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1. INTRODUCTION

The theory of regularly varying functions created by J. Karamata in 1930
has been later (see, for example, monographs [1], [2]) extensively developed
and widely used in various mathematical researches. Particularly, the last
decades of the past century is mentioned by a great interest in studying
regularly and slowly varying solutions of various differential equations and
in equations of the type

y" = aop(t)e(y),

where o € {—1,1}, p : [a,+00[—]0,400[ is a continuous function and
¢ : Ay, — 10, +0o0[ is a regularly varying continuous function of order o # 1
as y — Yp; here Yy equals either zero or oo, and Ay, is a one-sided
neighborhood of Y. Among the researches carried out within that period
and dedicated to determination of asymptotics as t — +oco0 of monotonic
solutions for such equations, of special mention are the works [3], [4] and
the monograph [5].

Here, according to the definition of regularly varying function (see E. Se-
neta [1, Ch. 1, Sect. 1.1, pp. 9-10)),

o(y) = |yl” L(y),

where L is slowly varying as y — Y| function, i.e., the condition

LA
fim ZY) ) ith any A >0
v=Yo  L(y)
yeAyU

is satisfied. Considering such representation for ¢, such class of equations is
a natural extension of the class of generalized second order Emden—Fowler
equations
y" = aop(t)|yl signy.

The basic results dealing with asymptotic properties of solutions for the
second- and n-th order Emden—Fowler equations, obtained before 1990, can
be found in the monograph due to I.T. Kiguradze and T.A. Chanturiya [6,
Ch. IV, V| pp. 309-401]. The works [7]-[16], dedicated to the determination
of asymptotics of monotonic differential equations of second and higher
orders with power nonlinearities are also worth mentioning.

For the last decade, the results obtained in [17]-[22] and also those ob-
tained in [12]-[16] were applied to differential equations

v = aop()poW)er(y), ¥ = arpr(t)ero(v)er (v,
k=1

y™ = agp(t)e(y) (n>2)

with nonlinearities, regularly varying as y — Yy and y' — Y7, where Y; €
{0; £oo} (1 =0, 1), and with some additional restrictions to nonlinearity for
the first two equations.
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In the present paper we consider the following differential equation:

m n—1
yt" = Zakpk(t) H i (), (1.1)
k=1 §=0

where n > 2, ap € {—1;1} (k = 1,m), px : [a,w][—]0,+oc0] (k = 1,m)
are continuous functions, ¢r; : Ay, —]0,+o00[ (k = 1,m; j = 0,n—1)
are continuous and regularly varying as y/) — Y; functions of orders oy;,
—00 < a<w< 400, Ay, is one-sided neighborhood of Y}, Y; equal either
to 0 or to £oo. It is assumed that numbers v; (j = 0,n — 1) determined by

1, if either Y; = 400, or Y; =0
and Ay, -right neighborhood of 0,

Vj = . . (12)
—1, if either Y; = —o0, or ¥; =0
and Ay, -left neighborhood of 0,
are such that
vivjt1 >0 with Y; =400 and
vivjz1 <0 with Y; =0 (j=0,n—2). (1.3)

Such conditions for v; (j = 0,n — 1) are necessary for the equation (1.1)
to have solutions defined in the left neighborhood of w, each of which sat-
isfying the conditions

yU(t) € Ay, with t € [to,w], %myU)(t):Y} (Gj=0,n—1). (14)

Among strictly monotonic, with derivatives up to the n — 1 order inclusive,
in some left neighborhood of w, solutions of equation (1.1) these ones are
of special academic interest, because each of the rest ones admits only one
representation of the type

y(t) = 7o (O)]er—1 +o(1)] (k= T,n),

where ¢,_1 (k= 1,n) are the non-zero real constants and

) t, if w=+4o0, (15)
7w, (t) = .
t—w, if w<4oo.

The question on the existence of solutions of (1.1) with similar represen-
tations may be solved, in a whole, in a rather simple way by applying, for
example, Corollary 8.2 for w = 400 from the monograph of I. T. Kiguradze
and T. A. Chanturiya [1, Ch. II, p. 8, p. 207] and the schemes from the
works [10], [12] as w < 4o00. As for the solutions with properties (1.4),
for lack of particular representations for them, there arises the necessity to
single out a class of solutions admitting one to get such representations.

*ifa>l,thenw:—i—oo,andw—l<a<wifw<+oo.
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One of such rather wide classes of solutions has been introduced in [14]-[16]
dedicated to generalized Emden—Fowler type equations of n-th order,

y™ = agpl(t H ly ).

For the equation (1.1), this class is determlned as follows.

Definition 1.1. A solution y of the equation (1.1) defined on the interval

[to,w[ C [a,w][, is called a P, (Yo, ..., Y,_1, Ag)-solution, where —oco < Mg <
+00, if along with (1.4) the condition
(n—1) t 2
lim W (1.6)

ttw y(”*z) (t)y(")
is satisfied.

If y is a solution of the differential equation (1.1) with properties (1.4)
and the functions In |y~ (¢)| and In |m,(t)| are comparable with order one
(see [23, Ch. 5, Sect. 4,5, pp. 296-301]) as t T w, then it is easy to check that
this solution is the P, (Yp,...,Y,—1, Ao)-solution for some \g depending on
the value of ltlTIB %m

Moreover, using assertions 1, 2, 5 and 9 (on the properties of regularly
varying functions) from the monograph [5, Appendix, pp. 115-117], it can
be verified that in the case of regularly varying as ¢ 1 w coefficients py
(k = 1,m) of the equation (1.1), each of its regularly varying as t 1 w
solutions with properties (1.4) is a P, (Yo, ..., Yn—1,Ag)-solution for some
final or equal to +o00 value \g.

The aim of this note is to determine the conditions for existence of
P,(Yo,...,Yn_1,Ag)-solutions of (1.1) in special cases, where \g = ”;7:1
asi € {1,...,n — 1}, and also asymptotic representations as ¢ 1 w for such
solutions and their derivatives up to and including n — 1 order.

By virtues of the results from [16], these solutions of the equation (1.1)
possess the following a priori asymptotic properties.

Lemma 1.1. Let y : [to,w[— Ay, be an arbitrary P,(Yo,...,Yn_1,N0)-
solution of the equation (1.1). Then:

(1) ifn>2and N = ”;:1 for some i € {1,...,n—2}, then fortt w,

y(kfl)(t) -~ [’/T(:(_t)]];)'k y(ifl)(t) (k=1,...,i— 1)*,

, (1.7)
) (i—1)
y () = O(ym(tgt))’
y B () ~ (—1)F (k —2)! y D) (k=i+1,...,n); (1.8)

[ (8)]

*At i = 1 these relationships do not exist.
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(2) if n>2 and Ao =0, then fort T w,

- n—k—1 *
y(k—l)(t) ~ [(;:85)]]{_1)' y(n—Q) t) (k=1,...,n—2),

w0 =o( )

and, in the case of existence of (finite or equal to +o00) limit

)
lim ==

(1.9)

-1

with t 1T w. (1.10)

2. STATEMENT OF THE MAIN RESULTS

In order to formulate the theorems, we will need some auxiliary notation
and one definition.

By virtue of the definition of regularly varying function, the nonlinearity
in (1.1) is representable in the form

(YD) = [y D Ly (yD) (k=T,m; j=0,n—1),  (2.1)

where Ly; : Ay, —]0,+00[ are continuous and slowly varying as Y = Y;
functions, for which with any A > 0

LY o
y(j)gij

It is also known (see [1, Ch. 1, Sect. 1.2, pp. 10-15]) that the limits (2.2)
are uniformly fulfilled with respect to A on any interval [¢,d] C]0,+o0]
(property M7) and there exist continuously differentiable slowly varying as
y\9) — Y, functions Log; : Ay, — )0, +o00[ (property M) such that

Lo () DI (@
im M =1 and lim % =0 (2.3)
vy Lok; (yD) WO=v; Lok (YD)
y(j)eij y(j)eij

(k=1,m; j=0,n—1).

Definition 2.1. We say that a slowly varying as z — Zy function L :
Az, — 10,400, where Z; either equals zero, or £00, and Ay, is one-sided
neighborhood of Zj, satisfies condition Sy, if

L(velttoMImizly = 1(2)[1 + o(1)] with 2z — Zy (2 € Ag,),

where v = sign z.

*At n = 2 these relationships do not exist.
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Remark 2.1. If the slowly varying as z — Zp function L : Az, —]0,4o00[
satisfies the condition Sy, then for every slowly varying as z — Z; function
l: AZO —)]074-00[,

L(zl(z)) = L(2)[1 + o(1)] when z — Zy (2 € Ag,).

The validity of this statement follows from the theorem of representation
(see [1, Ch. 1, Sect. 1.2, p. 10]) of slowly varying function ! and property
M, of function L.

Remark 2.2 (see [22]). If slowly varying as z — Z function L : Az, —
10, +o0[ satisfies condition Sp, then the function y : [tg, w[— Ay, is contin-
uously differentiable and such that

oy €w
v =Y. =

where r is the non-zero real constant, £ is continuously differentiable in some
left neighborhood of w real function, for which &’(t) # 0, then

L(y(t)) = L(v[€®)]")[L + o(1)] when t 1w,
where v = signy(t) in the left neighborhood of w.

[r +0(1)] when ¢ 71w,

Remark 2.3. If slowly varying as z — Zp function L : Az, —]0,+o0|
satisfies condition Sy and the function r : Az, x K — R, where K is
compact in R™, is such that

lirg r(z,v) = 0 unifornly with respect to v € K,
z—r 0

NS
then
1’ [147r(z,v)]In |z|
lim L )y
z—Zg L(Z)
zeAz,

uniformly with respect to v € K, where v = sign z.

Indeed, if it shouldn’t be true, then there would exist a sequence {v,} € K
and a sequence {z,} € Az, converging to Zy such that the inequality
L(vell+7(zn,vn)]In |20
lim inf (ve )
n—-+oo L(Zn)

—-1/>0 (2.5)

is fulfilled.
Thus it is clear that there is the function v : Az, — K such that v(z,) =

vp,. For this function it is obvious that lim -~z, 7(z,v(z)) =0 and hence
zeAZO

[147r(z,v(2))] In |z|
lim L(ve ) =1,
z—Zy L(Z)

zEAZO

which contradicts the inequality (2.5).
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Finally, let us introduce auxiliary definitions assuming

i—2 n—1
pri=n—i—14Y ow(i—j—1)= > ox(i—i) (k=T,m; i=1,n),
§=0 j=it1
n—1 n—1
Vi _1—ZUk;j7 Wkizl—ZUkj (k=1,m; i=1,n-1),

7=0 Jj=t
— n—1

Ckz ] 1 Tk H [(]72)'}Ukj (k:]-vmv Z:Lnf 1);
j=0 j=it1

t
Tult /pk ) WHLM vlmu(s)[~I Y ds (k=T,m; i=T,n),
j=0
#71

Jrai (t / | Jri(s "*lw ds (k=1,m; i=1,n),
Agii
where each of the limits of integration Agy,, Agmm (m € {0,1}) is chosen
equal to the point ag € [a,w[ (on the right of which, i.e., as t € [ag,w][, the
integrand function is continuous) if under this value of limits of integration
the corresponding integral tends to oo as ¢t T w, and equal to w if at such
value of limits of integration it tends to zero as t T w.

Theorem 2.1. Letn > 2, i€ {1,...,n—2} and for some s € {1,...,m}
the inequalities

lim sup Inpg(t) — Inps(t)
tTw 5 In |7Tw (t)l
n—1

<B Z (0sj —0okj)(i—3—1) atall k€ {1,...,m}\ {s}, (2.6))

be fulfilled, where 8 = signm,(t) fort € [a,w[. Moreover, let ysvs; # 0 and
the functions Ls; for all j € {0,...,n — 1} \ {i — 1} satisfy condition Sp.

Then for the existence of P, (Yo, ..., Yn_1, ";:1 )-solutions of the equation
(1.1) it is necessary, and z'f algebraic equation
n—1 _
Z G=0 H (m — p) +051= (2.7)
= (j—1)
j=i+1

has no roots with zero real part it is sufficient that (along with (1.3)) the
inequalities

vivj—1(i — j)m,(t) >0 at all j€{1,...,n—1}\{i},
Vili—1Ys7Vsidsii(t) > 0,
Vias(—l)n_i_l’ﬂ'g_i_l(t)’ysiJsi(t) >0 (291)

(2.8;)
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be fulfilled in some left neighborhood of w, as well as the conditions

Vi1 ltiTm T ()| =Y,;_1 atall j€{1,...,n}\ {i},

2.10;)
Vi—1 lim |Jsii(t) 15 = Y;—lv (
tTw
()L () T () Ty (1)
lim Te\Wsilt) e Mol 2.11;
e Jsi(t) T e Jsii () (210

Moreover, each solution of that kind admits as t T w the asymptotic repre-
sentations

()
=]
Gy vii G =D vsiG(t)
A S e O ERem ey

yi=D(1) = YD +0(1)] G=1,...,0i—1),  (212)

y DL+ o(D)] (2.13:)

(G=i,...,n—1),
Vs

")
Ly (yt=1 (1))

and in case w = 400 there is i + l-parameter family of solutions if the
inequality viv;_17vsvVs; > 0 is valid, and i — 1 + l-parameter family if the
inequality v;v;_17vs7Vsi < 0 s valid, in case w < +00, there is r+ 1-parameter
family if the inequality v;v;_17sVsi > 0 is valid, and r-parameter family if
the inequality v;v;_1vsvsi < 0 is valid, where | is a number of roots of the
equation (2.7) with negative real part and r is a number of its roots with
positive real part.

Vsi

1+ 0(1)] with ttw, (2.14;)

== h/szcm|

817

Vs
—Jgi(t
S (t)

Remark 2.4. Algebraic equation (2.7) has a fortiori no roots with zero real

n—2
part, if Z losi| < |1 —0ogn—1]
j=t

In Theorem 2.1, asymptotic representation for y*~1) is written implicitly.

The following theorem shows an additional restriction under which this
representation may be presented explicitly.

Theorem 2.2. If the conditions of Theorem 2.1 are fulfilled and a slowly
varying at y(—1 — Yi_1 function L1 satisfies condition Sy, then for each
P,(Yo,...,Y, 1, ";:1 )-solution of the equation (1.1), asymptotic represen-

tations (2.12;), (2.13;) and

1
s
X

YU (t) = vy

Ysi
V5iCsiLsi—1 (z/i_l\an(t) Ve )
Tsi

1+ o0(1)] (2.15;)

k Jsii (t)

S

X

hold when t T w.
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3. PROOF OF THEOREMS

Proof of Theorem 2.1. Necessity. Let y : [to,w[— Ay, be an arbitrary
P,(Yy,...,Y, 1, ";Zl—solution of the equation (1.1). Then the conditions
(1.4) are satisfied, there is t; € [a,w[ such that v;y)(t) >0 (j = 0,n — 1)
for t € [t1,w[ and by Lemma 1.1, the asymptotic relations (1.7), (1.8) hold.
From (1.7) and (1.8) we obtain the relations

= (j=1,n) when ttw (3.1;)

and therefore
In|yY=Y ) = [i—j+o(1)] In|m,(t)] (j=T,n) when ttw. (3.2

By virtue of (3.1;), the first of inequalities (2.8;) are fulfilled, and by virtue
of (3.2;), the first of conditions (2.10;) are satisfied.
Taking into account (3.2;), the representations (2.1) and the conditions

In L. (v
e A kj((y.) )
vy Infyl)|
v(Deay,

=0 (k=1,m, 7=0,n—1), (3.3)

which are satisfied due to the properties of slowly varying functions (see [1,
Ch. 1, p. 1.5, p. 24]), we find that

In ok (¥ (1)) = or; In [y (¢)| + In Li; (v (1) =
= o +o(1)] In |y (t)] = [onj(i — j — 1) + o(1)] In |7 (1)
(k=1,m, j=0,n—1) when ¢ 1 w.

That is why for each k € {1,...,m} \ {s},

n0 Loty s | |
In l - ] =In I;k@) +> {lnwkj(y”(t)*ln (Y9 ( )} =
20 oo @)1 70 =0
— 0 288 (0] 3 [(ony = 025)(i == 1)+ o(1)] =
s =0
n—1
= stufm, (0] 22D =R 5 3 (o - 0ui =~ 1)+ ol1)]

as t1Tw.

Since the expression, appearing on the right of this correlation, by virtue of
(2.6;) and the type of the function m, from (1.5), tends to —oo when ¢ 1 w,
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therefore

lim ——2= =0 atall ke{l,...,m}\{s} (3.4)

Then from (1.1) it follows that this solution implies asymptotic relation

n—1

Y™ (1) = asps(t)[1 + o(1)] H 05 (Y9 (t)) when t 1 w. (3.5)

Jj=0

Here, for all j € {0,...,n — 1} \ {7 — 1}, the functions L,; in the represen-
tations (2.1) of functions ,; satisfy the condition Sy. Therefore, by virtue
of (3.1;) and Remark 2.2, for them we have

Lgj(y D (1) = Lyj (vjlm (®) 7711 + 0(1)] when ¢ 1 w.

Taking into account (2.1) and the above representations, we can rewrite
(3.5) in the form

Y™ (t) = aups )y ()| L1 (y 0 () x

(H|y

J#z 1

7% L, (VJ |7 (t )|1J1)) [1+40(1)] at t 1T w.

Hence, using (1.7), (1.8) and bearing in mind the fact that according to
(3'1i)a

™)(t) () (41
Yy = yz(Jn—l)(t) ' y(z+1)( )y( W ~
N (=)= (n —4)!

()

and the notation introduced before formulation of theorems, we get the
following relation:

YOO @
PO

y () at ¢ 1w,

Yoi=¥s L1 (y=1(t))
=as(—1>"*"*1(sign[ (O] ) Caip(t) ()

Hesi o

H i (Vilme 7T 1 +0(1)] at ttw. (3.6)
By virtue of property M, of slowly varying functions, there is a con-
tinuously differentiated function Losi—1 : Ay, , —]0,+oo[ satisfying the
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conditions (2.3) for k = s and j = ¢ — 1. Using these conditions and (3.1;),
we find that

. P o
[y (t)[7si =7 Logi—1 (= (1)) |y =D ()75 Logi—1 (y = 1(¢))
(i) (1)
_ N A O A O]
X <731 - (’Ys - ’YSZ)y(iJrl)(t) ’ y(ifl) (t) B
P 9w YV Lh, V(1)
gD () =D (1) Losi—1(y=(1))
= yU @)y ()=t
|y =1 (t)|7si =7 Losi—1 (y 1 (t))

Therefore (3.6) can be rewritten in the form

X

[Vi'ysi + 0(1)] at t T w.

y(i)(t)"‘/si '
(|y(i*1)(t) ’Ysi*%-LOSZ- 1(y(i*1)(t))) -
= Vzae n - 1781( n iil)ceip( )|7TUJ( ) Heix
H s (ilma O L +o(1)] at ¢ w.

J#T

Integrating this relation on the interval between ¢; and ¢ and taking into
account that the fraction under the derivative sign due to the condition
vs; 7 0 tends either to zero, or to oo as t T w, we get

yO(t) _
|y(i*1)(t) 'YSi*'YsLosifl(y(ifl)(t)) -
= v (—1)" " Ty (signfm, ()] ) Coildsi(t)[L 4+ o(1)] at ¢ 1 w.

Vsi

From here first of all follows that the inequality (2.9;) is fulfilled. Moreover,
from this and (3.6), due to the equivalence of functions Ly;—1 and Log;—1 as
y(i_l) — Y;_1, we have

y ) Ju@)
y(i)(t) B ’Ysz']w(t)

whence, according to (3.1;) for j =i + 1, it follows that the first condition
of (2.11;) is valid.
From the obtained relation we also have

y(“( ) _
LW“ L (yD())

=V |Csi’YsiJsi(t)

[1+o0(1)] at t T w,

=D (1)

i1+ o(1)] at ¢ 1 w. (3.7)
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( [y D@ )
Lizioa (4 (1))

0

By virtue of the fact that

_ vy D@y @ = [7 1 y“‘”(t)%si(y“‘”(t))] _
a % i s st L 51 (i-1) t B
Loz (yi=D (1) v v 0si (Y (t))

iy D)y () 22

- 1

+o(1)} at t 1w,

Lgsi—a (=0 (2)) T
from (3.7) it follows
(iil) t % !/ Ui 1
(0 = S [Comidi() 1+ 0(1)] when ¢ .

L .
Losi 21 (=1 (1)

Here the fraction appearing under the derivative sign tends either to zero
or to o0 as t T w, since by virtue of (1.4) and properties of slowly varying
functions (see (3.3)),

=1 () [7e:
In Ly Ul
Loz (yi=D (1))
_ (i—1) Vs
=In |y ()] o +0(1)| = £o00 at ¢ 71 w.

81

i— Vs 1 InL s1— y(iil) t
= 1n|y( 1)(t)| [ - : (11'(71) 2
Vsi Vsi In |y (t)|

That is why, by integrating this correlation on the interval from ¢; to ¢, we
get
s

Ysi VilVi—17s

(i—-1)

Y t

L () = Voi |’YsiCsi
Lozi_1(yi=D (1)) .

From here it follows the validity of the second inequality of (2.8;) and also,
in view of the equivalence of functions Lg;_1 and Los_1 as y@~1 — Y;_q,
the validity of the asymptotic representation (2.14;). Besides, (3.7) and
(3.8) yield

T L[ +o(1)] at ttw. (3.8)

y (1) _ VsiJgii (1)
yoo)  vsdsilt)
By virtue of the last relation and Lemma 1.1, the second conditions of

(2.10;) and (2.11;) are fulfilled, and asymptotic representations (2.12;) and
(2.13;) hold.

Sufficiency. Let the conditions (2.8;)—(2.11;) be satisfied, and the alge-
braic equation (2.7) have no roots with zero real part. Let us show that

in this case the equation (1.1) has solutions admitting asymptotic relations
(2.12;)—(2.14;) as t 1 w.

[1+0(1)] at ¢t T w. (3.9;)
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Towards this end, we consider first the relation

s

Y |vsi s
|1% = |75iCsi| 75 %an‘(t)‘[l + vnl, (3.10)
Lgsi1(Y) s

where Log; : Ay, — |0, +oo[ are continuously differentiated slowly varying as
Y — Y,_, functions, satisfying the conditions (2.3) (for k = sand j =i—1)
and existing due to the property Ms of slowly varying functions.

Having chosen an arbitrary number d €]0, |2=][, let us show that for

s

some to € Ja,w] the relation (3.10) defined uniquely, on the set [to, w[ xRy,
where Ri = {v € R: [v] < 1}, a continuously differentiated implicit
function Y = Y (¢, v,,) of the type

Y (t,vn) = vi|Jsi(t)] 55 T2, (3.11)

where z is the function such that
|2(t,vn)| < d for (t,vn) € [to,w[ xRy and ltiTrBz(t,vn) =0
uniformly with respect to v, € R%. (3.12)
Assuming in (3.10)

Y = v | Ja(t)| 55 (3.13)
and then taking the logarithm of the obtained relation, after elementary
manipulations, we find that

z = a(t) +b(t,vn) + Z(t, 2), (3.14)
where
CIn |22 | + L n |y Cl ; In[l1
a(t):h' |’y“| s | | ) b(tvvn):h'm’
Vs In |J5” (t)| vs In |J8”(t)|
1 InLosi—1(vi—1|Jsii(t) g )
Z(t,z) = — -
ha)= In [y ()

Here, by virtue of the second condition of (2.10;), by the choice of the limit
of integration in Jy; and by the property (3.3) of slowly varying functions,

Yis

Vi1 1t1TIUIJ1 | Jsii(8)| s T2 = Yiy
uniformly with respect to z € [—d, d], %IB a(t) =0, (3.15)
ltlTIS b(t,vn) =0 uniformly with respect to v, € Ry, 16)
ltITIB Z(t,z) =0 uniformly with respect to z € [—d,d]. ’
Since
0Z(t,z) 1 wvi-a|Jui(t) L i | T (D] 5 )

Tsi
0z Vs Losi—1(vi—1|Jsii(8)| 7= %)
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by virtue of (2.3) and the first of the above-stated conditions, we likewise

have o7
t
lim 7( %)

= 0 uniformly with respect to z € [—d, d].
tTw 0z

According to these conditions, there is a number ¢; € [a,w[ such that
Ve[ Jai@)] 5T € Ay, at (¢,2) € [t1,w[ xRy,
where Rg = {z € R: |z| < d}, (3.17)
|la(t) + b(t,v1,v2) + Z(t,z)‘ <d at (t,vn,z) € [t1,w] xR1 x Ry

and
1
|Z(t,21) — Z(t, 22)| < B |z1 — 22| at t € [t1,w] and 21,22 € Ry, (3.18)

Having chosen in this way the number t;, we denote by B the Banach
space of continuous and bounded on set Q = [tq, w] xRy functions z : @ — R
with the norm

Izl = sup{|z(t,vn)| 2 (tyu,) € Q}
We distinguish from it the subspace By of those functions from B, for
which ||z|| < d, and consider on By, choosing a fortiori an arbitrary number
v € (0,1), the operator

®(2)(t, vn) = 2(t,vn) — v]2(t,vy) — alt) — b(t,vn) — Z(t, 2(t,v,)]. (3.19)
By virtue of (3.17) and (3.18), for any z € By and z1, 22 € By, we have
|P(2)(t, vn)| < (L —v)|z(t,vn)| + vd < d and (t,v,) € Q

and

[©(21) (¢, 0n) = D(22) (¢, vn)| <
< (I =v)|z1(t,vn) — za(t,vn)| + V| Z(t, 21 (L, vp)) — Z (¢, 22(t, vp,)| <

1%
< (T =v)|z1(t, vn) — 22(t, vn)| + §|Zl (t,vn) — z2(t,vn)] <
< (1 _ g) 21 — 2|l at (t,v,) € .

This implies that ®(Bg) C B and [|®(21) — ®(22)|| < (1 — 5)[|21 — 22]|.

It means that the operator ® maps the space By into itself and is a
contractor operator on it. Then, by the contraction mapping principle,
there is a unique function z € By such that z = ®(z). By virtue of (3.19),
this continuous on set €2 function is a unique solution of the equation (3.14)
satisfying the condition ||z|| < d. From (3.14), with regard for (3.15), (3.16),
it follows that the given solution tends to zero as t 1 w uniformly with
respect to v, € R 1 Continuous differentiability of this solution on the set
[to,w[ xRy, where to is some number from [t;,w], follows directly from the
well-known local theorem on the existence of an implicit function defined by
the relation (3.14). In virtue of replacement (3.13), the obtained function z
corresponds to a continuously differentiated on set [to, w[ xRy function Y of
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type (3.11), where z possesses the properties (3.12) and which is a solution
of the equation (3.10) and satisfies the conditions

Y(t,vn) € Ay,_, for (t,vn) € [to,w[ xRy,

ltiTm Y (t,v,) = Y;—1 uniformly with respect to v, € R%.
w

(3.20)

Now, applying to differential equation (1.1) the transformation

V900 = O O+ ()] (=i =)

0= 7 s SO )

G=1i....,n—1),
y U () = Y (t,0a(7)), 7(t) = Bln|m,(t)],
where [ is defined in (2.6;), and bearing in mind that the function
y=(t) = Y(t, vn (7)) for t € [to,w] and v, (1) € R satisfies equation
=1t 1| Ys
Ly () — |’75iCSi|’YSi 3
Losi_1(yt=1(1))

with the use of sign conditions (2.8;), (2.9;), we get a system of differential
equations of the form

v = B[ = )egr =) = ZE @A+ o)L w)] (=100 2),

S

Vs
Vsi

Jmuﬂu+v4ﬂL

vy = B[ =i = P M)+ )14,

S

V] 5[(]’ —)(14v)—G+1-9)1+vj41) — Wi hao(T)(1 +v;)+

S

+1hmﬂu+wx%—7m—%wﬂ G=iron—2),

Vs
i—2 n—1
. [T 11 +vj40]7 TT [1 4 0507
, n—i j=0 j=i
V1 = ho(T G(T,v1,...,0,)+
n—1 5[ Vi 2( ) ‘1+Un i ( 1 n)

+(n—i—1)(14vp_1)— i ho(T)(1 4+ vp—1)+

S

1
+ — hi (7)) (14 vn—1) (Vs — Vsi — Vsii)

S

)

U;L - 5h1(7—) |:(1 T ’Un)(]_ + vl)i(l + vn)iis H(T7 'Un)(]- + Un)(l + ’Ui) )
in which
ha(r) = ha(r () = "D

Jsii(t)

T (£) 5 (1)

ha(r) = ha(r(t)) = "2
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H LSJ( (t Uj7vj+17vn))
= Leia(Y(t,0n))  s3i- %

X
Losi,1(Y(t7’Un)) n—1 .
I Lo (vlma (=771
J#L 1
m n—1 .
> awp(®eri-1(Y (tva)) TT ori (Yt 05,0501, 00)
B 501
x 7
asps (1) psi—1 (Y (¢, 0n)) H @5 (YUI(t, 05,0511, vn))
J#t 1
Y(tvvﬂ)L() -_1(Y(t, Un))
H(r(t),v,) = 5 ,
(), 0n) Losi—1(Y (¢, vn))
Y[j] (t,Uj,Uj+1,Un) =
ﬂ.i—j—l() v .
Zo " Y (¢, 0,)(1 + v | =0,i—2,
_ (27]71) (7v )( +U]+1) when j ?
B (j —)! Tsi J5(t) . —
. SIS Y (t,v,)(1 +v;) when j=14,n— 1.
RL(0) e dant) | o) !
Here, the function 7(t) = 81n|m,(t)| possesses the properties
7'(t) >0 at t € [to,w], %iTmT(t) = +o00
w
and that is why, according to conditions (2.11;),
i ha(r) =l (r(6) =0,
lim h =limh t) = ; (3:22)
im ha(7) = lim ho(7(t) = —7ai.

By virtue of (3.20) and (2.3) (for k¥ = s and j = ¢ — 1) the function H
tends to zero as 7 — +oo uniformly with respect to v, € R 1 and first
fraction in the representation of the function G tends to unity as 7 — +o0
uniformly with respect to v,, € R 1

Let us show that the second and third fractions in the representation of
function G likewise tends to unity as 7 — 4oo uniformly with respect to
(V1,-..,0,) € ]Rg.

By virtue of (2.11;) and using the 'Hospital’s rule, we have

.. /
im In |Jsu(t)| _ hm ( )Jsu( ) — 0’
thw 1n|7rw( ) e Je(t)

Jais t)|| Ww(t)‘];z(t) B 7Tw( )Jéu( )

su(t

1rn im =—1.
tTw 1n|7rw( )l tT“’ ’Ysi']si(t) Jsu(t)
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Taking into account the type of functions Y and YU (j =0,n — 1, j #i—1),
we find

In|Y(t,v, s I | S (¢
1mM = lim [l + z(t,v,) | lim ] (0] =0
ttw  1n |7, ()] thw Lygs ttw In|my, (t)]

uniformly with respect to v, € R 1

lIl|Y[j] (t,vj,vj+1,vn)|
tw In |7, (t)] B

[1+v;41]
In|Y In G==
P PPt 1 G| B Nt o o S

e In|mu(t)] | the In|m(t)]

uniformly with respect to  (vj41,vn) € R% for j=0,i—2
2

and
im n YUt v, 041, vn)| :Z-_Hhmw
e I 7o (t)] o T o (0)]
'7.2711:(’5)| In G=D!ysi(A4o;)]
4 lim — =0 4y s | =i—j—1

ttw In|m,(t)]  ttw In |7, (¢)]

uniformly with respect to (vj,v,) € R3 for j=14,n — L.
2

In view of these marginal ratios and using inequalities (2.6;) we find, repeat-
ing the reasoning in proving the necessity, that for any k € {1,...,m}\ {s}

n—1 .
Pre()pri—1(Y(t,vn)) HO e (YU (t, 05,0541, 0n0))

j=

lim e =0
ttw n—1 .
Ps(D)psi1 (Yt vn)) T 0o (YUI(E 05,0541, 0n))
i
uniformly with respect to (v1,...,v,) € Rg.

Owing to these conditions, the last fraction in the representation of function
G tends to unity as 7 — 400 uniformly with respect to (v1,...,v,) € R%.

Moreover, taking into account marginal ratios stated above, we obt;in
the following representations:

i In YU (0,041,000
Y[J](t,vj,vj-}-hvn) - l/jen‘ (tv5,0541,0n)]

= pjelltritos o)l lmaOI0 ag 5 e {0, n — 13\ {i — 1},
where

ltiTm 7i(t,v5,vj41,v,) = 0 uniformly with respect to (vj,vji1,v,) € RY
w 2

forall j€{0,...,n—1}\{i —1}.

Since the functions Ly; (j = 1,n—1, j # i — 1) satisfy the condition Sp,
by Remark 2.3, it follows that
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n—1 i
[[0 sz (Y[J] (ta Vg, Vj+1, vn))

. -1 .
lim =1
ttw n—1 L
I Lm0
ji1
uniformly with respect to (v1,...,v,) € RY.
2

Therefore, the second fraction in the representation of function G tends to
unity as 7 — +oo uniformly with respect to (vy,...,v,) € R%.

Due to above stated, the obtained system of differential eqiations can be
written in form

’U; = ﬂ{fi(T,vh .. .,’Un) + ijkvk} (k =1,n-— 2)7
k=1
n
/!
vn_lzﬁ{fnﬂ(r,vl,...,vn)—l—an_lkvk—i—Vn_l(vl,...,vn)}, (3.23,)
k=1

vy, = Bhy(7) {fn(T, ViyennyUn) + ankvk + Vo (v, .. ,’Un)},
k=1

where the functions f; (i = 1,n) are continuous on a set |1, +oo[ xR%} for
2

some 11 > Bln|m,(tg)| and are such that

lim fi(Tﬂvlv"'avn) =0 (l :m)

oo
uniformly with respect to (v1,...,v,) € ]Rg, (3.24)
pjj =J =% Pjjy1=1-7]
jp=0at ke{l..op\{j,j+1} (G=Ti-2)
Pi—ti-1=—-1, pi1x=0at ke{l,...,n}\{i -1},
pjj=J—1+1Ll, pr=i-—j—1,
pie=0at ke{l,....n}\{j,j+1} (j=1in-2),
pno1k = —(n—i)ogk—1 (k=1,i—-1),
Pk =—(n—i)osk (k=1,1-2), pp1n1=n—1)(1—-0s 1),
Dn-1n = (N —)Ysi, Pni=1 D=0 at ke {l,...,n}\{i},

Va(vi, ..oy 0n) = 0iUn,

i—2 n—1
[T 11+ w7 T [1+v;]7=
) i=0 -
Vn_l(vl,...,vn):(zfn)J = +

|1 + fUn|'Ysi
i—1 n—1

+ (’I’L - Z) [1 + Z Osk—1Vk + Z OskVk — Vsivn} .

k=1 k=1
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Since conditions (3.24) are satisfied and

lim a‘/j(’l)l,...,’l)n)
|v1 ]+ +|vn =0 ovy,

=0 (j=n—-1,n; k=1n),

this system belongs to the class of systems of differential equations, for which
the criteria for the existence of vanishing at infinity solutions were obtained
in [24]. Let us show that for this system the conditions of Theorem 2.6 are
fulfilled (based on this paper).

First of all, taking into account the conditions (3.22) and the type of
integral Jg;; (), we notice that the function h; possesses the properties

lim ha(7) =0, /hl(r) dTZﬂ/ J:Z(t) dt =
t1

:ﬁh’l‘Js“(t)“:l = +00 (7’1 :ﬁln‘ﬂw(t1)|)7
k() L ()
1 i
oo T (1) the T/ (8)h (7 (1))
Mo (D) Jgii (1) | 1 mu(t) S5 (1) mo(t) S5 () mw(t) i (H) V2] _
+ ( Jsii (1) ) =0
Next, consider the matrices P, = (pj;g);-‘,kzl and P,_1 = (pjk)?’;il, for
which we have

= [lim
/6 ttw an (t) Vsi Jsi (t) an (t)

det P, 1 = (=1)" (i — )!(n —i)lye, det P, = (=1)"(i — 1)!(n — i)y,

det[nl pEnl :_ ZlHk‘FP[H _p)_
m=1
n—1
—(n—i)'z ]_Z'H —(n—1)log|,
Jj=t1+1

where E,,_1 is the unit matrix of dimension (n — 1) x (n — 1).

Since algebraic equation (2.7), according to the conditions of Theorem,
has no roots with zero real part, the characteristic equation of the matrix
P,,_1 has likewise no such roots, and the given characteristic equation has
i — 1 roots (if i > 1) of the type pp = —k (k=1,i—1).

Thus, for the system (3.23;), all the conditions of Theorem 2.6 of [24]
are satisfied. According to this theorem, the system (3.23;) has at least one
solution (v;)j_; : [12, +oo[ = R™ (12 > 71) tending to zero as 7 — +ooc.

Moreover, if { is a number of roots of the equation (2.7) with negative
real part, and r is a number of roots with positive real part, then according
to the same Theorem, in case § = 1, this system has 7 + 1 - parametric
family of such solutions if the inequality v;v;_17s7s; > 0 is fulfilled, and
has i — 1 4 [- parametric family if the inequality v;v;_17vs7s; < 0 is fulfilled,
whereas, in case § = —1, there is r + 1 - parameter family of such solutions
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if there is the inequality v;1;_17s7s; > 0 and 7 - parametric family if there
is the inequality v;v;_17s7si < 0.

To every such solution of the system (3.23;) there corresponds, due to the
replacements (3.21;) and the first condition of (2.3), the solution y : [t2, w[—
R (t2 € [a,w]) of the equation (1.1) admitting as ¢t 1 w asymptotic represen-
tations (2.12;)—(2.14;). Using these representations and conditions (2.6;),
(2.8;)(2.11;), it can be easily seen that it is a P, (Yo, ..., Y, 1, 2=1)-s0-

-1, 75

lution. O

Proof of Theorem 2.2. Let the equation (1.1) have P, (Yp,...,Y,_1, ";:1)—
solution y : [tg,w[— Ay,. Then, according to Theorem 2.1, the conditions
(2.8;)—(2.11;) are satisfied and for this solution the asymptotic representa-
tions (2.12;)—(2.14;) hold as ¢ T w. Furthermore, from the proof of necessity
of that theorem it is clear that the condition (3.9;) is satisfied. Since the

functions L, satisfy the condition Sy, by virtue of (3.9;) and Remark 2.2,

Lei—1(y"™(t)) = Ly, (vie1|Jsii(t)
Therefore it follows from (2.14;) that

Jsi

s )[1 +0o(1)] at ¢t 1 w.

P =

Vsi s
= [75iCsil Lsi—1 (vi-1]Jsii ()| 7%) ;L Jsii(t)

st

%i[l +o(1)] at ¢ttw,

which results in the presentation (2.15;). O

4. EXAMPLE OF EQUATION WITH REGULARLY VARYING AS t T w
COEFFICIENTS

Suppose that in the differential equation (1.1), the continuous functions
pi : [a,w[—]0,+0o[ (k = 1,m) are regularly varying, as ¢t T w, of orders g,
(k =1,m), and, moreover, the conditions of Theorem 2.1 asi € {1,...,n—
2} are satisfied. In this case

. Inpp(t)
D @]~ % (41)

and the conditions (2.6;) take the form

n—1

Blok—0s) <B Y (055 —0ony)(i—j—1)
P

atall ke {1,...,m}\ {s}. (4.2;)

Since as t T w the functions Lg; (vj|m,(£)[7 1) (j € {0,...,n—1}\{i—1})
are slowly varying, and the function p, is regularly varying of order gs,
therefore the function Jg; is regularly varying of order 1+ o5 + ps;, and the
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function |Jg;(¢)| is regularly varying of order 1 + %(1 + 05 + psi) as t T w.
This implies that

(b))

lim —>222 =1+ 0, + fisi,

tTw Jsz(t) @ H
()T (t) 1
lim —2 7St T (1 4 g ).
ttw  Jgii(t) ’Ysi( 0s F tsi)

Therefore the conditions (2.11;) will be of the following form:
1+ 0s + Vsi + Hsi = 0. (431)

Taking into account this condition, the function Jg;(t) should be slowly
varying as t T w. In order to get asymptotic representation for this integral
we have to know the type of a slowly varying component of the integrand
equation.

Suppose that the functions ps and ¢,; (j = 0,n — 1) are of the form

ps(t) = [m(0)]% | [ I [ (8)]]
, A N . (4.4)
s (D) =y [ [y D™ (j = 0,n =T).
In this case, L;(y")) = ’1n |39 Aed (j = 0,n— 1) and hence all of them

satisfy the conditions of Sy. Additionally, we get as t T w the following
asymptotic relations

n—1

B n—1 rs+ Zo Asj
. . . A I
Jsi(t) ~ —— H li —j — 1% |m, ()] I |my (8)]] %7, (4.5:)
Vsi J=0
jFi—1
n—1 \
v 11 Ji=g 1P o
J;TEI 1+'Ysi (Ts“l’vj;[)l)\s])
1 n—1 |ln |7Tw(t)‘| . )
I’Ysi Vet (Ts+z )\sj+’7$i)
1;731
n—1
if rs 4+ )\sj 7é —Vsi»
Jsis (t) ~ ; (461)

J#i—1
n—1
p .
1 H ‘.7 —i—1

[Vsil =i 5o
J#i-1

Asiln | In \ﬂ'w(t)||,

n—1
if ry+ Z )\sj = —Vsi,
=0

jFAI—1
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n—1
st Z /\3j+7(si
3=0 n—1
J#i-1 )
’ lf Ts‘i’ )\5'7&_781'5
J4ii(t) N Vil () In |7y, (2)] ; j -
Jsii(t) jAi—1 . T
1
if 7 Ao = —~er.
O] T 2 A
jFAi—1

From the above relations it, in particular, follows that the inequalities
(2.8;), (2.9;) and the conditions (2.10;) take the form

vivi—1(i— j)m,(t) >0 atall je{l,...,n—1}\{i},
via(—1)" T (E) > 0,

w

(4.8;)

n—1
1
v > 0/(<0), i 1+ (7’3 + As]-) >0(<0), (4.9
5 j=0
JHi—1

z/j,lltiTm|7rw(t)|i_j =Y;_1 at je€{l,...,n}\{i}, (4.10;)

n—1
ViaYior =00 (=0), i 7 (re+ 0 A7) 20(<0). (411
v
By virtue of above-said, from Theorem 2.2 follows the following state-
ment.

Corollary 4.1. Let in the equation (1.1) n > 2, the functions p; (k =
1,m) be regularly varying of orders o att tw, i € {1,...,n —2} and for
some s € {1,...,m}, the inequalities (4.2;) be fulfilled. Let, moreover, the
equation vsys; 7 0 be fulfilled and the representations (4.4) hold. Then for
the equation (1.1) to have P, (Yo, ..., Yn_1, ";:1 )-solutions, it is necessary,
and if algebraic equation (2.7) has no roots with zero real part, then it is
sufficient that the conditions (4.3;), (4.8;)—(4.11;) (along with (1.3)) are
satisfied. Moreover, for each such solution there exist, ast 1 w, the following
asymptotic representations:

[m "7 i1
i v
, =D AT .
9 0) = (-1t o Dl Do) 13,
(G=1...,n—1),

YD (1) = O +o01)] G=1,...,i—1), (412

. oi |Msim1—Vsi %
Yy (t) = vi1 |76 Ci e X
Vs
Yai Asi—1
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where the functions Js;;(t) and ?Eg are defined by (4.6;) and (4.7;), respec-
tively, and for such solutions in case w = +oo there exists an i+1-parametric
family if the inequality v;v;_17vsys; > 0 is fulfilled, and an i—1+I[-parameter
family if there is the inequality v;v;_17vsYsi < 0, while in case w < 400
there exists an r + l-parametric family of such solutions if the inequality
ViVi—17sVsi > 0 is fulfilled, and an r- parametric family if there is the in-
equality viv;—17svsi < 0, where | is a number of roots of the equation (2.7)
with negative real part and r is a number of its roots with positive real part.
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