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BOUNDED SOLUTIONS OF NONLINEAR DIFFERENTIAL SYSTEMS
WITH DEVIATING ARGUMENTS

Abstract. For systems of nonlinear differential equations with deviating arguments, sufficient
conditions for the existence and uniqueness of bounded on (−∞,+∞) solutions are established.
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Consider the system of nonlinear differential equations with deviating arguments

x′
i(t) = gi(t)xi(t) + fi(t, x1(τi1(t)), . . . , xn(τin(t))) (i = 1, . . . , n), (1)

where τij : R → R (i, j = 1, . . . , n) are measurable in any finite interval functions, gi ∈ Lloc(R,R)
(i = 1, . . . , n) and fi : Rn+1 → R (i = 1, . . . , n) are functions satisfying the local Carathéodory
conditions.

A vector function (xi)
n
i=1 : R → Rn is said to be a bounded solution of the system (1) if it is

absolutely continuous in any finite interval, satisfies the system (1) almost everywhere on R and

sup
{ n∑

i=1

|xi(t)| : t ∈ R
}
< +∞.

For systems of ordinary differential equations, the problem on the existence of bounded solutions
is investigated in detail (see, [4–7] and the references therein). In particular, for both linear [5] and
essentially nonlinear differential systems [4,6], I. Kiguradze has established unimprovable in a certain
sense conditions guaranteeing, respectively, the existence and uniqueness of a bounded solution.

By R. Hakl [1,2] effective sufficient conditions are established for the existence of a unique solution
of a linear differential system with deviating arguments

dxi(t)

dt
=

n∑
j=1

pij(t)xj(τij(t)) + qi(t) (i = 1, . . . , n).

In the present paper, based on the method of a priori estimates elaborated in [3, 4, 8–10], the
Kiguradze type theorems on the existence and uniqueness of a bounded solution of the system (1) are
established.

Throughout the paper the following notation is used.
R = (−∞,+∞), R+ = [0,∞).
Rn is the space of n-dimensional vectors x = (xi)

n
i=1 with the components xi ∈ R (i = 1, . . . , n).

Rn×n is the space of n× n matrices X = (xij)
n
i,j=1 with the components xij ∈ R (i, j = 1, . . . , n).

Rn×n
+ = {X = (xij)

n
i,j=1 ∈ Rn×n : xij ∈ R+ (i, j = 1, . . . , n)}.

r(X) is the spectral radius of the matrix X ∈ Rn×n.
Lloc(R,R) is the space of summable in any finite interval functions u : R → R.
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Theorem 1. Let there exist a constant matrix A = (aij)
n
i,j=1 ∈ Rn×n

+ , a nonnegative number b, and
nonnegative functions pij, qi ∈ Lloc(R,R) (i, j = 1, . . . , n) such that

r(A) < 1, (2)∣∣fi(t, x1, . . . , xn)
∣∣ ≤ n∑

j=1

pij(t)|xj |+ qi(t) for t ∈ R, (xj)
n
j=1 ∈ Rn (i = 1, . . . , n),

∣∣∣∣
t∫

ti

exp
( t∫

s

gi(ξ) dξ

)
pij(s) ds

∣∣∣∣ ≤ aij for t ∈ R (i, j = 1, . . . , n), (3)

n∑
i=1

∣∣∣∣
t∫

ti

exp
( t∫

s

gi(ξ) dξ

)
qi(s) ds

∣∣∣∣ ≤ b for t ∈ R, (4)

where ti ∈ {−∞,+∞} (i = 1, . . . , n). Then the system (1) has at least one bounded solution.

Theorem 2. Let there exist a constant matrix A = (aij)
n
i,j=1 ∈ Rn×n

+ , a nonnegative number b, and
nonnegative functions pij ∈ Lloc(R,R) (i, j = 1, . . . , n) such that along with (2), (3) the conditions∣∣fi(t, x1, . . . , xn)− fi(t, y1, . . . , yn)

∣∣
≤

n∑
j=1

pij(t)|xj − yj | for t ∈ R, (xj)
n
j=1 ∈ Rn, (yj)

n
j=1 ∈ Rn (i = 1, . . . , n), (5)

n∑
i=1

∣∣∣∣
t∫

ti

exp
( t∫

s

gi(ξ) dξ

)
|fi(s, 0 . . . , 0)| ds

∣∣∣∣ ≤ b for t ∈ R (6)

and

lim sup
t→ti

t∫
0

gi(s) ds = +∞ (i = 1, . . . , n) (7)

be fulfilled, where ti ∈ {−∞,+∞} (i = 1, . . . , n). Then the system (1) has one and only one bounded
solution.

Let us describe a scheme of proving the above-formulated theorems.
For an arbitrary natural number m, we consider the system of differential equations

x′
i(t) = gi(t)xi(t) + λfi

(
t, x1(τi 1m(t)), . . . , xn(τi nm(t))

)
(i = 1, . . . , n) (8)

and the system of differential equations∣∣x′
i(t)− gi(t)xi(t)

∣∣ ≤ n∑
j=1

pij(t)
∣∣xj(τi jm(t))

∣∣+ qi(t) (i = 1, . . . , n) (9)

with the boundary conditions
xi(σim) = 0 (i = 1, . . . , n). (10)

Here λ ∈ [0, 1], σi ∈ {−1, 1} (i = 1, . . . , n),

τi jm(t) =


τij(t) for |τij(t)| ≤ m,

m for τij(t) > m,

−m for τij(t) < −m

and pij ∈ Lloc(R,R), qi ∈ Lloc(R,R) (i, j = 1, . . . , n) are nonnegative functions.
An absolutely continuous vector function (xi)

n
i=1 : [−m,m] → Rn is said to be a solution of the

system (8) (of the system (9)) if it almost everywhere on [−m,m] satisfies this system. A solution
of the system (8) (of the system (9)), satisfying the boundary conditions (10), is called a solution of
the problem (8), (10) (of the problem (9), (10)).

The following lemmas are valid.
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Lemma 1. Let there exist a positive constant ρ such that for an arbitrary natural number m and
arbitrary λ ∈ [0, 1] every solution of the problem (8), (10) admits the estimate

max
{ n∑

i=1

|xi(t)| : −m ≤ t ≤ m
}
≤ ρ. (11)

Then the system (1) has at least one bounded solution.

Lemma 2. Let inequalities (2)–(4), where ti ∈ {−∞,+∞} (i = 1, . . . , n), A = (aij)
n
i,j=1 ∈ Rn×n

+ and
b ∈ R+, be fulfilled. Moreover, let the condition

σi =

{
1 if ti = +∞,

−1 if ti = −∞

for any i ∈ {1, . . . , n} be fulfilled. Then there exists a positive constant ρ such that for an arbitrary
natural m every solution of the problem (9), (10) admits the estimate (11).

Theorem 1 follows from Lemmas 1 and 2.
Assume now that the conditions of Theorem 2 are fulfilled. Then by Theorem 1, the system (1)

has at least one bounded solution (xi)
n
i=1. Our aim is to show that an arbitrary bounded solution

(xi)
n
i=1 of that system coincides with (xi)

n
i=1. Assume

ui(t) = xi(t)− xi(t) (i = 1, . . . , n)

and
ρi = sup

{
|ui(t)| : t ∈ R

}
(i = 1, . . . , n).

Then according to the condition (5), the vector function (ui)
n
i=1 is a bounded solution of the system

of differential inequalities ∣∣u′
i(t)− gi(t)ui(t)

∣∣ ≤ n∑
j=1

pij(t)ρj (i = 1, . . . , n).

If we now take the conditions (3) and (7) into account, then it becomes clear that

|ui(t)| ≤
n∑

j=1

∣∣∣∣
t∫

ti

exp
( t∫

s

gi(ξ) dξ

)
pij(s) ds

∣∣∣∣ρj ≤ n∑
j=1

aijρj for t ∈ R (i = 1, . . . , n)

and
ρi ≤

n∑
j=1

aijρj (i = 1, . . . , n).

Hence, in view of (2), it follows that
ρi = 0 (i = 1, . . . , n),

and, consequently,
xi(t) ≡ xi(t) (i = 1, . . . , n).

Example. Consider the differential equation
x′(t) = g(t)

[
x(t) + a|x(τ(t))|+ b

]
, (12)

where a ∈ R+, b > 0, τ : R → R is a measurable in any infinite interval function and g ∈ Lloc(R,R)
is a nonnegative function such that

+∞∫
0

g(s) ds = +∞. (13)

The equation (12) follows from the system (1) in case
n = 1, τ1(t) = τ(t), g1(t) = g(t), f1(t, x1) = g1(t)(a|x1|+ b). (14)

On the other hand, the equalities (13) and (14) guarantee the fulfilment of the conditions (3), (5)–(7),
where

t1 = +∞, a11 = a, p11(t) = a11g1(t),
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whence by Theorem 2, it follows that if
a < 1, (15)

then the equation (12) has a unique bounded solution.
Let us now show that the condition (15) is also necessary for the existence of a bounded solution

of the equation (1). Indeed, let the equation (12) have a bounded solution x. If we put
δ = inf

{
|x(t)| : t ∈ R

}
,

then with regard for (13), we find

−x(t) =

+∞∫
t

exp
( t∫

s

g(ξ) dξ

)
g(s)

[
a|x(τ(s))|+ b

]
ds

≥ (aδ + b)

+∞∫
t

exp
( t∫

s

g(ξ) dξ

)
g(s) ds = aδ + b > 0 for t ∈ R

and
δ ≥ aδ + b.

Consequently, the inequality (15) is fulfilled.

The above-constructed example shows that the condition (2) in Theorems 1 and 2 is unimprovable
and it cannot be replaced by the condition

r(A) ≤ 1.
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