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Let ! be a positive number, A = (a

ik

)

n

i;k=1

: R! R

n�m

and g = (g

i

)

n

i=1

: R! R

n

be a matrix function and a vector function from BV

n�m

!

and BV

n

!

, respectively.

We consider the !-periodic boundary value problem

dx(t) = dA(t) � x(t) + dg(t); x(0) = x(!): (1)

The use will be made of the following notation and de�nitions: R =]�1;+1[ ; R

n�m

is a set of all real n�m-matrices; I is the identity n� n-matrix; R

n

= R

n�1

. BV

n�m

!

is the set of all matrix functions X : R! R

n�m

such that X(t + !) = X(t) +X(!) for

t 2 R, and the restriction on [0; !] of every its components has bounded total variation;

X(t�) and X(t+) are the left and the right limits of X at the point t 2 R; d

1

X(t) =

X(t) �X(t�), d

2

X(t) = X(t+) �X(t).

If g : R! R is nondecreasing, x : R! R and s < t, then

t

Z

s

x(�)dg(�) =

Z

]s;t[

x(�)dg(�) + x(t)d

1

g(t) + x(s)d

2

g(s);

where

R

]s;t[

x(�)dg(�) is the Lebesque{Stieltjes integral over the open interval ]s; t[ with

respect to the measure �

g

corresponding to g, (if s = t, then

R

t

s

x(�)dg(�) = 0).

L
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o

:

A vector function x = (x

i

)

n

i=1
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n
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is a solution of the problem (1) if it is !-periodic

and

x

i

(t) = x

i

(s) +

n
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t

Z
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(�)da

ik

(�) for s � t (i = 1; : : : ; n):

Let natural numbersm and n

1

; : : : ; n

m

(0 = n

0
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1

< � � � < n
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= n), nondecreasing

functions c
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)
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(i; k = n
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) be such that a
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(t) � 0 (i = n
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+1; : : : ; n

j

; k = n

j

+1; : : : ; n;
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almost everywhere t 2 [0; !]; (x

i

)

n

i=1

2 R

n

(l = 1; 2; j = 1; : : : ;m);

where �
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2 f�1; 1g, b
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(t) �

R

t

0

p
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(�)dc
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(�) (i 6= k) and b
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Then we shall say that
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Theorem. Let there exist natural numbers m and n

1

; : : : ; n
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such that (2) holds. Let, moreover,
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for every t 2 [0; !] and j 2 f1; : : : ;mg, where
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Then the problem (1) has one and only one solution.

The analogous question has been considered in [1] for a system of linear ordinary

di�erential equations.
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