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Abstract. We consider the stationary oscillation case of the theory of
linear thermoelasticity of materials with microtemperatures. The represen-
tation formula of a general solution of the homogeneous system of differen-
tial equations obtained in the paper is expressed by means of seven meta-
harmonic functions. This formula is very convenient and useful in many
particular problems for domains with concrete geometry. Here we demon-
strate an application of this formulas to the Dirichlet and Neumann type
boundary value problem for a ball. The uniqueness theorems are proved.
An explicit solutions in the form of absolutely and uniformly convergent
series are constructed.
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1. INTRODUCTION

Mathematical model describing the chiral properties of the linear ther-
moelasticity of materials with microtemperatures have been proposed by
Iesan [6], [8] and recently it has been extended to a more general case, when
the material points admit micropolar structure [7].

The Dirichlet, Neumann and mixed type boundary value problems corre-
sponding to this model are well investigated for general domains of arbitrary
shape, the uniqueness and existence theorems are proved, and regularity
results for solutions are established by potential and variational methods
(see [1,10,14,15] and the references therein).

The main goal of this paper is to derive general representation formulas
for the displacement vector of microtemperatures and temperature function
by means of metaharmonic functions. That is, we can represent solutions to
a very complicated coupled system of simultaneous differential equations of
thermoelasticity with the help of solutions of simpler canonical equations.

In particular, here we apply these representation formulas to construct
explicit solutions to the Dirichlet and Neumann type boundary value prob-
lems for a ball. We represent the solution in the form of Fourier—Laplace
series and show their absolute and uniform convergence along with their
derivatives of the first order if the boundary data satisfy appropriate smooth-
ness conditions. One of the methods to satisfy the boundary conditions is
given in A. Ulitko [17], F. Mors and G Feshbah [12], L. Giorgashvili [2,3], L.
Giorgashvili, D. Natroshvili [4], L. Giorgashvili, A. Jaghmaidze, K. Skhvi-
taridze [5], D. Natroshvili, L. Giorgashvili, I. Stratis [13] and other papers.

2. BASIC EQUATIONS AND AUXILIARY THEOREMS

A system of homogeneous differential equations of the stationary os-
cillation of the thermoelasticity with microtemperatures is written in the
form [7]

pAu(x) + (A + p) grad divu(z) — v grad 6(x) + po’u(x) =0, (2.1)
g Aw(x) 4+ (55 + s24) grad divw(z) — sz grad 0(x) + Tw(z) =0, (2.2)
#AB(x) + ioyTy divu(z) + 30 divw(z) + icaTpb(z) =0, (2.3)

where A is the three-dimensional Laplace operator, u = (uy,us,u3) " is the
displacement vector, w = (wy,ws,w3) " is the microtemperature vector, 6
is the temperature measured from the constant absolute temperature Ty
(To > 0), T is the transposition symbol, X, u, 7, 3, 3, j = 1,2,...,6, are
constitutive coefficients, satisfying the conditions [7]

w>0, 3X+2u>0, 56>0, 32¢4+ 305 + 366 >0, 36+ 35 >0,
g — 5 > 0, (%1 +T0%3)2<4T0%%2, v>0, a>0,

T = —35 4140, § > 0, p > 0 is the mass density of the elastic material. In
the sequel we assume that o = o1 + 109, 02 > 0, 01 € R.
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Let U = (u,w,0)". The stress vector, which we denote by the symbol
P(9,n)U, has the form

.
P(9,n)U = (P<1>(a,n)U', P9, n)U", P(3)(8,n)U”) ,

where U’ = (u,0)", U" = (w,0) ", n = (ny,n9,n3) " is the unit vector,

P9, n)U" = TN (d,n)u — ynb,
PP (9, n)U" =T (d,n)w — s3nb,

o0
(3) n__ Yv .
PY (9, n)U —%an + (51 + 353) (0 - w), (2.4)

T (0, n)u = QM% + Andivu + p[n x rot u],

TP (D, n)w = (36 + %5)(2—: + syndivw + s5[n X rot w].

Definition. The vector U = (u,w,0) T is said to be regular in a domain
QCR3ifU € C*HQ) N CHQ).

Theorem 2.1. A wector U = (u,w,0)" is a regular solution of system
(2.1)~(2.3) in a domain Q C R3, if and only if it is represented in the form

3
u(z) = Z grad ®@;(z) + rotrot(z®4(x)) + rot(z®s(x)),
3
w(z) = Z a; grad @;(z) + rot rot(x®g(z)) + rot(zP7(z)), (2.5)
3
0(z) == Biki®;(x),
j=1

where

(A+E)®;(x) =0, j=1,2,3, (A+k3)P;(z)=0, j=4,5,
(A+k2)Pj(x) =0, j=6,T,

k3 = po?/u, k¥ = 7/ s, —ka, j=1,2,3, are the roots of the equation

Bt a2 +asz+a3=0 (2.6)
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with

1
a, = AL {l [i0To (a(A+20)+~2) + 5¢p0 > |+ (A+2p) (iaaTO%T—l—%l%g)},

1

as {p02 (se15e3+io0aTol+ 1) +7 [iUTO'yQ +iocaTo(A+ 2u)] } ,

T A
; (2.7)
a3:A7aT0po'37', Ay =AM +2u)l >0, 1=+ 35+ 56 >0,
1
s3lpo? — (A + 2u)k?] toyTy + sy . 1923
J (r —1k2) C T Sa Zigaty T T

Proof. Assume that a vector U = (u,w,f) " is a solution of system (2.1)-
(2.3). From equations (2.1)—(2.2) we have

u() = (@) + (@), w(z) = (@) + (@),
where

o' (z) = # grad [ — (A + 2p) divu(z) + v6(z)],

] (2.8)
w'(z) = - grad [ — ldivw(z) + s30(z)];
u'(x) = LQ rot rot u(x),
o (2.9)
w'(x) = s rot rot w(x).

If we apply the operator div to both parts of equalities (2.1) and (2.2),
and take into account equalities (2.3), then we obtain

(A +20)A + po?] divu(z) — yAl(z)
(IA + 7) divw(z) — »3A6(x)
ioyTy div u(x) + s divw(x) + (3cA + icaTp)(x)

)

0
0,
0

From these equations we get
(A + E2) (A + E2)(A + k2)(divu, divw, 0) T =0, (2.10)
where —k?-, j =1,2,3, are the roots of equation (2.6).
In view of equalities (2.8) and (2.10), we obtain
(A+EDA+ED(A+E) (W, w')T =0, rotu' =0, rotw =0. (2.11)
We represent the vectors u/(z), w’(z) and the function 6(z) as:
3

3 3
u(z) = u(x), w'(z)=> w(z), 0@)=>Y 0D(@). (212
j=1 j=1

j=1
Naturally,

3 2
) . . A+Ek
@9, w?, 60T = [ T] 5|0 o/ 97, j=123 (213

j#g=1"9 7
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From (2.10)—(2.11) and (2.13) we derive
(A+ k?)u(j)(a:) =0, rotu(z) =0, j=1,2,3,
(A+EHwP(z) =0, rotw(z) =0, j=1,2,3, (2.14)
(A+ k0D (2) =0, j=1,2,3.

Since divu = divu/, divw = divw’, rot v’ = 0, rot w’ = 0, with the help
of (2.14) and the identity

graddivu’ = Au’ 4+ rotrotuw’ = Av’, graddivw’ = Aw’,
from (2.8) and (2.3) we get

[po® — (A + 2u)kﬂu(j)($) —ygrad 09 (z) =0, (2.15)
(1 — 1k w (z) — s grad 09 (z) =0,  (2.16)
ioyTy divu'? (z) + 3 divw? (z) + (icaTp — %kf)G(j)(aj) =0, (2.17)
j=1,2,3.
From (2.15) and (2.16) we have
w9 (z) = aju?(z), j=1,2,3, (2.18)
where X )
If we substitute the expressions of w()(z) from (2.18) into (2.17), we get
00 (z) = B, divuD(z), j=1,2,3, (2.19)
where
B; = ioyTo + a0y j=1,2,3.

%ka. —ioaTy’

Substitute the expressions of w) (z) and V) (z), j = 1,2, 3, given by (2.18)~
(2.19) into (2.12) to obtain

3

3
W(@) =Y @), wla) =Y au @)

, (2.20)
0(x) = Zﬁj divu(z), rotu(z) =0, j=1,2,3.
j=1

On the other hand, since rotu = rotu”, rotw = rotw”, divu” = 0,

divw” = 0 and rotrot u” = —Au”, rotrot w” = —Aw”, from (2.9) we get
A+ EHu"(z) =0, divu’(z) =0,
( 24) H( ) N( ) (2.21)
(A+EHw"(x) =0, divw”(z) =0,

where k2 = po?/p, k¥ = 7/ .
The following lemmas are valid [3,12].
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Lemma 2.2. If a vector v = (vi,va,v3) " in the domain Q C R® satisfies
the following system of differential equations

(A+k*)v(x) =0, rotu(x) =0,
then v can be represented as
v(x) = grad ®(x),

where ®(z) is a solution of the Helmholtz equation (A + k?)®(z) = 0; here
k is an arbitrary constant.

Lemma 2.3. If a vector v = (vi,va,v3) " in the domain Q C R® satisfies
the following system of differential equations

(A+E*)v(z) =0, dive(z) =0,
then v can be represented as
v(x) = rotrot(xWq(z)) + rot(xWq(x)),

where ¥;(x), j=1,2, are solutions of the Helmholtz equation (A+k*)¥;(x) =
0, 7 =1,2; here k is an arbitrary constant.

Due to Lemma 2.2 and Lemma 2.3, a solution of systems (2.14) and
(2.21) can be represented as

u'(z) = grad ®;(z), j=1,2,3,
u”(z) = rotrot(z®4(z)) + rot(zP5(z)), (2.22)
w”(z) = rot rot (2P (x)) + rot(z®7(x)),
where
(A+E)®j(x) =0, j=1,2,3, (A+Ek)®;(x) =0, j=4,5,
(A+k3)®;(x) =0, j=6,T.
Substitution of the expressions (2.22) into (2.20) proves the first part
of the theorem. As to the second part, it is proved by a straightforward

verification that the vector U = (u,w,f) " represented in the form (2.5) is
a solution of system (2.1)—(2.3). O

Remark 2.4. Hereinafter, we will assume that k; # k,, j # p, Sk; > 0,
j=1,2,3,4,5.

Let QF = B(R) C R? be a ball with center at the origin, of radius R,
and X p = 0Q. We denote Q™ := R?\ QF.

Theorem 2.5. A vector U = (u,w,0)" represented by (2.5) will be uniquely
defined in the area Ut by the functions ®;(x), j = 1,2,...,7, if the following
conditions are fulfilled:

/tbj(x) d¥,. =0, j=4,5,6,7, r=|z| < R. (2.23)

5,
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Proof. From formulas (2.5) we get

3
Z ) = —divuy, Za] z) = —divw,

3

Zﬁjk?q’j(fﬂ) = —0(v),

2% 20 |
(87‘ + = 8 +k3+j)®3+2]() .(61jrotu+§2jrotw)7 ]:172’
2% 29
(3 2 T3 r or +k3+]>@2+2j( )=
1
= ——— - (01, 10t ot U + d9; TOt TOt W), j = 1,2,
3+j

015 is the Kronecker function.
If u(z) =0, w(z) =0, 0(z) =0, z € QF, we have ®;(x) =0, j =1,2,3,
€N,

82

2
7’(8 +26+k4) Oi(x) =0, j=4,5, ze€Qt,
ror (2.24)
2 9 '

02
2 _ s +
T<82+ o +k5) i(x)=0, j=6,7, z€Q".

Thus it remains to show that ®;(z) =0, j =4,5,6,7. Applying the well
known representation of metaharmonic functions in the form of series, we
can write

k
@) =3 gllr) AV, (@, 0), j=4,5,6,7, z QT
k=0m=—k

where A(] L are constants, Y(m) (9, ) is a spherical function

2 1 —m)! .
Yk(m)(ﬂ,w)=\/ il (k—m) P,gm)(cosﬁ)e"’w7

dr (k+m)!

P,gm) (cos) is the associated Legendre polinomial of the first kind of degree
k and order m,

k47 .] :4557

far) = r—1/2 far), k=
gr(kir) =172 Teya 2 (ki) 1 {ks7 =67,

Jit1/2(kir) are the Bessel functions.
With the help of the equality

k(k + 1)

d? 2d
( + kK )gk(kﬂ") Tgk(kl'r'),

a2 v ar
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from (2.24) we get

Z Z 1)gi (ki) ALY, (0, 0) =0, j =4,5,6,7,
k=0m=—k

whence the equations A(j ) =0 follow for k >1and j =4,5,6,7. Therefore

Q;(z) = 2\Fgo(klr)AOO, j=4,5,6,T.
Further, from (2.23) we easily conclude AE)%) =0 for j = 4,5,6,7, which
completes the proof. (I

3. ORTHONORMAL SYSTEM OF SPHERICAL VECTORS

Let 7, 9, ¢ (0 <7 < 400, 0 < ¥ <7, 0 < ¢ < 27m) be the spherical
coordinates of x € R3. Denote by ¥; the unit sphere.

In the space L2(3) consider the following complete orthonormal vectors
system (see [2,12,17])

ka(ﬂa QD) = e'r'Yk(M) (197 gO), k>0,

1 0 e 0
Yor (U = — — £ Y(m) 9, k>1
k(0,) R+ 1) (eﬂaﬁ Y &p) W) k21, (3.1)
1 ey O 0 (m)
Z’m 9 = . a . aq Y ) ’ Z 17
k(0 9) E(k+1) (511119 dp e 819) po (0he), K

where |m| <k, e,, ey, e, are the orthonormal vectors in R?,
e, = (cos psin ¥, sin p sin ¥, cos 19)T,
ey = (cos @ cos?d, sin g cos ¥, —sin ) T,
e, = (—sing,cos g, 0)7,

2k +1 (k- m)!P(m)

(m) _
Yo W) =\—¢ (k+m) *

P,gm) (cos 1) is the adjoint Legendre function.

Let us assume that a vector-function fU) = (fl(j), fQ(j), féj))T and a
function f4 are represented as

k=0m=—k
k(k+1) [5g;ymw, @)+ v Zme@,9)] ) (32)
o k
f4(19’ 90) = Z Z O‘kakm(ﬁv 90)7 (33)

k=0m=—k
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where

T

dcp/f(j)(ﬁ,tp)~Ymk(19,g0)sin19dz9, k>0,
0

Q
3IQ
=

I
O\§

5(7')_7/ /f (0, ¢) - Vi (9, ) sind dd, k > 1,

(3.4)
(4)

1 . _
= [d (D, p) - Zmi (9, ) sind dd, k> 1,
YV k(k+1)0/ wo/f (¥, ) k(V, 0) >

27 ™
- :/dgp/ﬂl(ﬂ,@) Y@, ) singdd, k>0,
0

The symbol @ - b denotes the scalar product of two vectors, b is complex
conjugate of b.

Note that in formula (3.2) and, in the sequel, in the summands of analo-
gous series, which contain the vectors Y,,x (¢, ¢), Zmi (9, ¢), the summation
index k varies from 1 to +o0.

Let us introduce a few important lemmas [3,11].

Lemma 3.1. Let fU) e CY(%1), I > 1; then the coefficients ozmk, /Br(il)w (])
defined by (3.4) admit the following estimates

ally =0k, Bl =0k, A5 =0k,

Lemma 3.2. Let fy € CY(X1), | > 1; then the coefficients . defined by
(3.4) admit the following estimates

AUmk — O(k_l)

Lemma 3.3. The vectors X,k (9, ¢), Yk (9, ©), Zmk (9, @) defined by equal-
ities (3.1) admit the estimates:

12k +1
‘ka:(,ﬂ7@)’ < 4:(_— ) k207

k(k+1
s <\ T k21

k(k+1
}ka(19790)| < 2(1457—'—1)’ kZ 17

Hereinafter we make use the following equalities [6]

e Xa(0,0) = Y™ (9,0), e - Your(9,0) = 0,
er Zmi(V,¢) =0,
er X Xk (9,0) =0, er X Y (9, 9) = —Znk (9, 9),
er X Zmi(0,9) = Yo (U, 9);

(3.5)
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grad [a(r)Yk(m)(ﬂ, @)} =

- d‘;gf) Xoi (0, ) + M a(r)Yomk (9, ¢),

rot [ma(T)Yk(m)(ﬂ, ©)| = VEk(k+1)a(r) Zni(9, ¢), (3.6)

rot rot [ma(r)Yk(m)(ﬁ, 9)] =
- M a(r) Xmr (9, @) + VE(k +1) (di'i + %)Q(T)Ymk(ﬁ7 ®),
div [a(r)ka(ﬁ, ‘P)} = (% + %)G(T)Yk(m)(ﬁ, ®),
div [a(r)Ymk(ﬁ, @)} = —M G(T)Yk(m)(ﬁy ®),
div [a(r)ka(ﬁ, cp)} =0,
rot [a(r)ka(ﬂ, 90)} = k(li * 1) a(T)ka(ﬂ7 50)3 (37)
rot [a(r) Yk (9, ¢)] = *(d%l“ + %)G(T)ka(ﬁa ©),
k(k+1)

rot [a(r) Zmk (¥, ¢)] = a(r) Xmk (7, @)+

+ (dif" + %)G(T)Ymk(ﬁ7 ©).

4. STATEMENT OF THE PROBLEM. THE UNIQUENESS THEOREM

Problem. Find, in the domain Q% a regular vector U = (u,w,f) " satisfying

in this domain the system of differential equations (2.1)—(2.3) and, on the
boundary 0f2, one of the following boundary conditions:

(1¢©))* (the Dirichlet problem)
{u(z)}t = 1), {w@)}t =1P), {6(x)}" = fa(2);
(I1¢°))* (the Neumann problem)
{PO@,mU ()} = fD(z), {PP@,mU"(2)}" = (),
{PP@,n)U"(2)}" = fal2),

where the vectors fU) = (fl(j), 2(j), ?Ej)), j = 1,2, and the function f; are
given on the boundary 99, n(z) is the outward normal unit vector at the
point z € 99.

(4.1)

Theorem 4.1. Problems (I')* and (TI(U))‘Ir have, in the domain QF, a
unique solution in the class of reqular functions.

Proof. The theorem will be proved if we show that the homogeneous prob-
lems (fU) =0, j = 1,2, f4 = 0) have only the trivial solution.
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Let the vector U = (u,w, )" be a solution of the homogeneous problem
either (I(9)* or (II”))*. We multiply both sides of (2.1) by the vector
i Ty W, (2.2) by w and the complex-conjugate of (2.3) by the function 6.
The integration of these expressions over the domain Q7 and summation
give

/ [ Tya(z) - PO@, U (2)+

o0
+(2) - PA(0,m)U"(2) + 0(2) - PO (@,mT" (2)] " ds—

- / (7T B (u,7) — ipololu(@)? + B (w,@) - rlw(@)*+
O+
+3¢| grad 0(x) >+ (3e1 +5¢3)w(z) - grad 9(w)+iEaTo|9(x)|2} dz=0, (4.2)

where [9,15]
3\ + u 8u;~C ou,;
ED 2, P ‘ ouy
(u,7) = vul? + £ Z o, axk
Z ‘8u;€ Ou; |2
k=1 aJTk 8xj
E(2)(w,@) 3y + x5 + 5 |di |2 Mg — %5|r0tw\2—|—
3 2
3
%5—1—%6 ‘8wk %‘2 5+ 2 ‘awk_%r
Z (3'13] al’k + 2:1 (9I]€ 317]‘ '

Since U = (u,w,0)" is a solution of the homogeneous problem, equality
(4.2) implies
/ [ B0 (u,7) — ipoloPlu(e) P + E) (w,) — 7luw(2) ]+
QO+
+ 5| grad 0(2)|? + (301 + s3)W(x) - grad O(z) + izaTy|0(z)|*| dz = 0.
If in this equality we separate the real part, we will get

/ {U2TOE(”(U’H) + EP (w0, ) + poa|o]*|u(@)[* + o20w(@) P+

o+
d3erey — (361 + 323)?

Jw(x)*+

1
T | (31 + se3)w(x) + 25c grad G(w)ﬂ dz = 0.

+ G,T002|9(£E)|2 —+

Hence it follows that u(z) =0, w(z) =0, 8(z) =0, z € Q7. O
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5. SOLUTION OF THE BOUNDARY VALUE PROBLEMS

We seek a solution of the Dirichlet and Neumann Problems by formulas
(2.5), where

o) k
®i(x) = > gk (9, 0)AY), j=1,2,3,
k=0m=—%k
e’} k
i) =D > ge(kar)V\ " (9, 0) A%, i =14,5, (5.1)
k=0m=—k
o k
0i(x) = > glksn)Y™ (9. 0)AY), j=6.7.

Here A;ﬁg, j = 1,7, are the sought constants, Yk(m) (9, ) is a spherical

function and
i) IR jk+%(kj7")
k(KiT) =\ — 775>
! r jk+%(ij)

Tr+1(x) is a Bessel function.

Substituting the expressions of ®;(x) j = 4,5,6,7, from (5.1), into (2.23),
we get A(()%) =0, 7 = 4,5,6,7. If we substitute the expressions of the
functions ®;(z) j = 1,7, from (2.5) and take into account equalities (3.6),
we obtain

Z Z { ) Xk (9, )+

k=0m=—k

k(i + 1) [v;,u Vo (8, 9) + w0l (1) Zni (9, 9)] }-

-3 Z (a0 Xk (9, 9)+ (52)

k=0m=—k

KOs 1) [020) Yo (90, 0) + w2 (1) Zos (9, 0)]

0o k
D=3 > unk()Y" 0. 0).

k=0m=—k
where
u£n3<<r) = ; o gk(kjr)Af’igc L gr(kar )Agn;ca k>0,
) =1 ) d 1 (
1 — - ) J el - >
vmk(r) ; r gk(kJT)Amk + (d’f' + T>gk(k4T)Amk7 k = 17
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u® (r Zajd gk (k) A9 + Lk:’ ) gu(ksr)A©,, k>0,

d 1
vffbk Zaj gr(k; T)A?(ngc + (d + ;)gk(k‘w)AfSL, k>1,
Jj=1
w?) (r) = (kg)AfZ?c, k>1,
Uk (T Zﬂjkjgk k; r)Agngc, k> 0.

j=1

If we substitute the expressions of the vectors u(z), w(z) and the function
f(x) into (2.4) and use equalities (3.5) and (3.7), we get

0o k

PY(d Z Z { ) Xk (9, 0) + VE(k+1)x

k=0m=—k

x [b“’( VYo (0, 0) + ek (1) Zini (9,9)| }.

P&, n)U" (2 Z Z { @) () Xk (9,0) + VEE+1)x  (5.3)

k=0m=—k
% [BEL ) Yok (9, 0) + €24 r) Zunk (0, 0)] },

o0 k

P(g) 6 n UN Z Z a?rLk 119 QO)

k=0m=—k

where

3
ab(r Z[2ud2 (485 = Nk | gw (k) A+

j=

—

D (L )i 2,
3
b (r Z % (— - *)gk(k r)Ag+

+u{ d(jr—f— )+k4}g;€(k47“) 5:26, kE>1,

d 1
ek r) = (2 = ~)arlkar)AT), k=1,
2

r
3
L Z [ 5 + 36) Qv s + (5385 — ra05)k; }gk(k’ r)A m;c—i_

(%5 + %G)k(k + 1) d 1 (6)
42 >
+ T (dr r)gk(k5T)Amk’ k20,
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Za] 5 + 56) (di — 1)g;.c(k: T)A(J)

d
dr

d 1
(%6 P f)gk(ksr)AfnL, k>1,

+ {(%5 + 36) — (jr + 1) + %5k5}gk(k5r)A£2€, k>1,

) (r)

3
Ak (T Z a;j(se1 + s23) — 2Bk ) g (k; T)A(J)
Jj=1

gr(ksm) ALY k> 0.

Let us first consider the Neumann problem.

Assume that the vectors fU) (0, ), j = 1,2, and the function f4(1, @)
can be represented in the form (3.2) and (3.3).

Passing to the limit on both sides of (5.3) as  — z € 92 and using both
the Neumann boundary conditions (4.1) and equalities (3.2)—(3.3), for the

sought constants Aiﬁc , 7 = 1,7, we obtain the following system of linear
algebraic equations:

(1) for k = 0, m = 0 (three simultaneous equations with the three
unknowns A(()]o)’ j=1,2,3),

alg (R) = aly), aly (R)=aly), ac(R) = amp; (5.4)

(2) for k>1, —k<m<k
(a)

d
i = 7 )or(kaR)AS) =2,

d
d " 1 M _ @ )
(%6 R E)gk(ki’) Ak = Yk
(b) (five simultaneous equations with the five unknowns Agﬁc, j =
1,2,3,4,6)

apk(B) = apg, BL(R)=BL, § =12 ank(R) = ok  (5.6)
Due to Theorems 4.1 and 2.5, system (5.4)—(5.6) is uniquely solvable

with respect to the unknowns A(j ) , j = 1,7. Thus we can construct ex-
plicitly a formal solution of the Neumann problem in the form of series.
Further we have to investigate the convergence of these formal series and
their derivatives.

The asymptotic representations

glhir) ~ (1) dhlr = (L), r <R (57)

are valid for k — 400 [16].
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If x € QT (r < R), then by asymptotics (5.7), the series (5.2)—(5.3)
converge absolutely and uniformly.

If x € 09 (r = R), then by Lemmas 3.1-3.3 and asymptotics (5.7), series
(5.2)—(5.3) will be absolutely and uniformly convergent provided that the
majorized series

e} 2
> K23 (labh] + k1B + k2 + lama) (5.8)
k=kqo j=1
are convergent. Series (5.8) will be convergent if the coefficients afﬁc, ,6’7(21)6,

722, Qmk, j = 1,2, admit the following estimates

ol =0(k™®), B =0k, (5.9)
79— O(k™), i = O(k™3), j=1,2. '

According to Lemmas 3.1 and 3.2, estimates (5.9) will hold if we require
that
O (2) e C3(00), j=1,2, fi(z) e C3ON). (5.10)
Therefore if the boundary vector-functions satisfy conditions (5.10), then
the vector U = (u,w,f) " represented by equalities (5.2) will be a regular
solution of Problem (IT(7))*,
Problem (7(®))* can be treated analogously.

6. APPENDIX: PROPERTIES OF THE CHARACTERISTIC ROOTS AND

WAVE NUMBERS

Let us introduce the blockwise 7 x 7 matrix differential operator corre-
sponding to system (2.1)—(2.3)
LM 9,0) LA (0,0) LB, 0)
L(9,0) == | LB®)9,0) LW(,0) LO(9,0) )
LMd,0) L®(,0) LY, 0) .
where

LM(0,0) := [nA + po®]Is + (A + 1) Q(0),
L®(8,0) := L'®(8,0) = [Ol3x3,
LD, 0) = [e6A + 7|13 + (524 + 35)Q(I),
LO)(,0) = V", L90,0):= V', L7 0):=ioyT,V,
L®8,0) =V, L0, 0):=xV +icaly, Q9)= [0k05]3%3,
V =V(0) = [0h,02,05], 0; = 0/0z;, j = 1,2,3, I3 stands for the 3 x 3 unit

matrix.
Due to the above notation, system (2.1)—(2.3) can be rewritten in matrix
form as

L(3,0)U(z) =0, U= (uw,0)". (6.1)
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Denote by §;—¢ the Fourier transforms

Somelf] = / f(@)e™€ de = F(e),
R3

where z = ($17x27:173)7 g = (61762753)'
The Fourier transform has the following property:

L(0%f) = (=i§)*31f], (6.2)
where o = (a1, az,a3) is a multi-index, |a| = a1 + az + a3 and £* =
(a5} Qg (6 %:1
1 S27 837

Let us perform Fourier transforms of (6.1) and take into consideration
(6.2); we obtain

L(~i&,0)U(£) =0, (6.3)
where
LI (=i, 0) == (= ple]? + po®) Is — (A + w)Q(&),
L®(—i¢,0) := LO) (=€, 0) = [O]axs,
LW (=i, 0) == (= s|é]> + 7) Is — (3 + 55)Q(8),
L (—ig,0) = ing", LO(=i€,0) =ixs¢", LO(=i&,0) = ovTyE,
L(S)(—if, o) = —i &, L(g)(—if, o) = —%|§\2 + ioaTy,

Q&) = [&k &laxs-

The determinant of system (6.3) reads as
det L(—i€, o) =

= i+ 200) 566 (€[ = po?) Gl = T2 (1E1° = arlé]* + anlé]? - ag),

where a1, as, as are given by (2.7), | = s¢4 + 35 + 5.
The numbers k‘?, j = 1,5, are the roots of the equation det L(—i&, o) =0
with respect to |].

Lemma 6.1. Let us assume that o = o1 + ioo is a complex parameter,
where o1 € R and o5 > 0. Then

det L(—i&,0) #£0
for arbitrary ¢ € R3.

Proof. We prove the lemma by contradiction. Let det L(—i&,0) = 0, £ €
R3. Then the system of equations L(—if,0)X = 0 has a nontrivial so-
lution. Denote this solution by X = (XM, X@) XGNHT " where XU =
(Xl(j)7X§j),X§j))T € C?j=1,2,and X® e C. Taking into consideration
(6.3), the system L(—i&, o) = 0 can be rewritten as follows:

[(po? = ul€) s = A+ QO XD + i XD =0, (6.4)

(7= l¢") I = Gea + 55)QO) | XD + i XD =0, (6.5)
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oy To(€ - XMWY — iz (€ - XP) 4 (—3¢]? +ioaTy) X P = 0. (6.6)

Assume that [£] # 0.
Let us multiply equation (6.4) by the vector icTp X (1), equation (6.5) by

X® and the complex-conjugate of equation (6.6) by the function X ) and
add the obtained results. After simplification, we obtain

iwTy(po® — plé]?) XV —iaTo(A + w)l€ - XD P+
+(7 = 526 l6P) X PP = G+ 05)[€ - XD P
Hi(sa + 5)(E - XX 4 (= sle]? — imaTy)| X B2 = 0.,

Recall that the central dot denotes the scalar product, a - b = i a;b; for
the vectors a and b. Let us separate the real part: o~
Toors [ (plo + ) X VP + (A + g - XD+
+(020 + 356 |E) | X P2 + (e + 5255)[€ - X PP + 09aTp| X @2+
dsetg — (3014 223)°

43¢
Here we have used the following relation:

1 2
XD+ e+ 520) X =206 XD =0, (6.7)

ALPIXDP — (a1 + 320) Re [i(€ - X)X D] 456 XD =
Aoy — (50 + 23)
N 4
From equation (6.7) we obtain that XU) =0, j = 1,2,3. For £ = 0 equation
(6.7) recasts as
plo2oaTo| X V) + (56 4 026)| X P2 + 02aTp| X P2 = 0,

hence, XU) =0, j =1,2,3.
Thus, we obtain that the system L(—i&,0)X = 0 has only the trivial
solution for arbitrary ¢ € R3. This contradiction proves the lemma. (]

2 1 2
XD+ — ‘(%1 +on)X® - 2mgX<3>‘ > 0.
4

Corollary 6.2. Let 0 = 01 + io2 be a complex parameter with 01 € R and
o9 > 0. Consider the equation

det L(—i&,0) =0 (6.8)

with respect to |§|. The roots +kj, j = 1,5, of equation (6.8) are complex
with Sk; >0, j =1,5.
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