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ZAZA SOKHADZE

ON THE CAUCHY-NICOLETTI WEIGHTED PROBLEM
FOR HIGHER ORDER NONLINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS

Abstract. The unimprovable in a certain sense conditions are estab-
lished which, respectively, ensure the solvability and well-posedness of the
weighted Cauchy—Nicoletti problem for higher order nonlinear singular dif-
ferential equations.
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Let —o0 < a < b < +00, n > 2 be a natural number and f be an operator
defined on some set D(f) C C"!([a,b]) and mapping D(f) onto L([a,b]).
We consider the functional differential equation

ut™ (1) = f(u)(t) (1)
with the Cauchy—Nicoletti weighted conditions
| =D (0) ‘

limsup (————) <+o0 (i=1,...,n). 2

msup () ( ) (2)

Here t; € [a,b] (i = 1,...,n) and p; : [a,b] — [0;+00] (1 = 1,...,n) are
continuous functions such that

pn(tn) =0, pn(t) >0 for ¢ 7é tn, pi(ti) =0,

t
\ [rivitras
t;

By C77" ([a,b]) we denote a set of functions u € C™([a, b]) such that

<pi(t) for a<t<b (1=1,...,n—1).

() = max { s (u), .., ()} < +oc,
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where
PR (TG0
pi(u) = sup { o)

For an arbitrary = > 0, assume
Cpt pusallas b)) = {u € Coy i (a:b]) : () < o
P orsee s psa)(t) = swp {[F@) O] we CiTL, L(lab) ]

We investigate the problem (1), (2) in the case, where

:a§t§b,t7étz}.

Cpt pn([asb]) € D(f) 3)

Pls--5Pn

and for any = > 0 the conditions

f.crt ([a,b]) — L([a, b)) is continuous (4)

PLyeesPniT

and

b
/f*(p1,-~-,pn;x)(t)dt<+oo

are fulfilled.
Of special interest is the case, where

D(f) # C"!([a,b]).

In this sense the equation (1) is singular one.
In the case, where f is the Nemytski’s operator, i.e., when

F)(t) = fo(t,ult),...,u" "1 (1)),

where f: (Ja,b[\{t1,...,tn}) x R™ — R is the function satisfying the local
Carathéodory conditions, the problems of the type (1), (2) are investigated
thoroughly (see [1]-[6] and references therein). The problem (1), (2) is also
investigated in the case, where

F)(®) = fo(t,u(m(t), .., u" D (r(1)));
ty=--=t, and pi1(t)=pi(t) (i=1,...,n)

(see [7]-19)).

However, the problem mentioned above remains still little studied in a
general case. Just this case we consider in the present paper.

The function u € D(f) with an absolutely continuous (n—1)th derivative
is said to be a solution of the equation (1) if it almost everywhere on ]a, b[
satisfies this equation.

A solution of the equation (1) satisfying the boundary conditions (2) is
called a solution of the problem (1), (2).
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Theorem 1. Let the conditions (3) and (4) be fulfilled, and there exist
constants o €0, 1] and xo > 0 such that

< app(x) for a <t <b, x> . (5)

t
‘/f*(pl,---,pn;x)(s)ds

Then the problem (1), (2) has at least one solution.

Corollary 1. Let there exist integrable functions p and q : [a,b] —
[0; +00[ such that

sup{‘/tp(s)ds’/pn(t): a<t<b, t;étn}<1, (6)
sup{‘/tq(s)ds‘/pn(t): a<t<b, t;étn}<+oo (7)

and for any uw € CJ7 ([a,b]) almost everywhere on Ja,b| the condition

n

[F)(®)] < p(H)n(w) +q(t)
is fulfilled. Then the problem (1), (2) has at least one solution.
Along with the problem (1), (2) we consider the perturbed problem

V(1) = f(0)(8) + h(t), (8)
'U(i_l)
liin_)st?p (lp,(t)(t)) <400 (i=1,...,n), 9)

where h :]a,b[— R is the integrable function such that
t
po(h) = sup {‘ /h(s) ds‘/pn(t) s a<t<b, t# tn} < +o0. (10)
tn

Definition 1. The problem (1), (2) is said to be well-posed if for any
integrable function & :]a,b] — R satisfying the condition (10), the problem
(8),(9) is uniquely solvable, and there exists an independent of h positive
constant r such that

p(u —v) < rpo(h),
where v and v are, respectively, the solutions of the problems (1), (2) and
(8), (9)-

Theorem 2. Let there exist an integrable function p : [a,b] — [0, +00]
satisfying the inequality (6) such that for any u and v € O3t | ([a,b])
almost everywhere on la,b| the condition

[ F(u)(t) = F(0) ()] < p(t)pu(u — v)

is fulfilled. If, moreover, the inequality (7), where q(t) = |f(0)(¢)|, is ful-
filled, then the problem (1), (2) is well-posed.



146

Note that the condition (5) in Theorem 1, where o €10, 1[, is unimprov-
able and it cannot be replaced by the condition

< pn()z for a <t <b, x> x.

t
‘/f*(pu.-.,pn;x)(S)dS

Similarly, in Corollary 1 and in Theorem 2, the strict inequality (6) can-
not be replaced by the nonstrict inequality

sup{’/tp(s)ds‘/pn(t): a<t<hb, t;«étn}gl.
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