Short Communications

IVAN KIGURADZE, ALEXANDER LOMTATIDZE, AND NINO PARTSVANIA

SOME MULTI-POINT BOUNDARY VALUE PROBLEMS FOR SECOND ORDER SINGULAR DIFFERENTIAL EQUATIONS

Abstract. For second order nonlinear differential equations with nonintegrable singularities with respect to the time variable, unimprovable sufficient conditions for solvability and unique solvability of multi-point boundary value problems are established.

რეზიუმე. მეორე რიგის არაწრფივი დიფერენციალური განტოლებებისათვის არაინტეგრებადი სინგულარობებით დროითი ცვლადის მიმართ დადგენილია მრავალწერტილოვან სასაზღვრო ამოცანათა ამოხსნადობისა და ცალსახად ამოხსნადობის არაგაუმჯობესებადი საკმარისი პირობები.

2010 Mathematics Subject Classification: 34B10, 34B16. Key words and phrases: Differential equation, nonlinear, second order, non-integrable singularity, multi-point boundary value problem.

Let $-\infty < a < b < +\infty$, $f:]a, b[\times R \to R$ be the function satisfying the local Carathéodory conditions, and let $p:]a, b[\to [0, +\infty[$ be the measurable function such that

$$p(t) > 0$$
 almost everywhere on $]a, b[, \int_{a}^{b} \frac{dt}{p(t)} < +\infty.$

In the interval [a, b], we consider the differential equation

$$\left(p(t)u'\right)' = f(t,u) \tag{1}$$

with the multi-point boundary conditions

$$\sum_{i=1}^{m} \alpha_i u(a_i) = c_1, \quad \sum_{i=1}^{n} \beta_i u(b_i) = c_2.$$
(2)

Here *m* and *n* are natural numbers, $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n, c_1, c_2$ are real constants,

 $a \le a_i \le a_0 < b_0 \le b_j \le b \ (i = 1, \dots, m; \ j = 1, \dots, n).$

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on December 26, 2011.

Moreover, if m = 1 (n = 1), it is assumed that $a = a_0 = a_1$ $(b = b_0 = b_1)$, and if $m \ge 2$ $(n \ge 2)$, then

 $a = a_1 < \dots < a_m = a_0 \quad (b_0 = b_1 < \dots < b_n = b).$

We are interested, in general, in the cases where the function f with respect to the time variable has non-integrable singularities at the points a and b. In that sense the problem (1), (2) is singular.

For m = n = 1, the singular problem (1), (2) is investigated in detail (see [1]–[4], [9], [14]–[16] and the references therein).

The optimal conditions for the unique solvability of problems of the type (1), (2) in the case, when the equation (1) is linear, are contained in [7], [8], [11], [12].

Various particular cases of the nonlinear singular problem (1), (2) are studied in [6], [10], [13]. Nevertheless, in the general case that problem remains so far studied insufficiently. In the present paper, new and unimprovable in a certain sense sufficient conditions for solvability and unique solvability of the above-mentioned problem are given.

We will seek a solution of the problem (1), (2) in the space of continuous functions $u : [a, b] \to R$ which are absolutely continuous together with $t \to p(t)u'(t)$ on an arbitrary closed interval, contained in]a, b[.

We introduce the following functions:

$$f^{*}(t,y) = \max\left\{ |f(t,x)| : |x| \le y \right\} \text{ for } a < t < b, \ y \ge 0;$$

$$f_{0}(t,y) = \sup\left\{ \frac{1}{2} \left(|f(t,x)| - f(t,x) \operatorname{sgn} x \right) : |x| \le y \right\} \text{ for } a < t < b, \ y \ge 0;$$

$$\delta(t) = \int_{a}^{t} \frac{ds}{p(s)} \text{ for } a \le t \le b.$$

In the statements of the main results of the present paper, besides the functions f^* , f_0 , and δ , there are appearing also the functions ψ_1 , ψ_2 , and ψ_0 , which are defined in the following manner: if m = 1 (n = 1), then

$$\psi_1(t) = 0$$
 for $a \le t \le b$ $\left(\psi_2(t) = \beta_1(\delta(b) - \delta(t)) \text{ for } a \le t \le b\right);$

if m > 2, then

$$\psi_1(t) = 0 \text{ for } a \ge a_0, \quad \psi_1(t) = \psi_1(a_{k+1}) + \Big(\sum_{i=k+1}^m \alpha_i\Big) \big(\delta(a_{k+1}) - \delta(t)\big)$$

for $a_k \le t \le a_{k+1}$ $(k = 1, \dots, m-1);$

and if n > 2, then

$$\psi_2(b) = 0, \quad \psi_2(t) = \psi_2(b_{k+1}) + \Big(\sum_{i=k+1}^n \beta_i\Big) \big(\delta(b_{k+1}) - \delta(t)\big)$$

for $b_k \le t < b_{k+1}$ $(k = 1, \dots, n-1),$

$$\psi_2(t) = \psi_2(b_0) + \Big(\sum_{i=1}^n \beta_i\Big) \big(\delta(b_0) - \delta(t)\big) \text{ for } a \le t < b_0,$$

and

$$\psi_0(b) = 0, \quad \psi_0(t) = \psi_0(b_{k+1}) + \left(\sum_{i=1}^k \beta_i\right) \left(\delta(b_{k+1}) - \delta(t)\right) \text{ for } b_k \le t < b_{k+1} \quad (k = 1, \dots, n-1), \qquad (3)$$
$$\psi_0(t) = \psi_0(b_0) \quad \text{for } a \le t < b_0.$$

It is clear that

$$\sum_{i=1}^{n} \beta_i = 0 \Longrightarrow \psi_0(t) \equiv -\psi_2(t).$$

Let

$$\chi(t,s) = \begin{cases} 1 & \text{for } s \le t, \\ 0 & \text{for } s > t. \end{cases}$$

The following simple lemma is valid.

Lemma 1. The boundary value problem

$$(p(t)u')' = 0; \quad \sum_{i=1}^{m} \alpha_i u(a_i) = 0, \quad \sum_{i=1}^{n} \beta_i u(b_i) = 0$$
 (4)

has only the trivial solution if and only if

$$\Delta = \left(\sum_{i=1}^{n} \beta_i\right) \psi_1(a) - \left(\sum_{i=1}^{m} \alpha_i\right) \psi_2(a) \neq 0.$$
(5)

Moreover, if the condition (5) is satisfied, then the Green function of the problem (4) admits the representation

$$\begin{split} g(t,s) = &\frac{1}{\Delta} \bigg[\psi_1(s)\psi_2(a) - \psi_2(s)\psi_1(a) + \Big(\psi_2(s)\sum_{i=1}^m \alpha_i - \psi_1(s)\sum_{i=1}^n \beta_i\Big)\delta(t) \bigg] + \\ &+ \chi(t,s)(\delta(t) - \delta(s)) \end{split}$$

and

$$r = \sup\left\{\frac{|g(t,s)|}{\delta(s)(\delta(b) - \delta(s))}: a \le t \le b, a < s < b\right\} < +\infty.$$
(6)

We study the problem (1), (2) in the case, where

$$\int_{a}^{b} \delta(t)(\delta(b) - \delta(t))f^{*}(t, y) dt < +\infty \quad \text{for } y \ge 0.$$
(7)

Moreover, if $a_0 > a$, then it is assumed that

$$\limsup_{\tau \to t, y \to +\infty} \int_{t}^{\tau} \delta(s) \frac{f^*(s, y)}{y} \, ds < 1 \quad \text{for } a \le t < a_0, \tag{8}$$

and if $b_0 < b$, then

$$\limsup_{\tau \to t, \ y \to +\infty} \int_{\tau}^{t} (\delta(b) - \delta(s)) \frac{f^*(s, y)}{y} \, ds < 1 \quad \text{for } b_0 < t \le b.$$
(9)

Along with (1), (2) we consider the problem

$$\left(p(t)u'\right)' = \lambda f(t,u); \tag{10}$$

$$\sum_{i=1}^{m} \alpha_i u(a_i) = \lambda c_1, \quad \sum_{i=1}^{n} \beta_i u(b_i) = \lambda c_2, \tag{11}$$

dependent on a parameter $\lambda \in [0, 1[$.

On the basis of Corollary 1.2 from [5] and Lemma 1, the following statements are proved.

Theorem 1 (The principle of a priori boundedness). Let the conditions (5), (7) be fulfilled and let there exist a positive constant y_0 such that for any $\lambda \in]0,1[$ every solution of the problem (10), (11) admits the estimate

$$|u(t)| \le y_0 \text{ for } a \le t \le b$$

Then the problem (1), (2) has at least one solution.

Theorem 2. Let the inequality (5) hold and let there exist a positive constant y_0 such that

$$r \int_{a}^{b} \delta(s)(\delta(b) - \delta(s)) f^{*}(s, y_{0}) \, ds \le y_{0}, \tag{12}$$

where r is a number given by the equality (6). Then the problem (1), (2) has at least one solution.

Theorem 3. Let the inequality (5) hold and let in the domain $]a, b[\times R$ the condition

$$|f(t, x_1) - f(t, x_2)| \le h(t)|x_1 - x_2|$$

be fulfilled, where $h:]a, b[\rightarrow [0, +\infty[$ is a measurable function such that

$$r \int_{a}^{b} \delta(s)(\delta(b) - \delta(s))h(s) \, ds < 1.$$
(13)

If, moreover,

$$\int_{a}^{b} \delta(s)(\delta(b) - \delta(s))|f(s,0)| \, ds < +\infty,$$

then the problem (1), (2) has one and only one solution.

Consider now the case, where

$$\alpha_i > 0 \ (i = 1, \dots, m), \quad \beta_i > 0 \ (i = 1, \dots, n).$$
 (14)

Then the condition (5) is satisfied since

$$\Delta < -\left(\sum_{i=1}^{m} \alpha_i\right) \sum_{k=1}^{n-1} \left(\sum_{i=k+1}^{n} \beta_i\right) \left(\delta(b_{k+1}) - \delta(b_k)\right) < 0.$$

Let g_0 be the Green function of the boundary value problem

$$(p(t)u')' = 0; \quad u(a) = u(b) = 0,$$

i.e.,

$$g_0(t,s) = \left(\frac{\delta(s)}{\delta(b)} - 1\right)\delta(t) + \chi(t,s)(\delta(t) - \delta(s)).$$

The following theorem is valid.

Theorem 4. Let the conditions $(7)-(9)^*$, and (14) be fulfilled. Let, moreover, there exist a positive constant y_0 such that

$$\int_{a}^{b} |g_0(t,s)| f_0(s,y) \, ds < y \quad \text{for } a \le t \le b, \ y > y_0.$$
(15)

Then the problem (1), (2) has at least one solution.

Corollary 1. Let the inequalities (14) hold. Let, moreover, in the domain $]a,b[\times R$ the inequality

$$f(t,x) \operatorname{sgn} x \ge -h(t)|x| - h_0(t)$$
 (16)

be fulfilled, and in the domain $(]a, a_0[\cup]b_0, b[) \times R$ the inequality

$$|f(t,x)| \le h_0(t)(1+|x|) \tag{17}$$

hold, where $h:]a, b[\to [0, +\infty[$ and $h_0:]a, b[\to [0, +\infty[$ are measurable functions such that

$$\int_{a}^{b} \delta(s)(\delta(b) - \delta(s))h(s) \, ds \le \delta(b), \tag{18}$$

$$\int_{a}^{b} \delta(s)(\delta(b) - \delta(s))h_0(s) \, ds < +\infty.$$
⁽¹⁹⁾

Then the problem (1), (2) has at least one solution.

^{*} For m = 1 (n = 1), the condition (7) (the condition (8)) is dropped out.

Theorem 5. Let in the domain $]a_0, b_0[\times R$ the condition

$$\left[f(t,x_1) - f(t,x_2)\right] \operatorname{sgn}(x_1 - x_2) \ge -h(t)|x_1 - x_2| \tag{20}$$

be fulfilled, and in the domain $(]a, a_0[\cup]b_0, b[) \times R$ the condition

$$\left| f(t, x_1) - f(t, x_2) \right| \le \bar{h}(t) |x_1 - x_2| \tag{21}$$

hold, where $h:]a, b[\rightarrow [0, +\infty[\text{ and } \bar{h}:]a, a_0[\cup]b_0, b[\rightarrow [0, +\infty[\text{ are measurable functions. If, moreover, the inequalities (14), (18), and (19) are satisfied, where$

$$h_0(t) = \begin{cases} |f(t,0)| & \text{for } t \in]a_0, b_0[, \\ |f(t,0)| + \bar{h}(t) & \text{for } t \in]a, b[\setminus]a_0, b_0[, \end{cases}$$
(22)

then the problem (1), (2) has one and only one solution.

Remark 1. If we take into account Example 1.1 from [4], then it becomes evident that the conditions (12), (13), (15), and (18) in Theorems 2–5 are unimprovable in the sense that they cannot be replaced, respectively, by the conditions

$$\begin{split} r \int_{a}^{b} \delta(s)(\delta(b) - \delta(s)) f^{*}(s, y_{0}) \, ds &\leq (1 + \varepsilon) y_{0}, \\ r \int_{a}^{b} \delta(s)(\delta(b) - \delta(s)) h(s) \, ds &\leq 1 + \varepsilon, \\ \int_{a}^{b} |g_{0}(t, s)| f_{0}(s, y) \, ds &\leq (1 + \varepsilon) y \quad \text{for } a \leq t \leq b, \ y \geq y_{0}, \\ \int_{a}^{b} \delta(s)(\delta(b) - \delta(s)) h(s) \, ds &\leq (1 + \varepsilon) \delta(b), \end{split}$$

no matter how small $\varepsilon > 0$ would be.

Consider now the case, where

$$\alpha_i > 0 \quad (i = 1, \dots, m), \quad n > 2, \quad \beta_i > 0 \quad (i = 1, \dots, n - 1), \quad \beta_n =$$
$$= -\sum_{i=1}^{n-1} \beta_i, \quad \sum_{k=1}^{n-1} \left(\sum_{i=1}^k \beta_i\right) \left(\delta(b_{k+1}) - \delta(b_k)\right) = 1. \tag{23}$$

In that case the inequality (5) is also satisfied since

$$\Delta = -\Big(\sum_{i=1}^m \alpha_i\Big)\psi_2(a) = \Big(\sum_{i=1}^m \alpha_i\Big)\psi_0(a) = \sum_{i=1}^m \alpha_i > 0.$$

Let g_1 be the Green function of the boundary value problem

$$(p(t)u')' = 0; \quad u(a) = 0, \quad \sum_{i=1}^{n} \beta_i u(b_i) = 0.$$

Then in view of (3) and (23) we have

$$g_1(t,s) = -\psi_0(s)\delta(t) + \chi(t,s)(\delta(t) - \delta(s)).$$

Lemma 2. If along with (23) the condition

$$\sum_{k=j}^{n-1} \left(\sum_{i=1}^{k} \beta_i\right) \left(\delta(b_{k+1}) - \delta(b_k)\right) \ge \frac{\delta(b) - \delta(b_j)}{\delta(b)} \quad (j = 1, \dots, n)$$
(24)

holds, then

$$g_1(t,s) \le g_0(t,s) < 0 \text{ for } a < t < b$$

and

$$|g_1(t,s)| \le \delta^{\mu}(t)\delta^{1-\mu}(s)\psi_0(s) \text{ for } a \le t, s \le b, \ 0 \le \mu \le 1.$$

For any $x \in R$, we suppose

$$[x]_{+} = \frac{1}{2}(|x| + x).$$

On the basis of Theorem 1 and Lemma 2, the following theorems are proved.

Theorem 6. Let the conditions (23) and (24) hold. Let, moreover, in the domains $]a, b[\times R \text{ and } (]a, a_0[\cup]b_0, b[) \times R$ the inequalities (16) and (17) be satisfied, respectively, where $h:]a, b[\to [0, +\infty[$ and $h_0:]a, b[\to [0, +\infty[$ are measurable functions satisfying the conditions

$$\int_{a}^{b} \delta^{\mu}(s)(\delta(b) - \delta(s))h(s) \, ds < +\infty, \quad \int_{a}^{b} \delta^{\mu}(s)(\delta(b) - \delta(s))h_{0}(s) \, ds < +\infty, \quad (25)$$

$$\int_{a} \delta(s)\psi_{0}(s) \Big[h(s) - \frac{\mu(1-\mu)\ell}{p(s)\psi_{0}(s)\delta^{2}(s)}\Big]_{+} ds \le 1$$
(26)

for some $\mu \in [0,1]$ and $\ell \in [0,1]$. Then the problem (1), (2) has at least one solution.

Theorem 7. Let the conditions (23) and (24) hold, and let in the domains $]a, b[\times R \text{ and } (]a, a_0[\cup]b_0, b[) \times R$ the inequalities (20) and (21) be satisfied, respectively, where $h :]a, b[\to [0, +\infty[$ and $\bar{h} :]a, a_0[\cup]b_0, b[\to [0, +\infty[$ are measurable functions. If, moreover, for some $\mu \in]0, 1]$ and $\ell \in]0, 1]$ the conditions (25) and (26) are satisfied, where h_0 is a function given by the equality (22), then the problem (1), (2) has one and only one solution. *Remark* 2. The condition (26) in Theorems 6 and 7 is unimprovable and it cannot be replaced by the condition

$$\int_{a}^{b} \delta(s)\psi_{0}(s) \Big[h(s) - \frac{\mu(1-\mu)\ell}{p(s)\psi_{0}(s)\delta^{2}(s)}\Big]_{+} ds \le 1 + \varepsilon - \ell,$$

no matter how small $\varepsilon > 0$ would be.

L

Acknowledgement

This work is supported by the Shota Rustaveli National Science Foundation (Project # GNSF/ST09_175_3-101).

References

- I. T. KIGURADZE, Some singular boundary value problems for second order nonlinear ordinary differential equations. (Russian) *Differencial'nye Uravnenija* 4 (1968), No. 10, 1753–1773; English transl.: *Differ. Equations* 4 (1968), 901–910.
- I. T. KIGURADZE, The singular two-point boundary value problem. (Russian) Differencial'nye Uravnenija 5 (1969), No. 11, 2002–2016; English transl.: Differ. Equations 5 (1968), 1493–1504.
- I. KIGURADZE, On a singular boundary value problem. J. Math. Anal. Appl. 30 (1970), No. 3, 475–489.
- I. KIGURADZE, Some optimal conditions for the solvability of two-point singular boundary value problems. Functional differential equations and applications (Beer-Sheva, 2002). Funct. Differ. Equ. 10 (2003), No. 1-2, 259–281.
- I. KIGURADZE, On solvability conditions for nonlinear operator equations. Math. Comput. Modelling 48 (2008), No. 11-12, 1914–1924.
- I. KIGURADZE AND T. KIGURADZE, Optimal conditions of solvability of nonlocal problems for second-order ordinary differential equations. *Nonlinear Anal.* 74 (2011), No. 3, 757–767.
- I. T. KIGURADZE AND T. I. KIGURADZE, Conditions for the well-posedness of nonlocal problems for second-order linear differential equations. (Russian) *Differ. Uravn.* 47 (2011), No. 10, 1400–1411; English transl.: *Differ. Equ.* 47 (2011), No. 10, 1414–1425.
- I. KIGURADZE AND A. LOMTATIDZE, On certain boundary value problems for secondorder linear ordinary differential equations with singularities. J. Math. Anal. Appl. 101 (1984), No. 2, 325–347.
- I. T. KIGURADZE AND B. L. SHEKHTER, Singular boundary value problems for secondorder ordinary differential equations. (Russian) Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 105–201, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987; English transl.: J. Soviet Math. 43 (1988), No. 2, 2340–2417.
- A. G. LOMTATIDZE, A boundary value problem for second-order nonlinear ordinary differential equations with singularities. (Russian) *Differentsial'nye Uravneniya* 22 (1986), No. 3, 416–426; English transl.: *Differ. Equations* 22 (1986), 301–310.
- A. G. LOMTATIDZE, A nonlocal boundary value problem for second-order linear ordinary differential equations. (Russian) *Differentsial'nye Uravneniya* **31** (1995), No. 3, 446–455; English transl.: *Differ. Equations* **31** (1995), No. 3, 411–420.
- A. LOMTATIDZE, On a nonlocal boundary value problem for second order linear ordinary differential equations. J. Math. Anal. Appl. 193 (1995), No. 3, 889–908.
- A. LOMTATIDZE AND L. MALAGUTI, On a nonlocal boundary value problem for second order nonlinear singular differential equations. *Georgian Math. J.* 7 (2000), No. 1, 133–154.

- N. PARTSVANIA, On the solvability of boundary value problems for nonlinear secondorder differential equations. (Russian) *Differencial'nye Uravnenija* 43 (2007), No. 2, 275–277; English transl.: *Differ. Equations* 43 (2007), No. 2, 286–289.
- N. PARTSVANIA, On extremal solutions of two-point boundary value problems for second order nonlinear singular differential equations. *Bull. Georgian Natl. Acad. Sci.* (N.S.) 5 (2011), No. 2, 31–36.
- N. PARTSVANIA, On solvability and well-posedness of two-point weighted singular boundary value problems. *Mem. Differential Equations Math. Phys.* 54 (2011), 139– 146.

(Received 30.12.2011)

Authors' addresses:

I. Kiguradze

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 2 University St., Tbilisi 0186, Georgia.

E-mail: kig@rmi.ge

A. Lomtatidze

Mathematical Institute of the Academy of Sciences of the Czech Republic, Branch in Brno, 22 Žižkova, Brno 616 62, Czech Republic.

E-mail: bacho@math.muni.cz

N. Partsvania

1. A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 2 University St., Tbilisi 0186, Georgia;

2. International Black Sea University, 2 David Agmashenebeli Alley 13km, Tbilisi 0131, Georgia.

E-mail: ninopa@rmi.ge