ ùŽèïŽýŽá ŽéëýïêŽáëĲæï ŽîŽàŽñéþëĲâïâĲŽáæ ïŽçéŽîæïæ
ìæîëĲâĲæ.
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Let −∞ < a < b < +∞, f : ]a, b[×R → R be the function satisfying the
local Carathéodory conditions, and let p : ]a, b[→ [0, +∞[ be the measurable
function such that

p(t) > 0 almost everywhere on ]a, b[ ,

b∫

a

dt

p(t)
< +∞.

In the interval [a, b], we consider the differential equation
(
p(t)u′

)′ = f(t, u) (1)

with the multi-point boundary conditions
m∑

i=1

αiu(ai) = c1,

n∑

i=1

βiu(bi) = c2. (2)

Here m and n are natural numbers, α1, . . . , αm, β1, . . . , βn, c1, c2 are real
constants,

a ≤ ai ≤ a0 < b0 ≤ bj ≤ b (i = 1, . . . , m; j = 1, . . . , n).
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Moreover, if m = 1 (n = 1), it is assumed that a = a0 = a1 (b = b0 = b1),
and if m ≥ 2 (n ≥ 2), then

a = a1 < · · · < am = a0

(
b0 = b1 < · · · < bn = b

)
.

We are interested, in general, in the cases where the function f with
respect to the time variable has non-integrable singularities at the points a
and b. In that sense the problem (1), (2) is singular.

For m = n = 1, the singular problem (1), (2) is investigated in detail (see
[1]–[4], [9], [14]–[16] and the references therein).

The optimal conditions for the unique solvability of problems of the type
(1), (2) in the case, when the equation (1) is linear, are contained in [7], [8],
[11], [12].

Various particular cases of the nonlinear singular problem (1), (2) are
studied in [6], [10], [13]. Nevertheless, in the general case that problem
remains so far studied insufficiently. In the present paper, new and unim-
provable in a certain sense sufficient conditions for solvability and unique
solvability of the above-mentioned problem are given.

We will seek a solution of the problem (1), (2) in the space of continuous
functions u : [a, b] → R which are absolutely continuous together with
t → p(t)u′(t) on an arbitrary closed interval, contained in ]a, b[ .

We introduce the following functions:

f∗(t, y) = max
{|f(t, x)| : |x| ≤ y

}
for a < t < b, y ≥ 0;

f0(t, y) = sup
{1

2
(|f(t, x)| − f(t, x) sgn x

)
: |x|≤y

}
for a<t<b, y≥0;

δ(t) =

t∫

a

ds

p(s)
for a ≤ t ≤ b.

In the statements of the main results of the present paper, besides the
functions f∗, f0, and δ, there are appearing also the functions ψ1, ψ2, and
ψ0, which are defined in the following manner:
if m = 1 (n = 1), then

ψ1(t) = 0 for a ≤ t ≤ b
(
ψ2(t) = β1(δ(b)− δ(t)) for a ≤ t ≤ b

)
;

if m > 2, then

ψ1(t) = 0 for a ≥ a0, ψ1(t) = ψ1(ak+1) +
( m∑

i=k+1

αi

)(
δ(ak+1)− δ(t)

)

for ak ≤ t ≤ ak+1 (k = 1, . . . ,m− 1);

and if n > 2, then

ψ2(b) = 0, ψ2(t) = ψ2(bk+1) +
( n∑

i=k+1

βi

)(
δ(bk+1)− δ(t)

)

for bk ≤ t < bk+1 (k = 1, . . . , n− 1),
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ψ2(t) = ψ2(b0) +
( n∑

i=1

βi

)(
δ(b0)− δ(t)

)
for a ≤ t < b0,

and

ψ0(b) = 0, ψ0(t) = ψ0(bk+1)+

+
( k∑

i=1

βi

)(
δ(bk+1)− δ(t)

)
for bk ≤ t < bk+1 (k = 1, . . . , n− 1), (3)

ψ0(t) = ψ0(b0) for a ≤ t < b0.

It is clear that
n∑

i=1

βi = 0 =⇒ ψ0(t) ≡ −ψ2(t).

Let

χ(t, s) =

{
1 for s ≤ t,

0 for s > t.

The following simple lemma is valid.

Lemma 1. The boundary value problem

(
p(t)u′

)′ = 0;
m∑

i=1

αiu(ai) = 0,

n∑

i=1

βiu(bi) = 0 (4)

has only the trivial solution if and only if

∆ =
( n∑

i=1

βi

)
ψ1(a)−

( m∑

i=1

αi

)
ψ2(a) 6= 0. (5)

Moreover, if the condition (5) is satisfied, then the Green function of the
problem (4) admits the representation

g(t, s)=
1
∆

[
ψ1(s)ψ2(a)−ψ2(s)ψ1(a)+

(
ψ2(s)

m∑

i=1

αi−ψ1(s)
n∑

i=1

βi

)
δ(t)

]
+

+χ(t, s)(δ(t)− δ(s))

and

r = sup
{ |g(t, s)|

δ(s)(δ(b)− δ(s))
: a ≤ t ≤ b, a < s < b

}
< +∞. (6)

We study the problem (1), (2) in the case, where
b∫

a

δ(t)(δ(b)− δ(t))f∗(t, y) dt < +∞ for y ≥ 0. (7)

Moreover, if a0 > a, then it is assumed that

lim sup
τ→t, y→+∞

τ∫

t

δ(s)
f∗(s, y)

y
ds < 1 for a ≤ t < a0, (8)
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and if b0 < b, then

lim sup
τ→t, y→+∞

t∫

τ

(δ(b)− δ(s))
f∗(s, y)

y
ds < 1 for b0 < t ≤ b. (9)

Along with (1), (2) we consider the problem
(
p(t)u′

)′ = λf(t, u); (10)
m∑

i=1

αiu(ai) = λc1,

n∑

i=1

βiu(bi) = λc2, (11)

dependent on a parameter λ ∈ ]0, 1[ .
On the basis of Corollary 1.2 from [5] and Lemma 1, the following state-

ments are proved.

Theorem 1 (The principle of a priori boundedness). Let the conditions
(5), (7) be fulfilled and let there exist a positive constant y0 such that for
any λ ∈ ]0, 1[ every solution of the problem (10), (11) admits the estimate

|u(t)| ≤ y0 for a ≤ t ≤ b.

Then the problem (1), (2) has at least one solution.

Theorem 2. Let the inequality (5) hold and let there exist a positive
constant y0 such that

r

b∫

a

δ(s)(δ(b)− δ(s))f∗(s, y0) ds ≤ y0, (12)

where r is a number given by the equality (6). Then the problem (1), (2) has
at least one solution.

Theorem 3. Let the inequality (5) hold and let in the domain ]a, b[×R
the condition ∣∣f(t, x1)− f(t, x2)

∣∣ ≤ h(t)|x1 − x2|
be fulfilled, where h : ]a, b[→ [0, +∞[ is a measurable function such that

r

b∫

a

δ(s)(δ(b)− δ(s))h(s) ds < 1. (13)

If, moreover,
b∫

a

δ(s)(δ(b)− δ(s))|f(s, 0)| ds < +∞,

then the problem (1), (2) has one and only one solution.
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Consider now the case, where

αi > 0 (i = 1, . . . , m), βi > 0 (i = 1, . . . , n). (14)

Then the condition (5) is satisfied since

∆ < −
( m∑

i=1

αi

) n−1∑

k=1

( n∑

i=k+1

βi

)(
δ(bk+1)− δ(bk)

)
< 0.

Let g0 be the Green function of the boundary value problem
(
p(t)u′

)′ = 0; u(a) = u(b) = 0,

i.e.,

g0(t, s) =
(δ(s)

δ(b)
− 1

)
δ(t) + χ(t, s)(δ(t)− δ(s)).

The following theorem is valid.

Theorem 4. Let the conditions (7)–(9)∗, and (14) be fulfilled. Let, more-
over, there exist a positive constant y0 such that

b∫

a

|g0(t, s)|f0(s, y) ds < y for a ≤ t ≤ b, y > y0. (15)

Then the problem (1), (2) has at least one solution.

Corollary 1. Let the inequalities (14) hold. Let, moreover, in the do-
main ]a, b[×R the inequality

f(t, x) sgn x ≥ −h(t)|x| − h0(t) (16)

be fulfilled, and in the domain
(
]a, a0[∪ ]b0, b[

)×R the inequality

|f(t, x)| ≤ h0(t)(1 + |x|) (17)

hold, where h : ]a, b[→ [0, +∞[ and h0 : ]a, b[→ [0, +∞[ are measurable
functions such that

b∫

a

δ(s)(δ(b)− δ(s))h(s) ds ≤ δ(b), (18)

b∫

a

δ(s)(δ(b)− δ(s))h0(s) ds < +∞. (19)

Then the problem (1), (2) has at least one solution.

∗ For m = 1 (n = 1), the condition (7) (the condition (8)) is dropped out.
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Theorem 5. Let in the domain ]a0, b0[×R the condition
[
f(t, x1)− f(t, x2)

]
sgn(x1 − x2) ≥ −h(t)|x1 − x2| (20)

be fulfilled, and in the domain
(
]a, a0[∪ ]b0, b[

)×R the condition
∣∣f(t, x1)− f(t, x2)

∣∣ ≤ h̄(t)|x1 − x2| (21)

hold, where h : ]a, b[→ [0, +∞[ and h̄ : ]a, a0[∪ ]b0, b[→ [0, +∞[ are mea-
surable functions. If, moreover, the inequalities (14), (18), and (19) are
satisfied, where

h0(t) =

{
|f(t, 0)| for t ∈ ]a0, b0[ ,
|f(t, 0)|+ h̄(t) for t ∈ ]a, b[ \ ]a0, b0[ ,

(22)

then the problem (1), (2) has one and only one solution.

Remark 1. If we take into account Example 1.1 from [4], then it becomes
evident that the conditions (12), (13), (15), and (18) in Theorems 2–5 are
unimprovable in the sense that they cannot be replaced, respectively, by the
conditions

r

b∫

a

δ(s)(δ(b)− δ(s))f∗(s, y0) ds ≤ (1 + ε)y0,

r

b∫

a

δ(s)(δ(b)− δ(s))h(s) ds ≤ 1 + ε,

b∫

a

|g0(t, s)|f0(s, y) ds ≤ (1 + ε)y for a ≤ t ≤ b, y ≥ y0,

b∫

a

δ(s)(δ(b)− δ(s))h(s) ds ≤ (1 + ε)δ(b),

no matter how small ε > 0 would be.

Consider now the case, where

αi > 0 (i = 1, . . . ,m), n > 2, βi > 0 (i = 1, . . . , n− 1), βn =

= −
n−1∑

i=1

βi,

n−1∑

k=1

( k∑

i=1

βi

)(
δ(bk+1)− δ(bk)

)
= 1. (23)

In that case the inequality (5) is also satisfied since

∆ = −
( m∑

i=1

αi

)
ψ2(a) =

( m∑

i=1

αi

)
ψ0(a) =

m∑

i=1

αi > 0.
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Let g1 be the Green function of the boundary value problem

(
p(t)u′

)′ = 0; u(a) = 0,

n∑

i=1

βiu(bi) = 0.

Then in view of (3) and (23) we have

g1(t, s) = −ψ0(s)δ(t) + χ(t, s)(δ(t)− δ(s)).

Lemma 2. If along with (23) the condition

n−1∑

k=j

( k∑

i=1

βi

)(
δ(bk+1)− δ(bk)

) ≥ δ(b)− δ(bj)
δ(b)

(j = 1, . . . , n) (24)

holds, then
g1(t, s) ≤ g0(t, s) < 0 for a < t < b

and

|g1(t, s)| ≤ δµ(t)δ1−µ(s)ψ0(s) for a ≤ t, s ≤ b, 0 ≤ µ ≤ 1.

For any x ∈ R, we suppose

[x]+ =
1
2
(|x|+ x).

On the basis of Theorem 1 and Lemma 2, the following theorems are
proved.

Theorem 6. Let the conditions (23) and (24) hold. Let, moreover, in
the domains ]a, b[×R and

(
]a, a0[∪ ]b0, b[

)×R the inequalities (16) and (17)
be satisfied, respectively, where h : ]a, b[→ [0,+∞[ and h0 : ]a, b[→ [0, +∞[
are measurable functions satisfying the conditions

b∫

a

δµ(s)(δ(b)−δ(s))h(s) ds<+∞,

b∫

a

δµ(s)(δ(b)−δ(s))h0(s) ds<+∞, (25)

b∫

a

δ(s)ψ0(s)
[
h(s)− µ(1− µ)`

p(s)ψ0(s)δ2(s)

]
+

ds ≤ 1 (26)

for some µ ∈ ]0, 1] and ` ∈ ]0, 1]. Then the problem (1), (2) has at least one
solution.

Theorem 7. Let the conditions (23) and (24) hold, and let in the do-
mains ]a, b[×R and

(
]a, a0[∪ ]b0, b[

) × R the inequalities (20) and (21) be
satisfied, respectively, where h : ]a, b[→ [0, +∞[ and h̄ : ]a, a0[∪ ]b0, b[→
[0, +∞[ are measurable functions. If, moreover, for some µ ∈ ]0, 1] and
` ∈ ]0, 1] the conditions (25) and (26) are satisfied, where h0 is a function
given by the equality (22), then the problem (1), (2) has one and only one
solution.
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Remark 2. The condition (26) in Theorems 6 and 7 is unimprovable and
it cannot be replaced by the condition

b∫

a

δ(s)ψ0(s)
[
h(s)− µ(1− µ)`

p(s)ψ0(s)δ2(s)

]
+

ds ≤ 1 + ε− `,

no matter how small ε > 0 would be.
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