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OSCILLATORY SOLUTIONS OF HIGHER ORDER
NONLINEAR NONAUTONOMOUS DIFFERENTIAL SYSTEMS

Abstract. Oscillatory properties of solutions of higher order nonlinear nonautonomous differential
systems are considered. In particular, unimprovable in a certain sense conditions are found under
which all proper solutions of those systems are oscillatory.
ÒÄÆÉÖÌÄ. ÂÀÌÏÊÅËÄÖËÉÀ ÌÀÙÀËÉ ÒÉÂÉÓ ÀÒÀÀÅÔÏÍÏÌÉÖÒÉ, ÀÒÀßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÓÉÓÔÄÌÄÁÉÓ ÀÌÏÍÀáÓÍÄÁÉÓ ÏÓÝÉËÀÝÉÖÒÉ ÈÅÉÓÄÁÄÁÉ. ÊÄÒÞÏÃ, ÍÀÐÏÅÍÉÀ ÂÀÒÊÅÄÖËÉ ÀÆ-
ÒÉÈ ÀÒÀÂÀÖÌãÏÁÄÓÄÁÀÃÉ ÐÉÒÏÁÄÁÉ, ÒÏÌËÄÁÉÝ ÖÆÒÖÍÅÄËÚÏ×ÄÍ ÀÌ ÓÉÓÔÄÌÄÁÉÓ ßÄÓÉÄÒÉ
ÀÌÏÍÀáÓÍÄÁÉÓ ÒáÄÅÀÃÏÁÀÓ.
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On an infinite interval [a,+∞[ , we consider the differential system

u
(ni)
i = gi

(
t, u1, . . . , u

(n1−1)
1 , u2, . . . , u

(n2−1)
2

)
(i = 1, 2), (1)

where n1 ≥ 1, n2 ≥ 2, a > 0, gi : [a,+∞[×Rn1 × Rn2 → R (i = 1, 2) are continuous functions,
satisfying on [a,+∞[×Rn1 × Rn2 one of the following two conditions

g1(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(y1) ≥ f1(t, y1) sgn(y1),
g2(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(x1) ≤ −f2(t, x1) sgn(x1),

(2)

or
g1(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(y1) ≥ f1(t, y1) sgn(y1),
g2(t, x1, . . . , xn1

, y1, . . . , yn2
) sgn(x1) ≥ f2(t, x1) sgn(x1).

(3)

Here fi[a,+∞[×R → R (i = 1, 2) are nondecreasing in the second argument continuous functions
such that

fi(t, x) sgn(x) ≥ 0 (i = 1, 2).

The present paper is devoted to the investigation of oscillatory properties of solutions of system (1).
Previously, such properties have been investigated only in the cases when system (1) can be reduced
to one differential equation of order n = n1 + n2 (see, [1–13, 15] and the references therein), or when
n1 = n2 = 1 (see, [14]).

A solution of system (1) defined on some interval [a0,+∞[⊂ [a,+∞[ is said to be proper if it does
not identically equal to zero in any neighbourhood of +∞.

A proper solution (u1, u2) of system (1) is said to be oscillatory if at least one of its components
changes sign in any neighbourhood of +∞, and is said to be Kneser solution if in the interval [a0,+∞[
it satisfies the inequalities

(−1)iu
(i)
1 (t)u1(t) ≥ 0 (i = 1, . . . , n1),

(−1)ku
(k)
2 (t)u2(t) ≥ 0 (k = 1, . . . , n2).

Assume
n = n1 + n2,

and introduce the definitions.

Definition 1. System (1) has the property A0 if every its proper solution for even n is oscillatory,
and for odd n either is oscillatory or is a Kneser solution.
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Definition 2. System (1) has the property B0 if every its proper solution for even n is either
oscillatory, or is a Kneser solution, or satisfies the condition

lim
t→+∞

|u(ni−1)(t)| > 0 (i = 1, 2), (4)

and for n odd either is oscillatory or satisfies condition (4).

If m is a natural number, then by N 0
m we denote the set of those k ∈ {1, . . . ,m} for which m+ k

is even.
For an arbitrary natural k, we put

Ik(t, x) = x

[
tn1−1 +

t∫
a

(t− s)n1−1
∣∣f1(s, xsk−1)

∣∣ ds].
Theorem 1. Let condition (2) be satisfied and for any x ̸= 0 and k ∈ N 0

n
2
−1 the equalities

+∞∫
a

|f1(t, x)| dt = +∞,

+∞∫
a

tn2−1|f2(t, x)| dt = +∞, (5)

+∞∫
a

tn2−k−1
∣∣f2(t, Ik(t, x))∣∣ dt = +∞ (6)

be fulfilled. Then system (1) has the property A0.

Theorem 2. Let condition (3) be satisfied. If, moreover, n2 > 2 (n2 = 2) and for any x ̸= 0 and
k ∈ N 0

n2−2 equalities (5) and (6) hold (for any x ̸= 0 equalities (5) is fulfilled), then system (1) has
the property B0.

If n1 = 1, n2 = n− 1,

g1(t, x1, . . . , xn1 , y1, . . . , yn2) = y1, g2(t, x1, . . . , xn1 , y1, . . . , yn2) = f(t, x1),

then system (1) is equivalent to the differential equation

u(n) = f(t, u). (7)

We consider the last equation in the case where f : [a,+∞[×R → R is a continuous function
satisfying either the condition

f(t, 0) = 0, f(t, x) ≤ f(t, y) for t > a, x < y, (8)

or the condition
f(t, 0) = 0, f(t, x) ≥ f(t, y) for t > a, x < y. (9)

A solution u of the equation (1), defined on some interval [a0,+∞[⊂ [a,+∞[ , is said to be proper
if is not identically zero in any neighborhood of +∞.

A proper solution u : [a0+∞[→ R is said to be oscillatory if it changes the sign in any neighborhood
of +∞ and side to be Kneser solution

(−1)iu(i)(t)u(t) ≥ 0 for t ≥ a0 (i = 1, . . . , n).

For equation (6), Definitions 1, 2 and Theorems 1 and 2 have the following forms.

Definition 3. Equation (7) has the property A0 if any proper solution of this equation in case n even
is oscillatory and in case n odd either is oscillatory or is a Kneser solution.

Definition 4. Equation (7) has the property B0 if any proper solution of this equation in case n even
either is oscillatory, or is a Kneser solution, or satisfies the condition

lim
t→+∞

|u(n−2)(t)| = +∞, (10)

and in case n odd either is oscillatory or satisfies condition (10).
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Theorem 3. If along with (8) the condition
+∞∫
a

tn−k−1
∣∣f(t, xtk−1)

∣∣ dt = +∞ for x ̸= 0, k ∈ N 0
n−1 (11)

holds, then equation (7) has the property A0.

Theorem 4. If n ≥ 3 and along with (9) the condition
+∞∫
a

tn−k−1
∣∣f(t, xtk−1)

∣∣ dt = +∞ for x ̸= 0, k ∈ N 0
n−2 (12)

holds, then equation (7) has the property B0.

The conditions of Theorems 1–4 are in a certain sense unimprovable. Moreover, the following
statements are valid.

Theorem 5. Let condition (8) be satisfied and for any x ̸= 0 there exist numbers tx ≥ a and δ(x) > 0
such that

tn−k−1
∣∣f(t, xtk−1)

∣∣ ≥ δ(x)
∣∣f(t, xtn−1)

∣∣ for t ≥ tx, k ∈ N 0
n−1.

Then for the differential equation (6) to have the property A0 it is necessary and sufficient equalities
(11) to be fulfilled.

Theorem 6. Let conditions (9) be fulfilled, n ≥ 3 and for any x ̸= 0 there exist numbers tx ≥ a and
δ(x) > 0 such that

tn−k−2
∣∣f(t, xtk−1)

∣∣ ≥ δ(x)
∣∣f(t, xtn−2)

∣∣ for t ≥ tx, k ∈ N 0
n−2.

Then for the differential equation (2) to have the property B0 it is necessary and sufficient equalities
(12) to be fulfilled.

An essential difference between the above formulated theorems and the results obtained earlier (see,
e.g., [1–15]) is that they cover the case, where the right-hand sides of system (1) and of equation (7)
are slowly increasing with respect to the phase variable functions.

As an example, let us consider the differential equation

u(n) = g0(t)f0(u) + g1(t) ln
(
1 + |u|

)
sign (u), (13)

gi : [a,+∞[→ R (i = 0, 1) are continuous functions, f0 : R → R is a continuous, nondecreasing
function such that

f0(x)x > 0 for x ̸= 0, sup
{
|f0(x)| : x ∈ R

}
< +∞.

Theorems 5 and 6 result in the following corollaries.

Corollary 1. If n ≥ 3 and g0(t) ≤ 0, g1(t) ≤ 0 for t ≥ a, then for equation (13) to have property A0

it is necessary and sufficient the equality
+∞∫
a

[
g0(t) + g1(t) ln t

]
dt = −∞

to be fulfilled.

Corollary 2. If n ≥ 4 and g0(t) ≥ 0, g1(t) ≥ 0 for t ≥ a, then for differential equation (13) to have
property B0 it is necessary and sufficient the equality

+∞∫
a

t
[
g0(t) + g1(t) ln t

]
dt = +∞

to be satisfied.
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Consider now the case where the right-hand sides of system (1) on the set [a,+∞[×Rn1 × Rn2

satisfy either the inequalities
g1(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(y1) ≥ p1(t)|y1|λ1 ,

g2(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(x1) ≤ −p2(t)|x1|λ2 ,
(14)

or the inequalities
g1(t, x1, . . . , xn1

, y1, . . . , yn2
) sgn(y1) ≥ p1(t)|y1|λ1 ,

g2(t, x1, . . . , xn1 , y1, . . . , yn2) sgn(x1) ≥ p2(t)|x1|λ2 ,
(15)

where
λ1 > 0, λ2 > 0, λ1λ2 > 1,

and pi : [a,+∞[→ [0,+∞[ are continuous functions.
Along with system (1), let us consider its particular cases

u
(n1)
1 = p1(t)|u2|λ1 sgn(u2), u

(n2)
2 = −p2(t)|u1|λ2 sgn(u1), (16)

and
u
(n1)
1 = p1(t)|u2|λ1 sgn(u2), u

(n2)
2 = p2(t)|u1|λ2 sgn(u1). (17)

Theorem 7. If along with (14) (along with (15)) the conditions
+∞∫
a

p1(t) dt = +∞, (18)

+∞∫
a

tn2−1

[ t∫
a

(t− s)n1−1
(s
t

)(n2−1)λ1

p1(s) ds

]λ2

p2(t) dt = +∞, (19)

lim
x→+∞

x∫
a

tn1−1

[ x∫
t

(s− t)n2−1p2(s) ds

]λ1

p1(t) dt = +∞ (20)

are fulfilled, then system (1) has the property A0 (the property B0).

Note that if

lim inf
t→+∞

t∫
a

(t− s)n1−1s(n2−1)λ1p1(s) ds

t(n2−1)λ1

t∫
a

(t− s)n1−1p1(s) ds

> 0, (21)

then condition (19) takes the form
+∞∫
a

tn2−1

[ t∫
a

(t− s)n2−1p1(s) ds

]λ2

p2(t) dt = +∞. (22)

For system (16), from Theorem 5 it follows

Corollary 3. If conditions (18) and (21) are fulfilled, then for system (16) (system (17)) to have the
property A0 (the property B0), it is necessary and sufficient the equalities (20) and (22) to be satisfied.
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