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Abstract. In the work the boundary value problems of the theory
of analytic functions with displacement are considered, namely: Carle-
man type problems with continuous and unbounded coefficients for strip
and circular ring, the Riemann—Hilbert problems for doubly connected do-
mains and discontinuous coefficients for ring. The contact problems of
the elasticity theory for unbounded (isotropic, anisotropic and piecewise-
homogeneous) domains with rectilinear boundaries with elastic fastening
are investigated. The boundary value problems of plane theory of elasticity
for anisotropic domains with cracks and inclusions are studied as well as
the third basic and mixed boundary value problems for doubly-connected
domains. The methods of analytic functions, integral transformations and
theory of integral equations are applied. The solvability conditions of prob-
lems are formulated and proved. New methods of factorization are devel-
oped and the solutions of problems are represented in explicit form.
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Introduction

One of the important areas of the elasticity theory, which studies con-
tact problems of the interaction of thin-walled elements such as stringers
with massive elastic bodies of various shapes, cracks propagating onto the
body surface, and also problems with partly unknown boundaries, has been
steadily developing since the 60s of the last century. The interest shown
in these problems is due to their use for the solution of many serious prob-
lems related to engineering structures and machine-building. A fundamental
work in this area belongs to E. Meland [70] who obtained an exact solution
for a half-plane and the whole plane stiffened with an infinite stringer to
which concentrated force is applied along its axis.

In the subsequent works [35], [33], [46], [60], [123], the problem was
studied in the case where a semi-infinite stringer is fixed to an elastic plane
or to the edge of an elastic half-plane.

Various problems for a half-plane stiffened with one or several stringers
of finite length are considered in the works of many authors. Among them
special mention should be made of E. Reissner [97], E. V. Benscoter [32],
H. Bufler [36], N. Arutunyan [7], N. Arutunyan and S. Mkhitaryan [8],
[9], B. Abramyan [1], where the problems are reduced to singular integro-
differential equations and approximate solutions are obtained by different
methods.

Detailed results for stringers and the bibliography are presented in
F. Muki and E. Sternberg [72], [73], E. Sternberg [115] and in the sur-
vey paper by B. Abramyan [2].

Various contact problems are solved by the Wiener-Hopf method in the
works of B. Lebedev and B. Nuller [64], B. Nuller [80], [82].

Problems of cracks propagating onto the body surface and the problem
of a crack propagating to the interface of a piecewise-homogenous plane
were also investigated by the Wiener—Hopf method (R. Bantsuri [12], H.
Bueckner [34], G. R. Irwin [45], W. T. Koiter [59], A. Khrapkov [54]-
[657], B. Smetanin [111], [112], R. Srivastavnazian Prom. [114], V. A.
Wigglesworth [125], V. S. Tonoyan, S. A. Melkumyan [117]-[119]).

There exist a lot of contact problems of important applied character
that cannot be solved effectively by the commonly used methods. Among
these problems are the problem for a wedge with elastic stiffener, the third
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basic problem for a doubly connected domain bounded by broken lines and
problems with a partly unknown boundary.

The contact problems considered in the present monograph can be at-
tributed to three types depending on a mathematical method used to solve
them. Problems of the first type are reduced by means of the Fourier
transform to a Carleman type problem for a strip. Problems of the sec-
ond type are reduced by the Fourier transform to the Riemann problem
(Wiener-Hopf problem) (see N. Wiener and E. Hopf [124], N. I. Muskhel-
ishvili [76], F. D. Gakhov [42]). Problems of the third type are reduced by
the conformal mapping to the Riemann—Hilbert problem for a circular ring.

Examples of problems of the first and third types are contact problems
for a wedge and for a doubly connected domain bounded by broken lines.

Carleman type problems for a strip and a circular ring are studied in
the monograph in the most comprehensive way. Their effective solutions
and some of their applications are the subject of Chapter 1.

In our opinion, Carleman type problems, which arose naturally when
studying the contact problems, are of independent mathematical interest
and their application area is much wider than that indicated in the works D.
Lebedev and I. Skalskaya [65], B. Nuller [81], [83], B. Nuller and L. Stsep-
neva [84], G. Vasilyev [120], A. Krasnov and L. Tikhonenko [58].

The monograph consists of four chapters.

In Chapter 1, the Carleman type boundary value problems are solved
for a strip and a circular ring. Their solutions are obtained in effective
form and the Noether theorems as to their solvability are proved. The
Riemann—Hilbert problem for a circular ring is also solved in effective form.

We introduce the class of functions Ag (1) that are analytic in a strip
0 < Imz < B, continuously extendable on the boundary and satisfy the
condition ®(z)e *I*l — 0 for |z| = oo, u > 0.

For functions of the class Ag (1) we obtain formulas analogous to the
Cauchy integral formula, where instead of the usual Cauchy kernel (¢t —
2)~1 we introduce the kernel [shp(t — z)]~!. The properties of functions
represented by integrals analogous to Cauchy type integrals are studied.
These formulas and integrals used to solve the boundary value problems of
the analytic function theory considered in Chapter 1 play the same role as
the Cauchy formula and a Cauchy type integral used in solving the Riemann
linear conjugation problem.

In the first chapter, we consider the following Carleman problem for a
strip: Find a function ¢(z) € Ag (1) by the boundary condition

o(x) = AG(z)p(x + a) + F(x), —oo<x <00, (1)
where G(z), F(z) are given functions. Also,
a=a+if, Gz)#0, —oo<z<o0,

and
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The problem is solved by the factorization method.

The solvability conditions and solution of problem (1) are obtained in
explicit form.

Problem (1) is considered for @ = 0 when G(z) = Go(x)P,(x), where
Go(x) # 0, —00 < = < 00, is a nonzero function of the class H (Holder)
including the point = 400, and P,(x) is a polynomial having no real
roots.

As different from our previous approach, here we also use factorization
of a function of the form ix +24. This factorization is carried out using the
Fourier integral transform. In that case, too, the solution of the problem
is derived in explicit form and Noether type theorems are formulated. For
A = —1, G(z) € R (R is the Wiener class), F(z) € Lq, problem (1) is
reduced by the conformal mapping to the Riemann problem. The same
technique is used to solve the problem in Yu. Cherski [40].

It should be said that in the above setting the solution of problem (1)
by the method of reduction is less effective because of a difficulty associated
with canonical factorization of functions of the form

Pu[Int] if ¢ >0,
1 if ¢ <0.

The homogeneous problem
e(t+1)=G)et), t=a+iy, —oo<y< oo,

was considered under the assumption that G(t) is a meromorphic function
by E. Barnes [31] in 1904.

The Carleman type boundary value problem of the analytic function
theory for a circular ring which we investigate here is formulated as follows:
Find a function ¢(z), that is holomorphic in the ring D = {1 < |z| < R} and
continuously extendable on the boundary, using the boundary condition

plat) = G(t)p(t) + f(t), tey={t:[t|=1}, (2)

where a is a fixed point of the circumference |t| = R, G(t) and f(t) are
functions of the class H given on v, and G(t) # 0 almost everywhere on +.
The problem is solved in effective form and the Noether theorem is proved.

Furthermore, problem (2) is studied under the assumption that the
functions G(t) and f(t) have first kind discontinuities at a finite number of
points of «. A solution is found in the effective form.

The Riemann—Hilbert problem considered in Chapter 1 is formulated as
follows: Find a holomorphic function ¢(z) in the ring D = {2 : 1 < |2] < R}
by the boundary condition

Rela(t)p(t)] = C(t), t€yUmn,

where 79 and 7, are respectively the circumferences |t| = R and [t| = 1,
a(t) # 0 almost everywhere. a(t) is a given complex function, and C(t) is
also a given real-valued function. It is assumed that the functions a(t) and
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C(t) satisfy the Holder condition. The problem is solved effectively and the
Noether theorem is proved.

The Riemann—Hilbert problem is also investigated in the case where
a(t) and C(t) have a finite number of points of first kind discontinuities.
The problem is reduced to the Carleman type problem for a circular ring.
The solution is constructed in the effective form and the Noether theorem
is proved.

We give one more application of the solution of the Carleman type
problem for a circular ring in solving an infinite system of linear equations

o0
angon = Z Kn—m@m = fna
m=—o00
where {K,}>°, {fn}°, are given vectors and {p, }>°, the sought vectors
from ¢, |a] # 1 is the known constant.

By means of the discrete Fourier transform, this system is reduced to
the Carleman type problem for a circular ring where it is assumed that its
coefficient and free term belong to the Wiener ring and a solution is sought
also in this same ring. Using the Wiener—Levy theorem (see [44]) and the
well-known theorem on conjugate functions (see [126]) we prove that the
boundary values of the solution of the Carleman type problem for a circular
ring are functions of the Wiener ring.

Chapter 2 of the monograph is dedicated to the investigation of contact
problems of the plane elasticity theory of isotropic and anisotropic bodies
when the problems are reduced to a Carleman type problem for a strip.

Contact problems are investigated for an elastic wedge-shaped plate
when one of the wedge faces is stifferened with a semi-infinite stringer, and
the concentrated force acting along the stringer is applied to its tip.

Using the Kolosov—Muskhelishvili formulas and the Fourier transform,
the formulated problem is reduced to the Carleman type problem for a
strip which is studied in Chapter 1. We construct the exact solution and
study the behavior of tangential contact stresses at the wedge vertex and
at infinity. For 0 < a < 7, the problem is considered in J. Alblas and W.
Kuypers [3].

The problem is also considered in the case of an anisotropic plate when
the stringer stiffness is constant or variable. Using S. Lekhnitski’s formulas
and the Fourier transform, the problem is also reduced to the Carleman
type problem for a strip and its exact solution is constructed. The behavior
of tangential contact stresses at the wedge vertex and at infinity is studied.

The contact problem is studied for an anisotropic elastic wedge when
one of the faces is supported by a semi-infinite beam and the beam stiffness
is assumed to be constant or variable; the other wedge face is free. The
tangential contact stress between the beam and the wedge is assumed to
be equal to zero. It is required to find a distribution of stresses in the
wedge and beam deflections when the beam is under the action of normally
distributed or concentrated forces. The problem is reduced to the Carleman
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type problem for a strip. The exact solution of the contact problem is
obtained by solving the problem by means of the inverse Fourier transform.
The behavior of tangential contact stress at the wedge vertex and at infinity
is studied.

A great number of works are dedicated to the investigation of static
contact problems for various domains stiffened with elastic supports or in-
clusions in the form of plates of small thickness — see e.g. V. Aleksandrov
and S. Mkhitaryan [5], V. Aleksandrov and Ye. Kovalenko [4], G. Popov and
L. Tikhonenko [95], [96], G. Popov [94], V. Reut and L. Tikhonenko [98],
N. Shavlakadze [101]-[106], V. Sitnik and L. Tikhonenko [110], V. Sitnik
[109].

Chapter 3 deals with problems for an anisotropic wedge with a finite
cut running from the wedge vertex along the bisectrix. It is assumed that
the cut is under the action of stresses.

We also study the problem of an orthotropic wedge having a cut of
finite length along the bisectrix that runs from the wedge vertex. It is
assumed that the wedge faces are free from external stresses, while arbitrary
stresses are applied to the cut banks. Using S. Lekhnitski’s formulas [66],
[67] and applying the Fourier transform , the problem reduces to three
linear conjugation problems for a half-plane. The behavior at the cut end
is studied. The stress intensity coefficient is defined in terms of an integral.

We consider the problem for a piecewise-homogeneous plane consist-
ing of two orthotropic half-planes with, generally speaking, different elastic
constants when one of the half-planes has a cut perpendicular to the in-
terface straight line, and symmetric normal stresses are applied to the cut
banks. The problem is solved using methods of the analytic function the-
ory. Integral representations are obtained for unknown complex potentials,
where the derivative of normal displacement of points of the cut edge serves
as density. Using these integral representations, from the boundary con-
ditions at the cut edges we obtain a singular integral equation having a
fixed singularity at the cut edge lying on the interface line. The equation is
solved by the Wiener—-Hopf method. The exact solution of the equation is
constructed, by means of which complex potentials are written in explicit
form. The behavior of stresses near the cut ends is studied. It is established
that near the end of the cut located on the interface line the stress may
have — depending on a material — a singularity of any order less than one,
whereas near the other cut end the order of a stress singularity is equal to
% independently of a material. Moreover, the intensity coefficient value is
defined explicitly by means of integrals.

We consider a piecewise-homogeneous elastic plate stiffened with a semi-
infinite inclusion intersecting the interface at the straight angle and loaded
by tangential forces. The problem consists in defining contact stresses in
the neighborhood of singular points. Applying the analytic function theory,
the problem is reduced to a system of integro-differential equations on the
semi-axis. The solution is obtained in explicit form.
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Problems for a plane weakened by a finite system of rectilinear cuts
located along one straight line are studied in N. Muskhelishvili [75], D.
Sherman [107], G. Cherepanov [37], [39] and other works. All of these
problems are reduced to problems of linear conjugation with respect to
complex potentials.

In Chapter 4 we investigate problems for doubly-connected domains.
These problems are solved using the results obtained in Chapter 1. In
this chapter, we give an effective solution of the third basic problem of the
elasticity theory for an isotropic body occupying a doubly-connected domain
bounded by convex closed broken lines.

For the sake of definiteness, we consider the case of a finite domain. For
the case of an infinite domain the problem is solved in G. A. Kapanadze
[50].

Using the Kolosov—Muskhelishvili formulas and the conformal map-
ping, the considered problem reduces to a successive solution of two Rie-
mann—Hilbert problems for a circular ring with piecewise-constant coeffi-
cients. For a simply connected domain bounded by the closed broken line,
the third basic boundary value problem of the elasticity theory is solved
in G. N. Polozhii [89]-[93]. By a technique different from ours, G. N.
Polozhii reduces the problem to successive solutions of the Dirichlet and
Riemann—Hilbert problems for a circle.

We use the results obtained in Chapter 1 to solve the following contact
problem of new type: Given an elastic isotropic homogeneous plate shaped
as a polygon weakened by some curvilinear hole, it is required to define the
shape and location of the hole and also the stressed state of the plate assum-
ing that on the external boundary of the plate the tangential stress is equal
to zero, the normal displacement takes a constant value on every side of the
polygon, and on the boundary of the hole free from external stresses the tan-
gential normal stress takes the constant value 0y = K. Using the methods of
the analytic function theory and the Kolosov—Muskhelishvili formulas, the
finding of the hole boundary reduces to the solution of the Riemann—Hilbert
problem for a circular ring 1 < || < R with piecewise-constant coefficients
with respect to a function conformally mapping the domain occupied by
the plate onto the circular ring. We seek the coefficient discontinuity points
which under the conformal mapping are the images of the polygon vertices.
The necessary and sufficient conditions for the problem to be solvable are
obtained. Using these conditions we define the discontinuity points of co-
efficients. The discontinuity points of the coefficients are defined when the
polygon is regular and the principal vectors of external forces applied to
every point of the polygon side have one and the same value; the solvability
condition reduces to one equation with respect to R and K. It is shown
that then the problem is always solvable and the formula is obtained by
means of which K is expressed through R. According to this formula, to
various values of K there correspond various holes and the hole narrows as
K decreases.
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In the fourth chapter we also study the plate bending problem for the
square weakened by five unknown equistable holes, of which four are identi-
cal, equidistant from the center of the square, symmetric with respect to the
segments connecting the midpoints of the opposite sides of the square, and
intersecting them. The fifth hole, symmetric with respect to the diagonals,
contains the center of the square. The neighborhoods of the square vertices
are cut out by regular unknown equistable arcs, symmetric with respect to
the diagonals. Rigid strips are glued to the linear parts of the boundary.
The plate is bent by concentrated moments applied to the midpoints of the
strips.

We investigate the axially symmetric problem for a rectangle weakened
by a finite number of unknown equistable holes. On the boundary of the
rectangle, normal displacements have constant values, the tangential stress
is equal to zero.

Problems for an infinite homogeneous isotropic plate weakened by curvi-
linear holes are studied in N. B. Banichuk [10], [11], O. G. Kosmodamianski
and G. M. Ivanov [61], S. B. Vigdergauz [122], G.P. Cherepanov [39] when
the stresses 077, 0, and o7y are given at infinity and it is required to find eq-
uistable holes; axially symmetric problems of the plane elasticity theory and
bending problems for a plate with a partly unknown boundary were stud-
ied in G. A. Kapanadze [48]-[50], N. Odishelidze, F. Criado-Aldeanueva
[86]-[88], R. D. Bantsuri [23], [26].

Some of our results obtained in the monograph are announced for the
first time. The works [22]-[30] of the author were published in complete
form, while other works of the author in the abridged form.



CHAPTER 1

Boundary Value Problems of the Theory of
Analytic Functions with Displacements

1.1. Integral Representations of Holomorphic Functions in a
Strip

Let the function ®(z), z = x + iy, be holomorphic in a strip {a <y <b,
—00 < x < oo}, continuous in a closed strip {a <y < b,—c0 < z < o0}
and satisfy the condition ®(z)e*?| — 0 for |z| — oo, u > 0. The class of
functions satisfying these conditions will be denoted by A% (u).

Let

mB[3 + (=1)"]

22+ p2)
where o and § are real numbers, 8 > 0. Then the following formulas are
valid:

®p(2) € A (1), w, < k=12, (1.1.1)

+oo
1 Q1 (t) + @1(t+ a)
&,(2) = — dt T,z < B, 1.1.2

1(2) 2a / sinh p(t — 2) » 0<Tmz<p ( )

— 00

—+o0
coshpz Dy (t) — Do (t+a) a
By(z)= di4+®y (L), 0<Tnz<pB, (1.1.3
2(2) 2a /coshptsinhp(t—z) + 2(2)’ 2<B: ( )

— 00

where p =™ a = +if.

a
The above formulas are obtained using the theorem on residues.

If ®4(2) has the form

n

a\ —J
Bilz) = Wu() + 34y (:=3) " W eAfm), k=12,
=
then we have
+oo
2a sinh p(t—2)

no/ jA, 1 (i-1)
—Z( pj)' g ( ) L 0< Tz < B, (1.1.4)
j=1 '

cosh pz

10
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+oo
cosh pz / Dy(t) — Da(t+a)
2a cosh pt sinh p(t — 2)

— 00

(132(2) =

" A(=p)d .
- Z ](J'p) (tanhpz)U Y 4 @, (g) » 0<Tpz < B (1.15)
j=1 '

Let further Fy(t), k = 1,2, be the functions given on the real axis L
and having the form Fj(z) = fi(2z)e!s®l, fi(£o0) = 0, where f(t) are
the functions satisfying the Holder condition everywhere on L, i, are the
numbers satisfying inequality (1.1.1).

Consider the integrals

+oo
| At)
Oy(2)=— [ —W g1, .<8 1.1.6
1(2) 2a / Slnhp(t—Z) ) < z <ﬁ ( )
hpr [ Fy(t)
cosh pz b
(0] = dt, 0<Z,, . 1.1.7
2(2) 2a / coshptsinhp(t —z) 2<p ( )

— 00

It is obvious that these functions are holomorphic in a strip 0 < y < .
Using the Sohotski—Plemelj formulas we can show that the boundary
values of ®; and ®, are expressed by the formulas

+oo
By (tg) = T1ll0) 1 /Fli(t)du

2 2a sinh p(t — o)
_—(:ooo (1.1.8)
Fi(ty) 1 / Fi(t)
o, (t = — o | ot
1(to +a) 2 2a J sinhp(t—to)
+oo
Bo(ty) = Fy(tg) N cosh pz / Fy(t)
200 Ty 2a cosh ptsinh p(t —tg) ~
= (1.1.9)
Fy(ty) = coshpty / F(t)
oot ) — dt.
2(to +a) 5 T 2 cosh pt sinh p(t — tg)

— 00

From Plemelj—Privalov’s theorem it follows that that the boundary val-
ues of ®; and P, satisfy the Holder condition on the finite part of the
boundary.

Let us investigate the behavior of these functions in the neighborhood
of a point at infinity. First we consider the case with p, =0, k =1,2.



12 Revaz Bantsuri

Rewrite formula (1.1.6) as

+oo
1 1 a 1
) = — - — Fi(t)dt
1(2) 2a / [sinhp(t z) pt—2)(t+a—=2) 1)
1 R 1T R
— 1()dt——/ﬁdﬁ, 0<Znz<B.
2ap t—z 2ap t+a—z

Here the first term is holomorphic in the closed strip 0 < Z,,z < S and
tends to zero at infinity. The second and the third term are analytic in the
strip 0 < Z,,z < B, vanish at infinity and their boundary values satisfy the
Holder condition, including points at infinity [76].

Therefore ®1(z) € Ag(O).

Now let us consider the function ®5(z). Rewrite formula (1.1.7) as

dt.

+o0 +oo
By (2) = 1 / (cosh pz — cosh pt) F5(t) it 1 Fy(t)

2a cosh pt sinh p(t — 2) 2a sinhp(t — 2)

— 00 — 00

As we have shown, the second term here belongs to the class Ag (0).
Denote the first term by Z and rewrite it as

“+o0
1 sinh £ (t + 2) F5 (1)
2a cosh pt sinh §(t — 2)

— 00

T =— dt

+oo
1 sinh £(22 — 7 + iy) Fo(z — 7)
2a coshp(x — 1) cosh B(7 + iy)

/ / sinh £( 2x77+zy)Fg(x77)d
coshp(x — 7) cosh £ (7 + iy) g
Let # > 0. Then the first integral will be bounded in the strip 0 <

Iz < B, since 20 — 7 < 2(x — 7).
Rewrite the second integral as

—+oo
1 [ sinh§(2z — 7 +iy)Fo(z — 7)
2a cosh p(x — 7) cosh §(7 4 iy)
0

/ / sinh &(z +t 4 iy) Fa(1) i@t
2a 2a cosh pt cosh §(x — t + iy)
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The first term is bounded since = +t < x — t. The second term can be
written in the form

1 [ sinh B([(z — t+ iy) + 2] Fy(t) »

2a / cosh pt cosh §(x — t + iy)

17 , 1/
= %/tanhi (x —t+iy)Fa(t) dt + %/tanhpth(t) dt. (1.1.10)
0 0

2
Since the function tanh £z = tanh %(ﬁ + ai)z is holomorphic in the strip
0<Z,z <4< pand |tanh §z| — 1, the estimate

|D2(2)] < |Po(z)] + €|z] (1.1.11)

holds for the function ®5 when x are large in the closed strip 0 < Z,,z < 4,
®y(x) is bounded for z > 0 and € < 0 is an arbitrarily small number. A
similar estimate is also true for the case x < 0. In the same manner we can
obtain an estimate of form (1.1.11) in the strip 0 < § < Z,,z < 8 provided
that the function ®5(z) is represented as

+o0 +oo
1 cosh pz + cosh pt 1 Fy(t)
o =— Ft)dt— — | ————dt.
2(2) 2a / cosh pt sinh p(t — 2) 2(0) 2a / sinhp(t — z)

Now let us consider the case with p, > 0, k = 1,2. Rewrite (1.1.6) as
follows:
+oo
1 / cosh pi1tq (t)

— — iu‘l‘t| wh
7% Sinh p(t — 2) dt, p1(t) = f1(t)et"/ cosh pqt.

(I)l(Z)

It is obvious that ¢4 (¢) satisfies the Holder condition in the neighbourhood
of a point at infinity.
We write the function ®1(z) in the form
+oo
1 / ©1(t) coshlpy (t — 2z) + p12]

®i(2) =5, sinhp(t — 2)

dt
2a

—o0
hjnz [ coshps(t — 2) inh iz [ sinh(t — 2)
coshpyz [ cos -z sinh p; 2 sinh(t — z

_ coshiin / S o (1) dt + 2 / : e

2a sinh p(t — z) 2a sinhp(t — 2)

Since p1 < 73/(a® + B%) = Rep, we have ®;(z) € AP (uy). Taking

this into account and applying the arguments used when investigating the

behavior of the function ®3(z) in the case with Fy(+o00) = 0, we show that

By(2) € A (Ba).

Let us formulate the results obtained above as the following statement.

e1(t) di.
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Theorem 1. If the functions Fy(x)e "1l (k = 1,2) satisfy the Holder
condition everywhere on L and Fy(z)e ™!l — 0 for |z| — 400, where
W, are some numbers satisfying inequality (1.1.1), then @y € Ag(uk) for
1 >0, pup >0, exp®sy € Ag(e) for s = 0, where € is an arbitrarily small
positive number.

Formulas (1.1.8) and (1.1.9) imply
) + q)l(t + a) = F1(t),
)

& (t t € (—00,00), (1.1.12)
Dy (t) — Da(t+ a) = Fa(t), t € (—o0,00), (1.1.13)
i.e., ®1(2) and ®5(z) defined by (1.1.6) and (1.1.7) are solutions of boundary

value problems (1.1.12) and (1.1.13) of the class Ag(uk), k=12

Clearly, if the function ®2(2) is a solution of problem (1.1.13), then the
function W(z) = ¢+ ®o(z) will also be a solution. We will show that prob-
lems (1.1.12) and (1.1.13) do not have other solutions of the class Ag(,uk),
k = 1,2. For this we should prove

Theorem 2. If F5(t) € L(—o0,00), then for a solution of problem
(1.1.13) of the class Ag(O) to exist it is necessary and sufficient that the
condition

/ Fo(t)dt = 0
be fulfilled.

Proof. We can rewrite formula (1.1.7) as

- 1T
Dy(2) = %a /Cothp(tfz)Fg(t) dt — %a / tanh pt Fo(t) dt.  (1.1.14)

It is obvious that the limits of ®o(z) exist for  — o0, 0 <y < 8, and

17 17
O+ @y(doo +iy) = 45 / Fg(t)dt—%/tanhptF2(t)dt+C. (1.1.15)
Taking
c=L 7F(t)ta hpt dt
=% 2 nhp

and setting

/ Fy(t)dt =0, (1.1.16)
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we find by virtue of (1.1.15) and (1.1.16) that a solution of problem (1.1.13)
has the form

Do(2) = i / cothp(t — z) Fy(t) dt (1.1.17)

and belongs to the class Af (0).
The necessity is proved by integrating equality (1.1.13) and applying
the Cauchy theorem. O

It remains to prove

Theorem 3. If the function ¢ € Ag(%), A = *£1, and satisfies
the condition p(z) = Ap(x+a), then it is constant and, for A = —1, is equal

to zero.

Proof. Let A = —1 and

_p(2) a a
@@Q_.amhp24—¢(2)7dz__%). (1.1.18)
The function ¥(z) € Ag (0) and satisfies the condition
2a®> /a 1

Since W(z) is a solution of problem (1.1.19) of the class A5 (0), the condition

o0
2a2 a dx a
2 (0) ] = e 3) -
™ @(2>/x2—a2/4 “P\3 0

is fulfilled on account of Theorem 2. Thus ¥(z) is a solution of the homo-
geneous problem

U(z) —¥(r+a)=0, —o0<z<+00.
If we introduce the function

V(=) - ¥(5)

\I’ =
1(2) cosh pz

)

then we have
Uy(z) +V1(z+a)=0, —oo<z<+o00.
By applying the Fourier transform to the latter equality we obtain
Ty (1+ €)= 0.

Hence we have Uy (t) = 0, Uy (z) = 0. Therefore by (1.1.18) ¢(z) = 0. We
have thereby proved the theorem for A = —1.
Let A =1. Then p(z) — p(z +a) = 0.
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The function
U(z) = p(z) — ¢ <4a) (1.1.20)
0

also satisfies this condition and go(% a) =
We introduce the notation
U(z) a V(37

_ (%)
Wo(z) = cosh 2pz * 21 2 — &

Now, repeating the above arguments, we find that \I/(%) =0, i.e., Uy(z) €
AP (0) and satisfies the condition

\If()(x) — \I/o(LL' + a) =0.

But, as shown above, in that case ¥o(z) = ¥(z) = 0 and therefore equality
(1.1.20) implies

which proves the theorem. (I

1.2. A Carleman Type Problem with a Continuous Coefficient
for a Strip

Let us consider the following problem: find a function ® of the class
Ag (1) by the boundary condition

O(z) = A\G(2)®(x +a) + F(z), —oo <z <400, (1.2.1)

where a = a+i8, 3> 0, p < 78(3+A)/2(a? + %), F and G are the given
functions satisfying the Holder condition including a point at infinity, G # 0
and F(£+o0) =0, G(—o0) = G(o0) = 1, the constant A takes the value 1 or
—1.

The integer number 3 = 53— [arg G(z)] 13, where [arg G(z)] 13 denotes
an increment of the function arg G(x) when x runs over the entire real axis
from —oo to oo, is called the index of the function G(z). The index of
Go(z) = G(z)[(z — a/2)/(z + a/2)]* is equal to zero and therefore any
branch of the function In Go(x) is continuous all over the real axis. We
choose a branch that vanishes at infinity. By formulas (1.1.7) and (1.1.9),
G(z) can be represented as

G(z) = ———"— (1.2.2)

where
a

X(2) = (- 5) " Xo2),

(1.2.3)

“+o0
coshpz / In Go(t)

X = dt ).
0(2) = exp ( 2a cosh pt sinh p(t — z) )

— 00
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By virtue of Theorem 1, Xo(2) and [Xo(2)]7! € Ag(e), where € is an arbi-
trarily small positive number.
Using (1.2.2), we rewrite condition (1.2.1) as

—00 < x < 00. (1.2.4)

The function ®(z)/X(z) is holomorphic in the strip 0 < Z,,,z <  except
perhaps for the point 2 = 5 at which it may have a pole of order s, for
2 > 0 and satisfies the condition

(®(2)/X(2)e | 50 for |z] »o00 and 0<y< B,

where 0 < pu < 7B(3 + \)/2(a® + 5%). By (1.1.4) and (1.1.5), condition
(1.2.4) implies

+oo
O(z) = X2f) _/ X0 siilitzz(t 2 dt + X (2)p1(z) for A= -1, (1.2.5)

—+o0
() = X (z) coshpz / F(t) it
2a X (t) coshpt sinh p(t — 2)
+ X (2)p2(z) for A=1, (1.2.6)
where
0, x <0,
x—1
= 1.2.7
#1(z) Cr(1/coshpz)® | >0, ( )
k=1
0, 2 <0,
p2(2) = ZCk(tanhpz)(k), >0, (1.2.8)
k=1
C}, are arbitrary constants.
Let us investigate the behavior of the function
X [ Fw
z
— dt, 0<T,z<B, 1.2.9
#(2) 2a / X(t)sinhp(t—z) = 2<h ( )
—o0

in the neighborhood of a point at infinity. The function X (z) can be rep-
resented as

X(2) = (= %) expTi(2) - expla(2),
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where

1 [ sinh2(z +t)InGy(t)

T(z) = ——
1(2) 2a coshptcosh §(t —z)
1 7 nGo()
To(z) = — [ ool
2(2) 2a _/ sinhp(t — 2)

As has been shown above, T'y(z) € A5(0), i.e., (expTa(z) — 1) € AL (0).
By differentiating the function I'1(z) we obtain

1 7 In Go(t)
M(2) = — [ —20%) 5 0< T2 < fo < B.
1(2) 2a / cosh § (t — 2) SInzsho<p

—o0
It is easy to verify that I'j(z) — 0 for |z| — oo and therefore for any
(z) there is a number N such that
T} (z+iy)| <e for |z| >N, 0<y<pBy<p. (1.2.10)

We represent (z) as

F(t) dt
2a X(t) sinhp(t— z)

N
(/ /) Slnhpt— )dt’ 0<Znz < Po.

It is easy to show that the first and the second term vanish as z — +o0.
We will show that the third term also tends to zero as z — 400, 0 < y <
Bo < B. This term will be denoted by Z.

T exp(Ta(2) — Ta() exp(T'y () — T1 (1)) (2 — 2)%F(£)
I_/ (t— %)”sinhp(t—z)

p(z) =

dt.

N

Assume that > > 0 and represent the function (z — 7)% as

(Z_f) 'Z (t=3) i;('zn_' D", (t—g)”. (1.2.11)

Inequality (1.2.10) implies that

IT1(2) —T1(t)| < /F’(s) ds| <elt—z|, t<N, >N, 0<y <P,
t
ie., Re(I'1(t) = T'1(2)) — e|t — 2| < 0. Thus we have
|exp[l1(t) —T1(z)) —elt —2z| — 1| < A[t—z|, t>N, z>N.
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The latter inequality and formula (1.2.11) imply

= % a|1 t] —t F(t
mgcz/ ot F@O
n=1y

s —n)In!|sinh p(z —t +iy)||t — 5[

7 Al — i + (1 e IR

|sinhp(z — t + iy)|

(1)
——dl|.
+ /2|a\sinhp(t—z)
N

where, as shown above, the third term is the modulus of a function of the
class AZ2(0). Since ¢ is an arbitrarily small number and F(o0) = F(—00) =
0, the first two terms are the convolutions of functions summable with func-
tions tending to zero for x < 0. Therefore they tend to zero for x — oo,
0<y<pBo<p.

It can be shown in a similar manner that ¢(z) — 0 for z — —oo,
0 <y < B, as well. Tt is not difficult to prove that the function (z) tends
to zero for |z| = oo, By < I,z < 8. When 3 < 0, one can use the same
reasoning to show that ¢(z) — 0 for |z| — oo, 0 < y < 3, provided that z
and ¢ are exchanged in equality (1.2.11). Thus the function ® represented
by (1.2.5) tends to zero as |z| = +o0, 0 < y < B. Quite similarly, it is
proved that for the function ® defined by (1.2.6) we have ®(z)e~¢l?| = 0 as
|z] = 00, 0 <y <.

For sc < 0 the function X (z) has a pole of order — at the point z = §
In that case the solution exists only if the following conditions are fulfilled:

o0 (k)
/F(t)( 1 ) dt=0, k=0,...,(—s—1) for A= —1, (1.2.12)

X (t) \ coshpt
% N
/X((?) (cth t) dt =0, k=1,...,(-%«—1) for A=1. (1.2.13)
p
—o0

The results obtained can be formulated as

Theorem 4. For A = —1 and s > 0, problem (1.2.1) is solvable in the
class AO’B(O) and a general solution is given by (1.2.5) with formula (1.2.7)
taken into account. If x < 0, then the problem is solvable if condition
(1.2.12) is fulfilled. In these conditions problem (1.2.1) has a unique solution
in the class Ag(O) which is given by formula (1.2.5) for ¢ = 0.

Theorem 5. if A =1 and > > —1, then problem (1.2.1) is solvable in
the class Ag(e) and its solution is given by (1.2.6) with (1.2.8) taken into
account; for » < —1, the solution exists provided that condition (1.2.13) is
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fulfilled. If these conditions are fulfilled, then problem (1.2.1) has a unique
solution in the class Ag(s). This solution is given by (1.2.6) where po = 0.

1.3. A Carleman Type Problem with Unbounded Coefficients for
a Strip

Problems of the elasticity theory can often be reduced to a Carleman
type problem with coefficients polynomially increasing or decreasing at in-
finity. We will consider such a case below.

We write the boundary condition of the problem in the form

O(z) = P, (2)G(2)P(x +i8) + F(z), —oo <z < 00, (1.3.1)

where G(z) and F(x) satisfy the conditions discussed in Section 1.2, and
P, (x) is a polynomial without real zeros. Condition (1.3.1) can be rewritten
as

O(z) = qla® + 482131 (28 — i)’ Go(2)®(z + if) + F(z),  (1.3.2)

where §(n) = 0 for even n and §(n) = 1 for odd n; ¢ is a complex number;
Go(x) is a Holder class function including a point at infinity Go(—o0) =
Go(OO) =1.

As shown above, the function Gg(z) can be represented as

__Xol»)
Go(x) = Xo(@+i8)’ oo <z < 00, (1.3.3)
where
. 2 o0 t4i8/2 5
_ i3 coshpz In [Go(t)(tﬂ-g/z) ]
Xolz) = (z— 2 ) eXp( 2if8 coshptsinh p(t — 2) dt). (13.4)

Write the function [22 4-442]121(28 — iz)?(™ in form (1.3.3). Let us find
solutions of the problems

Xi(z) =28 +ix)X1(x +i6), —oo <z < o0, (1.3.5)

Xo(x +1i8) = (28 —ix)Xa(z), —o0 <z < +o00. (1.3.6)

Applying the Fourier transform to conditions (1.3.5) and (1.3.6), we
obtain the differential equations

(Ai(t)eP?) = (1= 2Be”) fi(t), —oo <t < 400,
) = (28 — e ) falt), —o0 <t < 400,

where f1(t) and f2(t) denote the Fourier transforms of the functions X ()
and Xo(x).
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By performing the reverse Fourier transformation of the solutions of
these equations we obtain the solutions of problems (1.3.5) and (1.3.6):

+oo
Xi(z) = / exp (—;eﬁt + 38z —|—itz) dt, 0 <Zpz<p, (1.3.7)
+oo 1
Xo(z) = / exp (—Be_ﬁt — 20t + itz) dt, 0<Zy,z<p. (1.3.8)
—o0

On substituting e”* = 37, we have

B
2 (1.3.9)
iz 1— iz _ iz ZZ
Xo(z)=p"7" e T Fdr=88"5F1 2_5
0
We introduce the notation
Xi(2) %] s
X3(z) = X (n) T . 1.3.1
)= [28] e, 0<zz<s 30

Using Stirling’s formulas [113], we obtain from (1.3.9) and (1.3.10) the
following representations of the functions X;(z) and Xs(z) in the neigh-
bourhood of a point at infinity:

= y 1
X = Gl Bl (140 (1)) o<y

s 3 Y 1
Xa(o)] = Caln)e 5738 (140 (1)) 0y <n

where C1(y), C2(y) are the non-vanishing bounded functions.
By virtue of these formulas, for sufficiently large values of |z| (1.3.10))
implies

Xa(2)| = Cly) (2] 7) B! (e el 1 +5) 70 (1 +0 (1)) . (13.11)

T

By equalities (1.3.3) and (1.3.11), condition (1.3.2) can be rewritten as

d(x) Oz +1ipP) F(x)
— — = , —oo < x <00, 1.3.12
X(@) X@+iB) ~ X(z) (1.3.12)
where X (z) = Xo(2)X3(2).
The function ®(z)/X (z) is holomorphic in the strip 0 < Z,,,z < [ except
perhaps for the point z = i/2, where for 5 > 0 it may have a pole of order
not higher than s, and satisfies the condition

(@(z)/X(z))e_“lzl —0 for |z| >0, pu< % +e.



22 Revaz Bantsuri

Write ¢ in the form

X4(l‘)

1z
q= m, Xa(z) = exp (BIHQ> .

From (1.2.7) and (1.2.5) it follows that if ¢ is not a real positive number,
then a general solution of problem (1.3.1) is given by the formula

X(z) [ exp (TS5 (z 1))
2i3 X (t)sinhp(t — z)

— 00

O(z) = F(t)dt + X (2)e(2), (1.3.13)

where v =1In|q|, d = argq, 0 < 6 < 2.

= T—0+1y)z
o(z) = j;o Cjw (exp <ﬂ+7)/coshpz> . (1.3.14)

For s¢ > 0, the solution of problem (1.3.1) is given by formulas (1.3.13)
and (1.3.14). Note that for » < 0 it is assumed that ¢(z) = 0. For
» < 0, the function X (z) has, at the point z = %, a pole of order —s and
therefore the bounded solution exists in the finite part of the strip only if
the conditions ¢(z) = 0;

7 i [ exp(i=r=i
/F(t)\llj(t)dt:O, W(t) = d (p(ﬂ)t> (1.3.15)

Tav cosh pt
j:();"-a(_l_%)a

are fulfilled. Thus, like in Section 1.2, it can be easily proved that in the
case of even n problem (1.3.1) has a solution ®(z) € Ag(O) for any 0 €

(0,27), while in the case of odd n it has a solution ®(z) € Ag(”gg‘s +¢)

for § € (0,%]; @(2) € Ag(O) for 6 € (Z,37); ®(2) € Ag(%z_T?” + ¢) for
XS [%77, 271'), where € > 0 is an arbitrarily small number.
When ¢ > 0, by substituting

D(2) = Xu(2)¥(2)
condition (1.3.12) can be reduced to the form

3.
V() W@+if)  F@)Xa@)
X(x) X(z+if) X)) ST < oo (1.3.16)

By virtue of formula (1.3.15) a general solution of problem (1.3.1) has
the form

X [ F(t)
(z) = 2ip / X*(t)sinhp(t — z)

dt + X" (2)p2(2), (1.3.17)
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where X*(2) = X (z) coshpzX4(2),

x—1 ;
&J
C’jﬁ(tanhpz) + Cz, for >0,
_ z
p2(2) = 7= (1.3.18)
C, for 2> =0,
0, for s < -1,

C, Cj, j =0,...,(5x — 1), are arbitrary constants. If x < —1, then the
solution exists only provided that the condition

TRl &1 .
L dt=0, j=0,... (—%—2
/X*(z) dti <coshpt> 0. 5=00 (=2 =2),

is fulfilled.
One can prove that ®(z) € AL (¢) for even n and ®(z) € AL (7/(28) +¢)
for odd n; here ¢ is a small positive integer.

REMARK. Formulas (1.3.8) and (1.3.9) can be obtained by applying
formulas (1.3.3) and (1.3.4).

Indeed, if in formula (1.3.4) Go(t) is replaced by the function (28—iz)~!,
then we have

Xo(2) = exp (

coshpz T Ini— In(z + 2i5) d
z|.
2if3 cosh pz sinh p(z — 2)

— 00

(1.3.19)

Under the function In z we understand In z = In |z|4-arg z, —7 < argz <
7. After rewriting In(x 4 2i3) as
In(z+2iB) = Y [ (e +i8(k+2) ~ In(z +iBk+ )| + In(z +iB(3+n))
k=0
and substituting this expression into (1.3.19), by virtue of (1.1.3) we obtain

w(z) = coshpz T Ini- In(z 4 2i8) de
2B cosh pz sinh p(z — 2)

— 00

- kz:) [m(x +if(k+2)) —In (5? " Mﬂ

oo
coshpz In(1+n)B) 1
dt - .
* 2i8 cosh ptsinh p(t — z) +0 n

— 00

If we perform some simple transformations and calculate the latter in-
tegral by the formula

cosh pt T In[(n+1)8]
2i cosh pz sinh p(x — 2)

—0o0

dz = In[(1 + n)B) <Z; + ;) :
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then we have
w(z) = Inf{1+=>)e ®&| — In(n+1) — —In B¢
()l;[(k)}c(<>;)ﬁ

_;<ln(n+1)—2;>+ln(+0n, ¢= 2 F208
k=1

T =

i

Passing to the limit as n — 400, by virtue of (1.3.19) we obtain

Xa(z) = ACﬁ <1 + ]CC) et %p¢ = AT <2 — Z;) B> %,
1

1.4. On a Conjugation Boundary Value Problem with
Displacements

As an application of the results obtained in Section 1.2, we will consider
one kind of a conjugation problem with displacements, when the boundary
is a real axis. Denote by S* and S~ the upper and the lower half-plane,
respectively.

Let us consider the following problem:
Find a piecewise-holomorphic function bounded all over the plane using
the boundary condition

Ot (z) = G(2)® [a(z)] + f(z), —00 < 1w < 400, (1.4.1)

where G(z) and f(x) are the given functions satisfying the Holder condition,

G(x) 0, G(o0) = G(~00) = 1, f(+00) = f(~00) = 0,

o(z) = {x, z <0,

bx, x>0,

b is a constant.

If we denote by s the index of the function G(z), then G(z) can be
represented as [76]

G- X+(z) o) eXPW(:Z); 2 €8T, 142)
X (2)’ <Z+2) expw(z), z€ 87, .
z—1
1 T InGot) N
_ n Gy _ X 1
w(z) = 5 T dt, Go(z) = G(z) (x — z) .
On putting the value of G(z) into (1.4.1), we obtain
+ —_

M) _ (o) _ _flw) —00 < x < 400. (1.4.3)

Xt@)  X-(@)  Xf(2)’



Contact Problems of Plane Elasticity Theory ... 25

For x < 0, condition (1.4.3) takes the form
oF(x) ¢7(x) _ fl2)

X+ (z) B X~ (x) = Xt(z)" (1.4.4)
A general solution of problem (1.4.4) can be written as
0
?) f(®)
/ X+(t)(t — 2) dt + X (2)®o(2). (1.4.5)

The function ®(z) is holomorphic on the plane cut along the positive
semi-axis except perhaps for the neighborhood of the point z = —i at which
it has a pole of order s for s > 0.

For 5« < 0 the function X (z) has a pole of order —sr at the point z = —i.
Therefore for a bounded solution to exist it is necessary that the condition

0
®) o, K f(t) _ _ i
o0t on | a0 =0 =01 (1), (146)

be fulfilled.
If we put the value of ®(z) into (1.4.3), then we have

<I>+(x) = Gl(x)é_(bx) + folz), 0<z< oo, (1.4.7)
where G (z) = % (Z) , fo(z) = ( (z) + G1(z) A~ (bz),
0
- / st

The function z = €S, ( = & + in, maps the strip 0 < 1 < 27 onto the
plane having a cut along the axis > 0.
On introducing the notation ®q(e) = ¥o(¢), 0 < 1 < 27, we obtain

Of (z) = Vo(€), @y (bx) = ¥o(€ +1nb+27i), —00 <& < +o0. (1.4.8)

Thus problem (1.4.7) is reduced to the problem considered in Chapter
1, Section 2

Wo(E) = GH(E)Wo (€ + Inb + 2mi) + Fy(€), —00 <& < +oo,  (1.4.9)
where G*(€) = G1(ef), Fo(§) = fo(e®), G*(—00) = G*(o0) = 1,

. _ _ __f(0)
TndG* =0, Fy(4+00) =0, Fy(—00) = X(0)"

Since for s > 0 the function ®¢(z) can have a pole of order » at the
point z = —i, we seek for a solution ¥y of problem (1.4.9) in the class of
functions satisfying the condition

¢—3mi 5 42
v A —_—. 1.4.10
O(O(Cngw € Ao (1), < 472 +1Inbd ( )
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By virtue of formula (1.2.6) it is easy to show that a general solution of
problem (1.4.9) is given by the formula

400
~ X*(¢) coshp¢ Fo(t)
Uo(C) = %2 / X+ (t) cosh pt Sinhp(t —) dat
+X(OUQ) ()

where @ = Inb + 27i, p = %i,

- 3
ch cothkp (C — 27ri> , x>0,

h(¢) = =0
C-1, %:_17
0, x < —1,
hpC T WG
. B cosh p n
X (C)exp( 2a coshptsinhp(t—o dt)'

—0o0

Returning to the variable z, we obtain

+oo
. Xo(z) t2p—1f0(t) B
Wo(C) = " / (t2p722p)Xar()dt—i—Xo(z)(gao(z) A),  (1.4.12)
B 1 OolnGl(t)tQp ! 1 [ e Lfo(t)
Xo(z) = exp ( e ) -1 X* e
0 0

With (1.4.5) and (1.4.12) taken into account we conclude that a general
solution of problem (1.4.1) has the form

0
1 f(t

201 ()
/ )(Jr )(t2p — Zzp) dt + Xo(2)(po(2) — A)|, (1.4.13)
il 2p k
S o (JFZ)) 0
i)2r
2= (1.4.14)
c_1, = _17
0, »n < —1.

The function 22 is holomorphic on the plane cut along the positive
axis if under this function we mean the branch for which, assuming that
z — 1, the limit from the upper half-plane is equal to 1, and t?? denotes
the function value of the upper edge of the cut at the point ¢.
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For » = —1, the function Xy(z) has a pole of first order at the point
z = —i. In that case po(z) = C_; and Xo(—i) # 0 and therefore the
constant ¢; can be chosen so that for z = —i the expression enclosed in the
square brackets on the right-hand side of (1.4.13) will vanish. Hence when
» > —1, problem (1.4.1) has a bounded solution for an arbitrary right-hand
side. When » < —1, for a bounded solution to exist it is necessary and
sufficient that the conditions
Fl g X [ e )
dzF | 2mi / X*(t)(t—=2) T ) X (t)(t2p —22)

dt_AXO(Z) = O,

z=—1, k=1,...,—x,

be fulfilled. Then the solution is given by formula (1.4.13).

For b =1 we have p = %, Xo(2) =1, fo(t) = f(t) and formulas (1.4.13)
and (1.4.14) give a solution of the conjugation problem.

Conjugation problems with displacements are investigated in [62], [63],
[69] in the case with o/(t) belonging to the Holder class.

1.5. A Carleman Type Problem with Continuous Coefficients for
the Circular Ring

In this paragraph we consider the following boundary value problem of
the analytic function theory.

Find a function ¢(z), analytic in the ring D = {1 < |z| < R} and
continuous in the closed ring D, by the boundary condition

plat) = G(t)e(t) + f(t), ten, (1.5.1)
where v denotes the circumference of unit radius and center at the origin,
a = Re', G(t) and f(t) belong to the class H on v, G(t) # 0 everywhere
on v. We will call G(t) a coefficient, and f(¢) a free term of problem (1.5.1).

The integer number » = 5= [arg G(t)] , called the index of the function
G(t) will be called in our case the index of problem (1.5.1).

As we will see in the sequel, the solution of problem (1.5.1) is reduced
to the solution of the problem with constant coefficients

wolat) = geo(t) + folt), ten. (1.5.2)

After multiplying equality (1.5.2) by ¢t~ (™1 integrating over v and
applying the Cauchy theorem, we obtain

(a™ —g)/(p(t)t_("“‘l) dt = /f(t)t—<"+1>dt, n=0,+1,42,... .
v ol

Hence it follows that if a” — g # 0, n = 0,4+1,4+2,... , then problem
(1.5.2) has a unique solution given by the formula

e(z) = i f—"z”, fn:/f(t)e%ml)dt. (1.5.3)

a" —g
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If a™ = g for some integer number m, then for problem (1.5.2) to be
solvable it is necessary and sufficient that the condition

/f(t)t—<m+1> dt =0 (1.5.4)
)

be fulfilled.
When this condition is fulfilled, we have

p(z) = Z anfiig 2"+ C2™, (1.5.5)

m#n=—o0

where C' is an arbitrary constant.
To continue our investigation of the problem it is convenient to rewrite
formulas (1.5.3) and (1.5.5) in the form

1 z t n
o(z) = %/Kg (;) @dt, a” — g #0; (1.5.6)
¥
1 * z ft m m
@(2):%/&] (?)(T)dt—FCz , a" =g, (1.5.7)
¥
where
Kj()=—% 41 4 i ! (5)n+1 i a2 (15.8)
P r—a g1 —2) gnzoa"fg a g =~ at—g

and K;(z) is obtained from (1.5.8) by removing the term the denominator
of which vanishes, i.e. the term with denominator n = m.
By virtue of the Plemelj-Privalov formula, formulas (1.5.6), (1.5.7),
(1.5.8) imply that a solution of problem (1.5.1) belongs to the class H.
Let us now prove

PROPOSITION. The number of linearly independent solutions of the
boundary value problem

olat) = gthp(t), k>0, (1.5.9)

is equal to k (k is a natural number).

Proof. Multiplying both parts of equality (1.5.9) by ¢", integrating and
applying the Cauchy theorem, we obtain

Cn

where
C; :/gp(t)tjdt, j=0,%£1,4£2,... .

Y
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In formula (1.5.10), Cp;C1,...,Ck;... can be chosen arbitrarily con-
stant and used for other definitions. Hence problem (1.5.9) has k linearly
independent solutions.

For k < 0, if system (1.5.10) has a nontrivial solution, then |C,,| — oo as
n— 00, but this contradicts the property of Fourier coefficients. Therefore
for k<0, ¢(z)=0. O

A more general proposition is true: If IndG(t) = » > 0, then the

homogeneous problem
o(at) = G(t)e(t) (1.5.11)
has exactly s linearly independent solutions.

Let us first show that there exist a function X;(z), which is analytic
in the ring D and is everywhere different from zero, and a number pq such
that
2 X1 (at)

Xu(t) '
Indeed, from condition (1.5.12) we have

In X;(at) —In X1 (t) = In[t ~*G(#)] — In pq.

G(t) = ten. (1.5.12)

This is a boundary value problem of form (1.5.1). From the solvability
condition we define the value for pq,

[1 = exp <2j”,/1n [G(t)t7] Cit)

¥
while, by virtue of (1.5.7), a solution has the form

X1(2) = exp (;TZ_/K; (%) In [t7*G(t)] ‘f)

Note that the fulfillment of the condition s > 0 has not been assumed here.
Now, with the aid of representation (1.5.12), the boundary value prob-
lem (1.5.11) is reduced to a problem of form (1.5.9), whence the validity of
the above proposition follows.
We will call the boundary value problems

plat) = G)p(t) + f(1), ten, (15.13)

and

o(@t) = GO U(t) + g(t), ten, (1.5.14)
adjoint.
Let us prove the following lemma.
LEMMA. If the functions ¢(z) and ¥(z) are holomorphic in D = {1 <
|z| < R} and continuous in D, then the equality

[t § = [G@ven §

Y
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is valid.

Proof. Expand the functions ¢(z) and #(z) into Laurent series

P = 3 et W)= 3 wnz", 1<l <al

Hence we obtain
a - a " n - s
c(2)= X e (2) o v = X v 1<p<ldl

Since these series converge modulo, the following equality is valid:

® <Z t) m = Z t" Z Wn—manimpmina—mpim'

n—=—oo m=—00

This series converges modulo because so do the series

o0 o0

S aMenlp™™ D [alp™

n=—oo m=—0oQ

The integration of the preceding equality gives
a \———dt = — .
/w (p t) b(pt) o = 2mi > ent,an
0% n=—oo
Analogously, we obtain

a \ dt s —
/so(pt)w <t) —=2mi Y ppth,a”.
2 t
¥ n=—oo
Thus the lemma is true. O

After multiplying equality (1.5.1) by ¥(¢)t and integrating, by virtue of
the above lemma we obtain

/w(t) {W—G(t)m}%:/m)m%

If 1)(2) is a solution of the homogeneous problem corresponding to prob-
lem (1.5.14), then the integrand in the left-hand part of the last equality
is equal to zero. Hence the necessary condition for problem (1.5.1) to be
solvable is the equality

/f(t)W% = 0. (1.5.15)

In an analogous manner we establish that the necessary condition for
problem (1.5.14) to be solvable is the equality

/gmm% =0, (1.5.16)

~
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where ¢(z) is a solution of the homogeneous problem corresponding to prob-
lem (1.5.1).

Let zg be an arbitrary fixed point of the ring D, then it is obvious that
the index of the function

Gol(t) = G(8) < t- % )%

at — 2o

is equal to zero.
As has been shown above, in (1.5.12) the function Gy(t) can be repre-
sented as

_ - Xo(t)
Go(t) =p Xo(at)’ t €, (1.5.17)
where
Xo(z) = exp (27”,/[(1 (t) In L1 ), z €D, (1.5.18)
¥

1 dt
[ = exp <2m,/ln Go(t) t>' (1.5.19)
8!

Therefore the function G(t) can be written in the form

X (at)
X (1.5.20)
X(z) =(2—20)"Xo(2), z€D.

G(t) =

We will call the function X (z) a canonical function of problem (1.5.1).
It can be easily shown that it depends on a choice of the point zy. Thus
problem (1.5.1) has an uncountable number of canonical functions.
Inserting the value of G(t) defined by (1.5.20) into condition (1.5.1), we
e @) el _ )
plat p(t t
X (at) _'uX(t) = X(at)’ ten. (1.5.21)
For s < 0, the function ¢(z)/X (z) is holomorphic in the ring D, while
for s > 0 it may have, at the point 2, a pole of order not higher than .
Thus problem (1.5.1) reduces to problem (1.5.21) with constant coef-
ficients, whose particular solutions are given by formulas (1.5.6) or (1.5.7)
depending on the fact whether the equation a™ — p = 0 has or does not
have an integer solution. A general solution of the problem is obtained by
adding a general solution of the corresponding homogeneous problem.
Let us now prove that if »c # 0, then the point zg can be chosen so that
a™ — u # 0 for any integer n.
Indeed, assume that z; and z5 are arbitrary points of D, p; and us are
their corresponding numbers defined by formula (1.5.19)

B 1 t—z, \ 7] dt _
,ukexp<2m,/ln [G(t) (at—zk) ] t>’ k=12
v
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Hence
55 1 t—2z\” dt 1 at — 29\ dt
— =exp|=— [ In —+— | In — .
1% 21 t— 29 t 211 at — t
v v

at—zo
at—z1

Since the function In ( is holomorphic outside the circumference

~ and vanishes at infinity, by the Cauchy formula

1 _ s
— [ In (at Z2> ﬂ =0.
21 at — 1 t

~

t—z1
t—2zo

therefore by the Cauchy formula
1 t— Z1 * dt zZ1 *
— [ In — =In[|— .
211 t— 2o t 2o
v

Assume that 21 = pei®!, 25 = pe'®2, 1 < p < |al. Then we have

The function In ( is holomorphic inside the circumference + and

Mo eilon—az)
H2

If @y and ay are chosen so that (ay —ag) s # 27, then we obtain p; # s
and p; = pe. In view of the fact that the equation a™ — p = 0 may have
only one integer solution, if it turns out that a™ — p; = 0 for some integer
m, then a”™ — ps # 0 for any integer number n. We have thus shown that
for s« # 0 the point zy can be chosen so that a™ — p # 0 for any integer
n. In the sequel, it will be assumed that the latter condition is fulfilled for
n # 0.

To construct solutions of the homogeneous problem corresponding to
problem (1.5.21) which are of order x at the point zp, we have to consider
the adjoint problem (1.5.14).

Rewrite the condition of problem (1.5.14) in the form

Zot —a\”" 5
P(at) = ( 0 ) G1(t)¥(t) + g(t). (1.5.22)
Zot -1
Since the index of the coefficient Gy (t) is equal to zero, it can be repre-
sented as /)
at
t) =12 1.5.2
Gl =1 (1.5.23)
where
o — e (L (P[]
X(z) = exp <2m' Kj (t) In [Gl(t)u ] ) (1.5.24)

The function K/(z) is obtained from K;(z) if we replace a by a. By
means of (1.5.23) condition (1.5.22) can be rewritten in the form
Y@ yt) gt

X@ "X x@) <7 (1.3.25)
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where
X'(2) = X((2) (Zoz —a@)” " 2*, z€D. (1.5.26)
Equalities (1.5.17), (1.5.20), (1.5.24) and (1.5.26) yield
1 1 1
Xil=z)=——— — 1. 1.5.27
{(3) - ek (1:2:21)
For 5 > 0, a solution of problem (1.5.25) is given by the formula
X'(2) z\ g(t) dt
v(z) 27 / Z (t) X'(@t) t’

~

but since the function X’(z) has a pole of order s at the point z = @/Zy, to
obtain a bounded solution of problem (1.5.14) it is necessary and sufficient
that the conditions
J
d X <z> g(t) dt_o =01,

dz “F\t) X'(@t) t

ax—1, z=a/Z,
¥
be fulfilled, which by virtue of equality (1.5.27) can be written in the form

/goj(t)mg(t)%zo, §=0,1,...,3¢—1, (1.5.28)

¥
where

&,z o .
%(t):EKﬁ(g)’ z=a/Zg, j=0,1,...,x—1

Condition (1.5.16) is the necessary one, while condition (1.5.28) is the
necessary and sufficient one for problem (1.5.14) to be solvable. Hence it can
be expected that the functions X (z)¢;(z) are solutions of the homogeneous
problem corresponding to problem (1.5.1).

If this is so, then ¢;(z) must be solutions of the equation

olat) — pp(t) =0, ten, (1.5.29)

having poles of order j + 1 at the point z = zj.
It is easy to verify that

a
.Kv/H (Zot) = —@(Zo;t)a

z nz = A"
Az) =
(X 2) z—)\+z—a)\+ngoz"(a"u—l)

where

—1 ny\n
i @A (1.5.30)
STy

n=-—oo
is such a solution of problem (1.5.29) that has a pole of first order at the
point x = A.
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Thus a general solution of problem (1.5.29) having, at the point z = 2o,
a pole of order not higher than s is given by the formula

ZC ngoAz

5 , (1.5.31)

A=zg

where C; are arbitrary complex constants. When s > 0, the homogeneous
problem corresponding to problem (1.5.1) has s linearly independent solu-
tions

(A 2)

piz) = X(2) — 53 . j=0,1,...,%—1.

A=z]
Therefore, by virtue of (1.5.6) and (1.5.21), for 3 > 0 a general solution of
problem (1.5.2) is given by the formula

o) = );(é) /Kﬂ (%) ;{Z) %—i—cp,{(z)X(z), ceD. (1532)

For s¢ < 0, a solution of problem (1.5.1) exists if and only if the condi-
tions

DV gt=0, j=0,1,...,—3—1. (1.5.33)

are fulfilled. In that case, a solution of problem (1.5.1) is given by
formula (1.5.32) where we should put ¢,.(2) = 0.

For c = 0 and a" — u # 0, n = 0,£1,42,..., a solution of problem
(1.5.1) is given by formula (1.5.32) where we should put ¢,.(z) = 0.

For 3¢ = 0 and a™ = p, problem (1.5.2) is solvable if and only if the
condition

/ X(i;()% dt =0 (1.5.34)

is fulfilled.
In that case, by virtue of (1.5.7) and (1.5.21) a solution of the problem
has the form

_ X(2) L2\ f() -
wlz) = i /Ku (g) X (at)t dt+ CX(z)z™, (1.5.35)
y
while we have the function
Yo(z) = OX'(2)=" (1.5.36)

as a solution of the adjoint homogeneous problem and condition (1.5.34) for
problem (1.5.1) takes the form

/f(t)woi(t)% =0. (1.5.37)
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For s < 0, the adjoint homogeneous problem has —s¢ linearly indepen-
dent solutions

d’ , a

Vi) = 15 VX, A= (1.5.38)

where ¥(); z) is given in the form of series (1.5.30) where the numbers a

and g should be replaced by their complex-conjugate values.
It is not difficult either to show that

K, (2 1
Yj(t) = dl;j(t) XD

Z=Zz0

(1.5.39)

Taking the last equality into account, the solvability conditions and
(1.5.33) take the form

/Wf(t)%:o, j=1,2,... - (1.5.40)

Thus, for problem (1.5.1) the following Noether type theorems are valid:

1. If 52> 0 or » =0 and a™ — u # 0, then the adjoint homogeneous
problem has no solution different from zero, and problem (1.5.1) is always
solvable.

2. If x < 0or =0 and a” — p = 0, then the adjoint homogeneous
problem has a nontrivial solution of form (1.5.38) and (1.5.36), and for
problem (1.5.1) to be solvable it is necessary and sufficient that conditions
(1.5.40) and (1.5.37) be fulfilled.

1.6. A Carleman Type Problem with Discontinuous Coefficients

Let us consider the following Carleman type problem

plat) = G(t)e(t) + f(t), ten, (1.6.1)
when the functions G(t) and f(¢) have discontinuities of first kind at a finite
number of points of the boundary, and satisfy the Hoélder condition on each
closed arc whose ends are discontinuity points. It is assumed that G(t) # 0
everywhere on 7. Of the unknown function ¢(z) it is required that it be
continuously extendable on the boundary of the domain D except for the
discontinuity points ¢ of the functions G(t) and f(¢) and their corresponding
points on the boundary of the ring D near which ¢(z) must satisfy the
condition

lo(2)] < const|z —c|™%, |p(2)| < const|z —ac|”%, 0<a<l
Following [76], the discontinuity points, at which the condition
argG(c — 0) = argG(c+0)

is fulfilled, are called singular and all other points nonsingular.

Take a point t; € v at which G(t) is continuous and choose any value
In G(t1 +0). Moving ¢t away from ¢; in the positive direction, we can change
the function In G(¢) continuously until ¢ reaches the first nonsingular point c.
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Having reached this point, arg G(t) obtains the well-defined value arg G(c—
0).

When passing through the point ¢, we choose the value arg G(c + 0) so
that one of the conditions

1
0< o (argG(c— 0) —arg G(c+ 0)) <1 (1.6.2)
or
1< L (argG(c —0) —arg G(c + O)) <0 (1.6.3)
2m

is fulfilled.

Continuing the movement of the point ¢ in the positive direction on y
and choosing the value arg G(¢) so that one of conditions (1.6.2) or (1.6.3)
is fulfilled at each nonsingular point, we obtain, on returning to the initial
point t1, a well-defined value for the function In G(t) on each of the arcs
into which the contour ~ is divided by discontinuity points of G(¢) and the
point ¢;.

Assume

1 1
%:Af[mGUy4D—me+ﬂ):A—MQGQH,
2mi 2m v
where the symbol [ ] denotes an increment of the bracketed expression that
takes place when ¢ moves around the contour v in the positive direction
and condition (1.6.2) or (1.6.3) is fulfilled. It is obvious that s is an integer
number.
Consider the function

Golt) = (52 G

at — 2z

where zg is some fixed point of the ring D. It is obvious for the above-
indicated choice of arg G(t) we have

[ln Go(t)], = 0.

Absolutely in the same manner as in Section 1.5, the function G(t) can
be written in the form

G(t)=p ))((((Cg) . ten, (1.6.4)
where
X(2) = (z — 20)" exp <21m/Kf (;) In G(L(t) Cit)?
! (1.6.5)
[ = exp (;ri/lnGO(t) Cf)
Since
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where

0 /(? S | Z\" - a" Z\"
K (7)= () ()
t Za"fl at +Za”71 t
n=1 n=-—oo
is holomorphic in the ring ﬁ < |ﬂ < |a|?, the function X(z) is continu-
ously extendable at all points of the boundary of the ring D except for the
discontinuity points ¢ of the function G(t) and their corresponding points
ac. Near these points, X (z) is representable as

X(z)=[(z=0c)(z— ac)]a+iBQ(t) (1.6.6)
(see [76, Chapter 3, Section 26]), where
1 G(c—0) 1 G(c—0)
=My T G(c+0)‘

The function €(z) is holomorphic near the points ¢ and ac and tends
to the well-defined nonzero limit as z — ¢ or z — ac.

As we see from formula (1.6.6), the function X (z) is bounded near all
singular points and those nonsingular points, for which condition (1.6.2) is
fulfilled, and also near the points corresponding to them. Moreover, for the
nonsingular points ¢ lim X (z) — 0 as z — c or z — ac.

When solving various applied problems it is sometimes required to
find solutions of the Carleman type problem (1.6.1) which are bounded
near certain prescribed nonsingular points ci,c2,...,c, and the points
acy,ace, . . . ,ac, corresponding to them. Following [76, Section 77|, we call
the solutions of problem (1.6.1) satisfying this condition the solutions of the
class h(ci,c2,...,cp)t

We will denote the class corresponding to p = 0 by h(0) or hg. If m is
the number of all nonsingular points and c;, c2,. .., ¢, are all these points,
then the class h(cy,ca,...,¢y) is sometimes denoted by h,,. The class hg
contains all other classes and the class h,, is contained in all others.

If it is assumed that the function In G(¢) in (1.6.5) is chosen so that con-
dition (1.6.2) is fulfilled at the nonsingular points ci, ca, ..., ¢p, while con-
dition (1.6.3) is fulfilled at all other nonsingular points cpi1, Cp12; - - -, Cm,
then, by virtue of the above reasoning, the function X (z) defined by formula
(1.6.5) is bounded at the points ¢1, ¢z, . .., c,. We call this function X (z) a
canonical function of problem (1.6.1) from the class h(ci,co, ..., ¢p), while
the number s corresponding to it is called an index of the problem from the
class h(ci,ca,...,cp). It is obvious that the function X (z) is holomorphic
in the ring D and different from zero everywhere except for the point zq
where it has zero of order s for 3¢ > 0 and has a pole of order —s¢ for s < 0.

1f in the indicated conditions the solution of problem (1.6.1) is bounded at the
points c1,c2, ..., cp, it will also be bounded at the points aci, aca, ..., acp corresponding
to them.
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Let ¢pt1,--., ¢, be singular points. If all discontinuity points of the
function G(t) are nonsingular, then n = m.If all discontinuity points are
singular, then m = 0.

A canonical function X(z) of the class h(ci,co,...,¢p) is continu-
ously extendable on the boundary of the ring D except for the points
c1,C2,...,Cp and the points corresponding to them, is bounded near the
POINtS Crut1y Cmt2s - -+ s Cny GCm41, - - -, aC, and near the nonsingular points
¢, and aci, k=p+1,...,m, it admits an estimate

IX(2) <~ x ) <« = o<
|z — cx|® |z — acg|®

Substituting the value of the function G(t) defined by (1.6.4) into con-
dition (1.6.1), we obtain
p(at) et) _ f@)
— = , ten. 1.6.7
X(at) "X T X(at) 7 (1.6.7)
For > # 0, the point zy can be chosen so that a™ — u # 0, n =
0,+1,42,.... For » > 0, by formula (1.5.5) we obtain

p(2) = % /Ku (%) {)((t()acit) + X (2)ps.(2), (1.6.8)

~

where K,(z) and ¢,.(z) are the same functions as in Section 1.5.

Using the corollaries from [76, Section 26], we conclude that the solution
belongs to the class h(ci,...,cp) and, near the singular points, is almost
bounded.

For s < 0, a solution of the class exists if and only if the following
conditions are fulfilled:

&K, (2
/d’zj(t);((z)‘?:o, 2=z, j=0,1,...,—x—1.  (1.6.9)

¥

When these conditions are fulfilled, the problem has a unique solution
given by formula (1.6.7) where we should put ¢,.(z) = 0.

For » = 0 and a™ # p, a solution from the class h(ci,...,c,) always
exists and is given by the same formula (1.6.7) for ¢,.(z) = 0.

When > = 0 and a™ = pu for some integer number m, the problem is
solvable if the condition

f(t) ft

tm 1 X (at)
8!

dt =0 (1.6.10)

is fulfilled and the solution is given by the formula

o(z) = );(:;) /K; (;) ;f((Z) %jt b2, (1.6.11)

where b is a complex constant.
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If now condition (1.6.2) is replaced by condition (1.6.3). then we ob-
tain the most general solution of problem (1.6.1) on which no restriction is
imposed at the nonsingular points. Such a solution is not attributed to the
class hg. It is obvious that the index s of this class is greater than the
indices of all other classes. The index s is the class h(cy,...,¢p) is related
to s by

» = 7y — P.
The class h,, is a subclass of all other classes, its index 2z, is less than
other indices and
Hm = 9 — M.

We call the problem

Y(at) = Gy(t), tem, (1.6.12)

the adjoint problem to (1.6.1). It is obvious that the singular (nonsingular)
points of problem (1.6.1) are the singular (nonsingular) points of problem
(1.6.12).

Accordingly, the class h = h(c1,...,cp) of solutions of problem (1.6.1)
and the class b’ = h(cp11, ..., ¢m) of solutions of problem (1.6.12) are called
the adjoint classes.

The canonical functions of the adjoint problems (1.6.12) and (1.6.1) of
the adjoint classes are related by (see Section 1.5)

X'(z) = , z€D, (1.6.13)

X(a/z)
while the corresponding indices by
» = .

For » > 0, the homogeneous problem (1.6.1) has, in the class

h(ci,...,¢cp), » linearly independent solutions of the form
d7
0 (2) = X(2) =— p(A; 2) , J=0,1,...,5x—1. (1.6.14)
dz? A=z0
For s < 0, an adjoint homogeneous problem of the class h(cp,, ..., cn)

has —s linearly independent solutions of the form

03(2) = X'(2) 5 0 2)

. j=0,1,...,—x—1. (1.6.15)
A=2

Z

o

For » = 0 and a™ # u, adjoint homogeneous problems in the respective
adjoint classes have no solutions.

For s = 0 and a™ = p, each of the adjoint homogeneous problems has
one solution in the adjoint classes of the form

0(2) =CX(2)2™, ¥(z) = X'(z)z". (1.6.16)
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In view of (1.6.13) the second formula (1.6.16) gives

t) = .
It is likewise easy to show that
1 d? z
) = @ (f) — 2, j=01,...,—%—1. (1617
w]( ) X(at) de It t z ZO ] ” ( )

Thus, for problem (1.6.1) the following Noether type theorems are valid:

1. For s > 0 or 3 = 0 and a™ # u, the homogeneous problem (1.6.12)
has no nonzero solutions in the class h(cpt1, ..., Cn), while problem (1.6.1)
is always solvable in the class h(cy,...,¢c,) and its solution is given by for-
mula (1.6.11).

2. For s < 0, the homogeneous problem (1.6.12) has — s linearly inde-
pendent solutions of form (1.6.15) and, by virtue of equalities (1.6.9) and
(1.6.17), for problem (1.6.1) to be solvable it is necessary and sufficient that
the conditions

/f(t)m%zo, j=0,1,...,—x—1
Y

be fulfilled. When these conditions are fulfilled, the solution of problem
(1.6.1) is given by formula (1.6.8) where it is assumed that ¢,.(z) = 0.

3. If =0 and a™ = p for some integer number m, then each of the
adjoint homogeneous problems has one solution ¢, 19, each, in the adjoint
classes, which are given by formula (1.6.16), and for the nonhomogeneous
problem (1.6.1) to be solvable it is necessary and sufficient that the condition

[ reymm § =o

be fulfilled. When this condition is fulfilled, a solution of problem (1.6.1)
looks like (1.6.11).

1.7. The Riemann—Hilbert Problem for Doubly Connected
Domains

Let D be a finite or infinite domain bounded by the smooth closed
contours Lg, L1,...,L,, of which the first one covers all others. L will be
understood as the set of all these contours. The Riemann—Hilbert problem
is formulated as follows.

Find a function ¢(z), holomorphic in D and continuous in D + L, by
the condition

Re [a(t)p(t)] = c(t), t€ L, (1.7.1)
where a(t) and ¢(t) are functions of the class H given on L.

This problem is a particular case of quite a general problem posed by

Riemann. The problem was considered by Hilbert.
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In subsequent years, the problem was the subject of investigation
by many authors. For the detailed references see the monographs by
N. Muskhelishvili [76], I. N. Vekua [121], F. D. Gakhov [42], where various
methods are presented for its solution.

In the case of a simply connected domain, N. I. Muskhelishvili [76]
proposed an effective technique of solution of the Riemann—Hilbert problem
by reducing it to a linear conjugation problem. This technique is based
on the application of conformal mapping of the domain onto the circle.
Therefore the assumption that the domain is simply connected is quite
essential.

Below we give a method of effective solution of the Riemann—Hilbert
problem for a doubly connected domain.

Since an arbitrary doubly connected domain can always be conformally
mapped onto the circular ring [52], we assume that the domain D = {1 <
|z| < R}. We denote by Ly the external boundary of the ring D, and by L;
the internal boundary.

The boundary condition is written as follows:

ao(t)p(t) + ao(t)p(t) = 2co(t), t € Lo, (1.7.2)

aDp(t) + ar(H)plt) = 2¢1(t), t e Ly, (1.7.3)

where ag, a1, cp, ¢1 are given function of the class H; ag(t) # 0, a1(t) # 0
everywhere.

We introduce the notation: »; = (—1)? Inda;(t), j = 0,1, 3 = 509+ 511.
The number s is called the index of the Riemann—Hilbert problem.

We rewrite condition (1.7.3) in the form

o(t) + 218 o(t) = icll((;) L tel, (1.7.4)
and represent the function a;(t)/a1(t) as (see [76])
) _ a7 -2 (1.7.5)
ar1(t)  a=(¢)
where
a (2)=ePexp | — 1 n 1) y2, ) _dt z
()= emp ( QM.L/I (28 ) 2 ), k>t
! (1.7.6)
8= % /arg (" ay(t)) %

Ly

Substituting (1.7.5) into condition (1.7.4) and introducing the notation

p(2)z”a™ (2) 1< |z| <R,

Y(2) = _Qp(i)z_m[“@]l’ %<|Z‘<17 (1.7.7)

|
—
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we obtain
) — v (1) = —% telLy (1.738)
Hence follows
¥(z) = A(z) - @ +wi(z), (1.7.9)

where

_ 1 cr(t)t= .
Alz) = Wilz ar(H)a—(t)(t — 2) dt, |z[#1 (1.7.10)

and w1 (z) is a holomorphic function in the ring 1/R < |z| < R.

Formula (1.7.7) implies that the function ¢(z) satisfies the condition
¥(z) +¥(1/Z) =0 for 1 < |z| < R and therefore the function w;(z) must
satisfy the condition

wi1(2) = —w <Z>, % < |z| < R. (1.7.11)

Formulas (1.7.7) and (1.7.9) yield
o) = a=(2)z [A(z) - %0) + wl(z)} Cl<l<R (1712)
o (i) —a (i)xf {A(z) - @ —i—wl(z)} , % <l:|<R (1.7.13)

or

) = —a (9)E) = [A (i) _ @ +w1(z)} L 1<|z|<R. (17.14)

Substituting values (1.7.12) and (1.7.14) into formula (1.7.2) and intro-
ducing the notation

(=Rz, w()=uw (é) =w(2), 1<|¢| < R (1.7.15)

for finding the function w(¢) we obtain the boundary condition

w(R?*0) = G(o)w(o) + F(o), |o| =1, (1.7.16)
where
ag(Ro)a—(Ro)
ap(Ro)a=(Ro)

G(o) = o? 1 ol =1, (1.7.17)

F(0) = G(0)A () = AloR)
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The function Dy = {1 < |z| < R?} which we want to define in the ring
w(¢) must satisfy the additional condition

2

w(() = w<]z>, ¢ € Dy, (1.7.19)

(1.7.16) is the problem which we studied in 1.5 The solution of this problem
obtained in that paragraph may not satisfy the additional condition (1.7.19),
but using this solution we may construct the solution satisfying condition
(1.7.19). Indeed, passing in (1.7.16) to the conjugate values, we see that
if the function wy(¢) satisfies condition (1.7.16), then the function w,(¢) =

—wo(R2/C) satisfies the condition
wi(R?0) = G(0)w(0) = F(0)G(0), o] =1.

It can be shown that

Thus the functions wo(¢) and w,({) satisfy one and the same boundary
condition (1.7.16) and therefore the function

0= 3 ool 40 = 5 [40(©) —0 () |

also satisfies conditions (1.7.16) and (1.7.9). Thus w(() is a solution of the
problem posed.

The solution of the considered problem can written in simpler terms.
For this, in formula (1.5.20), the function ¢ — {y should be replaced by such
a function W.,.(¢) that satisfies the conditions

W,.(¢) = W,, (T) W..(C) =0 for >0, R<|C| <R

An example of such a function is
W%(C) = (C - CO)%(RQ - CZO)KC_%a R < |<| < RQ‘

The index of the function W, (c)/W (R?0) is equal to —2s, and it
module is equal to one.
Thus, for s > 0 a solution of the problem posed has the form (see 1.5)

o =59 [ K (L) iy o+ XOQQ,  (120)
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where
s ()2 %)
js = exp (217” /ln GV([;'%)(V}V{;S) ij) (1.7.21)

~

1 ) G(o)W,.(0) do

“omi ) W, (R%0) o

¢
It is obvious that |u| = 1. The point {y can always be chosen so that
w# 1 for 2 #£0.
For » > 0,
= ~[R2\
Q) =) {%‘%(C) —Cjp; () },
i=0 ¢
© = 200
Pj = 77 PA )
! N A=C(o
where cg, cq,...,c,,_1 are complex constants.

It is easy to show that

-
0 (§) - (B oo ms

(5) = (%)
Ki|2)=—-Kf|—=]+2, ¢eD.
()= (T o
By these equalities and the condition
Flo) _ _ F(o)
Xk  nX(Ra)’

we conclude that the function represented by (1.7.20) is a solution of the
problem posed, i.e. it satisfies condition (1.7.19), too.

If ¢ < 0, then a solution of problem (1.7.16) exists provided that the
necessary and sufficient conditions

& ¢ F(o) do .
/@K’u <0_> X(O'RQ) 7—0, 3—0,1,...,_%_1, (1722)
~

and

are fulfilled for ( = (p and ( = R?/(,, and is represented by formula (1.7.20)
where it is assumed that Q(¢) = 0.

If conditions (1.7.22) are fulfilled at the point { = (o, they will be
fulfilled at the point ¢ = R?/(,, too, since

0-+(%)
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For 3¢ = 0 and p # 1, problem (1.7.16) has a unique solution given by
formula (1.7.20) where Q(¢) =
If 2 = 0 and p = 1, then provided that the following necessary and

sufficient condition
F(o)
———do=0
/ o X (R?%0) 7
lo|=1
for the existence of a solution is fulfilled, a solution of the problem is given
by the formula

X(Q) [ Ki(Z)F(o)
_ o do + e: X (0), 1.7.23
w0 = Gt [ T A+ X () (1723
0!
where c is an arbitrary real constant.
The first three terms in formula (1.7.18) of the expression of the function
F (o) are transformed as follows

o (5)- 2] 22
_WX(@ (1 [ AW A©
 X(o) | mi t—o/R 2
ltl=1
1 fi(t) A(0) _
. t—Radt+ 5 lo| =1,

t]=1

and substituted into formula (1.7.20). Inverting the order of integration in
the double integrals and applying the Cauchy residue theorem, we obtain

w(C) = X;ia) [/ ((])%fo (Ro) / X U]

+X@Q@—A(§)+ﬁ?.

Replacing now in this formula (/R by z, w(¢{/R) by w1(¢) and substi-
tuting the obtained values into (1.7.12), we have

/K#)(;zz )folo / L) 0_1

Lo

a”(2)z7* X (Rz)

)

p(z) =

X(R2)Q(Rz)a (z)z~ 7, (1.7.24)
where

o Gt o
fJ(t)—TjTa_(t), tel;, j=0,1

So, we come to the conclusions:
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1. For » > 0, a solution of the Riemann—-Hilbert problem is given by
formula (1.7.24).

2. For s < 0, for the problem to be fulfilled it is necessary and sufficient
that the conditions

P K, (R ) fo(t) PE(2)fot)  filt) dt
/ JxX (R / i Xm o ~ % (17)
j=0,1,...,—x—1, 2=z,

be fulfilled. Then the problem has a unique solution given by (1.7.24) where
Q(Rz) =0.

3. For »» = 0 and p # 1, the solution (unique) is given by the same
formula (1.7.24) if Q(Rz) = 0.

4. For s = 0 and p = 1, the Riemann—Hilbert problem has a solution
if and only if the condition

o) 4 [ _A©

— = 1.7.2
tX (Rt) tX(Rt) 0. (1.7.26)
Lg Ll
is fulfilled. Then a solution has the form
z7a (2) X (Rz
o) A R)X (B2
T
K7 (R 2) fo(t) K:(2)f1(t)
pNT )P gy AN VAN 1.7.2
x[/ el u/ St C| aTa
L() Ll

where c is a real constant.
It can be easily shown that for > = 0 the number p can be represented

as follows
27
1 10
1 = exp </argaO(R¢9)d9>.
T aq ()
0

Hence it follows that if the integral
27

i0
/arg %?9) df #£ 0,
) aq(e?)

then the Riemann—Hilbert problem is solvable for any right-hand part, but if
this integral is equal to zero, then the Riemann—Hilbert problem is solvable
only provided that condition (1.7.26) is fulfilled.

1.8. The Riemann—Hilbert Problem with Discontinuous
Coefficients for a Ring

Let us now consider the case where the functions ag(t), a1 (t), co(t), c1(t)
have discontinuities of first kind at a finite number of points of the boundary
and, on each closed arc whose ends are discontinuity points, satisfy the
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Holder condition and it is assumed that a;(t) # 0 everywhere on L;, j = 0, 1.
Denote the number of discontinuity points on the internal contour L; by
n1, and that on the external contour Ly by ng.

The Riemann—Hilbert problem is formulated as follows: Find in the ring
D = {1 < |z| < R} a holomorphic function ¢(z), continuously extendable
to all points of the boundary except perhaps for the discontinuity points of
the functions ag(t), a1(t) and co(t), ¢1(t) near which

const
w(z) PR 0<ax<l,
by the boundary condition

ao(t) —= _ 2co(t)

p(t) + p(t) = , t€ Lo, (1.8.1)
ao(t) ao(t)
aq (t) — 201 (t)

o(t) + o(t) = , tel. (1.8.2)
al(t) Cll(t)

Like in 1.6, the discontinuity points, at which the argument of the
relation a;/a@;, j = 0,1 can be changed continuously when passing through
them, are called singular, and all other points nonsingular.

Analogously to what has been done in 1.6, a solution will be sought

in the class h(ci,...,¢q,Cnq1,---,Cntp), Le. in the class of functions
bounded near the nonsingular points ci,...,¢q, Cnt1,-- -, Cnyp, Where the
points ci,¢2,...,¢q and Cpt1,Cpy2,- -+, Cngp, ¢ < N, p < n lie on the con-

tours Ly and Lg, respectively.
The index s of this class is defined by the formula

» = 3 + 1, (1.8.3)

1 |: ap (t) :| 1 [ al (t) :|
o = - | A ——= y M= o | Al ——= )
2 ao(t) ] L, 2m ar(t) ]z,
[]z;, 7 = 0,1, denotes an increment of the bracketed function that takes
place when the point ¢ passes over the contour L; in the positive direction,

i.e. in the direction leaving the point of the ring D on the left. The values of
arg (ao(t)/ao(t)) and arg (ay(t)/a1(t)) are chosen so that condition (1.6.2) is

where

fulfilled at the nonsingular points c1, c2, ..., cq and cnq1, Cnt2, - - - 5 Cngp, and
condition (1.6.3) at the nonsingular points c411, ..., Cq+i, Cntp+is- - - s Cntrs
l<n,r<m.

As different from the case of a continuous coefficient, s¢ and s may

be both even and odd.
The coefficient of the boundary condition (1.8.2) can be represented as
alt) ot

ar () a—(t

~—

, (1.8.4)

~—
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where

a” () = e ex ,i n au(®) #1 i z
() = p< o [ | 20 ]t_z>,||>1,
La (1.8.5)

N P N0 %1]dt
BO_%Z'L/IH [m(t)t t

1

Let us first consider the case where »¢; is an even number. Like in 1.7
we obtain

p(z) =277 a"(2) [Al(Z) - A12(0> +w1(z)] , 1<|2| <R, (1.8.6)
p(z) = —(2) P ai(z) [Al C) —AIT(O)JFM (i)} , 1<|z|<R, (1.8.7)
where
L[ amtT dt .
Ai(z) = m.L/alt)a(t) o 2L (1.8.8)

and w((¢) is a holomorphic function in the ring 1/R < |z| < R that satisfies
the condition

Wy (1) = —wi(2). (1.8.9)

z

Substituting the boundary values of ¢(z) and ¢(z) defined by (1.8.6) and
(1.8.7) into formula (1.8.1) and using the otation

=Rz, w(l()=wi(z)=uw <1€z) , 1<|¢] < R?, (1.8.10)
we obtain
w(R?*0) = G(o)w(o) + F(o), o€, (1.8.11)
where
Glo) ag(Ro)a=(Ro) o

=

)
I
Q

o\ A (0) A1(0)  2co(Ro)(Ro)=/?
(0) {Al (E)f : }Al(Ra)Jr =+ FZ(RU)MRJ).

Formulas (1.8.9) and (1.8.10) imply that w(¢) must satisfy the condition

w (T) =—w((), 1<[| <R (1.8.12)

Thus the finding of a solution of the Riemann-Hilbert problem in the
class h(c1,...,¢q,Cnt1, .-, Cntp) reduces to finding a solution of the Car-
leman type problem studied in 1.5 in the class h(C"Pf1 ey C"%) with the
additional condition (1.8.11). Note that the index of problem (1.8.10) of
the class h(“%, ..., “22) coincides with the index of the Riemann-Hilbert

R
problem of the class h(c1,...,¢q, Cngi,---sCnip)-
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Let us introduce the function

Wo.(¢) = (¢ — Re0) (M el 587 (1.8.13)
where
P
- for even s,
om =451
—— for odd ,

ap is a fixed number, ag € [0, 27].
It is obvious that

2 W,.(¢) for even s,
W () =) W)
¢ ~( 75> for odd 5.

As we have done in 1.6, we find a general solution of problem (1.8.10)
for s> 0

= omi / X dU+Q(€) (©)s (1.8.14)
where
X(¢) = W (¢)e'™ exp (;M/Kl (g) In [W} Cf) (1.8.15)

. 1 /ln G(o)W,.(0) do
= ex — 7 Zr
K P or W..(R?s) o)’
8!
|| =1 when s is even, and |u| = R when ¢ is odd.

Z_: ( 505 (C) + djp; (T) ) for odd s,
—0

-1
Z

R2
( (2 jap] <<> ) for even s,

(1.8.16)

©;(C) is the same as in 1.7.
If we take into account that

—uK, <<> for even s,
CIR I

o —,ug H(C> for odd »¢

and
X(() for even s,

-
—EX(C) for odd s
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and

= . Flo) | A(0) 1
F(o) = 1-—
@) =G T 2 G|
then it can be easily shown that w(() satisfies condition (1.8.11).

If 52 < 0, then the solution of problem (1.8.11) exists provided that the
necessary conditions

di ¢\ F(o) do .
— K, | = — = =0,1,...,—x—1 1.8.1
de m (0_) X(ch) P Oa J 0; ’ y —H ’ ( 8 7)

¥

are fulfilled for ( = Re' and is represented by formula (1.8.14) where it
should be assumed that @,.({) = 0.

When s = 0 and p # 1, problem (1.8.10) has a unique solution given
by (1.8.14) where Q,.(¢) =0.

For » = 0 and p = 1 the solution exists only provided that

F(o)
—————do=0.
/ X(R?%0)o 7
5
If this condition is fulfilled, then the solution is given by the formula

X(©Q) [ Ku(5)F(o)
2mi X(R%0)o

Y

w(¢) = do + ciX (0),

where c¢ is an arbitrary real constant.

Now we let us consider the case where 27 is odd. The functions ¢(z)
I
z

and ga( ) can be written in the form

-1

o(z) =277 a (2)[A2(z) +wa(z)], 1< 2| <R, (1.8.18)

so(i) = —z”lzﬂa(i)[Ag(z) + ws(2)], % <zl <1, (1.8.19)

where

s —1
1 c1(t)t 2 dt
AQ(z):——,/L)i—, |2 # 1,
T ) ai(t)a=(t) 1 — %
Ly
the function ws(2) is holomorphic in the ring 1/R < |z| < R and satisfies
the condition

wz<1> = —2ws(2). (1.8.20)

z

If we substitute the boundary values of ¢(z) and ¢(z) defined by (1.8.18)
and (1.8.19) into the boundary condition (1.8.1) and use the notation

(=Rz, w(()=uw: (;) = wa(2),
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then for w(¢) we obtain the Carleman type problem

w(R?%0) = %w(a) + Fi(o), o€,

where

-1

co(Ro)(Ro) 2
ag(Ro)a=(Ro)

g

R

ﬂ@:G@ﬂ@()—Amﬂb-

)

with the additional condition

m(T)—RMQ (1.8.21)

If we introduce the notation u/R = p*, then for s > 0 a solution of
problem (1.8.1) can be represented as

w(C) = X(¢) /Ku* <<> L(j)ada—t—X(C)Ql(C), (1.8.22)

2mi o) cX(R2%0)
vy
where
x—1 5
djp;(C) — EjE ©j <R) for even s,
7=0 C C
Q1(¢) = ¢ R2
djp; (¢) + djp; ( for odd -,
j=0 ¢
0 for »2 =0,

d; are complex constants.

For s < 0, a solution is given by (1.8.22), where it is assumed that
Q1(¢) = 0 provided that the following necessary and sufficient solvability
conditions are fulfilled:

&’ ¢\ Fi(o) ico

LR (2) 2R =0, ¢=Rei®, j=0,1,..., —x—1.
/dga "(o)aX(RQU)U (=R 7=01
y

1.9. Solution of an Infinite System of Algebraic Equations

In this paragraph, we will show one more application of the results
obtained in 1.5. Let us consider the following infinite system of algebraic
equations

o0
a"pn — Z Ky mom = fn, n=0,+1,£2,..., (1.9.1)
m=—0o0
where |a| # 1 is a complex constant; f = {f,}>, K = {k,}>°, are given
vectors and ¢ = {p,} is an unknown vector in the space l;. It can be
assumed without loss of generality that |a| > 1.
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The space [ is the commutative normed ring where the operation of
multiplication is defined by the convolution

%) (oo}
Kgsz*goz{ Z Knmsﬁm}
m=—0o0 — 0o

= { Z @n—me} = @*K = <pK. (192)

m=—0o0

Assume
1# = {"/}n}(iooo S ll

and consider the function

U(t)= Y gut", t=¢" 0<0<2m (1.9.3)

n=—oo

Thus to each vector of the space [y there corresponds a function which is
the sum of an absolutely summable Fourier series and, vice versa, to each
function defined on the circumference |t| = 1 which can be expanded into
an absolutely summable Fourier series there corresponds one vector of the
ring [y of the form

o0

wn:{;m / \I/(t)t—("“)dt} : (1.9.4)

lt1=1 -

The class of functions defined on the circumference |t| = 1 and expandable
into an absolutely converging Fourier series is called the Wiener class and
denoted by W.

Equality (1.9.3), which to each vector ¢ € [ puts into correspondence
a function ¥ € W, is called the discrete Fourier transform, and equality
(1.9.4) which provides the reciprocal correspondence is called the reciprocal
discrete Fourier transform.

Since the discrete Fourier transform of a convolution is the product of
functions, the class W is a commutative normed ring with the ordinary
operation of multiplication where the norm is defined as follows

1@lw = [1$ll = > |l
The system of equations
"V — Y Kponthm =cn, n=0,£1,42,.., (1.9.5)

m=—0o0

where ¢ = {¢,}%°, is a given vector and 1 = {1,,}*>° is the unknown vector
of the ring [;, will be called the adjoint system to (1.9.1).
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After carrying out discrete Fourier transformation of systems (1.9.1) and
(1.9.5) and applying the convolution transformation property, we obtain

O(at) = K(t)®(t) + F(t), t €, (1.9.6)
U(at) = K(H)¥(t) + C(t), t €, (1.9.7)
where
K(t) = i K", F(t) = i fut™, C(t) = i ent”, tE A,
while

B(z)= Y @z, W)= > Wne", zeD, D={1<|z| <R},

n=—oo n=—oo

are the sought analytic functions with boundary values belonging to the
ring W.

We have studied these problems in 1.5 for the case where the coefficient
and free term belong to the class H (Holder). But, as is well known, a func-
tion of the class H cannot belong to the class W and conversely. Therefore,
in that case additional investigation of the problem is needed.

The next two theorems play an essential role in the study of problem
(1.9.6).

Wiener—Levy Theorem. If the function Q(z) is analytic in the do-
main S, F(t) € W and its pre-image F(vy) € S, then, together with F, also
QF)eWw.

Theorem. If F(t) € W, then there exists a Cauchy principal value of
the singular integral
1 F(¥)

mi ) t—to
Yy

dt, t e,

belonging to the class W.

With the aid of these theorem the solution of problem (1.9.6) can be
constructed in the same manner as in Section 1.5, i.e. for s > 0 or s =0
and a" — p # 0 the solution can given by the formula

X(z) zy  F(t)

B(z) = K <7) dt + X (2)p.(2), z €D, 1.9.8

0= 5 [ 5 (3) iyt + XGex(). z€D. (198)
¥

where X, K,,, ¢, and p are the same as in 1.5. If s < 0, then for problem

(1.9.1) to be solvable it is necessary and sufficient that

—;
/F(t)\Ifj(t) T =0 j=12...,-5 (1.9.9)

~
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where the functions ¥;(t) are the boundary values of the functions ¥, (z),
7 =1,2,...,—3, which make up a complete system of linearly independent
solutions of the homogeneous problem adjoint to the considered one.

If =0 and a™ — u = 0 for some integer number m, then the homoge-
neous problems corresponding to problems (1.9.6) and (1.9.7) have each a
solution, while for the nonhomogeneous problem (1.9.6) to be solvable it is
necessary and sufficient that the condition

/F(t)m% =0 (1.9.10)

be fulfilled.
Since between the rings W and [y there arises an isomorphism, the
above propositions hold also for system (1.9.1) whose solution is given by

the inverse transform
1 e |
=<{ — dt . 1.9.11
N {2772' / 1 } ( )

3

Thus, if 26 > 0 or ¢ = 0 and @ — pu # 0, n = 0,£1,£2,..., then
the homogeneous system corresponding to system (1.9.1) has s linearly
independent solutions, its adjoint system has only a trivial solution, and
the nonhomogeneous system (1.9.1) is always solvable.

If 2 = 0 and a™ = p for some integer number m, then the homoge-
neous system corresponding to system (1.9.1) and its adjoint homogeneous
system have one solution each. For the nonhomogeneous system (1.9.1) to
be solvable it is necessary and sufficient that the condition

(oo} R

S et =0 (1.9.12)
be fulfilled. This condition arises from condition (1.9.10) where ¢ =
{n}>°, is a solution of the adjoint homogeneous system to (1.9.1).

If 5 < 0, then the homogeneous system corresponding to (1.9.1) has
no solution, its adjoint system has s linearly independent solutions, while
for the nonhomogeneous system (1.9.1) to be solvable it is necessary and
sufficient that the conditions

oo -
S e =0, j=12,..., -2 (1.9.13)
be fulfilled, where
¢(J) = {7#31 Cioooa j: 1527"'7_%7

are solutions of the homogeneous system corresponding to system (1.9.5).
In [53], system (1.9.1) is investigated for |a| = 1 by reducing it to the
functional equation

d(te’) — K(t)®(t) = F(t), t €. (1.9.14)
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An important particular case of equation (1.9.14) is investigated for
K(t) = 11in [6], [7]. It is obvious that the case investigated by us differs
essentially from the case considered in these works since for equation (1.9.14)
to be solvable it is necessary and sufficient that the condition Ind K (t) =0
be fulfilled.



CHAPTER 2

The Contact Problems for Unbounded
Domains with Rectilinear Boundaries

2.1. Some Basic Formulas of the Elasticity Theory

In the sequel, we will use some basic formulas of the plane static elastic-
ity theory. These formulas establish a relation of the stress (o, 0y, Tzy) and
displacement (u,v) component to analytic functions of a complex variable.

For an isotropic body, stress and displacement components
are expressed through two analytic functions by the well known
Kolosov—Muskhelishvili formulas [77]

2/(Xn +4Y,) ds = p(z) + 2¢'(2) + ¥ (z) + const, (2.1.1)

20

2u(u + iv) = sp(2) — 29/ (2) + (2), (2.1.2)
where ¢(z) and ¥(z) are analytic functions in the domain S occupied by
the body; u is the shear modulus; » = 3 — 4v for plane deformation; s =
(3 —v)/(1 + v) for plane stressed state; v is Poisson’s ratio; the integral
is taken over any smooth arc [ lying within the domain S and connecting
the fixed point zy with the variable point z of the domain S; X, and Y,,
are the components of stress acting on the arc from the side of the positive
normal, i.e.the normal directed to the right if one looks along the positive
direction [. As is known,

X, = oz cos(n, ) + 7oy cos(n, y),
e “ (2.1.3)
Y, = 14y cos(n, x) + oy cos(n, y).
For the case of an anisotropic body, S. G. Lekhnitski showed in [67]
that if the equation

a1154 - 2a1653 + (2(112 + a66)52 - 2&265 + ag2 = 0, (214)

where a11, a12, as2, a1, a2, agg are real constants depending on the elas-
tic properties of the considered body, has no multiple roots, i.e. has four
different pairwise conjugate roots’

si=o1+1if1, sa=ao+ By, s3=a1 —if1, sS4 =z —ifo;

1n [67] it was established that equation (2.1.4) has no real roots.

56
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then stresses and displacements are expressed through two analytic func-
tions ®1(z1) and ®a(22) of the variables

2z =z +iy1 = (x + aqy) +i(51y),
2y = T2 +iy2 = (v + aoy) +i(S2y)

as follows:
0y = 2Re [s7®1(21) + 55P2(22)],
oy, =2Re [<I>1(z1) + @2(22)}, (2.1.5)
Tzy = —2Re [81<I>1(z1) + 32@2(2'2)],
u=2Re [p1g1(21) + paa(z2)], (2.1.6)
v=2Re [Q1<,01(21) + QQ<P2(22)]- -
Here
p1 = ausi + a2 — agsi,
P2 = 1153 + a12 — 1653,
q1 = @1251 + aza/s1 — ase,
g2 = a1252 + az2/s2 — ase, (2.1.7)
Dq(21) = dw;ifl) )
Dy (20) = dwjz(f) .

We also present the formula ([66, Section 8]) which can be used instead
of (2.1.5)

(1+is1)e1(z1) + (1 +1451)@1(21) + (1 4 is2)@a(22) + (1 4 52)0a(22)

= z/(Xn +14Y,,) ds + const. (2.1.8)

20

If equation (2.1.4) has multiple roots, then stresses and displacements
are expressed by formulas analogous to the formulas for isotropic body.

In the particular case, if the body is orthotropic and the direction of
the z- and y-axes coincides with the principal directions of elasticity, then
equation (2.1.4) takes the form

1 1 2v 1
Es4+ (G_.Ell) 52+E=0. (2.1.9)
Here F1, F> are Young’s modulus with respect to the principal z— and y—
axes; G is the shear modulus, 1 is Poisson’s ratio characterizing contraction
along the y-axis for extension (compression) along the z-axis.
The roots of equation (2.1.4) are purely imaginary; s; = i1, s2 = 3.
It is assumed that 81 > [s.
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Then
0 1 %1 120} 1
a = = s a = — N a = —_-—— = —— s a = =,
16 26 11 El 12 E1 E2 66 G
. Bitnm . Bi4wm
p1= B P2 = B (2.1.10)

q1=—i<ylﬁ1+ 1 ) (12:_2.(%52+ 1 )
E; Espr)’ Ey EsBy)

Taking into account that 3752 = E;/F,, we obtain
_ BB 1) __iBa(Bf + 1)

Ey ’ Ey '
2.2. A Contact Problem for a Wedge with an Elastic Fastening

Let us assume that a thin isotropic wedge-shaped plate on the plane
z = x + iy occupies an angle —a < argz < 0, 0 < a < 2.

Let one side argz = —a of the angle be free or fastened and a rec-
tilinear rod be pasted to the other side argz = 0. We are to define the
law of distribution of contact forces along the fastening line and the elastic
equilibrium of the plate when the concentrated force P directed along the
x-axis is applied to the rod end. The rod rigidity in bending is assumed to
be negligibly small, i.e. o, = 0.

From the condition of equilibrium of any part (0, z) of the rod we have

xT

P+ Syol® — h/T(O)(S) ds =0, x>0. (2.2.1)

Yy
0

Here Ufﬂo) is the normal stress acting in an arbitrary cross-section of the rod,

7'3(72) is the tangent stress acting on the rod along the contact line, Sy is the
rod cross-section, h is the plate thickness.
A condition of a complete contact of the elastic rod with the wedge has
the form
dug(z) _ du(zx,0) -(0)
dx de = "
(0)

Furthermore, taking into account that oy’ = o, = 0, by Hooke’s law
we obtain

= Tpy(2;0) = 7(z), = >0. (2.2.2)

duo(z) ol” du(z,0)  o.(x,0)
de ~ Ep’ de ~ E 7
where FE and Ej are respectively the elasticity moduli of the place and the

rod.
By virtue of (2.2.2) and (2.2.3), condition (2.2.1) takes the form

(2.2.3)

P+ Ko, — h/T(s) ds=0, >0, (2.2.4)
0
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where
SoEo

T

Using the Kolosov—Muskhelishvili formulas the problem posed reduces
to finding two holomorphic functions ®(z) and ¥(z) in the angle by the
boundary conditions

O(t) + D(t) + t@/(t) + ¥(t) = —7(¢), t =2 >0, (2.2.5)

Ki®(t) — ®(t) — e**[t@'(t) + U (t) | =0, argt = —q, (2.2.6)
t
IK[B(t) + D] = h/T(s) ds— P, t—12>0, (2.2.7)
0
where
K, = —1 if stresses are given on the boundary;

K1 = » if the boundary is fastened.
Let us introduce the notation
Uy(2) = ®(2) + 29'(2) + ¥(2), —a<argz <0.
Then formulas (2.2.5) and (2.2.6) can be rewritten in the form
O(t) + Uy (t) = —it(t), t=2a>0, (2.2.8)

K1 ®(t) — (1 — ) (tD(t)) — 2Ty (t) = 0, argt = —av. (2.2.9)

Of the functions ®(z) and Wy (z) it is required that for large |z| they have

the form
B(x) = O C) W) =0 (i)

and, near the angle vertex, satisfy the condition
z2®(z) -0, 2Uy(2) >0 as z— 0.

We will seek these functions in the form
o0

1 Aq(t )

d(z) = / Ault) emitnz gy L , —a<argz <0, (2.2.10)
V2or 2 t z
—00
1 [ A

t )

Uy(2) = N / 2t( ) etz gy %2, —a <argz <0, (2.2.11)
where
T AN

o :g%/ kt”e’“nzdti\/gAk(O), k=12 (2.2.12)

In formulas (2.2.10) and (2.2.11), the integrals at the point ¢ = Oare
understood in the sense of Cauchy principal value.
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It is not difficult to show that

lim 2®(z) = —2¢1, lim 2¥y(2) = —2ca.
Z—r00 zZ—00
Let us require of the function 7(x) that x7(x) — 0 as x — 0 or x — 0.
Then from condition (2.2.9) we obtain x®(x) +2¥;(x) — 0 as x — oo.
Hence it should be required that ¢; +¢3 = 0, i.e. ¢o = —¢1 or, which is the
same, A1(0) = A2(0).
The substitution of values (2.2.10) and (2.2.11) into formulas (2.2.8)
and (2.2.9) and the Fourier transform yield

Ay(t) — Ag(—t) = —itT(t),

. (2.2.13)
Kyem @t Ay(t) +i(1 — e 2 )te Ay (—t) + e Ay (—t) =0,
where
T(t) 1 7 ( s) s itsd
—— T(e’)e’e S.
oY

Since T(—t) = T'(t), a solution of system (2.2.13) has the form

(Kye2@t + 1 + 2te sin )it T(t)
2K ch2at + K7 + 1+ 4t2sin’ o’

Ayg(t) = Ay (—t) + it T(t). (2.2.15)

As(t) = — (2.2.14)

Using formulas (2.2.14) and (2.2.10) , from condition (2.2.7) we obtain

K1 sh2at + tsin 2«

1 7 .
. T(t)e " dt
22\/27r_oo (%)2—#}{1 sh? at + t2sin’ o

x

= Hx(/T(s) ds — ];> +2Recy, (2.2.16)
0

where H = h/2K.
Hence, in the case K1 = —1, i.e. when one side arg z = —a of the angle
is free from external stresses, we obtain

1 / sh2at — tsin 2«
2i\/ 27 sh? at — 2 sin® «

T(t)efit Inz dt

= H;c(/r(s) ds — g) +2Recy, (2.2.17)
0
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and, in the case K1 = s, i.e. when the side argz = —a of the angle is
rigidly fixed, we have

»sh2at + tsin 2«

1 7 —itl
. T(t)e " dt
22\/27r_oo (21?4 sesh? at + 2sin® o

= Hx(]r(s) ds — 1:) +2Recy, (2.2.18)

0

Though equations (2.2.17) and (2.2.18) look superficially alike, they
essentially differ from each other. Indeed, the point ¢ = 0 is a pole of first
order for the coefficients of the unknown function 7'(t) in equation (2.2.17),
and a zero of first order in equation (2.2.18). Therefore these equations
should be considered separately.

Thus the problems posed reduce to equations (2.2.17) and (2.2.18).

We will first consider the case where the side argz = —«a of the angle
is free, i.e. K1 = —1. Then from equalities (2.2.12) and (2.2.14) we obtain

a—e "“sina

T
= T(0),
“ 221 a? —sin?a 0)
and since
7 P
/T(S)dSzE,
0
we have
P 17 17
T(0) = = — e’t(e®)ds = — [ 7(s)ds
©0) V2rh V27 / (¢") \/2770/ ()
and

a—e “sina P
0= ——-—.
! a? —sina  4h
After substituting

lnx =¢

and introducing the notation

sh? 2at — tsin 2

. b
sh? at — #2sin® o

G(t) =

equation (2.2.17) takes the form
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1 [GW) .
e —=T(t e gt
%iv2r / i Le

€
= He§< / e’r(e’)ds — ];> +2Rec;. (2.2.19)

— 00
Since the function in the right-hand part is not integrable (it does not
vanish as x — 00), this equation cannot be solved by the standard Fourier
transform.
Let us introduce a new function

S
e (P — Xe™%)
= Sr(e®)ds — —————~ 2.2.20
o) = [ errlenas— At (22:20)
where
A=8K Rec;.

After carrying out Fourier transformation in equality (2.2.20) we obtain

P t A t
Tt) = —-itd1()) + — — — —— ——— (2.2.21)

V2rhsht  /2xh sh(t+1i)’
where @4 (t) is the Fourier transform of the function ¢ (&).
Taking into account formulas (2.2.20) and (2.2.21) and making some el-
ementary transformations, from equation (2.2.19) we obtain for the function
©1(€) the equation

\/12—”_/ G(t)@1(t)e " dt + Hetp1 (&) = f(£), —c0 <& < oo, (2.2.22)

where
Pet P [ GH)-G0) _u
1o = 2K (1+ e™¢) + 2mih / sht et
— i ﬂ e gt
2mi sh(t+1)

It is easy to see that the function f(€) is integrable all over the axis,
while the integrand G(t)®4(¢) in (2.2.22) is continuous at the point ¢ = 0.
Carrying out Fourier transformation in equation (2.2.22) we obtain

G(t)®1(t) + HP1(t —4) = F(t), (2.2.23)
where

- P G(t) — G(0) AG(t)

= -P - . (2224
227 Kish(t — i) V2rihsht 2rish(t+ i) ( )
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Thus we reduce the considered problem to the problem studied in Sec-
tion 1.3 in the case where the coefficient and the free term are meromorphic
functions.

To meet our purposes, the problem with the boundary condition (2.2.23)
is formulated as follows:

Using condition (2.2.23),find a function @4 (w), which is analytic in the
strip —1 < Imw < 1 except for a finite number of points lying in the strip
0 < Imw < 1 where it may have poles, and which vanishes at infinity.

It is obvious that if we manage to find a function ®; (w) which is holo-
morphic in the strip —1 < Imw < 0, continuous on the boundary and
satisfying condition (2.2.23), the solution of the formulated problem is

¢ (w), —1<Imw<0
) = 1D ’ 2.2.25
1(w) {qﬁ(w), 0<Imw <1, (22.25)

where
F(w) — H®(w —1)
G(w) ’
But since the function F'(w) is holomorphic in the strip 0 < Im(w) < 1,
the function @] (w) will have poles at the points which are zeros of the

function G(w).
Let us write the function G(¢) in the form

Glt) = Golt) = itGolt) th 5t = 250

o (w) = 0<Imw < 1. (2.2.26)

Since the index of the function Go(t)th 3¢ is equal to zero and
In [Go(t) th 5 t] € L1(—00,00), this function can be represented as

Go(t)th Tt = X0t =0

2= X (2.2.27)

where

1 oo
Xo(w) = exp (— 5 / In [Go(t) th % t} cthr(t — w) dt).
i
The function X(z) is holomorphic in the strip, continuous on the
boundary and bounded in the closed strip —1 < Imw < 0 and at infin-
ity.
Therefore for the function G(t) we have
Xo(t — Z) Shg (t — Z)
XO (t) sh g t
Substituting (2.2.28) into condition (2.2.23) and introducing the nota-
tion

G(t) =it

(2.2.28)

Uy (w) = (2.2.29)
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we obtain

F(t)(1+ i)
Xo(t—i)shi (t—1)"

As follows from Section 1.3, the solution of the problem is given by the
formula

(1 +at)Way(t) + HUy(t — i) =

B F(t)(1 +it)
Va(w) == 21H /X(t shr(t— w)

dt, —1<Imw <0, (2.2.30)

where
X (w) = Xo(w)sh g wX; (w),
X1 (w) = exp(—iwln H)I'(1 + iw).
Now (2.2.29) implies

)(1 +it)
P = dt. 2.2.31
1 (w) 2Hw/X shr(t —w) ( )
As shown in Section 1.3, the function X (w) in the strip —1 < Imw < 0
satisfies the condition

D1|t|%67% [t] < |X1(t + 'L'T)| < D2|t|%67% ‘tl’
and therefore X (w) in this strip admits an estimate
Dylt|* < |X(t+i7)| < Dalt|2.

Since the function F'(w) exponentially vanishes at infinity, it is easy to
prove that the function ®7 (w), too, possesses this property. Therefore the
function ®; (w) defined by (2.2.25), (2.2.26) and (2.2.31) will be holomorphic
in the strip —1 < Im < 1, exponentially vanishing at infinity, bounded
throughout the strip except for the points of the upper half of the strip
which are zeros of the function G(w) at which it has poles of first order.

Now due to formula (2.2.21) we conclude that the function T'(¢) is ana-
lytically extendable in the strip —1 < Imw < 1 except for the points of the
strip 0 < Imw < 1 which are the roots of the function G(w). Furthermore,
the function T'(w) exponentially vanishes at infinity for —1 < Imw < 1, is
continuously extendable all over the boundary except for the point w = 4
and the points of the boundary Imw < 1 which are the roots of the function
G(w).

Since T'(t) is an integrable function, the contact tangent stress is defined
by the inversion formula

T(t)e "M dt, x> 0. (2.2.32)

Let us investigate the behavior of this function at infinity and near the
angular point = = 0.
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Recalling the character of the function ®;(w), by the Cauchy formula
we can write

i

- (t =)Dy (t —i)e INT dt,
V2
7T—oo

"(Inx :L/tq) e e gp =
(pl( ) m 1()
— 00

Therefore, for sufficiently large values of x we have

Fi(Inz) = O (1)

T

Differentiating formula (2.2.20) and passing to the variable x, by the latter
relation we obtain
A 1
T(x) = o +0 <x2> . (2.2.33)

If o < B, where 5 is the smallest positive root of the equation tg28 = 24
(B ~ 2,247), then it can be proved that the function G(w) has no roots in
the strip 0 < Imw < 1.

If & > B, then the function G(w) has roots in this strip, these roots
being purely imaginary. The closest root to the real axis is denoted by i7g.

If o« = 3, then G(w) has only one root w =4 in the strip.

Using formulas (2.2.21), (2.2.24) and (2.2.26), the function T'(¢) can be
represented as

Pt
— +
2v/27 KG(t)sh(t — 1)
where Tp(t) is analytically extendable in the strip —e < Imw < 1+ ¢ for
a <  and has a root at the point w = i for a = .
Carrying out the inverse Fourier transformation of equality (2.2.34) for

a < 8 and applying the Cauchy formula, in the neighborhood of a zero we
obtain the representation

T(x)=P

T(t) = To(t), (2.2.34)

asin2a0 — 2sin o

2.2.
20cv cos 20 — sin 2a +e(@), (2.2.35)

where
e(x) >0 as z — 0.
When a = 8, equality (2.2.34) can be rewritten in the form
acosa —sina 1
221 Ka2cos2a (t— 1)

where the function 77 (t) is holomorphic throughout the strip —e < Imw <
1 + € except for the point w = ¢ where it has a pole of first order and for
sufficiently large values of |t| is represented as

no-o(2).

T(t) = —

S +Tu(t), (2.2.36)
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Carrying out the inverse Fourier transformation of equality (2.2.36) and
applying the Cauchy formula, we obtain
Pla —tga)
T(@) = 202K
where ¢g(x) is a bounded function.
If « > S, then T'(w) has, at the point w = itg, a pole of first order and,
using the generalized Cauchy theorem, from (2.2.32) we obtain

(@) = ma™ " (1+ go(@)),

Inz + po(z), 0<z<l,

where
m =21 lim T(t)(T —70),

T—T0
and ¢o(z) is a continuous function that vanishes at the point z = 0. It is
obvious that if o = ; %7‘(; 27, then, correspondingly, 7o = % ; % ; % .
Let us consider the case where the side of the angle is rigidly fastened.
If it is assumed that the function 7(z) is integrable, then by the Fourier

transformation of equality (2.2.18) we obtain the homogeneous problem
»sh2at + tsin 2«

2 [("Tﬂ)z + scsh? at + 12 sin? o]

The coefficient of this problem vanishes at the point ¢ = 0. It can be

proved that this problem has no solution which is the Fourier transform of

a summable function , i.e. if it is assumed that 7(x) is summable, then

x7(x) = 0. Therefore 7(x) = 0 except for the point & = 0 where it may

turn into the Dirac function 6(x).

Thus we obtain that if one side of the angle is rigidly fastened and to

the other side a stringer is pasted, whose end is subjected to the action of
the tensile force P, then this force does not spread all over the body.

T(t)+ HT(t — i) = 0.

2.3. A Contact Problem for an Anisotropic Wedge with an
Elastic Fastening

Let us now investigate the problem considered in Section 2.2 for the
case where a thin plate occupying an angle —0 < argz < 0, 0 < 6 < 27, on
the plane is anisotropic. It is obvious that then the following formulas are
valid:

T
P+ Syol® — h/Tég) ds=0, >0, (2.3.1)
0

duo(z)  du(z,0)
de dx
(0)

Furthermore, since, by condition, o, (z) = o, (z) = 0, on the boundary
x > 0, y = 0 Hooke’s law takes the form

du® () _ o%(z)  du(z,0)

;T (@) = Tay(2,0) = 7(x), @ >0, (2.3.2)

X

dx E, '’ dx

= A16Tay(x,0) + a110,(x,0), (2.3.3)
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where Fj is the shear modulus of the rod; a1, a1 are the elastic constants
of the plate. By virtue of (2.3.2) and (2.3.3) condition (2.3.1) takes the form

P+ Ko, + Ky7(x) — h/T(s) ds =0, x>0, (2.3.4)
0
where
K1 = SoEpain, Kz = SoEpae.

Consider two planes of complex variables z; = x1+iy; and 2o = xo+1iys
obtained respectively from the plane z = x 4 iy by the affine transforms

T =T+ gy, yk:ﬂkyv ﬁk>0a k:]-v?v

where s = ap+i0k (k = 1,2) are the roots of equation (2.1.4) and, besides,
S1 7& S9.

By means of these transforms, the given domain S (-0 < argz < 0)
transforms, on the plane of a complex variable z, to domains Sy (=0} <
arg z; < 0) on the plane z; (k = 1,2), where

,Bk sin 6

— 0 <0 < 2m.
cos B — oy, sin @ b T

tg O, =

Due to formula (2.1.8), the above-formulated problem reduces to the

solution of the following boundary value problem of the theory of functions

of a complex variable: find two analytic functions ®1(z1) and ®5(z2) in the
domains S7 and Ss, respectively, by the boundary conditions

(Sl — gz)th)l(tl) + <§1 — gg)flq)l(tl) + (SQ — gg)tgq)g(tg) =0, (235)
tr = p(cosf — sk sinf), p=|t| >0,

(51 =32)®1(t1) + (31 — 52) @1 (t1) + (52 — 52)Pa(t2) = —7(x), (2.3.6)
ti1 =1t =2 >0,

2Re [ K1a®, (2) + (Ko — 20[2K1)Twy} - h/TIy(s) ds—P, x>0, (2.3.7)
0
where
a = (s1 — s2)(s1 — 52).
Let us assume that stresses and rotations vanish at infinity. Then for
large |z;| we write

1
By (21) = }’Z to <%> k=12 (2.3.8)

Let us also assume that the functions ®;(z;) and ®o(z3) are continu-
ously extendable to all points of the boundary except perhaps for the points
zr, = 0 at which they satisfy the conditions

lim qu)k(zk) =0.
Zk-*>0
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Therefore we will seek analytic functions ®;(z1) and ®3(z2) in the form

o0
1 Ak(t) i1 Ck
P = A dqt — — € Sk, 2.3.9
)= g [ et wes. ea

where

oo
i 1 / Ag(t)
cx = lim ——
k z—0 \/27'(' t
—0o0
At the point ¢ = 0, the integrals are understood in the sense of the

Cauchy principal value.
It can be easily shown that

T Ao = L A s,
cp =1 §Ak(0)__z,},li>nooﬁ/ e dt, (2.3.10)

i = 20, = —iv/21 A4 (0). (2.3.11)
Formulas (2.3.9) and (2.3.5) imply that ¢; and ¢ satisfy the condition

etz g =12

whence

(52 —32)co = (52 — s1)c1 + (52 — 51)C1.
Substituting expressions (2.3.9) into the boundary conditions (2.3.5)
and (2.3.6) and after that carrying out Fourier transformation, we obtain
(51—52) A1 (t)e% — (51 —52) A1 (—t)e "+ (53 —F2) Aa(t)e* = 0,
(2.3.12)
(51 —52)A1(t) — (51 — S2)A1(—t) + (52 — S2) Aa(t) = —tT(¢),
where
p=1In|cosf — sy8inf| —In|cosf — sgsinb)|,
y=01+02, 0 =010z,

T(t) = \/% / et(ef)e "5 ds. (2.3.13)

It is obvious that
T(—t) =1T(t).
Solving system (2.3.12) with respect to the unknown function A, (t), we
have

A (t) _ (31 - 82)6*51‘/ —+ (32 - §1)377t + (82 _ 52)671';415
ST 251 — saf2chyt — [s1 — 522 ch 0t + 451 B, cos it

The function A, is obtained from (2.3.14) by permutation of s; and so,
61 and 65.

We can prove that for real ¢ the denominator of expression (2.3.14)
does not vanish anywhere except for the point ¢ = 0. At this point it
has a double root. Therefore the functions A;(t) and As(t) are continuous

tT(t). (2.3.14)
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throughout the axis if the function 7(x) is absolutely integrable. Further we
will see that these functions are not only continuous but are also analytically
extendable in some strip and analytically vanish at infinity. Therefore in
equality (2.3.14), the integral at the point ¢t = 0 exists in the sense of Cauchy
principal value.

Since, by condition, stresses vanish at infinity, passing in (2.3.4) to
infinity we obtain

P
B Vorh'

Therefore from (2.3.14) it follows that

7(0)

(31 — 52)’)/ — (51 — 52)5 — ’i,LL(SQ — 52) P
A,(0) = . 2.3.15
O = TP e PP g8 Varn P

Thus the constants c¢;, c2, 71, ¥2 can be defined by equalities (2.3.10),
(2.3.11) and (2.3.15).

Substituting the values of ®;(z1) defined by (2.3.14) and (2.3.9) into
the boundary condition (2.3.7) and carrying out some transformations, we
obtain

o0

\/;m / ﬁlg)) (o — aZ)} T()et e

+ [[;j a4 ag)} () — Hx( / #(s) ds — 1;) — 2Reac, (2.3.16)
0

where

A(t) = |s1 — s2|? chyt — |51 — 52|? ch 6t + 41 B2 cos put,
Aq(t) = —(B1 + Ba)]s1 — s2|* shyt
+ (B1 — Ba)|s1 — Ba|? sh 6t + 4|ay — | B Bo sin put,

h
H=——.
K

Using the inverse Fourier transform, we have

(oo}

/ T(t)e'™® dt = x7(z).

— 00

5~
3
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By means of the latter equality, equation (2.3.16) can be rewritten in
the form

1 r Al(t) itlnz
2774 O T(t)e dt

iv2m A

+ [gj (o + az)} wr(z) - Hx(]r(s) ds — i) = 2Reacy,
0

where Ky/K7 = aig/a11 is a half of the second coefficient of the charac-
teristic equation with the opposite sign. Hence by the Viéte formulas we
have

Ky 1 _ _

7o 5(514—81—1-32—1-82) =+ az
or, which is the same,

Thus equation (2.3.16) can be rewritten as

Al(t) eitlnz . ” mT s 575 _ o ac
Ay LWeTrdt = H (0/ (s)d h) 2Reacy. (23.17)

1 o0
2T /

Passing to the limit in equation (2.3.17) as x — 0 we obtain

P
2Reac; = —G(0) T
where 0
Aq(t
G(t) = NG
The substitution of In z = £ makes equation (2.3.17) take the form
oo ¢
1 T . P
/ G(t) (t) eztf dt — HeE( / T(es)es ds — )
2T t h
P
=~ G(0). (2.3.17,)

Thus the considered problem reduces to an equation like (2.3.18) in the
preceding paragraph.
Let us introduce the notation
£

P4 Xe ¢
U (§) = / e*r(e®) ds — e™ m , —00 < &< oo, (2.3.18)
where K
A= —— G(0).

h
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The inverse Fourier transformation of equality (2.3.18) gives
Pt At
+ + ~
V2mhsht /27 sh(t — i)

where Uy (t) is the inverse Fourier transform of the function ¥;(§). Using
(2.3.18) and (2.3.19), equation (2.3.17g) can be rewritten in the form

ity (t) = T(t) (2.3.19)

12 / G)U(t)e dt — HeS Wy (€) = f(£), —o0 < & < oo, (2.3.20)

iv2m
where

fo=-L <

C K Lfert

PG —G0) A 7’ G) e
* omin / st ¢ “omn | sag—a¢

The inverse Fourier transformation of (2.3.20) yields

GO, (1) — HU, (t +i) = F(t), —o0 <1< oo, (2.3.21)

where
_ P n P G(t) — G(0) n A G(t)
iv2r Ky sh(t +i)  2mih sht 27ih sh(t —14)
So, for isotropic and anisotropic plates the problems reduce to one and
the same boundary value problem which is a particular case of the problem
considered in Chapter 1. The free term and the coefficient of problem

(2.3.21) are analytic in the strip except for the points which are poles of the
function G(t). Rewrite (2.3.21) as follows

Uy (t) — HIG®#)] "Wy (t+14) = F)G(t). (2.3.22)

F(t)

The coefficient and the free term of problem (2.3.22) are analytic in the
strip —1 < Imw < 1 except for the points where G(w) = 0. At these points
they have poles of first order.

The considered problem reduces to the following problem: find a func-
tion Wy(w) which is holomorphic in the strip —1 < Imw < 1, van-
ishes at infinity, is bounded throughout the strip except for the points wy
(k=1,2,...,n) that are zeros of the function G(w) in the lower half-plane
and satisfies condition (2.3.22).

We introduce the notation

W, (w) = U (w), 0<Imw <1,
! N U (w), —1<Imw<O0,

where \Ilf(w) denotes the solution of the following problem: by the bound-
ary condition (2.3.22) find a function which is holomorphic in the strip
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0 < Imw < 1, vanishes at infinity, is continuously extendable on the strip
boundary.

By solving this problem the solution of the preceding problem can be
constructed as follows

\Ill(w)
= \Ilf(w), 0<Imw <1,
- {H\I'l(w +9)[Gw)]™t + F(w)[G(w)] ™, —1<Imw < 0. (2.3.23)

It is obvious that ¥y(w) is holomorphic in the strip —1 < Imw < 1
except for the points wy =ty + i1, (k=1,2,...,n), -1 <7 < 0. If G(w)
has no roots in the strip —1 < Imw < 0, the function ¥; (w) will be analytic
throughout the strip —1 < Imw < 1.

Let us introduce the notation

Al (t) sh g t
i — .
A(t)(B1 + B2) sh 5 (t+1)

The function Go(t) is positive all over the axis, Go(—o0) = G(o0) = 1,
Ind Go(t) = 0 and In Go(t) € Li(—o0;00). Therefore it can be represented
as

Go(t) = —

(2.3.24)

Xo(t+1)
=—, — 2.3.2
Go(t) Xol) 0o < t < o0, (2.3.25)
where
Xo(w) = exp (21 / InGo(t) cthm(w —t) dt), 0<Imw<1. (2.3.26)
i

Following (2.3.24) and (2.3.25), the function G(t) can be written in the
form
Xo(t+1i) shf (t+1)
Xo(t) sh g t
Inserting this value into condition (2.3.22) and introducing the notation

W (w)

G(t) =it

(B + Ba).

v =—-——, 0<I <1 2.3.27
o) = gy O mw<L (2:327)
we obtain
. , F(t)(it — 1)
Ho(1 —it)Wo(t) + To(t = 2.3.28
ol =it)To(®) + ot +1) = T Gy en Tt (2.3.28)
where
_|_
Hy — B Hﬁz .
As has been shown above, Hy(1 — it) is representable in the form
Xi(t+1
Ho(1 —it) = Kilt+1) : (2.3.29)

Xi(t)
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where
X1(t) =T(1 —it)e M Ho,
Substituting this value into the boundary condition (2.3.28) and taking
into account equality (2.3.27) we obtain

tw(t) (t + )T (t +1)
Xo(t)X1(t)sh§t  Xo(t+i)Xi(t +i)sh g (t+1)
F(t)(it — 1)

T HXo(t+9)X,(t+i)ch Tt
By virtue of (1.2.7) a solution of this problem has the form

T (w) = )iglg / S0 fg)s(fl:(? 2] dt, 0<Imw<1, (2.3.30)

where
X(w) = Xo(w)I'(1 — iw) exp(—iw In Hy) sh g w.

Since F(t) exponentially vanishes at infinity and X (w) satisfies the con-

dition
cslt]? < |X(w)] < calt|?, w=t+ir, 0<7<1

the integral in (2.3.30) exponentially decreases, i.e. U] (w) is continuous in
a closed strip 0 < Imw < 1 and exponentially vanishes at infinity.

Thus the solution of the problem posed is provided by (2.3.23). When
To < —1, the solution is analytic throughout the strip —1 < Imw < 1 and
exponentially vanishes at infinity; when 75 > —1, the solution has poles of
first order at the points wy =t +i7; (k =0,1,...,n). The function T'(¢)
defined by (2.3.19) is of the same nature and for it, as can be easily verified,
the equality T'(—t) = T'(¢) holds.

The stress 7(x) can be calculated by the formula

1 o0
T~

- V2T

Just like in the case of an isotropic body, for sufficiently large values of

x, 7(x) has the form
A 1
@) =gatelE)

For 19 < —1, 7(x) is bounded at the point z = 0, while for 79 > —1 it has
near this point the form

7(x) T(t)e' e qt.

7(x) = pr(a)zl™7,

where ¢1(z) is bounded at the point z = 0.
As different from the case of an isotropic body, in the case of general
anisotropy, as follows from the boundary condition, the stresses o, (x) and
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Tzy(x) are simultaneously bounded or infinitely increase but so that the sum
Kyo,(x) + KoTyy(x) remains bounded.

Let us consider two particular cases:

1. When 6 = 7, i.e. the body is a half-plane, we have

Ay (t) = —=(B1 + B2)[s1 — 82|2 sh 27t,
A(t) = 2|51 — so|*sh® it

and bt
chr
Gt) = =B+ 52) shrt

~ The function G(w) has the only one, frequently imaginary, root wg =
—3 in the strip —1 < Imw < 0, while the contact stress near the point

x = 0 has the form

t.

(@) = =+ ol)
where ¢g(z) is a bounded function.
2. When 6 = 27, i.e. when the body occupies the entire plane cut along

the positive part of the real axis, we have
Ay (t) = —(B1 + B2)]s1 — so|” shdnt,
A(t) = 2|s1 — s2|*sh® 7t

and o
ch 2nt
t) = — t.
G(t) = ~(Bi+ o) S

The function G(w) has purely imaginary roots wg = —i i, w1 = —% 1 in the

strip —1 < Imw < 0, while the contact stress near the point has the form

7(x) = clx*% + CQJFi + po(x), x>0,

where ¢g(z) is a bounded function.

Thus for an anisotropic body the stress 7(x) has the same features as
for an isotropic case in analogous situations.

Let us now consider the case in which the body is orthotropic and
the principal axes of anisotropy coincide with the coordinate axes. Then
a16 = @1 = ag = 0 and since Ky = a16FSg = 0, condition (2.3.4) takes the

form
xT

Klax—kP—h/T(s)ds:O,
0

i.e. the form it has in the case of an isotropic body. The stress o, (x) is
always bounded for = 0. In this setting,

Ai(t) = —(B1 + B2)(B1 — B2)? shyt + (B1 + B2)%(B1 — B2) sh ét,
A(t) = (B1 — B2)? chyt — (B1 + Ba)? ch ot + 451 Bs cos put,

and since 1 > [B2, we have |tgfi| > |tg|02].
Assuming 6 < /2, we have 02 < 01 < 7/2.
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Let us consider the function
Ar(w) = (83 = B7) [(B1 — B2) shyw — (1 + fB2) sh éw)]
and prove that the equation
(B1 — B2)shyw — (1 + B2) sindw =0 (2.3.31)
has no roots in the strip —1 < Imw < 0.
Dividing this equation by ; and using the equality % = Eigf , we

obtain
,82 tg 92 Sin(91 + 92)
1+—=1+% = tg 0.
51 tgf;  cosfy - cosby e

For 6 # /2, equation (2.3.31) takes the form

sind sh~t — sinyshdt = 0.

For 0 < # < 7 it can be proved that in the strip the latter equation
may have only the imaginary root w = i7. In that case, it is equivalent to

the equation

sindsinyr —sinysindr =0, —1 <7 <0. (2.3.32)

If ¢ is the root of this equation, then —7q is also the root and therefore

it can be assumed that 0 < 7 < 1.
Let 6 < /2, then 05 < 0 < 7/2. Consider the function

_ siny7 o
f(r) =sind . —siny
We have
e P sinéismv
f(O)f(Ssmé sm’y’y((s 5 ) 0,
f) =0,
((r) = 47y — 7) siny7 - cosd7  sin(y —7)7
== | T CEEE
sinyr  sin(y — 5)7}
<Ar(y—T1 - <0.
<A7(y )[ o =0 | <

Since f(7) is a decreasing function on the interval (0;1) and f(1) =

0,

we have f(7) > 0 for 7 € (0,1). Therefore the equation has no roots for

0 <m/2.
When 6 = 7/2, we have § =0 and v = T,

A(w) = (B2 — p1)(BF — B3) shrw.

This function has no zeros in the strip —1 < Imw < 0 and therefore the

stress Tpy(x) is bounded.
When 6 = 37/2, we have 6 = 5 = 37/2 and

Ay(t) = (B7 = 53)(B2 — B1) sh 3.
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Li;—24 and near the point

This function has zeros at the points w = —3i;—3

x = 0 the stress 7,,(z) is written as

_2 1
Tyy = C0Z 3 +c12 3 4+ po(z), x>0,

where @g () is continuous in an interval 0 < x < oo.

Thus, for an orthotropic body the stress 7., has, for 0 = 7 ;m; 37”
the same character as for an isotropic body.

When 7/2 < 0 < 7, by choosing numbers v and ¢ or, which is the same,
B1 and B2 we can make equation (2.3.32) have a root in the interval (—1;0).
This means that for 8 € (7/2;7) the stress 7, can be both bounded and
unbounded.

Since tg 0, = B tgl, m/2 < § < 7, by choosing a number 8 > 0, | tg 0|
can be made both arbitrarily large andr arbitrarily small, therefore 85 can
be arbitrarily approximated both to 7/2 and to .

Let us now show that if 7/2 < 6 < 7, then the material and therefore
the parameters 3, and 32 can always be chosen so that the stress 7., at the
point z = 0 be bounded or unbounded.

It has been shown above that for 0 < # < 7/2 the stress is bounded in
the neighborhood of the point = 0 for any orthotropic material.

We will show below that for any material there exists a number /2 <
0o < 7 such that the stress § < 6y is bounded for 7., and unbounded for
0 > 0.

Let us consider the situation

;2m,

f(7) = siny7sin § — sin~y sin 7.

It is obvious that f(1) = 0. For 7 = 1 to be the double root of equation
(2.3.31) the following condition

/(1) = ycosysind — §sinycosd =0

must be fulfilled. Hence we obtain

d cosd
sind 0

Denote by the angle 6y the respective angles 6, and 0 (tg 0 = B tg 6o,

k = 1,2) which satisfy the equation

(91 + 92) — (91 — 92) tg(91 + 92) Ctg(91 — 92) =0. (2333)
For 81 — B2 =1, ie. for §; — 65 = 6y it follows that tg260y = 26y. This
is the necessary and sufficient condition for the stress 7., to be bounded
which has been obtained in Section 2.2.

When 6 = 6, equation (2.3.31) has the double root at the point w = —1,
while at the point & = 0 the stress 7., has a logarithmic singularity. When
0 < by, the function 7, is bounded. When 6 > 6y, equation (2.3.31) has
the root —1 < 79 < 0 and the stress 7, can be written in the form

v —tgy-

Toy(2) = Jc‘ml_lgpo(az:)7 x>0,

where () is bounded for z > 0.
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2.4. The Bending Problem of a Beam Resting on the Elastic
Foundation

Let an elastic anisotropic body occupy an angle —0 < argz < 0 (0 <
6 < 2) on the plane z = x+iy. Assume that one boundary argz = 0 of the
body supports a beam with rigidity D to which a distributed normal load
with intensity p(z) is applied. Also assume p(z) is a bounded summable
functions equal to zero outside some interval. There is no friction between
the beam and the wedge. The other side of the boundary is free of external
stresses.

As is known, the vertical displacement of points of the beam midline
satisfies the equation

d*v,
e p(x) +oy(z), >0, (2.4.1)
where
p B’
12(1 - 12)

is the beam rigidity and o,(z) is the sought contact stress satisfying the
equilibrium condition

/oooy(x) de = — 7])(1‘) dx = P,
0 0

(2.4.2)

Thus the posed problem reduces to the problem of equilibrium of an
elastic body with the following boundary conditions

x x

D&t = [peds— [o9a
— = s)ds — | oy(s)ds,
da’ P v (2.4.3)
0 0
Toy(2;0) =0, >0,
Xo(t) = Yo(t) =0, argt=—0, (2.4.4)

with o, (z) satisfying condition (2.4.2).

Let us consider two planes of complex variables z; = x7 + iy; and
z9 = To + iy2 which are respectively obtained from the plane z = x + iy by
the affine transforms

r1=c+ay; y1 =01y 2=+ aey; Y2 = Pay; B> P2 > 0.

By means of these transforms, the domain S = {—60 < argz < 0} of the
plane of the variable z becomes the domain Sy = {—0; < argzp < 0} of the
plane of the variable zy.
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If the roots of the characteristic equation (2.1.4) s1 # s, then the posed
problem reduces, by virtue of formulas (2.1.6), (2.1.8), to finding holomor-
phic functions ®;1(z1) and P3(22) in the domains S; and S, respectively,
using the following boundary conditions

(s1 = 52)t1®1(t1) + (51 — 52)t1P1(t1) + (52 — 52)t2Pa(t2) = 0,

_ (2.4.5)
tr = p(cosf — sgsinf), p=|t| >0,
(51— 52)®@1(2) + (51 — 52)P1(2) + (52 — 52)®2()
= —5y0,(z), > (2.4.6)
2Re [1 @] (z) + 2 @5 (z)] = —% [p(s) +oy(s)]ds, ©>0. (24.7)
0

It is required of the functions ®(z1) and Po(z2) that they satisfy the
conditions

lim 23, ®p(2) — 0 as 2z — 0 (k=1,2)

and for sufficiently large |z;| have the form

Op(z) = 2 40 <1> (k=1,2). (2.4.8)

2k 2k

A solution of the problem will be sought in the form

_ 1 OOAk(t) it In zg . WAk(O)
CI)k(Zk)—ka/ : e dt — 1 5 ol (2.4.9)

where A;(0) and A5(0) satisfy the condition

(s2 = 52)A2(0) = (32 — 51)A1(0) + (51 — 52) A1 (0).

Substituting value (2.4.9) into the boundary conditions (2.4.5) and (2.4.6)
and arguing as in Section 2.3, we obtain

S1 (82 —gg)ei‘ut +3S9 (?1 —52)6_5t + 89 (32 —51)6_%

S2(82—3S2 et 51(82—581 edt S1(S2—351 et o
naft) = el TRt TR T v,

where
A(t) = |sy — s2|? chyt — |51 — 5a|* ch 6t + 45,8, cos pt,
y=01+02, 6=061—0o,

cosf) — sqsinf 1 7 »
N(t) = AP ztsd .
M coso — S9 sinf)” (t) Vor / ay(e)e 5

=
|
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The first equality (2.4.2) yields

N(0) = \/% 7 oy(e)e’ds = 70y(x) dx = \/% .
—o0 0

Passing to the limit in equalities (2.4.10) as ¢ — 0 and taking the value
N(0) = \/% into account, we obtain

_ —2Bap51 — 653(51 — s2) +952(51 —52) P
i sl =[5 — 52202 — 4B fop® Vom

Putting the values of ®;(z1) and ®2(22) represented by formula (2.4.9)
into the boundary condition (2.4.7) and using equality (2.4.10), we have

A1(0)

2Re (197 (z) + q2P5 (2)]
! 7 (it — 1)(it — 2)(As + A1)
Ve A)

where

itlnx c
N(t)e'! dt+—, (2411

¢ =—2/m Im [q141(0) + q242(0)],
A1 (t) = ay shyt + by shdt + ¢; sin pt,
Ay(t) = ag ch vyt + by ch 0t + ¢ cos ut,
c1 = 2B2 Im[g; 51] — 261 Im[gys2],
c2 = 202 Im[g; 51] + 261 Im[gys2],
ay +iay = (S2q1 — G251) (52 — 51),
by +iby = (qrs2 — q251) (s1 — s2).

The substitution of the values of ¢; and g defined by equality (2.1.7)
into these formulas and some simple transformations give

1 1
ay = agg‘sl - 52|2Im < + ) P

S1 S2
1 1
b1 = ag|sy — 52/* Im ( - ) J
S92 S1
az = |sy — 51°Ka, by = —|s; — 52° K>,

1 1
c1 = 453132 Re < - ) , C2=4B1 82K,
S1 S92

1 1
K5 = ass Re |: + :| — a926-
S1 52

By Viete’s theorem we have
Q22 = 81+ 818282 a1,
2(126

—— = 518281 + 5281 - S2 + S2 - S182 + S1 - S1 - S2,
ail
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whence it follows that
Ky=0
and therefore
ag =by =co = Ns(t) =0
Thus formula (2.4.11) takes the form

2Re [q197 (z) + CI2‘I’”($)]

/ (it — 1)(it — 2) A1 ()N (2)
x%/ﬂ A(t)

Comparing equalities (2.4.7) and (2.4.12) we obtain

itlnx c
et dt+ 5. (24.12)

(it = 1)(it = 2)A1(E)N@) i1me T s
m/ A®) T Do/ e

T

= D/ )ds + c. (2.4.13)
0

The functions A(t) and Aq(t) do not vanish anywhere except for the
point ¢ = 0. The point ¢t = 0 is a zero of second order for the function A(t),
and a zero of second order for the function Aq(t).

Making a substitution in formula (2.4.12)

E=Inx,
we obtain
¢
i (it = 1)(it — 2)A1(t)N (t) pité /
NGE / AlD) dt+ < oy(e®)e’ ds
e3¢ 7
=-7 p(e®)e’ ds + c. (2.4.14)

Since the function in the right-hand part of equation (2.4.14) is not
integrable, we have to introduce, as we have done in Section 2.3, a new

unknown function
oo

n(©) = [ eaye)ds-

— 00

e (p — Xe™3)

e (2.4.15)

After differentiating this equality and performing the inverse Fourier trans-
formation, we obtain

pt At
V2 sht /27 sh(t — 3i)

where Wy () is the inverse Fourier transform of the function ¥y (€).

N(t) = it¥y (t) +

(2.4.16)
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Substituting values (2.4.16) and (2.4.15) into formula (2.4.14), making
some transformations and choosing A by the equality

A=8Im [q1A1(0) + QQAQ(O)]a

we obtain
\/127 / (t4a)(t +Zi()f)A1(t)‘I/1(t) M gt 1 % 36 (€) = f(£), (2.4.17)

B —o0 < € < o0,

where
_ P [GW-G) ,
f(f)*imz/ sht egdt
00 9
A [ G)ers e ; Pert
oa mdtfﬁ < /p(e )dSHeﬂg>a
() = - +(5i>A1<t>

Since outside some interval, p(z) = 0 for a sufficiently large value of n,
if £ > n, we have p(e®) = 0 and therefore

3¢ i sn(e) d Pert _ pet f
e e’p(e®) ST iieE) = Tgem or £ >mn,

i.e. the function f(&) is integrable along the whole axis.
By the inverse Fourier transformation of equation (2.4.17) we obtain

Ay(t)
A1)

where F(t) is the inverse Fourier transform of the function f(£). The func-
tion F'(t) is analytically extendable in the strip —3 < Imw < 3 except for
the point w = (3 — m)i and points w which are the roots of the function
A(w), where it has poles and vanishes at infinity.

We have thus come to the following problem of the analytic function
theory: by the boundary condition (2.3.22), find a function, which is an-
alytic in the strip —3 < Imw < 0 except for the points ¢ = 4,27 and wy,
where it may have poles, and vanishing at infinity.

The coefficient of the problem can be written in the form

t(t + 1) (¢ + 20) Ay (1)
A(t)

#(t+1) (¢ + 20)

1
\Ijl(t) + 5 \Ifl(t+32) = F(t), —o<t< o0, (2418)

ait(t +1)(2t — 3i) Aq(t)
C(t—20)(2t + 3i) aA(t)

shT (t+3i) 2t + 3i
(12 4 d)gh T S 3D 26+ 30
6' shZi 2-3i
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where

I 1 n 1 I A(t)
a=apln|(—+—| = lim .
2 S1 So t—oo A1 (t)
We introduce the notation
Ay (t)(t+14)(2t — 3i
Go(t) = DLWEF DR =30) 7,
aA(t)(t —20)(2t+3i) 6
The function Go(t) is continuous all over the axis and Go(—o0) =
Go(00) = 1. Substituting the function Go(¢) as a product of two functions
Ay (t) t4+i 2t—3i
al(t) t—2i 2t+3i
of which one takes positive values, while the other has one zero in the upper
half-plane, we see that Ind Go(t) = 0.
It is easy to verify that the branch of the function Go(¢) which vanishes
at infinity is integrable all over the axis.
As has been shown in Section 1.2, the function Gy () can be written in
the form

thzt and
6

Golt) = W Coo <t < o0, (2.4.19)

where

o0
1
Xo(w) = exp <62 / In Go(t) cothg (t —w) dt), 0<Imw < 3. (2.4.20)
In Section 1.3 we have shown that the function Gy(z) is representable in

the form
X1 (t+ 310)

?4d4="""" _co<t<o0, 2.4.21
Xy (t) ( )
where 0 (2 . )
37 Z’UJF —1w
_ 3
The function X;(w) satisfies, in the strip 0 < Imw < 3, the condition
D,
<|X < D92 +it|.
We represent the number D/a as
D X5t i
== M, —00 < t < 00, (2.4.22)
a Xa(t)
where

o) = oo a2 ),

If we substitute expressions (2.4.19), (2.4.21) and (2.4.22) into formula
(2.4.18) and introduce the notation

_ Xo(w)Xo(w) X (w)(w — 24i) sh Tw

Xg(’w) w 5
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then we obtain
3 i)0i(t) Wi (t+3i)  DF(t)
- oo <t<oo. (2423
Xa() a3 Xptran o Sfeoe (2429

By virtue of (1.3.9),

be .
3 it — 4(t+3’b)7
Xa(t)
where
. 34
Xy(w) = 3T ( 3””) .

Introducing one more notation
X(w) = X3(w) - Xa(w)
condition (2.4.23) can be given the form

Uy(t)  Wy(t+3i)  DF(t)
X(t)  X(t+3i)  X(t+3i)’

—00 < t < 00. (2.4.24)

The function [X(z)]~! is holomorphic in the strip 0 < Imw < 3 except
for the point w = % 1 where it has a pole of second order. Let us investigate
the behavior of this function for large |w|.

The functions Xo(w) and Xs(w) are bounded throughout the strip,
while X3 (w) and X4(w) admit the following estimate for sufficiently large

|wl

X, (w)| = O([t|F7Y), [ Xa(w)| = O(t|278)e 81 w=t+ir, 0<7<3.

Hence it follows that for sufficiently large |w|, X (w) admits the estimate
X (w)|=0(""2), 0<7<3. (2.4.25)

Thus the function ¥4 (w)/X (w) is holomorphic in the strip 0 < Imw < 3
except for the point w = 3i/2 where it may have a pole of second order.
According to condition (2.4.16), the function w¥;(w) vanishes at infinity
and therefore ¥ (w)/X (w), too, vanishes at infinity.

By virtue of (1.1.4), the solution of problem (2.4.24) is given by the
formula

_ DX(w) [ F(t) AoX (w)
Viw) = —g / XE+3shit—w) " " enzw 0 (2420
—0o0
0<Imw < 3.

Since the function F'(t) is analytically extendable in the strip —3 <
Imw < 0, a solution of this problem in the strip —3 < Imw < 3 will have
the form

\Ill(w)
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DX(w) / F(t) dt_i_AOXﬂ(w) , 0<Imw < 3,
_ 6i ) X (t+3i)sh(t—w) chzw (2.4.27)
—_yt )
DF(w) — ¥ (w+3i) Aw) —3<Im<0.

t+it+3)w  A(w)’

The function represented by formula (2.4.27) is holomorphic in the strip
—3 < Imw < 3 except for the points w = —i, w = =2, w = (3 — 7)1,
w =ty +ir, (k=0,...,n), where t; + i7y, are zeros of the function A;(w)
in the lower half-plane, Imw < 0, and |7o| < |71]| < -+ < ||

For sufficiently large |t|, the function F(t) has the form F(t) =
O(1/]t|?*¢) because we have required of the function p(x) that it be bounded
and integrable. Taking now estimate (2.4.25) into account, we conclude that
for sufficiently large |t|, the function F(¢)/X (¢t + 3¢) admits the estimate

(1)

X(t+3i) O(t™).

where k£ > 4.

The integral in the right-hand part of formula (2.4.26) will decrease in
the same manner in the closed strip 0 < Imw < 3.

By virtue of formulas (1.1.8) which are analogous to the Sokhot-
ski-Plemelj formula, from (2.4.26) we obtain

_ X()F()D  X(t) [ F(t)
AX(to)
ch 3 to N (2.4.28)
_..«_ DF(ty) = Xo(t+3i) F(t)
U (t) =~ + 061- /X(t—i—?»z’)shg(t—fo)dt

_ A()X(to + 3i)
ch % to '

Since Wy (t) vanishes at infinity being of order more than four, the inte-
gral in formula (2.4.17) exists in the ordinary sense, while the integrals in
formulas (2.4.9) and (2.4.13) exist at infinity in the ordinary sense and, at
the point ¢ = 0, in the sense of Cauchy principal value.

From formula (2.4.16) it follows that the function W (¢) is analytically
extendable in the strip —3 < Im < 3 except perhaps for the points w = ; 2¢
and w = ty + i7,. Therefore it can be written in the form

Pw Aw

N(w) = iwds (w) + V21 shw B Vor sh(w — 3i) '

(2.4.29)
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Using the condition

M = /xay(a:) dx = / e*a,(e®) ds = V2r Ni,
0 —oo

from expression (2.4.29) we obtain

P A M
\/ﬂsinl+\/%sin2_\/ﬂ'

Substituting into this equality the value of ¥y () defined from (2.4.26),
we obtain the value of the constant A(0).

The contact stress o,(x) is obtained from the function N(¢) by means
of the Fourier transform

Uy (i) =

1 oo ‘
-1 itlnx

oy(x) =27 —— N(t)e dt, = > 0. 2.4.30
o) =at—— [ N (2430
By arguments analogous to those used in Section 2.2 we prove that for

sufficiently large |z|
A 1

Note that for N(w) the function |79 > 1 is holomorphic in the strip
—1 < Imw < 3, while for |79| < 1 it has a pole of first order at the point
w = tg + i79. In the same manner as in the preceding paragraphs it can be
proved that for |7p| > 1 the function o, (z) is bounded in the neighborhood
of the point x = 0 and is representable in the form

oy(z) = 2™ p(z), x>0,

for |19] < 1; (x) is continuous on a semi-axis x > 0.
Let us now consider the particular cases.
1. Assume that the domain S is a half-plane, then

0hb=0=0=m, 6=0, y=2m, u=0,
A(t) = 2|s; — so|*sh? it
Ay (t) = 2als; — sa| shnt - cht,

ie.
Aq(t)  achnt
A(t)  shrmt
Hence it follows that ) 5
T0="5 LT g
and the function o, (z) can be represented as

c
—ﬁ'ﬂpo

where () is continuous on a semi-axis z > 0.

Uy(x) (1‘)7 T > Oa
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When 6 = 27, which means that the plane is cut in the positive direction
of the real axis, we obtain
01:92:0:27(, (5:0, 7:477'7 /1,:0,
A(t) = 2|51 — s2|* sh? 27t
Al(t) = 2|81 — 32|2a sh2nt-ch 27Tt,
and
1 3
=2
4 ) 1 4 )
and the function o, (x) can be represented as

T0 — —

oy(x) = coxf% +eizTE 4 wo(x).

2. Let the body be orthotropic and the elastic anisotropy axes be paral-
lel to the coordinate axes. Then a1 = asg = 0, the characteristic equation
will be biquadratic and its roots be purely imaginary: s; = iy, so = ifs.

Furthermore we have
age(BF = B3)(B1 — Ba) shyt + azn (b1 + B2)*(B1 — B2) shdt

B152 ’
A(t) = (B1 — Ba2)? chyt — (B1 + Ba2)® ch 6t + 45235 cos pit.

The boundary condition (2.4.18) will take the form
(B1 4 B2)[(B1 + B2) shyt + (81 — B2) sh t]

Aq(t) =

t(t+14i)(t + 2i)ay (1= Ba)2 chy1— (51 + 5a)2 o 0(8) =481 B com it Uy (t)
+ Uy (t+ 3i) = DF(¢), (2.4.31)
where
a1 = a22 6161—’_652 D.

We can show that the equation
(61 + B2) shyw + (1 — f2)show =0 for 6 < 7/2 (2.4.32)

has no roots in the strip —1 < Imw < 0.
Indeed, since tgf, = Br tgf (k = 1,2), we rewrite equation (2.4.32) as

sin § sin yw + sin v sin dw = 0.
We can prove that the equation has only imaginary roots for < /2,
i.e. it is equivalent to the equation
sin d siny7 + sinysin 7 = 0 (2.4.33)

for -1 <7 <0.

Both summands in the left-hand part of equation (2.4.33) are negative
and therefore it has no solution.

If 0 = 7/2, then v = 7, 6 = 0 and equation (2.4.33) takes the form

sinTw = 0.



Contact Problems of Plane Elasticity Theory ... 87

This equation has, in the strip —1 < Imw < 0, a unique root w = —i.
This number is at the same time a simple root of the function A(w). The
coefficient of problem (2.4.31) does not have a zero in the strip —1 < Imw <
0. Therefore the contact stress oy (x) is bounded near the point = 0.

If @ > 7/2, then 61 > 7/2, 63 > /2 and equation (2.4.33) always has a
solution in the strip —1 < Imw < 0, therefore the function is representable
in the form

oy (@) = |2| ™ po(2),
where () is bounded on the half-axis z > 0.
In particular, if 8 = 37”, then 0, = 0, = 37”7 6 =0, v = 3w. Therefore
in that case o, (x) is representable in the form

_2 _1
oy(x) = cox™3 + 1273 + po(x), x>0,

where ¢g(z) continuous near the point x = 0.

3. Assume now that the body is isotropic. In that case, the boundary
conditions cannot be represented as (2.4.3), (2.4.6) and (2.4.7) because we
have obtained them under the assumption that the characteristic equation
has no multiple roots. For an isotropic body, the characteristic equation
has the multiple roots

S1 =89 =1, S3= 84 = —1.

But by the expressions obtained using the above-mentioned conditions,
which do not contain complex potentials, we can obtain the results for an
isotropic body if we take the limit as s; — so = 7. Namely, assuming 85 = 1,
taking into account that 6, = 0, and v - J - u depend on S, and passing to
the limit as ;1 — 1 in (2.4.31), we obtain the problem of an isotropic body.

Let us represent the coefficient of problem (2.4.31) in the form

sht+ (1+ fy) 5ot

! chryt — (B1+1)2 céll'yjl—ézl,ﬁl cosut

a

Evaluating the indeterminate form as $; — 1, we obtain

sh 260t 4 2t sin 0 cos 0
sh® 0t — 2sin? 0

If now the relation A;(t)/A(t) in solution (2.4.28) is replaced by
(2.4.34), we obtain the contact stress o, () for an isotropic body.

4. In the case where the concentrated force P is applied at some point
xo > 0 of the beam, the function f (&) is analytic in the intervals (—oo;In z)
and (lnzg; 00), and has, at the point Inzg, a discontinuity of first kind. It
can be proved that the function F'(¢) vanishes at infinity when being of first
order, U(t) vanishes when being of second order, and N(t) vanishes when
being of third order. Therefore the integrand in (2.4.17) vanishes at infinity
when being of first order, and the integral itself exists in the Plancheral
sense [116] and for it the inverse Fourier transform is valid.

2@22D (2434)
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When zg = 0, which means that the concentrated force is applied to
the beam end, the function f(&) is analytic all over the axis and vanishes
exponentially at infinity. The functions F'(¢) and N(t) possess the same

property.

2.5. The Contact Problem for an Anisotropic Wedge-Shaped
Plate with an Elastic Fastening of Variable Stiffness

Contact problems of the interaction between elastic bodies of various
shapes (including wedge-shaped bodies) and thin elastic elements in the
form of stringers or inclusions were considered in [5], [4], [94]. Problems
for an elastic isotropic or anisotropic wedge, supported by a rod of constant
stiffness [13], [19], [81], [95], as well as the problem for an elastic isotropic
wedge, supported along the bisector by an elastic rod of variable stiffness
[83] were studied by means of boundary-value problems of the theory of
analytical functions.

In this section, we consider the elastic anisotropic thin wedge-shaped
plate occupying an angle —6 < argz < 6, 0 < 8 < 27 in the plane. One
side of the angle argz = —6 is free of stresses and the rod of variable
tensile stiffness is glued to the other side argz = 0. We will determine the
distribution of contact forces along the fastening line as well as the elastic
equilibrium of the plate under tangential load of intensity 7o(x) applied
along the rod. It is assumed that the bending stiffness of the rod is negligibly
small, i.e. 02 =0.

From the equilibrium condition for any part (0, ) of the rod we have

So(z)o(x) — h/ [Tgy(s) —79(s)] dz =0, x>0. (2.5.1)

A condition for a full contact between the elastic rod and the wedge has
the form (the prime denotes differentiation with respect to x)

up(z) =o' (2,0), 70 () = T4y (2,0) =7(z), z>0. (2.5.2)

Yy

By Hooke’s law, taking into account that 02 = o, = 0, we have
up(x) = o%(x)/Eo(z), o'(2,0) = a16Tay(,0) + a110,(x,0).  (2.5.3)

Here Fy(z) is the modulus of elasticity of the rod, a;; and ajg are the
elasticity constants of the plate, o (z), 79, (x) and 0. (x,y), Tuy(z,y) are
the normal and shear stresses of the rod and the wedge, respectively, ug(x)
and u(x,y) are the horizontal displacements of the rod and elastic wedge,
respectively; so(x) is the cross-section area of the rod and h is the plate

thickness.
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Taking equations (2.5.2) and (2.5.3) into account, we can rewrite con-
dition (2.5.1) in the form

ki(x)og(z) + ko(x)T(x) — hJ(2) =0, x>0,

k‘1 (.I) = 80(1‘)E0(l‘)a11, k‘g(.r) = So(l‘)Eo(l‘)alﬁ,
N (2.5.4)

J(z) = / [7(s) — 70(s)] ds.

0

An equilibrium condition for the rod has the form
J(o0) = 0. (2.5.5)

Consider two planes of complex variables: z; = x1 + iy1, 22 = T2 + iy2,
which are obtained from the plane z = x + iy by the affine transforms
Tp =« + apy and y, = Bny, Bn > 0, respectively, where s, = o, + i3,
(n = 1.2) are the roots of the characteristic equation, where s # s, [66].

The domain S(—6 < arg z < 0) in the plane of the complex variable z is
mapped by means of these transforms into the domains S, (—0,, < argz, <
0), respectively, in the plane z, (n = 1,2) where

tg 0, = B, sinf(cosf — a, sinf) ", 0< 6, <2r.

The problem thus reduces, by means of the well-known relations from
[66] defining the stress vector components in terms of two analytical func-
tions, to the solution of the following boundary value problem of the theory
of functions of a complex-variable: find two functions ®1(z1) and ®5(z2)
that are analytic in the domains S7 and S, respectively, using the bound-
ary conditions

(51 = B2)t1®@1(t1) + (51 — 52)l1 @1 (t1) + (s2 — 52)ta®a(t2) =0,  (2.5.6)
t, = p(cos@ — spsinf), p=1|t| >0,
(51 — 52)'1)1(151) + (51 — 32)‘1)1@1) + (52 — gQ)‘I’Q(tz) = —T(ZIJ), (257)
ti1=to=x >0,
2Relk1(z)a®@(x)] + [k2(z) — 202k (z)]7(x) = hJ(z), = >0, (2.5.8)
a = (81 — 82)(81 — 52).
Assume that stresses and rotations vanish at infinity, for large |z,| we
obtain

D, (2n) = Yn/2n + O(1/2,), n=1,2.

Assume further that the functions ®;(z1) and ®5(22) are continuously
extendable to all boundary points, except perhaps for the points z,, = 0, at
which they satisfy the conditions

limz,®,(t,) =0 when 2z, —0.
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So, we will look for functions ®;(z1) and ®3(z2) in the form

1T A .
D, (z,) = / (*) etnan qp a—7 Zn € Sh, (2.5.9)

V2T zZp, t Zn

— 00
where
1 7 A
nlt)
an = lim —— An(t) etz gt n=1,2. (2.5.10)
Z,LHO 1/27]' t

At the point ¢ = 0 the integrals are considered in the sense of the
principal Cauchy value. It can be shown that a, = —iy/7/2 A4,,(0) from
which it follows that v, = —2a, = iv/27 A,,(0). We can also conclude from
Egs (2.5.6) and (2.5.9) that a; and as satisfy the condition

(82 — 52)0,2 = (52 — sl)al + (52 — 51)61.

Substituting (2.5.9) into conditions (2.5.6) and (2.5.7), carrying out
Fourier transformation and solving the latter system for A, (t) (n = 1,2),
we obtain

1 .
Al(t):m [(B1—s2)e % + (32 —51)e " +(s2—Ba)e ] tT'(1), (2.5.11)

A(t) = |31 — 52|2 Ch’}/t — |81 —§2|2Ch(5t + 45152 cos ut,

1 7 ;
T(t) = Nors / eSt(e®)e "5 dt,

y=01+03, 6=0;—02, p=In|cosh — sysinf| —In|cosf — sysind|.

The function Ay(t) is obtained from the expression for A, (t) by interchang-
ing s and sy and 6; and 6. It is obvious that T'(—t) = T'(¢). Since the
stress vanishes at infinity, taking the limit in the relation for T'(t) we obtain

7(0) = Ty /V2r, Toz/T(t)dt:/To(t)dt.
0 0

It can be proved that the function A(t) vanishes nowhere for real ¢
except for the point ¢ = 0 where it has a double zero root. The function in
square brackets in the equation for A;(¢) behaves similarly. Consequently,
if the function 7(z) is absolutely integrable, then the functions A;(t) and
Ao(t) is continuous over the axis. Therefore equation (2.5.11) implies

A (0) . (31 —gg)’y — (§1 — 82)(5 — iM(SQ —52) To

10) = = .
|s1 — 52|292 — [s1 — 52[202 — 4B fopi® /27

Hence the constants aq, as, 1 and 5 are well-defined.

Substituting the value of the function ®1(z1) defined by equations
(2.5.9) and (2.5.11) into the boundary condition (2.5.8), by Vieta’s formula

(2.5.12)
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for characteristic equations we get

1 i Al(t) itlnx hJE _
N AlD) T(t)et™m dt — (@) J(z) = 2Reaay, (2.5.13)

Al(t) = 7([31 —+ ﬁ2)|51 — 52|2Sh’)/t + (ﬂl — 52)|81 7§2|2 sh 6t
+4|ay — as|B1 P2 sin pt.

Let k1 (z) = dpz®, dy > 0 and « be any real number. After substituting
Inx = &, equation (2.5.13) takes the form

S0 g, H=L
) Y do'

Differentiating both sides of (2.5.14) and applying the inverse Fourier
transformation to the resulting relation with the complex variable t = tg—ie
as a parameter (¢ is an arbitrarily small positive number), we obtain

GO)U(t) — HU(t — ik) = F(t), —oo—ic<t<too—ic, (2.5.15)

w0 = T6) - o), F(r) = ~ 00
To(t) = \/12?/ e*to(e®)e™ " dx.

Assume that £ > 0. The problem under consideration reduces to the
following Carleman type problem for the strip: find a function ¥(z) which
is holomorphic in the strip —k — e < Im z < —¢, vanishes at infinity, is con-
tinuously extendable on the strip boundary and satisfies condition (2.5.15).

Using the results obtained earlier [15], the function ¥(z) can be written
in the form

+oo—ie
U(z) = % / ><(tF£t)zk) (sh%(t _ z))fl dt, (2.5.16)

—k—e<Imz < —¢,

X(2) = 2 xu()(z)sh % 2z, x(z) = KT (kJ];ZZ) exp(izln HY'®),
z
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+oo—ie
Xk (2) = exp {2;: / In G (t) coth %(t —z) dt},

_ Aq(t) ™ Bt B

Now assume that & > 1. If the function Ty(z) is analytically extendable
in the strip —1 < Imz < 1 and vanishes exponentially at infinity, then
condition (2.5.15) and equation (2.5.16) imply that the function

Wy (2) = {\Il(z), —k—e<Imz < —¢,
[F(2) + HY(z — ik)]/G(z), —e<Imz<k—e¢,
is holomorphic in the strip —k —e < Im 2z < k — ¢, vanishes exponentially at
infinity, and is bounded all over the strip except for the points z;' = t;‘ —|-7;7';_
(j =0,1,...,p) which are the zeroes of the function G(z) in the upper strip.
Thus, according to the Cauchy formula, the required contact stress can
be represented as

00 oo
-1 -1

T(x)—To(x):\x/? t\I/(t)ei““w dtZL (t—ik)\Il(t—ik)ei(t_ik) Inz 5
—0o0

V2T
—00

Consequently, in the neighborhood of the angle vertex we obtain 7(z) —
m0(z) = 2 Lpg(z) (as © — 0), where ¢o(x) is a bounded function near the
point x = 0. For large x we get

7(2) — 1o(x) = O(1/z1+™).

If 0 < k < 1, the function ¥(z) given by (2.5.16) is analytically con-

tinuous in the strip —1 < Imz < 1 except for the points w; = Ay Fipy

( =0,1,1) which are the poles of the function G(z) in the same strip. Then
shear stress near the point x = 0 is represented as follows:
o0

J)_l

T(x) — Tolx) = —q _,L'ei(t—i) nzx
(x) — mo(x) Var (t—)W(t 1) e gy

-1
+f/% =z o+ 4 p1(x), ¢ = const,
where ¢1(z) is a bounded function for x > 0.

Let us consider the case where k < 0 (o < 1), i.c. where the stiffness
of the rod grows near the angle vertex and vanishes at infinity, and the
principal vector of external load is shifted to the wedge. Putting m = —k,

we can write condition (2.5.15) in the form
G(H)Wo(t) — HUg(t + im) = F(t), —oo—ie<t< +oo—ic. (2.5.17)
Now we will consider the following problem: find a function ¥y (z) which

is holomorphic in the strip —m — e < Imz < m — ¢, vanishes at infinity

and is bounded all over the strip, except for the points zj = t; +aT;

res [20(z)e"? 1nm]w__)\_+w_
0 —70 0
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(j = 0,1,...,q) which are the zeroes of the function G(z) in the lower
half-space.

If we first solve the problem of finding a function ¥y (z) which is holo-
morphic in the strip —e < Im z < m — ¢, vanishes at infinity and is continu-
ously extendable on the strip boundary by the boundary condition (2.5.17),
then the solution of the preceding problem will be the function

Uy(2) = Uy (2), —e<Imz<m-—e,
2 TVIFG) + HYo(2 +im)]/G(2), —m—e <Imz < —e,

Using the results obtained in [15], the function ¥y can be written in
the form

- +oo—1ie =
‘I’O(z):’g);(,j]){ / ;z(th@?m) (shZ(=2) @ (2518)

—oo—1ie

X(z) = % Xm(2)3(z) sh % z,

m—1iz

%(z) = m~ /T ( > exp(—izln Hé/m).

If 757 < 1, then the function ¥4(z) is analytically extendable in the strip
—1 < Imz < m — ¢ and the shear stress 7(x) — 79(z) is bounded at the
point z = 0. If ;7 > —1, then the function ¥5(z) has the pole very near
to the real axis at the point z, = ¢, + 47, , the function T'(t) — Ty(¢) has a
similar property and the unknown contact stress near the point z = 0 can
be represented as

() — 70(x) = cor™To 1) 4 o (2).
For large x we have
7(z) — 10(z) = O(1/z*T™).
For o =1 (k =m = 0), condition (2.5.17) gives
U(z) = F(2)/(G(2) — H)
and shear stress has the form
7(z) —1o(z) =0 1Y) as z—0, A=Imy,

where 1 is chosen from the zeros nearest to the real axis of the functions
A(z) and G(z) — H in the lower half-space.
For a < 1, when 6§ = m, i.e. the anisotropic body is a half-plane, the
function
G(z) = —(B1 + P2)zcothmz
has a unique purely imaginary root zp = —#/2 in the strip —1 < Im z < 0,
and shear stress near the point £ = 0 has the form

7(x) — 10(x) = cox 1?4+ o ().
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When 6 = 27, i.e. the body occupies the entire plane cut along the
positive part of the real axis, then

G(z) — (B1 + P2)z coth 27 z.

This function has pure imaginary roots zo = —i/4, z; = —3i/4 in the strip
—1 < Imz < 0, and the shear stress as  — 0 has following form

Y cqr o y(2).

Here po(z) and ¢3(x) arc bounded functions for x > 0, and ¢z, ¢3 and
cy4 are constants.

For 1 < a < 2, when 6 = 7 the function G(z) has a pole at the point
wy = —i, the shear stress is bounded in the neighborhood of the angle
vertex. When 6 = 27 as & — 0, shear stress has a singularity of square root
order.

Analogous results are obtained for an isotropic body in [9].

Now consider the case with an orthotropic body. Then

Ay (t) = —(B1 + B2)(B1 — B2)* sht + (B1 + B2)* (1 — B2) sh ét,
A(t) = (B1 — Ba2)? chyt — (B1 + B2)? ch 6t + 451 B cos put.

One can prove that, for 0 < § < =, the equation A;(t) = 0 can have
only the imaginary root in the strip —1 < Imz < 0, while the equation
A(z) = 0 does not have any roots in this strip. Moreover, for § < /2
(A2 < 01 < 7/2), the equation Aj(z) = 0 does not have any roots in the
strip —1 <Imz < 0.

For o < 1, if § = 2w/3, the function A;(z) has zeroes at the points
2, = —i/3, z; = —2i/3 and the stress at the point z = 0 has the estimate

() — 10(2) = c3x™" 4 ey

T(x) — T0(2) = G2y GV o3(x),

where @3(z) is a bounded function for z > 0, and ¢; and ¢ are constants.

When 7/2 < § < 7, by an appropriate choice of numbers ¢ and 7 or
numbers (1 and 33, we can make the equation Aq(z) = 0 have a root in the
strip —1 < Imz < 0. This means that the stress 7(z) — 79(z) can be both
bounded and unbounded at the point = 0.

2.6. The Bending Problem of a Beam Resting on the Elastic
Foundation

Contact problems of the interaction of differently shaped elastic bodies
with thin elastic elements in the form of stringers, beams or inclusions were
considered in [5], [4], [94]. Problems for an elastic isotropic or anisotropic
wedge, reinforced with elastic elements of constant stiffness [13], [17], [19],
[81], [95], and, also, the problem for an elastic isotropic wedge reinforced
along the bisectrix by an elastic rod of variable stiffness [83] were inves-
tigated using boundary value problems of the analytic functions theory.
The contact problem for an anisotropic wedge-shaped plate with an elastic
support of variable stiffness was considered in [27].
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Let us assume that a beam with stiffness D(x) lies on one boundary
(argz = 0) of an elastic anisotropic body which occupies an angle —6 <
argz < 0 in the plane z = z + iy and that the distributed normal load
Py(z) is applied to the beam. Py(x) is assumed to be a bounded summable
function, equal to zero outside some interval. There is no friction between
the beam and the wedge. The other boundary of the wedge (arg z = —0) is
stress-free, 0 < 6 < 27.

The problem reduces to the following problem of elastic angle equilib-
rium

d? d?v
e D(z) i Py(x) — P(x), Tay(z,0)=0, z>0;
2.6.1)
o Bo@ht) (
@) = Toa =0
X,(t)=Y,(t) =0, argt=—0, (2.6.2)

where P(z) is the required contact stress satisfying the equilibrium condi-
tions

Pitydt= [ Py(tydt =Py, |tP(t)dt= [tPy(t)dt =My, (2.6.3)
[ron=] [ron=]

Ey(z) is the elasticity modulus of the beam, h(x) is its thickness, vy is
Poisson’s ratio and v(x) is the vertical displacement of the points of the
beam.

We will consider two planes of complex variables: z; = x7 + iy; and
Z9 = X9 + iyo obtained from the plane z = x + iy by the affine transforms

rn=x+a1y, Y=Yy T2=zc+oay, y2=7P50y [1> P >0.

By these transformats, the domain S(—6 < argz < 0) of the plane of
the variable z transforms to the domain Si(—6; < argz; < 0) of the plane
of the variable z; (k= 1,2), tgf, = B sinf(cos — ay sinh) L.

If the roots of the characteristic equation s; # s, then, by virtue of
the well-known formulas [66], the problem reduces to finding holomorphic
functions ®1(z1) and ®2(z2) in the domains S; and Ss, respectively, by the
following boundary conditions

(51 = B2)t1®1(t1) + (51 — 52)l1 Py (t1) + (52 — 52)t2aP2(t2) = 0,
tr = p(cosO — sgsinf), p=|t| >0,

(2.6.4)

(81 —EQ)Ql(t)+(§1 —gg)@l(t)+(52 —Eg)‘bg(t) = —ggp(t), t>0, (265)
/ / B 1 x t
2Re [q1 P (2) 4+ ¢2P4(2)] =D b/dtb/[PO(s)—P(s)] ds, z>0. (2.6.6)

It is required of the functions ®;(z1) and ®5(22) to satisfy the conditions

hmzk@k(zk) —0, 2zx—0, k=12,
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and, for sufficiently large |zx|, to have the form
@k(zk) Z’Yk/zk—FO(l/Zk), k=1,2,

— 1 OOAk(t) itln zg . ﬂ-Ak(O)
@k(zk)—mzk/ L€ /g ot 2p € Sk. (2.6.8)

— 00

(2.6.7)

(52 — EQ)AQ(O) = (52 — 51)A1(0) + (§1 — gg)Al(O) .
The substitution of (2.6.8) into the boundary conditions (2.6.4) and (2.6.5)

Furthermore, we assume that Ay (0) satisfies the condition

yields

Au(t) = [gk(sz _ 5y)ei 32kt

_ _ (3_ _ _ . _41tN@®)
_ (3—2k)dt _ At| UVL) 9
+ 33k (8K — S3_k)e + s3_x(52 —51)e ] A0 (2.6.9)
where
\0 _ -3 0
po=In | ST S =0, —0s, v =0, + 0,
cos ) — sosin

A(t) = |$1 — 82|2Ch’}/t — |81 —§2|2 chdt + 4ﬁ1,32 cos ut,

sefzts dS

1 (o)
N(t)=— | P(e’)e
0=z | )
The first equality of (2.6.3) gives

VZr N(0) = /P(es)esds:/P(t)dt:Po.
—0o0 0

Taking the limit in equalities (2.6.9) as t — 0, we obtain
Ak(O) — 2(_1)k[t62§k + (_1)k5§3—k(§k — S3—k) 4 733—k(§1 _ §2) Py
|s1 — 892|292 — |s1 — 351|262 — 451 fapi® \/ﬂ

Substituting the functions ®(zx) defined by (2.6.8) into the boundary
condition (2.6.6) and keeping in mind equality (2.6.9), we have

2Re [q1®) (x) + 2P ()]
! 7 (it = 1)(As +iADN @™ o
C \2ra? A(t) x2’

— 00

(2.6.10)

where
= /7 Tmg1 A1 (0) + g2A45(0)],

c
(t) = af shyt + ay shét + ¢ sin put,
)

Ay
As(t) = aj chyt + a; chét + ¢ cos ut,
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Cf = 202 Im[q; s1] £ 281 Im[gGys2],
aq +ia; = (5152 — q2§1)(81 - 32)7

ay +ial = (@83 — ©@51)(s2 — 81)-

Substituting the values of g1, and g2 [66] into the above formulas, performing
the operation of reduction and applying Vieta’s theorem, we obtain

1 1 _ _ 1 1
af = as|s1 — s2[*Im ( + ) ., a] = ag|sy — 5*Im ( - ) ,

S1 S2 S22 S

_ _ 1 1
ag =a; =cf =0, ¢ 4B1ﬂ2Re(8182>, As(t) =0,

where as9 is one of the constants of elasticity of the plate.
Thus, by (2.6.10), condition (2.6.6) takes the form

0 (2.6.11)

1— it)Ay(t

7L r eitlnw L2 [ / s)— s s = c:
mé GON(We " i+ s [ar / [P(s)— Pols)) ds = ¢
) = ¢ )

A(t)

The functions A(t) and Aq(t) do not vanish anywhere except for the point
t = 0. The point ¢ = 0 is a second order zero for the function A(¢) and a
first order zero for the function Aq(t).

We put D(x) = doxP™2, dy > 0, where p is any real number. After
substituting £y = In x into formula (2.6.11), differentiating both sides of the
resulting equality and carrying out the inverse Fourier transformation, we
obtain

dot(p +it)G&)¥(t) + U(t —ip) = F(t), —oo—ie<t<oo—ig, (2.6.12)

where

w(t) = MO0 ey = oo+ in N,

17 B
No(t) = E / esPO(es)e its g
—o0

and ¢ is a positive number which can be arbitrarily small.

There arises the following problem: find a function which is homomor-
phic in the strip —p — e < Im z < —¢, vanishes at infinity, is continuable on
the strip boundary and satisfies condition (2.6.12).

The function F(t) is analytically extendable in the strip 0 < Imz < p
except for the points which are the roots of the function A(t), where F(t)
has poles and vanishes at infinity.
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Assume that p > 0. Then the coefficients of the problem can be given
the form
t(t —ip)(t + 1) A1 (L)
A(t)

Ay(t) , wm shg(t—ip)

A(t) 2p sht

= it(t* + p*) ()

Consider the function

where

W0=cam Pyt TRy~ 5 T,
The function Gp(t) is continuous all over the axis and Gp(—o0) =
Gp(+00) = 0. The function Uy(t) takes positive values,the function T),(t)
has a unique zero and one pole in the lower half-plane and therefore
IndG,(t) = 0. The branch of the function In G,(t) which vanishes at
infinity is integrable all over the axis.

By virtue of the results obtained in [15], the functions G,(t), t* + p?
and the number ady can be represented as

M) 7 AL (1 1>.

Gy(t) = W, t*+p* = W, ady = W, (2.6.13)
—00 —ie < t < (00 — i),
where
oo—ie
Xp(z) =exp {21p / In G (¢t) coth(t — 2) dt},
—oo—ie
Xi(2) = p"*/PL(1 +iz/p) /T(2 — iz /p),
Xa(z) = exp(i(z/p) In(adp)), —p—ec<Imz < —e.
The substitution of expressions (2.6.13) into (2.6.12) yields
W(t U(t—1 F(t ) .
X((t)) X((ti];))) - X(t()ip)7 Too— e <t < 00—t (2610

1 .
X(2) = = X,(2)X1(2)X2(2) sh 21 2p™/PT(1 + iz /p).
z 7
The functions X, (z) and X5(z) are bounded all over the strip and, for
sufficiently large |z|, the function X;(z) admits the estimate

IX1(2)| = O(|t|¥/P7Y), z=t+ir, —p<7<O.
Hence it follows that
X(z) =O(|t|>"/P=1/%), —p<r<0.
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Now the solution of problem (2.6.14) can be written in the form

X " 20)
Y =S / X(t—ip)sh(t—z) di, (2.6.15)

—p—e<Imz < —¢.

Assume that p > 1. If the function Ny(t) is analytically continuable in
the strip —1 < Imz < 1 and vanishes exponentially at infinity, it follows
from condition (2.6.12) and formula (2.6.15) that the function

U(z), —p—e<Imz < —¢,
W1(z) =3 P(z) - 9(z — ip)
e <1 _
doz(p+i2)G(z) ’ e<ims<p-é

is holomorphic in the strip —p — e < Im 2z < p — ¢, vanishes exponentially
at infinity and is bounded all over the strip, except for the points zj' =
t;‘ + Z'Tj+ (j = 1,2,...,1) which are the zeros of the function G(z) in the
strip —e <Imz <p—e.

Applying the Cauchy formula, the required contact stress can be rep-
resented as

i ,
AP((I;) = P(l’) — Po(ﬁl') = m / tqj(t>elt1n:c dt
-7 /(t*ip)‘l’(t*ip)ei(t’“’) g
Vor

Thus near the angle vertex (z — 0) we have AP(z) = 2P~ !g(z), where
g(x) is a bounded function when z > 0. For large =, we have AP(z) =
O(z=+m0),

If 0 < p < 1, then the function ¥(z) given by formula (2.6.15) is
analytically continuable throughout the strip —1 < Imz < —¢ except for
the points w; = A + iu; (j = 1,2,...,q) which are the poles of the
function G(z) in the same strip. The normal contact stress can then be
represented near the point = = 0 as follows: AP(x) = co~(1Fr) 4+ §(x),
where g(z) is a bounded function when x > 0, ¢ = const.

We will now consider the case where p < 2, i.e. the rod stiffness increases
at the angle vertex and decreases at infinity. Introducing the notation m =
—p (m > 0) and arguing as above, we can write condition (2.6.12) in the
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Yo(t) + Wo(t + im) = Fo(t) —00+ie <t < oo+ie
X(t)  X(t+im) X(t) ’

X(z) = le(Z)k’(z)(z —1im/2) sh—— z, e<Imz<m+e,
Z 2m
1 co—+tie
Xm(z) =exp { / In G, (t) coth %(t —2) dt}, (2.6.16)
—oo+tie
k(z) = exp(—iz/m In(ady))m™3*/™T2(1 +iz/m)/T(2 + iz/m),
t+i  2—imA(t) . ™

= h D .
Gm(t) a(t —im) 2t +imA(t) i 2m t

For sufficiently large |z, the function X (z) admits the estimate
1X(2)] = O(t]>T/™=5/?) 0<7<m

The function Wy(z)/X (z) is holomorphic in the strip ¢ < Imz < m + ¢
except for the point z = im/2 where it can have a first-order pole. Therefore
the solution of problem (2.6.16) is given by

~ oco-++ie oy
Uo(z) = X(2) / _ Fo(t) + AoX(2)
2im ) X(t+im)shZ(t—z)dt chiz’

Fo(2) = do(iz — 1)(m — iz)(A1(2)/A(2)) No(2),
Ag=const, e<Imz<m-+e.

Using the equality

/ﬂﬂﬂ—ﬂﬁ»ﬁzo
0
we obtain (i) = 0, from which we define the constant Ag.
The function

Uo(z), e<Imz<m+e,

Uy (2) = Fo(z) + Tz + im)
doz(m —iz)G(z)

, —m—e<Im<e,

is holomorphic in the strip —m +¢ < Im z < m + ¢, vanishes at infinity and
Is continuable on the strip boundary, except for the points z; = t; +i7;
(j =1,2,...,n) which are the zeros of the function G(z) in the strip —m +
e<Imz <e.

If 77 < —1, then the function Wa(z) is analytically continuable in the
strip —1 < Imz < m + € and the normal contact stress AP(z) is bounded
in the neighborhood of the point z = 0.
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If ;7 > —1, the function ¥5(z) has a pole very close to the real axis
at the point z; = ¢; + 47y and, consequently, the contact stress in the
neighborhood of the point = 0 can be represented as

AP(z) = Gz~ M) 4 Gy (2),
where g1(x) is a bounded function when « > 0, ¢; = const. For large z, we
have
AP(x) =O0(xz™'™™), x— oo.
Let us consider some special cases. As will be clear from the discussion
below, in these cases we have

O(a™), p>1,
AP(z) = ¢ O(z%), 0<p<l, zx—0. (2.6.17)
O(zn), p <0,
Assume that the domain S is a half-plane. Then
0p=0=0=7n, 6=0, v=2m, pu=0,
A(t) = 2|s; — so|?shat,  Aq(t) = 2|s; — so|?ashrtchrt.
Hence we obtain that 77 = —1/2, yu; = —1 and the function AP(z) satisfies
relations (2.6.17) when £ =0, n = —1/2.
When 6 = 27, i.e. the plane is cut along the real positive axis, we
obtain
91:92:271', 5:0, "/:471', MZO,
A(t) = 2|s; — so*sh2mt,  Ay(t) = 2|s; — s2|*ash 27t ch2nt.
Therefore 7, = —1/4, u7 = —1/2 and the function AP(z) satisfies
relations (2.6.17) when £ = —1/2, n = —3/4. Note that for p = m = 0,
condition (2.6.12) gives
U(z2) = F(2)/(ido2*G(2) + 1)
and the estimate
AP(z) = O(z*') when z—0

holds for the normal stress, where A = —Impu and p is the zero of the
function idyz?G(z) +1 in the lower half-plane which is very close to the real
axis.

In a special case where the body is orthotropic and one of its axes of
anisotropy is parallel to the edge of the wedge which supports the beam,
we prove that for p < 0, the normal contact stress near the beam end is
bounded when # < 7/2 and has the form AP(z) = O(z~™), x — 0, for
0 > 7/2 where 0 < 79 < 3/4. In particular, we have AP(z) = O(z~2/3),
x — 0, when 0 = 37/2.



CHAPTER 3

The Problems of Plane Theory of Elasticity
for an Anizotropic Body with Cracks and
Inclusions

3.1. Solution of the First Basic Boundary Value Problem of the
Elasticity Theory for an Orthotropic Wedge with a Finite
Cut

Let on the plane of a complex variable z = x + iy an elastic orthotropic
body occupy an angle —a < argz < a, 0 < a < 27, which is cut from the
angle vertex along the bisectrix segment. Assume that the length of the cut
is equal to one.

Let the boundary of the body argz = d+a« be free of external stresses
(this can be assumed without loss of generality) and let the following stress
components be given on the cut:

oy =pi(z), 7oy =qi(xz) on the upper edge of the cut,
oy = p2(x), Tuy = ¢qe(x) on the lower edge of the cut,
where p;(x), p2(x), q1(z), g2(x) are absolutely continuous functions. As-
sume further that the principal of elasticity coincide with the coordinate
axes.

Let S be the domain occupied by the body. The domains S; and S
are respectively obtained from the domain S by the affine transforms

=, yp=Phy (k=12),

81 > B2 > 0 are the angles of Dy cut along a segment of the real axis
J =10,1], i.e. Sx = Dy —J, where

Dy = { —ap <argzp < ak}7

ay = arg(cos a + i sin ).
Write Dy, in the form Dy = Dy U Dy where
Dy, = {ak(l —n) <argzp < ap(2— n)}, k,n=12.
Introduce the notation
D (zx) = Pppn(zr) for zp € Dy.

102
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Since the functions @ (z) are analytic in the domains Sy, they must satisfy
the conditions

(I)kl(xk) = @kg(l‘k) for 1z > 1, k=1,2.

According to formula (2.1.8), the problem we want to consider can be
formulated as follows: find functions ®g,(2x), n,k = 1,2, in the domains
Dy, by the boundary conditions

(B1 + B2)t1P1n(t1) + (B2 — B1)t1P1(t1) + 282t Po(t2) = 0,

trp =plcosa+ (3—n)ifgsina)], n=1,2, k=12 (8-1.1)

(B1 + B2)@1n () + (B2 — B1)P1n(x) + 28201 (x) = Baol™ + ity (3.1.2)
cré”) = pn(x), 7'3(72) =qn(x), z€J, o

oD =o® =) V=@ —r ps1, (3.1.3)

@11(33) — @12(.’17) = (1)21(37) — (13’22(5(5) =0, x>1.

Analytic functions @y, (z;), k,n = 1,2, will be sought in the form
1 d\ 1 [ At i
P . N R R itz g
kn(21) <Zk de) Vor / t ©

LT Ak:n(o)
- Z\/gzk. (3.1.5)

The integrals at the point ¢ = 0 are understood in the sense of the Cauchy
principal value.

Like in the preceding paragraphs, it is assumed that Ay, (0), k,n = 1,2,
satisfy the conditions

205 A2,(0) = —(B1 — B2)A1n(0) — (B1 + B2)A1n(0). (3.1.6)

I will be shown below that the sought functions Ag,(t), k,n = 1,2,
are the Fourier transforms of the summable functions ag,(§) which are
continuous all over the whole axis except perhaps for the point £ = 0.

The class of such functions is denoted by Rj,. If Ay, (t) € R}, then it is
easy to show that in representations (3.1.5), the integrals exist in the sense
of the Cauchy principal value and it is possible to pass to the limit both
under the sign of the differential and under the sign of the integral for z
tending to a point of the boundary Dy,

Let us introduce some other notation and definitions.

Denote by Ry a set of all functions

oo

F(t) = [ fl€)e"d where (€) € Lu(~o0:0).
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Ry is a ring of continuous functions on the closed straight line [116]. Denote,
further, by Rj (Ry) a subring of Ry composed of the functions

F+<t>=7f<£>e“fds (F—(t>= / f(f)e“ﬁdg).
0 —00

The ring obtained by expansion of the ring Ry (R¢; Ry ) by adding 1 to it is
denoted by R (R*; R™). It is obvious that a function ®+ € Rf (&~ € Ry)
is the limiting value of a function, analytic in the upper (lower) half-plane
and vanishing at infinity.

Denote by N, (t), Tn(t), P,(t), Q.(t) the Fourier transforms of the
functions 650'5”)(65), GET;]EZ)(GE), eSpn(ef), eSqn(ef), respectively.

Substituting expression (3.1.5) into the boundary conditions and argu-
ing as in the preceding paragraphs, we obtain

Akn(t) = 75kn (t) “;(’)ik:—(ji)A?gkewk (Bl N 52 - Bk)th (t)
+ Vi (t) — Ogn (t) + QBkefi“kt
2(1+it)A(t)

AT, () (kyn=1,2),

where

A(t) = (B1 — Ba)* chyt — (By + B2)? ch 6t + 453, By cos put,
_ k1 |cosa+ifssina
e = (=1)%In cosa +ifsinal’
O1n = (B1 + B2) exp [(2n — 3)6t],  dan = (B1 + P2) exp [(3 — 2n)dt],
Yin = (81— B2)exp [(2n — 3)vt],  Y2n = (B2 — B1) exp [(2n — 3)7t],
Y =71+ e

By virtue of condition (3.1.4) we have

< 1 d ) 1 / Akl (t) - Ak? (t) —itlnx
- _ = e dt
x dr) \2rn t

- 2\/§ A0 =40 oo 31

X

Using the notation Inx = &, we obtain

AR OoAm(t)—Am(t) —ite
(1-%) m/ I

= z\/z [Ak1(0) — Ap2(0)], —oc0 <€ <oo. (3.1.8)
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If we assume that Ag,(t) € Ry and pass to the limit, then we obtain
that the limit in the right-hand part of equality (3.1.8) is equal to

—VZMAmw)—Amm»

as £ — oco. Hence it follows that
A (0) — A (0) =0, k=1,2. (3.1.9)
Now it can be shown that if Ag,(¢) € Ro, then
A1 (t) — Ak (t) € Ry .

The function

Ap(t AkQ( ) o ite
“sdt o >0
V2T / or ¢

vanishes at infinity and satisfies condition (3.1.8). Therefore

Akz( )

() = e" M dt =0 for £>0.

s

Since Ag1(t) — Ak2(t) € Ry, the function Uy (€) € L; and the Fourier
inversion formula

0
1 .
AM)AM)—;/w@ﬁ%H%

is valid.

By conditions (3.1.4) we have

Nult) = Pult) + N*(5), Tult) = Qult) + T (), (3.1.10)

where

NT(t) = L 70 (ef)ete™dg, TH(t ! 765 )e dg¢

V2T J Y 27r J

are the sought functions of the class RS‘ .
From conditions (3.1.7)—(3.1.9) we obtain

 BatAy(1) (1)

Apn(t)—Ap(t)= m]\”() mlﬁ(tﬂfl(t% (3.1.11)
BltAl(t) tA5(t)

AQl(t)—AQQ(t) (1+Zt)A(t) N+(t)—7(l+it)A(t) T+(t)+f2(t), (3112)

where

An(t) = (B1 + B2)shét + (=1)"(B1 — B2)sint, n=1,2,
fi(t), fa(t) are given functions of the class Ry.
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Since the functions Ay (t) — Ag2(t) € Ro, k = 1,2, (3.1.11) and (3.1.12)
are the conditions of Riemann boundary value problems for two pairs of
functions.

Our problem reduces to the following two Riemann problems:

Agy (£) — Aga(t) + Aoy () — Aga(t)

= wé;@ifé)(t) NF(t) + fi(t) + f2(b), (3.1.13)
[A11(t) — A12(t)] B1 + [A21(t) — A2a(t)] B2
(81 — Ba)tAx (1)

:WiT+(t)+ﬁlfl(t)+ﬂzfz(t). (3.1.14)

Since (3.1.13) and (3.1.14) are problems of the same type, we will solve

only problem (3.1.13).
Let us introduce the notation

o () = VIt (An(t) — Apo(t) + Agi (t) — AQQ(t)),
O (t) = —V/1—it NT(t),

(3.1.15)

where under the radicals /1 + iw and /1 — w we understand respectively
the branches, holomorphic on the plane cut along the lines (i;i00) and
(—1; —100), and the branches taking positive values on the uncut part of the
imaginary axis.

Substituting (3.1.15) into expression (3.1.13), we obtain

AtV +it

+ _
0= G - s

() +g(t), —o0<t<o0. (3.1.16)

It is easy to show that by the conditions we have made as to the given
stresses, g(t) € Ry, and since the coefficient of the problem belongs to the
class R and is positive all over the axis —oo < t < 00, the index of problem
(3.1.15) is equal to zero.

From equalities (3.1.14) it follows that if N*(t) € Ry, then ®*(¢) may
not belong to the class Rar , it may increase at infinity by order less than
half. But we know that if the homogeneous problem has such a solution,
then it is bounded. Therefore we will seek for a solution of problem (3.1.15)
in the class R.

Due to [25], a solution of the boundary value problem (3.1.15) in the
class of functions ®*(t) € RT is given by the formula

gt 1 [ glt)
iX+(°t0) +m,/ dec ., (3.1.17)
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where
B 17 Alt)V1+1t2  dt
X(z) =exp [27” / n G- ) i—2 | (3.1.18)

— 00

By the Wiener-Levy [44] and Wiener [44] theorems we have
X*(t) e BT, [X*(@1)] ' e R*.

It can be easily shown that X*(¢) — 1 and [X*(¢)]"' — 1 are the Fourier
transforms of summable and bounded functions on the whole axis.

Taking into account that by virtue of (3.1.9) and (3.1.15) ®=(0) = 0,
from (3.1.17) we obtain

o

9(0) 1 9(t)
= X+ m/ X (3.1.19)
From equalities (3.1.15) and (3.1.17) we have
glt)  X') [ g X+H(to)

N*t(ty) = dt —c

CoVI—ity 2mivI—ity J XF(t)(t—to) VI—ito
— 00
This formula can be rewritten as

glt)) X)) -1 [ gt

N*(to) = — - . .
21 — ity 27mm7 X+(t)(t —to)

dt

N 2wi\/i—WZ (Xj(t) _ 1) tgftzo dt

1 /°° g(t) , Xt -1 o
2min/1 + it t —to V1 =ity VI—ity
—00

Since X (t)—1 and 1/ X *(¢) — 1 are the Fourier transforms of bounded
functions, the second, the third and the fifth summand in the right-hand
part of (3.1.20) are the Fourier transforms of continuous functions on the
closed right-hand semi-axis.

It is proved that the first and the fourth summand are the Fourier
transforms of functions, continuous on the whole semi-axis except perhaps
for the point £ = 0 where they have logarithmic singularities, i.e.

c
N
Hence it follows that the function o (e®;0) can be represented in the form
ce¢

‘\/g )

(3.1.20)

N*(t) = Ny (1) —

oy (e550) = po(e™ — £>0,
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or, if we return to the variable x, in the form
¢
oy(2;0) = p1(z) — —F0—=,
y( ) 301( ) xQ\/ﬁ

where ¢1(z) is a continuous function for > 0 that may have a logarithmic
singularity near the point z = 0.

In the particular case, where symmetric normal stresses are applied to
the cut edges, i.e. pi1(x) = pa(x) = p(x), ¢1(z) = g2(x) = 0, conditions
(3.1.11) and (3.1.12) take the form

Aq1(t) — Aga(t)

x> 1, (3.1.21)

_ BAa(t)t _ Ao(t)t
= Graa VO+rO) + s rm TN, 612)
Az (t) — Axa(t)
BrAq(t)t Ao (t)t

= T riAL ( +(t)+p_(t))—miT+(t). (3.1.23)

Hence it follows that

(A () — Ava(t) B + (As (1) — Asa()) o = L= P2)B2(H)

(14 4t)At
It is easy to see that the problem has only a trivial solution in the class
R%, ie.
TH(t) =0, p1(An(t) — Aia(t) = =B (A2 (t) — Asa(t)) .

In that case, equalities (3.1.22) and (3.1.23) are equivalent.
We introduce the notation

(A11(t) — A1a(t)) 615162 V14t = @7 (t);

V1I—it Nt(t) = ot ().
Now formula (3.1.22) takes the form
_AMVIF?
t(B2 — B1)Ax(t)

The solution of this problem is given by formulas (3.1.17) and (3.1.18),
where it is assumed that

itTT ().

o+ (t) (1) — P()VI—it, —oo<t<oo. (3.1.24)

g(t) = —Pt)V1—it.

n
If p(x) = Y axa®, where a; are constant values, we have
k=0

P

1 «— ag
t) = - .
®) \/27rkz:;)k+1+it

The function P(t) is a homomorphism all over the plane except perhaps for
the point w = (k+1)i, k=0,1,...,n.
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We rewrite equality (3.1.24) in the form

L AVI+ 2
\/7Z 1+k+lt> (B Ba)Ar ()t

Taking into account that

A()V1 + 2 XT(t)

(B — B2)A()  X-(t)’

V1—it <N+

we have

1—it J R aj o (1)
N*(t = .
X*(1) ( ()+\/27rkz_01+k+it> X ()
Applying the generalized Liouville theorem, we obtain
X (w) ( - ck ) 1 & ay
Nt(w) = oL . BT - . (3.1.26
(w) V1—iw kzzol—I—k—Hw ¢ \/27rkz::01+k+zw ( )

o (w) X@)(épj’lm +c). (3.1.27)

Since ®~(0) = 0, from (3.1.27) we obtain
oy
e

n
Multiplying expression (3.1.26) by [] (k+1+iw) and replacing w by (k+1)3,
k=0

we have
ag (k+2)i
L = —, k=0,1,...,n.
" V2w XH((k+ 1)i)
Thus the constants c¢q,ca, ..., ¢, are well defined.
Formula (3.1.26) implies
ap/(k+2
N*(w) = Z Lk
\/277\/1—111; Xt(i+ki)(k+ 1+ iw)
X+
Z LX) (5008
\/7 k+ 1 + w1 —iw
The function N*(¢) can be represented as
NT(@t) =N () + — (3.1.29)
—1

where N (t) is the Fourier transform of a continuous function on the closed
semi-axis & > 0.
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From equality (3.1.29) we obtain

c

22/ —1'

g 1 7 (k+1)nG(t) (3.1.30)
C——mkz_%ak\/k—FQexp(%/M_'_l)th),

— 00

oy(2;0) = po(x) + x>1,

where
AV + 12
(B1 = Bo)tAr(t)

Until now we have assumed that the stresses given on the cut are ab-
solutely continuous. As will be seen below, this condition is not necessary.
The solution of the problem can be constructed not only in the case of
absolutely continuousF boundary conditions, but also even in the case of
concentrated force.

Assume that the concentrated force P is applied to the point zg of the
cut, i.e.

G(t) =

Then
Pxgexp(itlnzg)

Ver

The substitution of this value into the boundary condition (3.1.24) gives

Pt) =

P 11—t it 1
NI =T = G()a— (1) — LoV =it explitnzo).
V2T

Since the free term of problem (3.1.31) increases at infinity, to solve the

problem we cannot apply formulas (3.1.17) in a straightforward manner.

Dividing equality (3.1.31) by 1 — it, we obtain

N*(t) @ (t)  Pxgexp(itlnmz)

V1—it 11—t V2m /1 —it
Since the function &~ (¢)/(1 —4t) is holomorphic in the lower half-plane

except for the point w = —i where it has a pole of first order, the solution
of problem (3.1.32) is given by the formulas

(3.1.31)

=G(t)

(3.1.32)

o X(w) T 7w Pz exp(it In )
N w) = - 2min/2m ! PO/X+ t)vV1—at(t— w)dt
X T (w)
VI—iw’

Imw > 0,
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o (w) PX(w)(1 —iw)xg exp (itlnxp)
w) = —
2miN/ 2w XJr V1 —it(t —w)

+cX (w), Imw<O0.

Hence we have

N*(tg) = Pxgexp(itlnzg)
2/2m

\/1—Zt0X+ t() Pl‘o / ztlna:o dt+CX+(t0) (3133)

2miN/2m X+ ()1 =it (t —to) VIi—it

Pxgeitinzo, /T 4%,
™ (to) = —
2 QWG(to)
PZCO ]. — ’Lto 'Ltlnxo _

dt +cX ™ (o). 3.1.34
2miN/2m X+ VI —it(t—tg) (to) ( )

Since &~ (0) = 0, from (3.1.34) we define the values

(o}

Pz exp(itInzgp) Pzxg

t— .
2miN/ 27 X+(t)v1—itt 2V2m X+ (to)

C =
Using the equality

p(itInxp)
\/%/XJF Vit \/7/1( )sign(—Inzo — y) dy,

where K(y) is the function whose Fourier transform is the function

(Xt (t)v/1 —it)~!, we obtain

(oo}
PIO / . Pl‘o
c= K(y)sign(—Inzg —y)dy — ——.
5 T”o (y) sign( 0—Yy)dy N0
Since Inxy < 0, we have
o) —Inzg 0o
[ K sign(-tuzo — y)dy - / Ky~ [ Ky
0 —Inzg

—Inzg —lnzg

=2 / K(y)dy — /K Ydy =2 / K(y 1(0)
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and finally we obtain
P —Inxo
To
c=——= K(y)dy.
V2r / W) dy

Let us introduce the notation
Xt =Xo(t)+1, [XT@®)] ' =X1(6)+1

If now we take into account that for sufficiently large values of |t
Xo(t) and X (t) have order O( I t‘) then, after elementary calculations, from

(3.1.33) we obtain

- itlnx s itlnx
N+(t0):_P$0\/1—Zto<€t 0 1 ettInzo

t— [ ———dt
2v2m VI=ity mi ) VTt (¢~ o)

X ztln:vo c
dt | + ———== + @, (to),
—l—zto / 1—2 VI—il 1(to)

where ®@;(tg) is the Fourier transform of a function ¢;(€) that is continuous
all over the whole axis except for the point £ = 0 where it may have a
logarithmic singularity.
Since the function 1/+/1 — it is the Fourier transform of the function
ot

@(&) = Vn
0 for &€ <0,

for £ >0,

the expression e @0 /\/T — it is the Fourier transform of the function (¢ —
Inzg), and the expression

o0
1 exp(itInzgp)
Iy 11—t (t - to)

— 00

is the Fourier transform of the function ¢ (€ — Inxg) sign €. Hence it follows
that NT(¢) can be written in the form

P.I‘ PJ?O X+ zt Inxg 1
N*t(tg)= 0 / dt+c | ———
(fo) (271' V—Tnzo 221 1 —it VI =it

+¢2(t0)7

ie.

K
1—1t

+ Oo(t).

Hence we obtain



Contact Problems of Plane Elasticity Theory ... 113

3.2. First Basic Problem of a Piecewise-Homogeneous
Orthotroipic Half-Plane with a Cut Perpendicular to the
Boundary Line

Let the domain S occupied by a piecewise-homogeneous orthotropic
elastic body be the whole plane of the complex variable z = x + iy cut
along the segment [0,1] of the Oz-axis. It is assumed that the left-hand
(Rez < 0) and right-hand (Re z > 0) half-planes are homogeneous and the
principal directions of elasticity coincide with the coordinate axes.

We denote by S7 and Ss the right-hand and the left-hand half-plane,
respectively. The stress and displacement components as well as the elastic
constants and other values related to S7 and S5 are denoted by the symbols
1 and 2, respectively.

Let the symmetric normal stresses

() = (@)™ =p(@), (7)) = ()7 =0

be applied the edges of the cut 0 < x < 1. Here p(z) is an absolutely con-
tinuous functions; the signs (+) and (—) denote respectively the boundary
values on the upper and the lower edge of the cut.

As is known, the stresses and displacements are written in the form

olf) = —2Re [BE®r(21) + V2 Uk (CE)]

o) = 2Re [®x(21) + Wi (Cr)], (3.2.1)
7iy) = 2ImRe [B®5(z1) + 7 Vi (Ch)],
ui = 2Re [Pk@k(z;c) + Tkwk(gk)], } (3.2.2)
v, = —2Tm [Byrien(2k) + mprtbr(Cr)]

where

Pp(2k) = @r(2k),  Yr(Cr) = Vi (Ch),

E E
4 k 2 k
—E_9 ) —= =0, 3.2.3
" +(Gk Yk JH +E; (3.2.3)
BE + vy Vi 4 vk
= —-—— = — k’: 1 2.
Pk Ek 5 Tk Ek: 5 )

+08yi, it are the roots of equation (3.2.3).

Using formulas (3.2.1), (3.2.2), we reduce the problem posed to finding
holomorphic functions ®(zx), Vr({x), k = 1,2, in the domains S; and So,
respectively, by the boundary conditions on the cut 0 < x < 1 and the
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boundary line z = 0:

2Re [0F () +

Im [, ®F () + 71

Re [B{®1(t1) + 77 %1

Im [1®1(t1) + 71 P2

Im [p1 1@ (t1) + 7171 ¥
Re [Bir1®1(t1) + 770101

=px), 0<z<1,
0,

B3®a(t2) + 73 Va(0
BaPa(t2) + 12 W2 (02)
p2fa®a(ta) + r272Va(02)],
Bira®s(t2) + ¥3p2P2(02)],

()
()
R

Im

s

(3.2.4)

5]

[ )

+
1
+
1

@

—

01

]]’ (3.2.5)

)

01
=Im

= Re

—

o (3.2.6)

o~ o~ o~ o~

)
)
)
)

[ i S R S|

01

where
ty =ifry, or =iy, k=1,2.

Due to the symmetry

ngllj) =v1(z;0) =0 for z > 1,
+ —
O %o, (w8 =0,
e N x> 0. (3.2.7)
Ovi _ Ouy _ 2%’ (eM)F = (6= =,
Oz Ox Ox Y Y
After substituting into formulas (3.2.7) the boundary values of the stress
and displacement components defined by equalities (3.2.1) and (3.2.2) we
have

Re [@f(x) — &7 (x) + U (2) — \1/;@): =0,
Im [51 (& (z) — @7 () + 7 (V5 (2) — \Iff(m>): =0,

Re [p1 (] () = @7 (2) + 71 (¥} (2) - U7 (2)] =0,

7] U+ X
Tm [ﬁlrl (@7 () = @1 () + 71 (¥ (2) = ¥y (2)) | = —i w :

This system has the unique solution

e @)
o7 (z) — @7 (z) ﬂl(]}l(x) ry)’ x>0, (3.2.8)
WT(%)—‘I’T(”J):im’
where
vt (z;0)
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Since f(z) = 0 for > 1, a general solution of problem (3.2.8) is written
in the form

1 [ )

[0)) =
(1) 2mif(p1 —r1) ) t—=
0

dt + Wl(zl),

X (3.2.9)

where Wi (z1) and Wa(22) are analytic functions in the half-planes Re z; > 0
and Re(; > 0, respectively.
Let us rewrite formulas (3.2.9) as

Wo(z
&) = PO ),
(3.2.10)
Wo(C1
w6 = 2wy,
71
where
[ 1)
t
W, dt.
ole) = m(p1 —11) /t—z
0
Now substituting the boundary values of formulas (3.2.10) into equal-
ities (3.2.6), multiplying the resulting expressions by 21” tdt t = 1y,

z = x + iy, * > 0, integrating along the imaginary axis and using the
fact that if ®(2) is holomorphic in the half-plane Rez > 0 (Rez < 0), then
®(iy) is the boundary value of the holomorphic function ®(—%) in the half-
plane Rez < 0 (Rez > 0), we obtain by means of the Cauchy theorem and
formula the system

BIW1(B12) + 77 Wa(m12) = B3@2(B2Z) — 73 Wa(—127)
= =1 Wo(=51%) + nWo(—17%),
BiWi(B12) + Wa(112) + Ba®2(B2Z) + 72 Wa(—727)
= Wo(=p1z) — Wo(—m7),
p1B/iWi(B12) + rimiWa(712) + p2Ba®a(—PaZ) + 72r2Wa(—7272)
=p1Wo(=p12) — riWo(-n7%),
BEriWi(B12) + 71 Wa(12) — Bira®a(—B2Z) — 1302 ¥2(127)
= —B1irWo(—P12) + p1 Wo(—11%).-
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Having solved this system for the functions Wi (8;2) and Wa(v12), we
have

ANP Agg ————
—= W Wo(— 3.2.11
Wi(prz) = NG Wo(=p12) — Ay o(—m1%), ( )
YANE] Ngg ———
W- 7W Wo(—v1Z 3.2.12
2(m2) = NG Wo(—p12) + Ay o(—m%), ( )
Rez > 0,
where
B m —B2 —Y2
1 1 1 1
A= 7
P - D ro B1B27172
riB1 p1y1 —Pare —72p2
—a; a; —p —7Y2
1 1 1 1
Ajj = b b, po r a;a;fBaye,
—cj ¢ —T2f2 —pave

ay=pB1, by =p1, c1 =111, ag =71, by =711, 2 =pi7.

Let us replace z in equality (3.2.11) by 21/, and z in equality (3.2.12)
by (1/71, and insert the value of Wy, we obtain

A12 ir 7 =N A22 7
Wl(zl) EWO(_Zl)_HWO(_Ezjl)’ (3213)
= S5 (-5 - S

It is easy to verify that 7/$A1; = 5§ Ags.
For 0 < < 1, the boundary condition (3.2.4) is equivalent to the
condition

Re {@f(m) + &7 (z) + U (z) + \Ill_(m)} = al(jl), x>0,
(3.2.14)
Re [@f(x) — &7 (z) + UF (2) — \I/f(x)] =0, z>0.

We have already used the second condition (3.2.14) and therefore the
functions ®1(z1) and ¥;(¢1) represented by formulas (3.2.9) and (3.2.13)
satisfy this condition for any f(z). It is also obvious that these functions
satisfy condition (3.2.5). Thus, to find f(x) it remains to use only the first
condition (3.2.14).

If we introduce the boundary values of ®1(z1) and ¥y (¢;) into the first
equality (3.2.14) and take into account the relation

Ei(r1 —p1) = (B1 — 1) (B + 1),
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then we obtain

1
— Ko M dt = KznolV(z), z>0, (3.2.15)

/ mt+ frx
where
K, = Aoy + A9 B1
A(ﬂl - ’)’1)
2
YA
Ko=——>—" |
2 ﬂ1A(’Y1 - 51)
Ky = (71 + Bi)1 b .
E,

If 0 < z <1, then 03(,1)(33) = p(x) and (3.2.15) is a singular integral

equation which also has a fixed singularity at the point z = 0.

Below it will be shown that at the point = 0 the singularity order of
the obtained equation can be any number less than 1.

Since the displacement must be bounded at the point z = 0, it is nec-
essary to require of the sought function f(z) to satisfy the condition

zf(z) -0 as = — 0.

Multiplying equations (3.2.15) by = and using the equality

1 1
[r@rae = [Shae— i) - vt =0, 5:2.10
0 0
we obtain
1 1
/ zf_(t; dt + /Q(%)f(t) dt = Kymaol) (x), (3.2.17)
0 0
where

Qr) = Ki(1+ )t + KaB1(B1 + 112) ' + Koyi (71 + Brz) L.

Let us substitute z = %0, y* = €f into formula (3.2.17). Then we have

0 [
_flef)et £ £( Vet df — Kamebo o) (pko
4 1— exp(& — €) d5+ZO Qe %) f(e*)et d€ = K (D (eb0). (3.2.18)

By the Fourier transformation of this equation we obtain

ST (t) = G(t)® (t) — K3iP(t), —oo <t < o0, (3.2.19)
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where
chnt + Ky 4+ 2K5 cos ut ﬂl
G(t) = =In
(t) Dot ;M -l
ot / 5(1+lt) de,
0
[ee]
_— )ef+) g
4
P t / f(l-‘th) dé—
\/ 27T

Since the function p(e€)ef exponentially vanishes as € — —oo, the func-
tion P(w), where w = t + 47, will be analytic in the half-plane Imw < 1.
Also note that

0 1
o 0) = = [ fe)etas = == [ sty
—00 0

Let us now consider the function
Gl(t) =chnt + K1 + 2K2 chz,ut
We prove that if the condition

< Ei
Vi e
Ly
is fulfilled, then
G1(0) >0, GY > 0.
It is obvious that if K5 < 0, then G1(t) > G1(0) and G1(t) > 0 on the whole
axis, and since G7 > 0, G1(0) > 0, for K2 > 0 we have
GY(t) = n* chrt — 2Kou? chiut > GY(0),

i.e. in this case the function G’(¢) increases and, at the point ¢ = 0, attains
its minimum. Hence it follows that the function G;(t) also increases and
attains its minimum at the point t = 0. Since G1(0) > 0, we have Gy (t) > 0.

The function G(t) has a first order pole at the point ¢ = 0, and a first
kind discontinuity at infinity because G(c0) = —G(—o00) = 1. The boundary
condition (3.2.19) can be rewritten as follows

o+ - .
(t). _ Gt D (1) Vi K3ZP(é) ’
Vit+i VJ1+t2 2 Vit+i
where vw + ¢ and v/w — @ denote the branches which are analytic in the

half-planes cut along the rays drawn from the points w = —i and w = 1,
respectively, along the direction x and which take respectively a positive

(3.2.20)
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and a negative value on the upper side of the cut. For such a choice of
branches the function v/1 + w? is analytic in the strip —1 < Imw < 1 and
takes a positive value on the real axis.

Since the relation w/+/w + ¢ is holomorphic in the half-plane Imw <
1, the relation ®*(w)/v/w + 7 is holomorphic in the half-plane Imw > 0,
G(t) # 0 and @~ (t) = 0, the function &~ (w)v/w — i/w will be holomorphic
everywhere in the half-plane Im w < 1, except those points which are zeros
of the function G(w) and lie in the upper half-plane.

Thus the considered problem can be formulated as follows: Using con-
dition (3.2.20), find a function ®*(w), which is holomorphic in the upper
half-plane Im w > 0 and vanishes at infinity, and a function &~ (w), which
is holomorphic in the half-plane Imw < 1, except the points w,, which are
the roots of the function G(w), vanishes at infinity and is continuous on the
real axis w =t.

The function Go(t) = G(t)t(1 +¢2)~2 is positive and continuous on the
whole real axis and Gp(o0) = Go(—o0) = 1 and therefore Ind G (t) =0

The solution of problem (3.2.19) is given by the formulas

o X(w )K3\/ +i P(t)
O (w) = / X OVt —w)’ Imw >0, (3.2.21)
_ o ng
= (w) = / o o meso (3.2.22)
o(w) = (w);(f)‘"’lp(w) , 0<Imw< 1, (3.2.23)
0o N 5 1
X(w) = exp (217” / Inft(t ;r_l)w Gt)] dt>, Imw # 0. (3.2.24)

Using the Sokhotski—Plemelj formulas it can be verified that
O (t—1i0) =D~ (¢t +140), Imw < 0,

and therefore the function @~ (w) is holomorphic in the half-plane except
the points wg, £ = 0,1,...,n, which lie in the upper half-plane and are
zeros of the function G(w).

One can prove that G(i) < 0, and since G(0) > 0, G(w) has at least
one purely imaginary zero wg = i1y, 0 < 79 < 1.

Let us rewrite the function ®*(w) as

¥rw) =~ UX+ tthl—i—z - /)ﬁ(l:f))(tHZ
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or as

Xtw)Ks [ P() »
rvw+i S XH()VE+i '

The boundary value ®F (¢) of the function ®; (w) is the Fourier trans-
form of the bounded function, i.e.

O (w) = B (w) +

" (to) = @F (to) + \/CtK% , (3.2.25)
where .
_ 1 P(t)
c= \/ﬁ/ X+(t)\/mdt (3.2.26)

The function P(t) is the Fourier transform of a real function and there-

fore P(—t) = P(t). Moreover, XT(—t) = X*(t), XE(—t) = +iX (1),
where XOi (t) = v/t £4. Based on the above reasoning, we easily conclude
that
Ot (—t) = —®T(t) and & (t) = & (),

i.e. ®*(t) is the Fourier transform of a purely imaginary function, while
®~(t) is that of a real function. Therefore the solution of the considered
problem can be obtained by the inverse Fourier transformations of the func-
tions @ (t), ®(¢).

Let us perform the inverse Fourier transformation of equality (3.2.25)
and go back to the variable x. By elementary calculations we obtain

cexp(Z i)
274 T o
mxiy/x —1
where ¢g () is bounded for x > 0.

It is easy to show that ce’™/* is a real number. In that case, if the force

applied to the boundaries of the cut is constant, i.e. p(x) = p = const, we
have

i) (2,0) = - (@), z>1, (3.2.27)

_ L p
Vor 14t

The substitution of this value into formula (3.2.26) yields

P(t)

B P 7 dt 1 P
ComVomi ) XT(OVEFi(t—i)  2V/mi XT(i)

Using formula (3.2.24) and taking into account that the integral density is
an even value, we obtain

C

oo

uft(e? 4 1)
2\57,”, exp<217T / Inft(t ;i)l Gt dt>. (3.2.28)

Thus we have obtained that the normal stress has a singularity of order 1/2
in the neighborhood of the cut end x = 1, as should have been expected.



Contact Problems of Plane Elasticity Theory ... 121

Let us now proceed to investigating the behavior of the function f(z) in
the neighborhood of the cut ends. Applying the same reasoning as above,
we see that in the neighborhood of the point = 1 the function f(x) is
represented in the form

C1

fx) =

+ o1 (), (3.2.29)
1—x
where the function ¢ (z) may have a logarithmic singularity in the neigh-
borhood of the point = = 1.

For 0 < Imw < 1 we easily obtain

O (w) = —2— + Bj (w), (3.2.30)

w—1

where the function ®; (w) is holomorphic throughout the strip 0 < Imw <
1, except perhaps the points wg = i, 79 < f < 1, at which it has a first
order pole, and for sufficiently large values of |w| it can be written in the
form
Bo(w) = o(i)
’ |w]

Multiply the function ®, (w) by e~%¥, ¢ < 0, and integrate the obtained
expression along the rectangle with vertices at the points (—N;0), (N;0),
(N,B), (=N, B). Applying the Cauchy theorem for a multiply connected
domain we obtain

N N
/ Dy (e dt = / Oy (t+if)e " dt 4+ c1e™ + (N, €),
“N N

where ¢(N,§) — 0 as N — oo. Thus we have established that for N — oo
the integrals exist in the sense of Plancherel [116]. By the Fourier transfor-
mation, from (3.2.30) we obtain

Mef eBE cqe70€
§£(e8) = i) e tE 1
esf(et) =, — + — Do (t +ip)e " dt + , £€<0,
where M is real, and
¢ = 2mi im (7 — i19) @~ (7).
T—T0
By formula (3.2.23) we can write
(i KaiPli
lim & (7)(r —irg) = (iro) + K3iP(imo) sin 7o,

T—T0 wsin g — 2Kopsh pry
and therefore

oo
Ks [ oy(z)x™™dx
1 0

- V2r wsinwr — 2Kopsh puro
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Thus we have

fx) =

+ 2P g (z) + —2 g0 = O™ ).

N
Ini V2r
Applying the properties of Cauchy type integrals in the neighborhood of the
ends of the open contour [76], it can be shown that near the points z = 0
and & = 1 the functions ®4(z1) and ¥;({;) have the same character as the
function f(x). It can further be shown that the functions ®9(z3) and Vo ((2)
and the stress components 01(,2), af) and ng)
the neighborhood of the point x = 0.

In the particular case of the problem to be considered below we see that
7o can take any value from the interval (0;1).

1. Assume that the domain S, is obtained from the domain S; by the
rotation of the elastic axis by an angle of 90°. Then we shall have

E2 ZEl, E2 =E1, Vo =V = E1 v, G2 :Gl.

The characteristic equation for the body Ss will take the form

have the analytic character in

*

Ef Er E
4, (BTG ET N 2, BT
’“‘+(G 15‘1”1)“+}31 0-

) G- e B

The roots of this equation are +i/vy, +i/f1, ie. By = 1/v1, 2 = 1/p1.
Furthermore

2 * 2

+v 1 FE 1 1 E +v
pzz_(M):_(fﬁ A 21*+V1):_M,

Ey i Ea Vi BT Ey

Ef B
i.e. po = p1. Analogously, we obtain
5 (1B +1)2

or

A= —(p1—11) oy , A =0,
232
-1
Ao = —Aoq = _ 2L
12 21 (pl 7’1) B
2.2
-1
Ky = (A1ay1 + A1 81) (b1 — m)A = (’51157114‘1)2

25171—1:m_\/Ef
Bim+1  VE +EF’
. VB~ BT\ 1
G(t)—(chwt+m+m) ——.

Hence it follows that if E; < Ej, then

1 VE - Ej\ 1
TO:;arCCOS (m) <§
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If Bf < Ey, then

1
79 = 1 — — arccos
T

(B
E1 +\/E} 2"
If Ef = E4, then

7—025.

The latter fact corresponds to the case in which the cut plane is homoge-
neous.

The considered example shows that the more rigid the left-hand half-
plane is, the lower the concentration degree is near the end which is on the
boundary line.

In the case in which the cut edges are under the action of the constant
load p, the stress o, near the right-hand end of the cut be represented in

the form
cV2i

oy(x,0) = — + z), ©>1,
y( ) sz\/m 4100( )
where () is continuous on the closed semi-axis > 0 and
o (chwt+K)t
1 1 ln S o
c=——exp| — — / 7‘Shm‘t2+1 dt
V2 2 241
or
17 (14
c= il exp| — — / 711( Ch’rt)dt ,
V2m 27 241
o0
1 / | tchrt dt
co=exp| — — n
0T P\ Tar (1+ ) 2shnt|2+1)

VE —VEL
K=-Y———.
VE; +VE!

For the homogeneous body, K = 0 and ¢y = ¢, i.e. ¢g is the concentra-
tion coefficient corresponding to the homogeneous plane.

When Ef > Ey, K > 0 and In(1 + Clﬁt) > 0, while when Ef < Ejy,
K < 0 and In(1 + c}f(m) < 0. In the former case ¢ < cg and in the latter
case ¢ > ¢op.

This example shows that the concentration degree near the left-hand
end of the cut may be an arbitrary number from the interval (0,1). This
number takes a value greater than a half when, as compared with the right-
hand half-plane, the left-hand half-plane is less rigid along the y-axis, and
takes a value smaller than a half when, as compared with the left-hand half-
lane, the right-hand half-plane is less rigid along the y-axis. In the former
case, the coefficient is greater than that of the homogeneous body, while in
the former case the coefficient is smaller.
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2. Assume that the bodies S; and Ss are isotropic, then 8; = v =
v9 = P2 = 1. The characteristic equation will have the multiple roots
and therefore formulas (3.2.1), (3.2.2) will not be valid, but the expressions
not containing complex potentials will remain in force if we assume that
v1 = 2 = 1 and pass to the limit as f; — 1 and B — 1.

In particular, if we pass to the limit in equation (3.2.17) as B — v — 1,
then, after evaluating the indeterminacy, we obtain

l/1-« %1704%2) 4 2a—-1) 22—x
=_ 1
Q) Q(a—i—%l 1+a+ (@+D™+ a+x (1+x)3
where
o=t L 3TV
2 1+

The coefficient of the boundary value problem (3.2.19) takes the form

a+2e1 1+ a+

chrt + % ( 11— + %1—a%2) + 2(a—1) t2
shrt '

For isotropic bodies, this problem is studied in [54].

3.3. The Contact Problem for Piecewise-Homogeneous Plane
with a Semi-Infinite Inclusion

We consider a piecewise-homogeneous elastic plate stiffened with a semi-
infinite inclusion under the action of tangential stresses with intensity 70 (z).
The problem consists in defining contact tangential stresses 7 (z) along the
contact line and in establishing their behavior at singular points.

In mathematical terms the problem reads as follows: let the elastic body
S occupy the plane of a complex variable z = x + iy, which, along the line
L = (-0, 1), contains an elastic inclusion with elasticity modulus Ey(z),
thickness ho(x), the Poisson ratio vy, and consists of two half-planes S; =
{z|Rez>0,2¢ /¢ =[0,1]} and Sy = {2 | Rez < 0, z ¢ f5 =] — 00,0]}
that are sealed together along the axis £ = 0. The values and functions
related to Sy will be marked by the index k (k = 1,2), and the boundary
values of other functions on the upper and lower edges of the inclusion will
be marked by the signs (+) and (—), respectively.

On the interface boundary we have the following conditions of continuity

Ug) = o’ff), Tgf.zl}) = Tg/), Ul = U, V1 =Vs. (3.3.1)

On the segment ¢; we have the conditions

ul® (z r
d ,ziw( ) _ E(lsv) {P061k — (—1)k+1/ [7(t) — Tg(t)] dt}, (3.3.2)

af

x € Uy, k=12,
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where uéo)(:z:) are horizontal displacements of the inclusion points a; = 0,

as = —o0, E(x) = W, while the equilibrium conditions for separate
0
parts of the inclusion have the form
0 1
/ (ra(t) = 73" (1)) dt = Py, Py~ / (n() —n" (1) dt =P, (333)
—o0 0

where Py and P are the unknown axial stresses at the points x = 0 and
x = 1, respectively. From the Kolosov—Muskhelishvili [77] formulas

z

or(2) + 70 (D) + () = i / (X 1 0¥, ) ds = Ry (2),

e
Rpponr(2) — 29 (2) —(2) = 2up(ur +ivg), Vi =3 — 4y,

we obtain

(3.3.4)

/Tk(t) dt =ifi(t),
Tk

Ui () — Yy (2) = —i(Ry fro (@) + 2 fi(2), z € by, k=1,2.
For z € S a solution of these problems has the form

1 fe®)

:27r t—=z
Ly

L[ Ry fe(t) +tfi(t))

Com t—=z
Ly

=qi(2) + Qr(2), 2z € Sk,

where Wi (z) and Qg(z) are analytic functions in Sj.
By the introduction of the function

wi(2) = =205 (2) + Vi(2) = ne(2) + Q(2), (3.3.6)

) — o () = — b
Spk(‘r) @k(x) 1+ R,

vr(2) dt + Wi(z) = w(2) + Wi(z2),

(3.3.5)

Yr(2) = dt + Qr(2)

where
me(2) = —2wi(2) + qr(2), Q(2) = —2Wi(2) + Qr(2),
equalities (3.3.4) take the form

or(2) + (2 + %) ¢}, (2) + wi(z) = Ri(2),

Neor(2) — (2 +2) ¢, (2) — wi(2) = 2 (ug + ivg).

After writing conditions (3.3.1) in terms of these functions and applying the
singular operator

—100
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to the resulting equalities, for the functions W7 (z), Q1(z), Wa(—%2), Q2(—2)
we obtain a system of four equations whose solution has the form

Wi(z) = e1m(=2) + raws(2),

01(2) = hiwi (=2) + mana(2),
Wa(=2) = eama(2) + rwi(—3),
Qo (—Z) = howsa(2) + mym (=32).

Using these relations, from formulas (3.3.5), (3.3.6) we find the following
expressions for ¢k (z) and g (2)

gok(z):;r/{tiz—:’fer(Hz) ]f’“()

Ly
_ ik/tffc(t) gt "3k [ Jar(®) "
27 t+z 2 t—=z
Ly [
_ 1 —Ng hy, ek(l-i-Nk)Z 2ep.22
zMZ)‘%/L,ertJerr t+2)2  (t+2z)3 Tult) dt
o (3.3.7)
1 -1 erz , e
+% L—Z—i—(t%—z)Q}tfk(t)dt
Ly
1 —maN3_g | (r3—p —m3_k)z
+27r [ t— 2z + (t—2)2 Jo-r(t)dt

_ tfh t
fm“/ Bl gy 1o,
2T t—=z
L3k
where
O el B _ R +1) m _ 2Rt 1) L _ Nopn —Rupp
1 Al ) 2 Al ) 2 Al ) 2 Al )
Rl _ (N +1) m _ m(Re+1) b = Nz —Rop
2 AQ 3 1 AQ 3 1 AQ ) 1 AQ )

Ay =Nypp +p1, Ay =RVouy + pa.
If we substitute relations (3.3.7) into the equality

_ b

ug(2) S Re |Rppr(z) — ZW - ’L/JT(Z)
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take the limit as z — = £ {0, then we come to a system of singular integro-
differential equations

E(x) [T28y Nley+hy  deit2 |~
(93)/[ L, 1e1 + hy €1 }f{(t)dt
47TIU,1

0

t—ux t+x (t+x)3
E(JE) / |:7‘2N1 + m2N2 2(m2 — Tg)t

4w t+x (t+z)?
0

} fa(t)dt

_ -+ N)fi(z) + Ti(x), € (0,1),
E(z)uy(z), z € (1,00),

E($) 7 2N, N%ez + ho 462t2 ~

— - t)dt
A7 o t—x+ t+x (t+x)3 f2(t)
0

E(@) [ [rde+m  20mi —rit] =
+47ru20/[ t+a (t+ z)? }fl(t)dt
= (14 Ro)falz) + Ta(z), € (0,00), (3.3.8)

where

~ {fl(x)v @ € (0,1), fo(@) = fo(~a).

i) = 0, x € (1,00),

The functions T3 (z) and T5(x) depend on the known value 7-,50) (z) (k=
1,2) and on the unknown constants Py and P, i.e.

Ty(z)=Py+ [ 72(t)dt — g1(x), To(z)= [ 79(—t)dt — go(x),
/ /
_ E(z) /
g1(x) = o (N = Da(z) — za'(z) — 6(2)),
ga() = 5 (%2 = 1)8(-a) ~ 26/ (~) 2 (-2),
where
e1 1 e1N T
a<x):cl{(1+1:)2 1_x+11;}+02;7
5(30) _ Cl T_Q + 02 (1 —SZNZ) ’
R Gt A

)

Nl hl 61(1 + Nl) 2€1£C } mQNQ
— C’Q

l—z  1+2 (1422 (1+z)3 x
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TP+ Py— P Po+ Ty
T ra ) T T 2n(1 Ry

1 0
T{’:/T{)(t) dt, T = /Tg(t)dt.

0 —o0

To solve system (3.3.8) when the inclusion rigidity changes by a linear law,
ie. E(x) = hlz|, z € (—o0,1), after substituting ¢ = e¢ and z = €¢ into
(3.3.8) and making Fourier transformation [42], we obtain a system

G1(8)F ™ (8) + Ga(s)®(s) = —(1L + Nq)F~ (s) + ¥ (s) + Pi(s),
G3(8)P(s) + G4(s)F~(s) = —(1 4+ Na3)P(s) + Pa(s), (3.3.9)
§=89—1, >0,

where

5

0 oo
Fi(Z) = 127'('_/ ﬁ(ef)ei& df, @(Z) _ \/12?_/ ]?2(65)61'52 df,

o0

+o00 0
\I/+(Z) = \/% / u/(ef)eiﬁz d& Pl(z) = \/% / Tl(eﬁ)eiéz df,

0 —00

+oo

Pg(z>=\/%r [ ey ag,

Gi(z) = sh(lwz) :2N1 ch(rz) + Niey + hy — 2e1i2?(z + z)},
Ga(z) = sh(lwz) i(rgNl + maRy) + 2(mg — 7“2)22},
Gs(z) = sh(lﬂ'z) :2N2 ch(rz) 4+ N3eo + hy — 2e2i2”(z + z)} ,
Ga(z) = sh(lwz) :(TlNg +miNy) +2(my — 7”1)22]

If from system (3.3.9) we eliminate the function

Py(s) — G4(s)F~(s)

2(s) = G3(s) — (1+Ny) ' (3.3.9)
then we obtain
G(s)F™(s) = U (s) + H{s), (3.3.10)
where
PQ(S)GQ(S)

H(s)=Pi(s) — G (™)
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It is easy to show that the function G(s) — 38y +1 = « as t — +o0,
2
G(s) > 1=, =8 (8<0)ast— —o0, G(t) = 280 g0(1) > 0.
Condition (3.3.10) can be rewritten in the form

VIt t2 &) tF~(t)

t Vt—i

where under v/z + ¢ and v/z — ¢ we understand the branches which are ana-

lytic in the planes cut along the rays radiating from the points z = —¢ and

z = 1 in the direction x and which take respectively positive and negative

values on the upper edge of the cut. With such a choice of branches, the

function v/1 + 22 is analytic in the strip —1 < Im z < 1 and takes a positive
value on the real axis.

Thus the posed problem can be formulated as follows: using condition
(3.3.11), find a function ¥*(z), holomorphic in the half-plane Im z > 0 and
vanishing at infinity, and a function F~(z), holomorphic in a half-plane
Im z < 1 except for the points which are the roots of the function G(z) and
the poles of the function H(z), vanishing at infinity and continuous on the
real axis.

A solution of problem (3.3.11) has the form

ViTiX(2) [ 1 [NVEFIH(®) ¢
72 (2m 7X+(t)(t—z) dt+2—l>’ Imz<0,

=UtVEt+i+ HOVE+i, (3.3.11)

F(2)=

+oo
X)) (1 [ VITIH®) c (3.3.12)
F=(2)={U"(2)+ H(z)} G"'(2), 0<Imz<]1,
where
. +OO 2
X(z):exp{zj;; / i fg("t(? 3 dt}, Golt) = ”:t 0}

The constant ¢ is defined from the condition F'~(0) = O(1),

_ H(0) 1 [ HWiTq
= +277_/ X+()t

N dt.
It is easy to show that F~ (x4 40) = F~(z — i0) and therefore the function
F~(z) is holomorphic in the half-plane except for the points which are the
zeros of the function G(z) and the poles of the function H(z) in the upper
half-plane. Our aim is to investigate the behavior of contact stresses near
the singular points z = 0 and z = 1. It can be shown that in (3.3.12)
F~(z) = 2= + F; (z), where Fj (z) is the Fourier transform of a con-
tinuous function fo(z) on the semi-axis except perhaps for a point < 0
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where it may have a logarithmic singularity. By the inverse transformation
we obtain 7 (z) = O((1 — x)"*/?), x — 1—.

Let us now study the behavior of the function 7 (z) near the point z = 0.
The poles of the function F~(z) in the domain Dy = {z : 0 < Imz < 1}
are the zeros of the functions g(z) = (G1(2) + (1+81))(G3(z) — (1 +Ng)) —
G2(2)G4(2) and ¢1(2) = G3(2) — (1 + Ry).

Assume that itg is the smallest modulo a simple zero of the functions
g(2) and g;(2) in the domain Dy. Then, applying to the function e*¢*F~(z)
the Cauchy theorem on residues for the rectangle D(N) with the boundary
L(N) consisting of segments [— N, N|, [N 4+i0, N +i5], [N +i80, —N +i50],
[N + 8y, —N +i0], 70 < Bo < 7¢, (g9(i) = 0 or g1(it¢) = 0, we obtain

N
/F*(t)e*iftdt: /F*(t)eﬂftdt
L(N) -N

N

— ePos / F~(t+ Zﬂo)e_i&t dt + p(N, &) = Kleg"—", (3.3.13)
°N

where p(N, &) — 0as N — oo. Passing to the limit in (3.3.13) and returning
to the old variables, we obtain

m(x) = (14+R)fl(x) = 1+ R)Kz™ "t + 02, 250+,

Analogously, defining the function ®(¢) by (3.3.9") and making the in-
verse Fourier transformation, after some calculations we obtain

() = (L +R) fi(2) = O@"™Y), @ —0-,

here iug (po > 7p) is the smallest modulo a simple zero of the function g1 (2)
in the domain Dj.

Suppose the functions g(x) and g;(z) do not have simple zeros in the
domain Dgy. In that case, contact stresses may have a singularity of loga-
rithmic type at the origin (if for instance the point z =i is a double zero of
the function g(z) or g1 (z)).

It should be noted that the obtained system of integro-differential equa-
tions (3.3.8) reduces to one equation in the following quite interesting cases:

1. When a semi-infinite inclusion has constant rigidity or rigidity
changes according to a qualitative (nonlinear) law and reaches the
interface between two materials, for the Fourier transform of the
sought functions we obtain a boundary value problem of the theory
of analytic functions with shear for a strip (this is a Carleman type
problem).

2. When the stiffness of a semi-infinite or finite inclusion changes by
a linear law and reaches the interface of two materials, for the
Fourier transform of the sought function we obtain an algebraic
equation or a boundary value problem of linear conjugation.
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The application of the theory of analytic functions and integral trans-
formations makes it possible to obtain effective solutions of the above-stated
concrete problems.



CHAPTER 4

The Problem for Doubly-Connected Domains

4.1. Solution of the Third Basic Problem of the Elasticity Theory
for Doubly-Connected Domains Bounded by Broken Lines

Let on the domain S an elastic body occupy a finite doubly-connected
domain z = x 4 1y bounded by two mutually disjoint closed convex broken
lines Lg and Lq. Also assume that Lg is the external and L; the internal
boundary of the domain S. Let the origin lie within the contour L.

Denote by Ay, As, ..., Apand Apyq,. .., Apqq the vertices of the broken
lines Ly and Ly, respectively, and by 'y = ApAgks1 the their sides for
k= 1327 e ap+ q, k #pvp—’_ q, Fp = ApAlv Fp+q = AP+qu+1~

We will consider the following problem.

Given on the boundary L (L = Ly U L) the tangent component T of
acting external forces and the normal component v, of the displacement
vector, find an elastic equilibrium of the domain S.

Assume that v/,(t) and T'(¢) belong to the class Hy for the nodes Ay,
k=12,...,p+q.

The third basic problem for multiply connected domains bounded by
smooth contours is investigated in [108].

The third basic problem for domains mapped conformally on the circle
by means of rational functions is solved in [74], and for the polygon - in
[89]-[93].

Using the Kolosov—Muskhelishvili method [77] we can reduce the prob-
lem to finding two analytic functions ¢(z) and ¢(z) of the complex variable
z = x + iy in the domain S by the following conditions on L:

Re {(%g@l(t) —th (1) — wli(t))e_m(t)} = 2uv,, tE€L, (4.1.1)

Re [(801(15) + it (1) + q/)l(t))e*ia(t)}

=Ree " [@ / (N(to) + iT (to))e"* (") dSo} +¢5, (4.1.2)

tj

telL; j=0,1,

where s and p are elastic constants, sg is the arc abscissa of the point g
counted from the point ¢;, j = 0,1; co, c1 are some constants, «(t) is the
angle between the external normal n and the positive direction of the z-axis.

132
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It is obvious that «(t) is a piecewise-constant function, i.e. a(t) = ax on
Ty, E=1,2,...,p+ q. Without loss of generality it can be assumed that
T>ap > >a,>-—mand 0 <oy < appo <-o- < pyg < 27

The constants cg, ¢; are a priori unknown; it is assumed that ¢; = 0,
co = A+ iB, where A and B are the sought real constants.

Since «(t) is piecewise-constant, the right-hand part of equality (4.1.2)
can be rewritten in the form

t ¢

Re efia(t)i /(N + iT)eia(t) dgo = — /T(to) COS [Oé(t) - Oé(to)] dSO + O(t),
t; t;

where

C(t) = /N(to) sin [a(t) — a(to)] dso

k
:Z/N(t)sin[ak—ar]ds:Ck, k=1,2,...,p,

T:1F7-

t
C(t) = / N (to)sin [a(t) — a(to)] dso
Ap+1
k
= Z N(t)sinjag —ap]ds=Ck, k=p+1....,p+q.
r=p+lp

From this we see that ¢; = ¢,41 = 0.
As is known [77], the functions ¢1(z) and 91 (z) are written in the form

X +1iY

901(2) = 502(2) — m In z, (4.1.3)
D) = bale) + 5 (114

where 2(2z) and 12(z) are holomorphic functions in the domain S, and
(X,Y) are the projections of the principal vector of external forces applied
to L1. These constants are a priori unknown and are to be defined together
with the functions s (2), 1¥2(z2).

Thus the problem reduces to defining the holomorphic functions
p2(z) and o(z) in the domain S, and p + ¢ — 2 real constants
€2, Cp,Cptrs -, Cprqy A, B, X, Y. As we will see below, the constants
¢p and c¢p44 can be expressed through the constants X and Y.

Indeed, if we multiply the equality

X +iY = / (N +iT)e"™® ds

Ly
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by e~**P and equate the real parts to each other, then we obtain

Cp=Xsina, — Y cosay, + /T(t) cos (o, — a(t)) ds. (%)
Ly

From the equilibrium condition we have

/(N +iT)e M ds = — /(N +iT)e*W ds = —(X +1Y).
LO Ll

By transformations analogous to those above we obtain

Cptrq=—Xsinaprq +Ycosaprq + /T(t) cos(Qprq — a(t))ds.  (xx)
Lo

Thus it remains for us to define only p+ ¢ constants and the functions ¢s(z)

and 19(2).
Summing the boundary conditions (4.1.1) and (4.1.2) we have

i C(t) et
Re [p1(t)e M) = f;(t) + ) + Re %+1j , te Ly, (4.1.5)
where
2 1 t
i
i) = ) vp(t) — ] T(to) cos [a(t) — a(to)] dsg,

tj
J=0,1, t1 = A1, to=Apt1.

As is known [52], any doubly-connected domain is conformally mapped
on a circular ring r < |¢| < R, where r can be chosen arbitrarily and R is
defined uniquely for this domain.

Assume that the function z = z(¢) maps conformally the domain S on
the circular ring D = {1 < |{| < R}, the contour L; transforms to the
circumference || = 1 and the contour Ly to the circumference || = R.

Denote by aj the points of the boundary of the circle D which corre-
spond to the points Ay of the boundary of the domain S, and by ~; the
arcs corresponding to the segments 'y, k =1,2,...,p+q.

REMARK. The problem of finding the functions reduces to the homo-
geneous Riemann—Hilbert problem for the ring with piecewise-constant co-
efficients. The index of the problem z = z(¢) is equal to zero and p = 1.

As has been shown above, this problem has a unique nontrivial solution
given by formula (1.7.27).
Let us introduce the notation

e1(2) = 01(2(¢)) = (¢),  ¥1(2) =1 (2(¥)) = ¥(C), (4.1.6)
Then, using (4.1.3) and (4.1.4), we obtain
P(C) = $0(Q) ~ o g, (11.7)

- 2n(1 + )
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(X —iY)s

In¢, (4.1.8)

where the functions ¢g(¢) and 1o (¢) are holomorphic in the ring D.
By the latter equalities the boundary condition (4.1.5) can be rewritten
in the form

o(0) + €7 (0) = 267 fo(a), |o| =R, (4.1.9)
0(0) + ¥ go(0) = 26 f3(0), |o] =1,
where
ﬁ(U) = 20417_;,_]9 - 27T<k - 1)7 (S Yp+k> k= 1a25 -4,
_ c(o)
o) = folt(o)) + =2
X +1iY
+Re [e72(@) A Ino|, lo| = R,
27(1 + »)
(0) (4.1.10)
c(o
o) = (o)) + =2
X +1Y
+Re e~ A Ilnoc+ A+iB||, |o]=1.
27(1 + )

Since it is assumed that the displacement vector projection on the
z- and y-axes is continuous and that N + ¢T" is integrable, by the
Kolosov—Muskhelishvili formulas we obtain that the functions o(z) and
Zh(2) + 12(2) are continuous in the closed domain S = S + L. Hence
it follows that a solution of problem (4.1.9) can be sought in the class of

bounded functions, i.e. in the class h(a1;. .., apyq)-

It can be easily shown that the index of problem (4.1.9) of the class
h(a1;...,ap+q) is equal to 3¢ = —g, while by virtue of formulas (1.7.24) a
solution of the class hpy, has the form

9(Q)X(R¢
po() = LOXIO)
i
2

Ky (2) fa(0) K ($) fs(0)

—————do+ ) | —=Z———d D, (4.1.11
/ X(Ro)o ot / X(Ro)o o cED, )
E() 21

where [ = Iy Uly; lp and I; denote respectively the circumferences |o| = R
and |o| = 1;

R? 1 1 1 Z\"
K = _ I
A(2) R22+)\lz+>\nz>:lR2")\(R2)

A
1 R?nzn — for N#£1
+X Tz)\-i- 1—A or A1,

R = 0 for A=1.

n<-—1

(4.1.12)
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The function g(¢) defined by (1.8.5) can now be represented as

a9 opq ok
g(¢) = e (€ —a1)(¢ —az) (C - al) H <Cc—ak+l) , ¢l > 1.

aiC ¢—ay oot ag

Under the expression [(¢ —ay41)/(¢ — ax)] */™ e mean a holomorphic

branch on the plane cut along the arcs ~j, for which

Jim SO g
(—o0 C—ak

It is known that A can be given in the following manner

27
A= exp (1 /m G(e) d@),
2
0
where '
G(J) = ezla(g)g(RU)W; (U)
g(Ro )Wy (R?0)

. In that case, instead of the function
Wq(Q) = (¢ — Rt )(Ele™”

we can take the function

q ,
H ¢ — GuR) I
where

2m(k — 1
Ckzexpi(ao—&—ﬂ-()), k=1,2,...,q, 0<6y<2m,
q

X(R¢) = €W (RC) exp [217”(,[1 K, (T) In (CJ(;)> Cﬂ (4.1.13)

2m
1 0
= 2 / o=e".

It can be easily verified that W ({) satisfies the condition

AN Wi (<) for even g,
) W, (¢) for odd g.

As has been shown in § 1.8, the function X (7) satisfies the condition
RN X(¢) for even ¢,
X <> ={ ¢ (4.1.15)
¢ ~5X(¢) forodd g
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With (4.1.14) taken into account, it can be easily shown that |A\| = R
for odd ¢ and |A| = 1 for even ¢ and that, in the latter case, {y can be chosen
so that |\ # 1.

Since the function W (R() has first order poles at the points ¢ = (x,
k= 1,2,...,q, for the function ¢o(¢) to be bounded it is necessary and
sufficient that the condition

2, / o (R2<> (ic%ﬁ);( ki

— lim KA(E)fg(U)

¢~ ) X(Ro)g(o)o
£

do=0, k=1,...,q (4.1.16)

be fulfilled.

Since the expression f*(0)/X(Ro)g(c) vanishes at the points (i, we
can pass to the limit under the integral sign in formula (4.1.16) and thus
write the solvability condition of problem (4.1.15) in the form

R2(, fa(o) do M -
/KA( o ) X(Ro)g(o) o +Z (Ra)g(g)gd =0, (4117)

1

k=0,1,...,q.

Substituting here the value f*(o) defined by formula (4.1.10), we obtain
a system of linear algebraic equations

q+p
> aXj=dy, k=1,2,....q, (4.1.18)

where ay; are well-defined constants independent of the functions fy(z(0))
and f1(z(0)), and dj are constants depending on these functions:

] R\ fi(t(0))e) do
dk?m’l [ 9(%7) Xiwonaior o

lol=1

) )

lo|=R
X;=Cj for j=2,3,....,.p+qg—1 and j#p,p+1,
Xi=X, X,=Y, Xpp1=4, Xp4q=8B.

Let us now show that ax; and dj are real numbers. For this it suffices
to show that for real f*(o) the left-hand part of equality (4.1.17) takes a
real value or it becomes real if multiplied by some complex numbers.
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We rewrite the left-hand part of equality (4.1.17) as follows

L[ g (B felo)e™) do
2mi /\< ) X (R?0)g(0) o

lo|=1

1 R2<k fg((f) do
C2mi K ( o X(Ro)g(o) 0 D{Gk).
lo|=1

Passing in this expression to the conjugate values and then using the
following properties of the functions K, (¢), X(¢) and g(¢), we obtain

2
- Ky (R Ck) for even g,
R, o
() = - o
UKA( k) for odd ¢,
C o
MK, <R<k> for even g,
(%) "
Ky [ 22) = - e
g o k
A m K)\ <0’) for odd q,
X(Ro) = — X(Ro)  for even g,
cX(Ro) for odd g,
X (o) for even g,
X(R?0) = — o

X (o) for odd g,

=

g(Ro)
g(o)

_ 2t

X(R?*0) = X(0)\e*™@ and g(o) = e*?g(0),

we have

DG) = GeD(¢,)  for odd g.

Thus, when ¢ is even, (4.1.18) is a system with real coefficients, and
when ¢ is odd, system (4.1.18) can be made such if we multiply it by C;m.
In the sequel, we will show that there exists a unique value of the
constants Xy, k =1,2,...,p+q, that satisfies system (4.1.18) or conditions

(4.1.17).
The function K;({/o) can be written in the form

RC\  Ro o 0 £
Kl(a)_RaC+JC+K1(U)’1<C|<R’

where K{((/o) is analytic in the ring 1/R < |{| < R?. Therefore X (R() is
analytic in the ring 1/R < |¢| < R except for the points ¢ = (j, continuously
extendable on the boundary |(| = R, the boundary value X (R,) satisfies

—_— {D(Ck) for even ¢,
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the Holder condition [76] on the circumference |o| = R and vanishes at the
points aj by order less than one.
Let us write the function K (¢/o) in the form

¢\ o R?%c of¢
K,\<U>—UC+R20§+K,\(J),1<C|<R,

where K{(¢/o) is analytic in the ring 1/Ry < [¢| < R? for 0 € I. Then
©0(¢) can be represented as

_ 29(Q)X(RQ) fr(0)e)
eo(¢) = 271 /X(RU)Q(U)(J 0 do
@)K (F)e )
+l/ X % (4.1.19)

The second summand in the right-hand part of equality (4.1.19) is holo-
morphic in the ring 1 < || < R and continuous in the closed ring D. The
first summand is a Cauchy type integral whose density satisfied the Holder
condition on every open arc 7. Therefore by the Plemelj—Privalov theo-
rem [76] the function ¢(¢) is continuously extendable on the open arcs 7y
and its boundary value satisfies on these arcs the Holder condition. If we
now use the results of [76, § 26], then we will satisfy ourselves that ¢o(()
is continuously extendable on the whole boundary and its boundary value
satisfies on it the Holder condition.

Since the function z = 2({) is continuous in the closed ring D and
its boundary value satisfies the Holder condition, the function ¢3(z), too,
satisfies this condition in the closed domain D.

Let us now study the behavior of a derivative of the function ¢g({) near
the ends ay. It suffices to consider only the end ( = a;.

We rewrite equality (4.1.19) as follows

©o(¢) = X(RQ)ps3(¢) + g()pa(C), (4.1.20)

where

wz(a)

CT

_ d
2m / X(Ro)g(o)(o —¢) "

f KO R? C) ia(o) do
2772 / g(o) o

a(C
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Near ¢ = ay, the derivative of the function ¢(¢) is representable as

o ap —as

1
+ T ¢ —a

p—1

W ar(ar —ary1) (-
O T € ]

Since the function () is analytic near the point aq, after differentiating
equality (4.1.20) we satisfy ourselves that near the point ¢{(¢) the derivative
ay is representable as

p
C—a\ 7
(€)= X(RQ () + (@) (£ ) T (.1.21)
where M (() is an analytic function in the neighborhood of the point ( = a;
and bounded at the point a;. In the sequel, the function possessing the
above-mentioned properties will be denoted by M ().
Let us introduce the notation

?(¢) = (¢ — a1)ps(Q). (4.1.22)
We can rewrite ¢({) as follows
F(o)(o — a1 g F(o
= 27”/ 0 —¢ 7/7 (4.1.23)
!

where o)

B f*(o.)eza o

0= "Xre)

Differentiating equalities (4.1.22) and applying the results of [68], we
obtain

¢'(¢) = ¢3(C) = M(¢)g(¢),

¢'(¢) —w3(Q) _ M(Q)g(¢
(o) = 2O =0 _ MQal0)
C—a C—a
Therefore in the neighborhood of the point ¢ (¢) the derivative ¢ = a;
is representable as

h(Q) = M(Q) (g_)

If we now use the equality
S0 O O xtiv
! W(C)  W(¢)  2m(l+ )W (¢)
take into consideration the fact that in the neighborhood of the point aq,
w'(¢) can be represented as

W' (€) = wo(¢) (¢ — )+,
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where wp((¢) is bounded in the neighborhood of a1 and wp(a1) # 0, then we

have 0
Q) = o
ai

As is known, near the point A; the inverse function z = z(¢) of ¢ = {(z)
is written in the form

(4.1.24)

C—ay=Q(2)(z — A1,

where €(z) is a nonzero function bounded near the point z = Ay, 07 is the
value of the angle with the vertex at the point A;.

From the above reasoning it follows that in the neighborhood of the
point Ay, ¢} (z) satisfies the condition

M
/
lp1(2)] < Z= Ay

It is obvious that this representation holds for any point Ax, k =1,2,...,p.
Therefore, in the neighborhood of the point we have the inequality

M
/ -
|(/71(Z)| < |Z _Ak|ﬂ./5k )

where §; > 7 is the value of the angle with vertex at the point Ay.
By an analogous reasoning it can be shown that the representation

£1(2)| < MIn|z — Ay

holds near the points Ax, k=p+1,...,p+gq.

Using the Plemelj—Privalov theorem we prove that the boundary values
of the function ¢} (z) belong to the class H* on L1, and to the class H. on
Ly.

If we assume that the second derivative of the function f;(t), j = 0,1,
satisfies the condition Hy, then by a reasoning analogous to that above it
can be shown that the boundary values of the function % (z) belong to the
class H on the interior segments 'y, whereas near the ends of the segments
they satisfy the condition

M
M) < ————, 1<86<2.
|<,01(Z)‘ |Z—Ak|6 = >~

Let us now define the function 7 (z). Substituting (4.1.11) into condi-
tion (4.1.1), we obtain the Riemann—Hilbert problem for the function ;(z)
whose right-hand part is unbounded near the points Ay, k = 1,....p +q.
Hence the solution of the obtained problem should be sought in the class
of unbounded functions. Using formulas (1.8.21) by means of which we
considered the Riemann—Hilbert problem in the case of the bounded right-
hand part, we can investigate the problem in the considered case, too, but
this will put us into a difficult position, especially when proving the con-
tinuity of the expression zZ¢}(z) 4+ 1¥(z) in a closed domain. This difficulty
can be overcome by reducing the considered problem to a problem with the
bounded right-hand part.
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Let us rewrite the boundary condition (4.1.1) as follows

Re e’ [P(t)) (1) + 11 (t)]
= 2, + Ree™® [(E P (1) — o (1)], (4.1.25)

where P(t) is the interpolation polynomial satisfying the conditions
P(Ag) :Zk, k=1,2,....,p+q.

We have thus reduced the problem to the case we have studied above,
i.e. when the right-hand part in the boundary condition (4.1.25) is bounded,
and a solution is sought in the class of bounded functions. The index of
problem (4.1.25) of the class hp44 is equal to —p, and the solution can
be constructed analogously to the preceding one, the solvability condition
having form (4.1.17). This condition is a system of linear algebraic equations
with real coefficients of form (4.1.18):

p+q
SbX;=dY, k=1,2,....p, (4.1.18)
j=1

where by, k = 1,2,...,p, 7 = 1,...,p + ¢, are the known constants not

depending on the functions v, and T, d,(f) are also the known constants
which can be expressed through the functions v, and 7" and which vanish
for v,, = T = 0. X, has the same meaning as in equation (4.1.18).

Thus (4.1.18)—(4.1.18) is a system consisting of p + ¢ equations with
respect to the unknowns X;. This system can be represented in the form

p+q
Y KyXj=ds, s=12,....,p+4q, (4.1.26)

Jj=1

where

Ksj =

ag; for s=1,2,...,¢; j=1,2,...,p+q,
bs—q for s=q+1,....p+¢q j=12,....,p+q,

d {dgl) for s=1,2,...,p,
s =) 42 _
di~, for s=q+1,...,q+p.

Let us now show that the determinant of system (4.1.26) differs from
zero. Indeed, assume T' = v,, = 0, then all d; = 0 and system (4.1.26)
becomes homogeneous. If the determinant of the latter system is equal to
zero, then the homogeneous system will have nontrivial solutions. Assume
that XJQ7 j=1,...,p4+q, is one of the solutions, then the problem will have
a solution which we denote by o(z) and ¥o(z). These functions satisfy the
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conditions

Re [e ™o (t) _ o Re[e™™Cy], teL;, j=1,2
wolt)] = 7 +Relem™ Gy, te Ly, j=1.2, (4.1.27)

Re [(%(po(t) — toh(t) — z/JT(t))e_m} =0, telL.

Let S. be a doubly connected domain bounded by the broken lines Lés)

and Lf) and lying in the domain S. Assume that the sides of the broken

lines Lés) and Lgs) are parallel to the sides of Ly and L1, respectively, and
lie from them at a sufficiently small distance e.
Consider the integral

L= o / Re {2¢4(1) — e[y (1) + v (1) }

x Re { [%goo(t) —tph(t) — 1/}0(75)}6_1'0‘} ds

o [ { = e i) + )]}

or

x | ep0(t) (D) — Yo(?) | ds

- e [ [sbo+ A0 0 - i)

2 /
X [mpo(t) - W*W} cosads

~i [ [b0)+ 700 + e ®) + 010

L.

X [mpo (t) — tpp(t) — wo(t)} sinads}.
Using Green’s formula, we obtain

J. = 2(%—1)// [Regog(z)]Q dﬂcdy—i—// |z<pg(z)+w6(t)]2 dx dy. (4.1.29)
Se Se

Since s (2) — 2L (2) — Po(z) is continuously extendable in the closed
domain S, and ) (2) and Zg((2) + ¥(t) are continuously extendable all
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over the boundary L except perhaps for the points Ay at which they may
reduce to infinity of order less than one, we may pass in expression (4.1.29)
to the limit for € — 0. Since for ¢ — 0 we have L. — L, S. — S

Ree™ [sap(t) — t5(0) — o(8)] — 0,
Im e2ic [igpg(t) + w’(t)] T 0,

by passing to the limit as € — 0 we obtain from (4.1.29) that
%—1)/ [Re ¢j(2)] dacdy—i—// Zpg (2) + (2 )‘ dzdy = 0.
D

This implies
¢6<t) = 1c, 4100(2”) =1icz + Dla ¢0(Z) = D27 (4130)

where c is a real constant, and D anD> are complex constants. The sub-
stitution of values (4.1.30) into the second condition (4.1.27) gives

Ree '@ [(% + 1)ict + 3Dy — ﬁz} =0. (4.1.31)

When t € Ty, we have a(t) = 7, t € 1+iy = Re A1 +iy, Im A; <y < Im A,
and condition (4.1.31) takes the form

Re [(3>¢ 4+ 1)ey — 2Dy + 52] = (s + 1)yc — Re[»Dy — D3] = 0.

Hence it follows that ¢ = 0, Re[»D; — D3] = 0.

When ¢ € I'y, condition (4.1.31) takes the form

Ree 2[3D; — D] = cos ap Re(52D1 — Dy) + sin ap Im(2D; — D) = 0.
Since ay # m, 2w, we obtain
Im(>- Dy — D3) =0, »xD; — Dy = 0.
Thus we have
po(z) =0, vo(z) = D,
and from representation (4.1.3) it follows that X =Y = 0, which by virtue

of (%) and (sx) implies ¢, = ¢cpyq = 0.
From the first condition (4.1.27) we obtain

c()

7+

Ree D) = oo L€ Lo (4.1.32)

whence it follows that

Ree *»+1D; =0,
Ree *+a Dy = 0.

The determinant of this system sin(a,4q — apt1) # 0; therefore Dy =0
and from equality (4.1.32) we obtain

Cp+1 = Cp+2 = Cp+q = O
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Since C7 = Cpt1 = 0, from the first equality (4.1.27) for t € Ly we analo-
gously obtain

A23201202:= p+1:0.

Thus the determinant of system (4.1.26) is different from zero and therefore
the problem has a unique solution.

4.2. Defining a Hole of Uniform Strength in a Polygonal Plate

In this paragraph we investigate the problem of finding a hole with a
uniformly strong boundary in a finite plate.

Let us consider an isotropic and homogeneous plate shaped as a convex
polygon weakened by a curvilinear hole. Assume that the normal displace-
ment u, on each side of the polygon has a constant value, the tangent stress
on the external boundary of the plate is equal to zero, while the internal
boundary is under the action of the constant normal force and the tangent
stress is equal to zero. We can consider two cases where 1) the values of the
constant u,, are given, and 2) the values of the principal vector are given on
either side of the external boundary of the plate.

The mechanical meaning of the first case consists in the following: an
elastic washer is inserted into the hole of polygonal configuration made in
a fixed rigid body. Prior to deformation the shape of the washer contour
differs but little from the shape of the hole. In the second case it is assumed
that the dies with rectilinear bases adjoin the sides of the plate.

We pose the following problem: find a stressed state of the body and the
boundary of the hole assuming that the boundary of the hole is uniformly
strong. Let on the plane of the complex variable z = x+1iy the plate occupy
the domain S bounded by the closed convex broken line A; As - - - A,, which
we denote by Ly and by the smooth closed contour Lo lying inside L;. To
simplify the notation, the affixes of the points Ay, k = 1,2,...,n, which are
the vertices of the broken line are denoted by the same symbols.

It is also assumed that the point z = 0 lies within the sought contour
Lo.

We make use of the following formulas [77]

#p(z) — 2¢'(2) — (2) = 2p(u + iv), (42.1)
0(z) + z¢'(2) + Y(z) = z/(Xn +1iY,) ds + const, (4.2.2)
X, +Y, = 1Re o' (2), (4.2.3)

where ¢(z), 1(z) are holomorphic functions in the domain S occupied by
the body; u, v are the displacement components on the coordinate axes; X,
Y, are stress components. The integral in formula (4.2.2) is taken over any
smooth arc [ that lies within S and connects an arbitrarily fixed point zq
with a variable point z of the domain S; X,, and Y,, denote the component



146 Revaz Bantsuri

of stress acting on the arc [ from the side of the normal directed to the right
relative to the direction on [ leading from zg to z.

By the Kolosov—Muskhelishvili formulas (4.2.1), (4.2.2) for two sought
holomorphic functions ¢ and 1 in the domain S we obtain the boundary
condition

Re [e_m(t) (se(t) — t'(t) — W)} = 2uu, on L, (4.2.4)

Re [e*m(t) (p(t) + te' (t) + w(t))} =C(t) on Ly, (4.2.5)

where «(t) is the angle formed by the normal to L; at the point ¢ with the
ox-axis,

C(t) =Re

; / Ni(to)ei(eto) =) d80]7
0

N(t) is the normal stress to L; at the point ¢, s is the arc abscissa at the
point ¢ counted from the point A; in the positive direction.
Taking into account that «(t) is a piecewise-constant function, we obtain

k Sj+1
C(t) = sin(ax — ;) / N (to) dso
j=1

8j

for tEAlA}C+1 k=1,2,...,n; An+1=A1,

where ay’s are the values of the function a(t) on AgAk41, k=1,2,...,n;
s; is the arc abscissa of the point A;, i.e. the length of the broken line
A1 Ay -+ Aj. Tt is obvious that C(t) is also a piecewise-constant function.

For the functions ¢ and v, from formulas (4.2.2), (4.2.3) we obtain the
condition on Loy

o(t) + to'(t) + ¢¥(t) = B1 +iBy on Lo, (4.2.6)
4Re¢'(t) =01 = K on Lo,
where By, By, K are real constants.
Since in the first case u,, is a given piecewise-constant function, and in
the second case C(t) is also a given piecewise-constant function, by virtue of
formulas (4.2.4) and (4.2.5) both cases reduce to identical problems of the

analytic function theory. We will consider the second case where the values
of the principal vector of external stress are given on the segments AgAx41

Sk41
Pk:/N(s)ds, k=1,2,...,n.
Sk

From the equilibrium condition we have

n
> Pt =0. (4.2.8)
k=1
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Using formulas (4.2.1)—(4.2.3) and applying physical argumentation we con-
clude that the function ¢(z) is continuous in the closed domain S, whereas
¢'(2) and 9(z) are continuously extendable on the domain boundary ex-
cept perhaps for the points Ag, kK = 1,2,...,n, near which they admit an
estimate of the form

' (2)], [(z)] < M|z = Apl™, 0<6< 1.

Taking into account the fact that L, is a broken line, by the summation of
formulas (4.2.4) and (4.2.5) and the next differentiation we obtain Im ¢'(t) =
0 on Ly. The latter equality and condition define uniquely ¢’(z) = %,
whence, neglecting the constant summand which does not influence the
stressed state of the body, we obtain

o(z) = iKz. (4.2.9)

Thus the boundary conditions (4.2.5), (4.2.6) take the form
Re [em@ (IQ{ t +¢(t)ﬂ =C(t) on Ly, (4.2.10)
WJrgt:B on Ly, B =By +iDBs. (4.2.11)

Ifte AkAk+1, then
(t— Ay) =ipe'™, p=|t— Agl,

whence
Re(te="*®) = Re (A(t)e W), t € Ly, (4.2.12)

where A(t) = A for t € ApAky1, k=1,2,...,n.

Let the function z = w(¢) conformally map the circular ring 1 < [{| < R
onto the domain S, where R is the unknown number to be determined.
Assume that the circumference || = R is mapped onto L;. Assume that to
the vertices Ay, Ao, ..., A, there correspond the points a1, as,...,a, from
the circumference (| = R. Let a; = Re®*, k = 1,2,...,n, where J;, are
unknown numbers. Assume that 0 = §; < § < --- < 6, < 27. From
conditions (4.2.10)—(4.2.12) we have

Re [e—ia(ﬂ) (; w(a) + 1/)0(0)>:| = C(O’), |0’| = R, (4.2.13)
e %Kw(a) —B, |o|=1, (4.2.14)
Re [e_m(”)w(a)] = Re [e_m(”)A(a)], lo| = R, (4.2.15)

where 10(¢) = Y[w(()], 1 < |{] < R. For the sake of simplicity we rite
alo), A(e), C(o) instead of aw(o)], Alw(o)], Clw(o)], respectively. These
functions are defined all over the plane by the equalities

a(ro) =a(o), A(ro)=A(o), C(ro)=C(o), 0<r<oco, |of=1.
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Let W () be the function defined by the equalities

1 ¢ 9
2Kw<R) for R < [(| < R?,

W(¢) = —ay (4.2.16)
B — 1y <C) for 1 <|¢] < R.

It is obvious that W (() is a holomorphic function in domains 1 < |¢]| <
R and R < [¢| < R?. By virtue of condition (4.2.14), on the circumference
W (¢) the boundary values of |[¢| = R, are equal to each other from the inside
and outside. Therefore W (() is holomorphic in the ring 1 < [{| < R%.
From (4.2.16) we have

1
3 Kw(Ro) = W(R?0) for |o] =1,

Yo(Ro) = B —W(o) for |o] =1.

The substitution of the values into conditions (4.2.13), (4.2.15) gives

Re [e "W (0)] = f(0), o €T, (4.2.17)
where
I=T,Uly, Ty={0: |o|=R?}, Ty={o:|o| =1},
%KRe [e*m(”)A(J)], ocly,
flo) = (4.2.18)

Re Be™?) — C(0) + %KRe [e*m(”)A(J)], o€l

We have thus reduced the posed problem to the Riemann—Hilbert prob-
lem for the circular ring with piecewise-constant coefficients. All disconti-
nuity points are nonsingular (see [76, p. 256]).

Since the function W(¢) must be bounded on the domain boundary,
a solution of problem (4.2.17) should be sought in the class of functions
bounded on the boundary, i.e. in the class hq, (see [76, p. 256]).

The coefficient index of problem (4.2.17) corresponding to this class
is equal to —n + 2 on I'y, and to —2 on I's. Therefore the index of the
Riemann—Hilbert problem (4.2.17) corresponding to the class ha,, is equal
to —n.

Let us represent the boundary condition (4.2.17) in the form

W (o) + e* W (o) = 2f1(0)e’*®) on Ty,

N ) 4.2.19
W (o) + e* W (o) = 2f2(0)e'*@) on Ty, ( )

where f1(o) and f2(o) are the values of the function f(o) on I'y and s,
respectively.
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Consider the function

ln(e—2ia(a)o.2)

Xx(z) = zexp iB—i—/ do |, || >1,
o—z
Ty
where
27
1 .
8= e (UQGQlQ(U)) dy, ¥ =argo.
T

0
X(z) is holomorphic in the domain of its definition and satisfies the condition

x(0) = ¥\ (5) for |o| = 1. (4.2.20)

By virtue of (4.2.20) the boundary condition on I'y in (4.2.19) can be
written as follows

W(o) W(o) _ 2f2(0)ei0‘(”)

— for |o| =1. 4.2.21
@ "X @) ” 22y
Consider the holomorphic function ¥(z)
W(z) for 1< |z| < R?,
x(2)
U(z) = N (4.2.22)
_Wi(l/z) for 4 <zl <1
— R2 9
x(1/2)
on the set (1 < |z| < R%) U (1/R? < |z| < 1).
By (4.2.21)
Ut (o) =V (0) = —fo(o) for |o| =1, (4.2.23)
where
2f2 (O_)eia(a)
o) = —7——. 4.2.24
Since the piecewise-holomorphic function
L[ fo(®)
F(z)=——— [ =—=dt 4.2.2
(2) 2 ) t—=z ( 5)
s

also satisfies condition (4.2.23), we obtain
U(z) = F(z) + Wi(2), (4.2.26)

where W (z) a holomorphic function in the ring 1/R? < |z| < R?. For the
function ¥ to be representable as (4.2.22) we should subject the function
W1 to the condition

e+ (D) = -rio 7

z

| —
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Using (4.2.20) and (4.2.25) we obtain

F(z)+F (i) = F(0). (4.2.27)

Therefore the function Wi in (4.2.26) should be subjected to the con-
dition

Wi (z) + Wl(D = —F(0). (4.2.28)

Using formulas (4.2.19), (4.2.22), (4.2.28), for the function Wi (z) we
obtain the boundary condition

2ia(o X(U) g 2
Wale) = e S8 (5) = Qo). ol = R, (4.2:29)
where
o) = L o eia(o) _ o o e2ioz(<7) p l
Qo) NE) (2f1( ) x(0)F (o) + x(o)F (a»

Let us introduce a new sought function
z
Wa(z) = W, (?) .
Then, by virtue of (4.2.29), we obtain

Wa(R0) = G(0)Wa(o) + Q(R?0) for |o| =1, (4.2.30)
where
o) = 621'(1(0) X(RQU)
¢ \(#0)
20’ ag
Q(R%0) = % — F(R%s) + G(0)F (ﬁ) Jol=1,  (4.2.31)

and condition (4.2.28) takes the form

Wa(z) + Wa <]24> = —F(0). (4.2.32)

Thus we come to the problem of finding a holomorphic function W5 in
the ring 1 < |2| < R* by the boundary condition (4.2.30) and the additional
condition (4.2.32). We have to find bounded solutions of this problem.

To solve problem (4.2.30), we make use of the following result [18].

Consider a problem with the boundary condition

O(R'o) — \®(0) = g(0), |o| =1, (4.2.33)

where @ is the sought holomorphic function in the ring 1 < |2| < R*, g is a
given function from the class H*, A is some number.
If A\ # R*, n = 0,£1,42,..., then problem (4.2.33) has the unique

solution . 0
Z\ g
=— | K)\(-) == 4.2.34
®(2) 2m'/ ’\<t> all (4.2:34)

I
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but if A = 1, then for problem (4.2.33) to be solvable it is necessary and
sufficient that the condition
t
[0

I

be fulfilled. In that case, for A = 1 the solution of problem (4.2.32) is written
in the form

1 z\ g(t)
3= — | K (7) AN TG] 4.2.35
(=35 / 7)) ( )

I

where C is an arbitrary number.

In the above formulas, the function K (z) has the form
R* 11 1 z\"
K =—F - —— Ay —— (—)
Sl o i S e ;R%—A R

A
R4"” 2 for A£1L
)\E A S 7L (4.2.36)
n<— 1R B 0 for A=1.

Consider the function

H (z — R%z,) " t2l5le %Tn, (4.2.37)
k=1

2m(k —1
zk—exp<i190—|—7r()i>, k=1,2,...,n,
n

is a fixed number, ¥, such that 0 < 995 < 27 does not coincide with the
points ai,as, ..., an,.
By direct calculations we find that

where

= > (4.2.38)
e T.(z), ifnisodd.

R4 —T,(2) if n is even,
Z

Further it is not difficult to verify that

_Tu(o)
Il’ldp2 T (R4 ) =n
By the results of [18], we write the coefficient in the boundary condition
(4.2.30) as follows

_ X(R*o) ol =
G(o) = A X(0) lo| =1, (4.2.39)
where
X(2) = Tn(z) exp < /K (1; i) In C)\:%)(Zf;)) d;), (4.2.40)
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1 1 G(o)T, (o
v (o [ 2GR ). (2.4

Iy
It is obvious that X (z) is a function holomorphic in the ring 1 < |2| < R?
except for the points R%zj;, k = 1,2, ..., n, where it has poles of first order.
From (4.2.38) and (4.2.41) we derive

1 for even n,
Al=19 2
R* for odd n.

Therefore for odd n we have A # R (n = 0,41,42,...). The number
Yo in formula (4.2.37) can be chosen so that A # 1 for even n. Then \ # R*"
(n=0,£1,%2,...) for even n too.

Using (4.2.39), from the boundary condition (4.2.30) we obtain

WQ(R4U) - WQ(O’) + Q(RQJ)

X(Ro)  X(o)  X(Rio)’
From this, by virtue of (4.2.34), we find the solution of problem (4.2.39)
X(2) [ Kx(2)Q(R%0)
= g do. 4.2.42
W2(z) 2mi / o X (R0) 7 ( )
I

Let us prove that this function satisfies condition (4.2.32), too.
Note the following properties of the function K (z) which can be verified
by direct calculations:

R* z
Kl(zg> —2-K:(2), lol=1, (4.2.43)
iftAN#£1, o] =1,
i —AK, (g) for even n,
1 (U> = (4.2.44)
‘ 22K (2) for odd n.
z o
Taking into account that
G(O)Tn(o') o
AT, (R*o)

and using formulas (4.2.41) and (4.2.42), from formula (4.2.40) we obtain

RA
X () = —X(z) for even n,
z

(4.2.45)
R4 z
X = :—ﬁX(z) for odd n.
From formula (4.2.31) with (4.2.27) taken into account we derive
— 1 F(o)
20) = —— Q(R? 1-— =1 4.2.46
QP0) = s QD) + 5 (1= Go)). I (1.2.46)
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Note that ®(z) = 1 is a solution of the problem with the boundary
condition
®(R'0) = G(0)®(0) + (1 — G(0)), |o] =1,
and by virtue of (4.2.42) we obtain the identity

X@X/K}@ﬂl—G@»d
2mi X (R*0)

Iy

By virtue of (4.2.39), (4.2.44)—(4.2.47) we make sure that the function
W (z) defined by (4.2.42) satisfies condition (4.2.32).

By (4.2.25), (4.2.31) and (4.2.39) we obtain

o=1. (4.2.47)

2) [ Ka(Z)fi(RPa)e
Wa(z) = Xﬂ(i)/ 3&(()R4a)x(R20’) “
= fo<t><21m- /5 ()
Ty Tz

1 A do
- — | dt. (4.2.4
X < X(Ro)(t— o) X(a)(t—a/R2)> a> (4248)
Consider the integral

1 z AR?
L(z) = 2mi /K)‘ (;) oX(o)(R?*t— o) dor.
T2
Since " .
Bae) =g Y gy TG
where K{(z) is a holomorphic function in the ring 1 < |z| < R*, the inte-
grand function of o in the expression for I;(z) in the ring 1 < |o| < R* has
poles at the points ¢ = z and ¢ = R2t. Therefore by virtue of the Cauchy

theorem

Il(z)=21m.< / +/+/>m (2) x4

lo|=R* 7 ~5

where 1 and 7 are circumferences in the ring 1 < |o| < R* with centers
at the points R*t and z.
By the Cauchy theorem,

1 z AR? A z 1

— [ K (2) —Lo——do ="K\ (- ) ———
omi *(a> X\ (Rt —0) 7 T 1 A(R%) X(R2t)’
Y1

1 z AR? AR?

2 | (5) oX(0)(R2t — o) da__X(z)(RQtfa)‘

Y2
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Hence (4.2.48) yields
X(z) / K)\(é)fl(RQU)eia(a)

Wa(2) = = J X (Ro)x(Ro) 7
s
s
o | s
£,
B );(;)Fz @i?(l/ Ea (Ri;) JX(R4U)>Et—R20) d") .

By direct calculations we verify that

AK (R4) = K\(2).

Then we obtain

25 za(a)
W) = Wa(res) = TEEL 2 L ul DX (R2) do
1)
X(R?%2) Mo(o 1
o 2mi /UX(OR2 ( ) ) ﬁ<lz\<R2.

1Y

By virtue of (4.2.22), (4.2.26) we have

W(z) = x(2)(Wi(2) + F(2)) =
XX ([ 20 () (R
= 271 (/ o'X(R ) (R2 ) do

T2
_/%K* (2) da>. (4.2.49)

Iy

Hence, using (4.2.24) and (4.2.49), we finally come to

W(z) = / (R)) ) da, 1< |z| < R% (4.2.50)

where f is the given function defined by (4.2.18).
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Since X (R?z) has simple poles at the points z = z, for the function
W (z) to be bounded it is necessary and sufficient that the conditions

R4Z f(o,)eia(a)
r

be fulfilled.
Let us write the function Ky (R*z/0) in the form

4 4
KA<R ) 7 +K§<ROZ>, 1< 2| < R?,

g g —Zz

then by virtue of (4.2.50) we have
io(o)
[l "
o X(R?0)x(0)(0 — 2)
r
Je

/f e )( )da]. (4.2.52)

The second summand in the right-hand part of equality (4.2.52) is a
holomorphic function in the ring D (1 < |z| < R?) and a continu-
ous one in the closed ring D. The first summand is a Cauchy type in-
tegral whose density is a Holder-continuous function on each open arc
(Ray, Raxy1), (R™Yar, R ar+1), k = 1,2,...,n. Therefore, according to
the Plemelj—Privalov theorem (see e.g. [76]), the function W(z) is contin-
uously extendable on these open arcs and its boundary value satisfies the
Holder condition on them. Applying now the results of N. I. Muskhelishvili’s
monograph [76, § 26], we see that W(z) is continuously extendable on T'
and its boundary value is a Holder-continuous function on I'.

(4.2.51) is a system of n equations with respect to n 4 3 real unknowns
K, By, By, R, 0, Kk = 2,3,...,n, 0 < 0 < 2m. To each solution of
system (4.2.51), if it is solvable, we can assign, by formula (4.2.50), the
unique solution of the Riemann—Hilbert problem (4.2.17). Hence solutions
by formula (4.2.16) are defined by the functions w and )q:

X(R%2)

v

W(z) = x(2)

w(Q) = ZWRO), 1<Ic| <R (4.2.53)

vo(O) = B—W <1§) 1<t <R (4.2.54)

Since w'(¢) is shown to be different from zero in the domain of its
definition, z = w(¢) conformally maps a circular ring 1 < |¢| < R onto the
domain S, and ¢t = w(o), whereas w(c) = W(Ro)/K is the equation of the
sought contour.

To show one important application case, we will prove that the system
of algebraic equations (4.2.51) is always solvable and find its solution in
explicit form.
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Let L; be the boundary of a regular polygon. Assume that the die with
rectilinear base adjoins each side of the polygon. Assume that a normal
pressing concentrated force P is applied to the middle of each die. The
origin is supposed to lie at the centre of the polygon A;As--- A, and the
oz-axis to be directed normally to the side A;As. Then

) 2
Akpexp(m(2k3)>, ak:—w(kz—l), k=1,2,...,n.
n n

By the symmetry property it can be assumed that
ap = Re%(k_l)i, k=1,2,...,n.

This assumption is justified if system (4.2.51) is solvable with respect
to the unknowns K, By, B, R.

Let us show that if one of conditions (4.2.51) is fulfilled, then all other
conditions are fulfilled too.

First we give some equalities whose validity is easy to verify:

—Tn(2) if n is even,

Th(ze™ ) = y
—e nT,(2), ifnisodd,
27 .
a(a)—i——, if o €aragr1, 1<k<n-—1,
27 n
aloe™ ) =
2r(n—1)
afc) — ——=, if 0 € ayaq,
n

In (e—2ia(ag)o,g) —In (6—21'o¢(z7)0_2)7

27
op=0ce n

2mi 2mi 27r7',)

X(ze™n )=en x(2), G(oe™

27i 27i

A(ge™ ) =e» A(o).

By means of these equalities we easily conclude that the function X (z)
satisfies the condition

= G(o0),

—-X(z) if n is even,

—e~n X(z), ifnis odd.

In that case f1(o) is a constant,

T
filo) = 5 Kpcos .

Let us now show that the constants B; and Bs can be chosen so that
the function fo would also be a constant.

In the considered case

P

2sin =
n

k—1
C(g):—P;SinTr:— (cos%—cos@k—l) ),

™
n

o €agapy1, k=1,2,...,n.
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By virtue of (4.2.18),
f2(e) = Bycosa + Bysina — C(o) + f1(o).

Therefore if o € agagy1, then

2 2 P
fg(a):Bl(:os—7T(k—l)+Bgsin—7r(k—l)+—ctgI
n n 2 n

P 27 T~ P . 27
— 5(:08;(]6_ 1)Ctgﬁ + ESIHZ(I{_ 1)+f1(0)
If we now take
P s P
B = — — B - —
1 2 Ctgn? 2 2 I

then we obtain

(KpcosZ +Pctgz>.
n n

N | —

fa(o) =

Thus f2(0o) is a constant.
If we introduce the notation

R*C\ _ filo)e @
D(¢) = K, |— d
© / A ( o ) o X(R*o)x(R?%0) 7
lo|=1
R'C\ _fa(o)e™)
— Ky|l— ) —————d
/ * ( o ) oX(Ro)x(0) "
|o|=1
then conditions (4.2.51) take the form
D) =0, k=1,2,...,n. (4.2.55)
By virtue of the above equalities we readily obtain
oni —-D(C) if n is even,

—ew D(C), ifnis odd.

Hence it follows that if D(¢1) =0, then D((x) =0,k =2,3,...,n.
Therefore system (4.2.55) reduces to one equation with two unknowns

R2<1 eia(a)
K [ KA( >UX<R4O>X(R2U> 4

P R4<1 eia(a)
N (Kp+ sinZ) / KA( o ) o X (R2%0)x(0) do

lo|=1

Hence we obtain
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where
R2ei0 eia(o’)
) = K d
() / A( o ) o X (R40)X (R20) i
|lo|=1
R % R46i190 eia(g) p (4256)
(1) = / /\< o ) cX(R?0)x(0) o

|lo|=1

Using formula (4.2.56) and assuming R to be given, we define the tangential
normal stress value on the sought contour. Giving R various values, we
obtain a table of relationship between K and R, i.e. the position of a
uniformly strong contour can be defined by the given values of K.

4.3. Defining the Shapes of a Hole in Bent Plates

Given an isotropic homogeneous plate shaped as a polygon weakened
by a curvilinear hole, we assume that a rigid strip is attached to each side
of the polygon and the plate is bent by moments of force applied to the
strips. The contour of the hole is assumed to be free from external forces.
The tangential normal moment on the hole contour depends on the shape
and position of the hole. We will consider the following problem: find a
deflection of the plate and a hole contour such that the tangential normal
moment would take a constant value on the sought contour.

A problem of finding a hole contour within an isotropic infinite plate
was solved in the monograph by N. V. Banichuk [11] under the assumption
that the plate is bent by moments of force applied at a point at infinity, the
hole contour is free from load and the tangential moment on it is constant.

Let us assume that on the plane of a complex variable the midsurface of
the plate occupies the doubly connected domain S bounded by the convex
closed broken line z = x + iy and the sought contour Ay Ay --- A, (L1). Like
in the preceding paragraph, the affixes of the points Ay are denoted by
the same symbols. The plate deflection at the point M (x,y) is denoted by
W (z,y). According to the approximate plate bending theory, the considered
case W must satisfy the biharmonic equation

AW =0, z€ 8,

and the boundary conditions

OW (t)
=d, dp =t
on A= tel (4.3.1)
N(t):o on AkAk+17 k‘:l,Q,...,’fL (14,”4_1:141)7
M,(t) =0, M,s(t)=0, M(t)=const=K on Ly, (4.3.2)

where n is the external normal, 8;’s are constants (angles of rotation), N(t)
is the intersecting force, M, (¢) is the normally bending moment, M, (t)
is the torque, M,(t) is the tangential normal moment, ¢ is a point of the
contour.
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We can consider two cases:

1) the rotation angles S, k = 1,2,...,n are known;
2) the values of the principal bending moment My, are given on each
side ApAj41 of the external plate boundary.

As is known, a solution of a biharmonic equation is written in the form
W (z,y) = Re [2p(2) + x(2)], z €5, (4.3.3)

where ¢ and x are analytic functions in the domain S.

By (4.3.3) we obtain
ow Lot

e Re |:Z s ((t) + ! (t) + (t) )] on Ly,

where ¥(z) = x/(2).
Hence, by virtue of (4.3.1) we have

Re [e_m(t) (p(t) + o' (t) + W)} =d(t) on Ly, (4.3.4)

where a(t) is the angle formed by the normal to L; at a point ¢ and the
ox-axis, d(t) = dy, for t € ApAgy1, k=1,2,...,n.
Using (4.3.1) and the formula for intersecting force N(t) [76] we obtain

Re [e_m(t) (sep(t) — tt' (t) — W)} =C(t) on Ly, (4.3.5)

where C(t) is the value of a piecewise-constant function at a point t: C(t) =
Cyforte AgAr41, k=1,2,... n,

k
Cy = Zsin(ak —o)M;, j=1,2,...,n,
j=1

Sj+1
M; = / M, (t(s))ds, 7=1,2,...,n,
8
is the principal bending moment acting on the side 4;4;41,5=1,2,...,n,
» = g—f?, o is the Poisson ratio.

Let us now establish the boundary conditions for the functions ¢ and
1) on the sought contour Ls.
We make use of the formulas [76]

M, + M, =—-2D(1+0)[¢'(z) + ¢'(2)], (4.3.6)
My — M, + 2iM,, = 2D(1 — o) (2¢" (2) + ¥(2)), (4.3.7)

where M., My, M,, are bending moments, D is the cylindrical rigidity of
the plate.

Since M, + M, is invariant with respect to a choice of axes, from (4.3.6)
we obtain

Rey'(t) = — t € Lo. (4.3.8)

AD(1+0o)’
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By virtue of (4.3.2) and (4.3.7) we have
2D(1— o) (t"(t) +9(t))e*” = K, t € Lo, (4.3.9)

where 0(t) is the angle formed by the tangent to Ls at a point ¢ with the
ox-axis.

As has been said above, we can consider two cases where either the
rotation angles of the links of the broken line L; or the values of the principal
bending moment acting on each side of the broken line L; are given. From
(4.3.4) and (4.3.5) we see that in both cases we obtain the identical problems
of the analytic function theory. We will consider the case with given values
of principal bending moments M;, j =1,2,...,n.

Using formulas (4.3.4), (4.3.5), (4.3.8), we obtain like in the preceding
paragraph

K
G =~ bara ”
Hence formula (4.3.5) take the form

Re [e—w(ﬂ (¢ — 1)pt — (D) )] = C(t) on Ly, (4.3.10)
whereas formula (4.3.9) implies
P(t) =qt+ B on Lo, (4.3.11)
where i K
- % 4y=— B=B +iB
P="pa+o) 1T 2D(1—0) 14452,

By and By are unknown real constants.

The boundary conditions (4.3.10), (4.3.11) have the form of the bound-
ary conditions (4.1.9), (4.1.10) obtained for the problem considered in the
preceding paragraph. Hence it is clear that the problem posed in this para-
graph is solved in the same manner as the preceding problem.
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