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ON THE CONVERGENCE RATE ANALYSIS OF
ONE DIFFERENCE SCHEME FOR BURGERS’ EQUATION



Abstract. We consider an initial boundary value problem for the 1D nonlinear Burgers’ equation.
A three-level finite difference scheme is studied. Two-level scheme is used to find the values of unknown
function on the first level. The obtained algebraic equations are linear with respect to the values of the
unknown function for each new level. It is proved that the scheme is convergent at rate O(τk−1+hk−1)
in discrete L2-norm when an exact solution belongs to the Sobolev space W k

2 , 2 < k ≤ 3.
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ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÄÒÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÀÒÀßÒ×ÉÅÉ ÁÖÒÂÄÒÓÉÓ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÃÀÓÌÖ-
ËÉ ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ. ÛÄÓßÀÅËÉËÉÀ ÓÀÌÛÒÉÀÍÉ ÓÀÓÒÖË-ÓáÅÀÏÁÉÀÍÉ ÓØÄÌÀ. ÖÝÍÏÁÉ
×ÖÍØÝÉÉÓ ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÌÏÓÀÞÄÁÍÀÃ ÐÉÒÅÄË ÛÒÄÆÄ ÏÒÛÒÉÀÍÉ ÓØÄÌÀÀ ÂÀÌÏÚÄÍÄÁÖËÉ. ÌÉÙÄ-
ÁÖËÉ ÀËÂÄÁÒÖËÉ ÂÀÍÔÏËÄÁÄÁÉ ßÒ×ÉÅÉÀ ÖÝÍÏÁÉ ×ÖÍØÝÉÉÓ ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÌÉÌÀÒÈ ÚÏÅÄË
ÀáÀË ÛÒÄÆÄ. ÃÀÌÔÊÉÝÄÁÖËÉÀ, ÒÏÌ ÈÖ ÆÖÓÔÉ ÀÌÏÍÀáÓÍÉ ÌÉÄÊÖÈÅÍÄÁÀ ÓÏÁÏËÄÅÉÓ W k

2 , 2 <
k ≤ 3, ÓÉÅÒÝÄÓ, ÌÀÛÉÍ ÃÉÓÊÒÄÔÖËÉ L2 ÍÏÒÌÉÈ ÓØÄÌÉÓ ÊÒÄÁÀÃÏÁÉÓ ÓÉÜØÀÒÄÀ O(τk−1+hk−1).
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1. introduction

We will study the finite difference method for a numerical solution of initial boundary value problem
for a forced Burgers’ equation

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f, (x, t) ∈ Q, (1.1)

u(0, t) = u(1, t) = 0, t ∈ [0, T ), u(x, 0) = φ(x), x ∈ [0, 1], (1.2)

where Q = (0, 1)× (0, T ), and parameter ν = const > 0 defines the kinematic viscosity.
Assume that a solution of this problem belongs to the fractional-order Sobolev space W k

2 (Q), k > 2,
whose norms and seminorms we denote by ∥ · ∥Wk

2 (Q) and | · |Wk
2 (Q), respectively.

Certain numerical methods (Galerkin, least squares, collocation, method of lines, finite differences,
etc.) are devoted to problems posed for Burgers’ equation (see, e.g., [1, 2, 3, 7, 10, 11, 14, 15, 16, 19]).
In some cases, the Hopf–Cole transformation [9, 13] is used before approximation in order to reduce
Burgers’ equation to a linear heat equation.

H. Sun and Z. Z. Sun [19] investigated a three-level difference scheme for the problem (1.1), (1.2)
and ascertained a second-order convergence in the maximum-norm under the assumption that the
exact solution belongs to C4,3(Q).

In the present article, a three-level difference scheme is studied for the problem (1.1), (1.2). All
the obtained algebraic equations are linear with respect to the values of an unknown function on the
upper level. It is proved that the scheme is convergent at rate O(τk−1+hk−1) when an exact solution
belongs to the Sobolev space W k

2 (Q), 2 < k ≤ 3. The error estimate is derived by using the certain
well-known techniques (see, e.g., [18, 4]) that employ the generalized Bramble–Hilbert Lemma. For
the upper layers, the difference equations are the same as in [19] and are obtained by using the well
known approximations for derivatives. For the first layer, the difference equations are constructed with
the help of approximation of ∂(u)2/∂x by the way offered in [5, 6]. In the case of sufficiently smooth
solutions, they represent the second order approximations for obtaining additional initial data. At
the same time, they represent approximation of the equation (1.1) to within the accuracy O(τ + h2) .

Despite the last circumstance, the order of convergence by discrete L2-norm does not decrease and
remains still second order on sufficiently smooth solutions. “The study of the local approximation is
insufficient for determination of the order of the difference approximation and proper evaluation of
the quality of a difference operator” (Samarskii [17, Chapter 2, Section 1.3, Example 1]).

2. A Finite Difference Scheme and Main Results

The finite domain [0, 1] × [0, T ] is divided into rectangle grids by the points (xi, tj) = (ih, jτ),
i = 0, 1, . . . , n, j = 0, 1, 2, . . . , J , where h = 1/n and τ = T/J denote the spatial and temporal mesh
sizes, respectively.

Let ω = {xi : i = 0, 1, . . . , n}, ω = {xi : i = 1, 2, . . . , n− 1}, ω+ = {xi : i = 1, 2, . . . , n}.
The value of the mesh function U at the node (xi, tj) is denoted by U j

i , that is, U(ih, jτ) = U j
i .

For the sake of simplicity sometimes we will use notation without subscripts: U j
i = U , U j+1

i = Û ,
U j−1
i = Ǔ . Moreover, let

U
0
=

U1 + U0

2
, U

j
=

U j+1 + U j−1

2
, j = 1, 2, . . . .

We define the difference quotients in x and t directions as follows:

(Ui)x =
Ui − Ui−1

h
, (Ui)◦x =

1

2h
(Ui+1 − Ui−1), (Ui)x x =

Ui+1 − 2Ui + Ui−1

h2
,

(U j)t =
U j+1 − U j

τ
, (U j)◦

t
=

U j+1 − U j−1

2τ
, (U j)t t =

U j+1 − 2U j + U j−1

τ2
.

Let H0 be a set of functions defined on the mesh ω and equal to zero at x = 0 and x = 1. On H0

we define the following inner product and norm:

(U, V ) =
∑
x∈ω

hU(x)V (x), ∥U∥ = (U,U)1/2.
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Let, moreover,
(U, V ] =

∑
x∈ω+

hU(x)V (x), ∥U ]| = (U,U ]1/2.

We need the following averaging operators for the functions defined on Q:

Ŝv :=
1

τ

t+h∫
t

v(x, ξ) dξ,
◦
Sv :=

1

2τ

t+h∫
t−h

v(x, ξ) dξ,

P̂v :=
1

h

x+h∫
x

v(ξ, t) dξ, Pv :=
1

h2

x+h∫
x−h

(
h− |x− ξ|

)
v(ξ, t) dξ.

Note that
◦
S ∂v

∂t
= v◦

t
, Ŝ ∂v

∂t
= vt, P ∂2v

∂x2
= vx x, P ∂v

∂x
= P̂vx.

We approximate the problem (1.1), (1.2) by of the difference scheme:

LU j
i = F j

i , i = 1, 2, . . . , n− 1, j = 0, 1, . . . , J − 1, (2.1)
U j
0 = U j

n = 0, j = 0, 1, . . . , J, U0
i = φ(xi), i = 0, 1, . . . , n. (2.2)

where

LU0 := (U0)t +
1

3
ΛU0 − ν(U

0
)x x,

ΛU0 := U0(U
0
)◦
x
+ (U0U

0
)◦
x
, F 0 := Pf

0
,

LU j := (U j)◦
t
+

1

3
ΛU j − ν(U

j
)xx, j = 1, 2, . . . ,

ΛU j = U j(U
j
)◦
x
+ (U jU

j
)◦
x
, F j := Pf

j
.

Theorem 2.1. The finite difference scheme (2.1), (2.2) is uniquely solvable.

Proof. Note that
(Y V◦

x
+ (Y V )◦

x
, V ) = 0, if V ∈ H0. (2.3)

Considering inner products (LU j , U
j
) and (LU0, U

0
), we obtain

1

4τ

(
∥U j+1∥2 − ∥U j−1∥2

)
+ ν∥U j

x ]|2 = (F j , U
j
), j = 1, 2, . . . , (2.4)

1

2τ

(
∥U1∥2 − ∥U0∥2

)
+ ν∥U 0

x ]|2 = (F 0, U
0
). (2.5)

Summing up the equalities (2.4) with respect to j from 1 to k, we get

1

2τ

(
∥Uk+1∥2 + ∥Uk∥2 − ∥U1∥2 − ∥U0∥2

)
+ 2ν

k∑
j=1

∥U j

x ]|2 = 2

k∑
j=1

(F j , U
j
). (2.6)

Adding the equalities (2.5) and (2.6) gives

1

2τ

(
∥Uk+1∥2 + ∥Uk∥2

)
+ 2ν

k∑
j=0

σj∥U
j

x ]|2 =
1

τ
∥U0∥2 + 2

k∑
j=0

σj(F
j , U

j
), k = 1, 2, . . . , (2.7)

where σj = 1 for j ≥ 1 and σ0 = 1/2.
If we rewrite the equality (2.5) in the form

1

2τ

(
∥U1∥2 + ∥U0∥2

)
+ ν∥U 0

x ]|2 =
1

τ
∥U0∥2 + (F 0, U

0
), (2.8)

we will see that the equalities (2.7), (2.8) can be written all in the same key

1

2

(
∥U j+1∥2 + ∥U j∥2

)
+ 2ντ

j∑
k=0

σk∥U
k

x ]|2 = ∥φ∥2 + 2τ

j∑
k=0

σk(F
j , U

j
), j = 0, 1, 2, . . . . (2.9)
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Since the difference scheme (2.1), (2.2) is linear on each new level with respect to the unknown
values, its unique solvability follows directly from (2.9). �

Remark. Let the external source f(x, t) be equal to 0. Then we rewrite (2.9) as

E(U j) + ν

j∑
k=0

σkτ∥U
k

x ∥2 = 0.5∥φ∥2, j = 0, 1, . . . .

The left-hand side of this equality is the energy of the system at time t = tj . As we see, the difference
scheme is energy conservative and, besides, kinetic energy

E(U j) :=
∥U j+1∥2 + ∥U j∥2

4

is monotonically decreasing, i.e.,
E(U j+1) ≤ E(U j) for j ≥ 0.

Theorem 2.2. Let the exact solution of the initial boundary value problem (1.1), (1.2) belong to
W k

2 (Q), 2 < k ≤ 3. Then the convergence rate of the finite difference scheme (2.1), (2.2) is determined
by the estimate

∥U j − uj∥ ≤ c(τk−1 + hk−1)∥u∥Wk
2 (Q),

where c = c(u) denotes the positive constant, independent of h and τ .

The correctness of Theorem 2.2 follows from the consequence of Lemmas 3.1, 4.2 and 4.4, proved
in the next sections.

3. A Priori Estimate of Discretization Error

Let Z := U − u, where u is an exact solution of the problem (1.1), (1.2), and U is a solution of the
finite difference scheme (2.1), (2.2). Substituting U = Z + u into (2.1), (2.2), we obtain

Zj
◦
t
− νZ

j

x x = −1

3
(ΛU j − Λuj) + Ψj , (3.1)

Z0
t − νZ

0

x x = −1

3
(ΛU0 − Λu0) + Ψ0, (3.2)

Z0 = 0, Zj
0 = Zj

n = 0, j = 0, 1, 2, . . . , (3.3)

where Ψj := F j − Luj .
Denote

Bj := ∥Zj∥2 + ∥Zj−1∥2, j = 1, 2, . . . .

Lemma 3.1. For a solution of the problem (3.1)–(3.3), the relations
B1 ≤ ∥τΨ0∥2, (3.4)

Bj+1 ≤ c1B1 + c2τ

j∑
k=1

∥Ψk∥2, j = 1, 2, . . . , (3.5)

are valid, where

c1 = exp
(Tc2∗
3ν

)
, c2 =

c1
2ν

, c∗ = ∥u∥C1(Q).

Proof. Multiplying (3.2) by Z
0, we obtain

(Z0
t , Z

0
) + ν(Z

0

x , Z
0

x ) = −1

3
(ΛU0 − Λu0, Z

0
) + (Ψ0, Z

0
).

Taking into account U0 = u0 we have

ΛU0 − Λu0 = u0Z
0
◦
x + (u0Z

0
)◦
x
,

therefore due to (2.3)
(ΛU0 − Λu0, Z

0
) = 0
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and we get
(Z0

t , Z
0
) + ν(Z

0

x , Z
0

x ) = (Ψ0, Z
0
).

From this, via Z0 = 0, we see that
1

2τ
∥Z1∥2 + ν

4
∥Z1

x ∥2 =
1

2
(Ψ0, Z1),

or
∥Z1∥2 + ντ

2
∥Z1

x ∥2 = (τΨ0, Z1),

where
∥Z1∥2 + ντ

2
∥Z1

x ∥2 ≤ 1

4
∥τΨ0∥2 + ∥Z1∥2

and
∥Z1

x ∥2 ≤ τ

2ν
∥Ψ0∥2,

and also
∥Z1∥2 ≤ ∥τΨ0∥ ∥Z1∥

and
∥Z1∥ ≤ ∥τΨ0∥.

On the basis of the above consideration, we come to the conclusion that (3.4) is true.
Now, let us multiply (3.1) by Z

j scalarly:
1

4τ

(
∥Zj+1∥2 − ∥Zj−1∥2

)
+ ν∥Z j

x ]|2 = −1

3
(ΛU j − Λuj , Z

j
) + (Ψj , Z

j
), j = 1, 2, . . . . (3.6)

Noticing in the right-hand side of (3.6) that

ΛU j − Λuj = (U jZ
j
◦
x
+ (U jZ

j
)◦
x
) + (ZjU

j
◦
x
+ (ZjU

j
)◦
x
),

and taking into account (2.3), we obtain

(ΛU j − Λuj , Z
j
) = (Zju j

◦
x
+ (Zju j)◦

x
, Z

j
) = (Zju j

◦
x
, Z

j
)− (Zju j , Z

j
◦
x
) = (ZjZ

j
, u j

◦
x
)− (ZjZ

j
◦
x
, u j).

Applying here the Cauchy–Bunyakovsky inequality, the ε-inequality, and finally the Friedrichs’
inequality

∥V ∥2 ≤ 1

8
∥Vx ]|2,

we obtain∣∣(ΛU j − Λuj , Z
j
)
∣∣ ≤ c∗

(
∥Zj∥ ∥Z j∥+ ∥Zj∥ ∥Z j

x ]|
)

≤ c∗

(ε
2
∥Zj∥2 + 1

2ε
∥Z j∥2 + ε

2
∥Zj∥2 + 1

2ε
∥Z j

x ]|2
)
≤ c∗

(
ε∥Zj∥2 + 9

16ε
∥Z j

x ]|2
)
. (3.7)

Now, let us estimate the second term in the right-hand side of (3.6)

|(Ψj , Z
j
)| ≤ ∥Ψj∥ ∥Z j∥ ≤ ε

2c∗
∥Ψj∥2 + c∗

2ε
∥Z j∥2 ≤ ε

2c∗
∥Ψj∥2 + c∗

16ε
∥Z j

x ]|2. (3.8)

After substituting (3.7) and (3.8) in (3.6), we arrive at
1

4τ

(
∥Zj+1∥2 − ∥Zj−1∥2

)
+ ν∥Z j

x ]|2 ≤ c∗

(ε
3
∥Zj∥2 + 3

16ε
∥Z j

x ]|2
)
+

ε

2c∗
∥Ψj∥2 + c∗

16ε
∥Z j

x ]|2

≤ εc∗
3

∥Zj∥2 + ε

2c∗
∥Ψj∥2 + c∗

4ε
∥Z j

x ]|2.

Here choose ε = c∗
4ν . Then we obtain

1

4τ

(
∥Zj+1∥2 − ∥Zj−1∥2

)
≤ 1

8ν
∥Ψj∥2 + c2∗

12ν
∥Zj∥2,

that is,

∥Zj+1∥2 − ∥Zj−1∥2 ≤ τ

2ν
∥Ψj∥2 + c2∗τ

3ν
∥Zj∥2, j = 1, 2, . . . . (3.9)

Suppose

a :=
c2∗
3ν

, b :=
1

2ν
.
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From (3.9) we find
Bj+1 ≤ (1 + aτ)Bj + bτ∥Ψj∥2, j = 1, 2, . . . ,

whence

Bj+1 ≤ (1 + aτ)jB1 + bτ(1 + aτ)j−1

j∑
k=1

∥Ψk∥2, j = 1, 2, . . . . (3.10)

Since j ≤ T/τ , we obtain
(1 + aτ)j ≤ (1 + aτ)T/τ ≤ exp(Ta),

and on the basis of (3.10), the validity of (3.5) follows directly. Thus Lemma 3.1 is proved. �

4. Estimation of the Truncation Error

In order to determine the rate of convergence of the finite difference scheme (2.1), (2.2) with the help
of Lemma 3.1, it is sufficient to estimate a truncation error eventuated while replacing a differential
equation by a difference scheme, Ψ. Towards this end, we will need the following result.

Lemma 4.1. Assume that the linear functional l(u) is bounded in W k
2 (E), where k = k + ϵ, k is an

integer, 0 < ϵ ≤ 1, and l(P ) = 0 for every polynomial P of degree k in two variables. Then, there
exists a constant c, independent of u, such that |l(u)| ≤ c|u|Wk

2 (E).

This lemma is a particular case of the Dupont–Scott approximation theorem [12] and represents a
generalization of the Bramble–Hilbert lemma [8] (see, e.g., [18, p. 29]).

Let us introduce the elementary rectangles e = e(x, t) = {(x, t) : |x − xi| ≤ h, |t − tj | ≤ τ},
e0 = (xi−1, xi+1)× (0, τ), Qτ = (0, 1)× (0, τ), Qj = (0, 1)× (tj−1, tj+1).

Lemma 4.2. If a solution u of the problem (1.1), (1.2) belongs to the Sobolev space W k
2 (Q), 2 < k ≤ 3,

then for the truncation error Ψj = F j − Luj the estimate
∥Ψj∥2 ≤ c(τ + h)2k−3∥u∥2Wk

2 (Qj)
, j ≥ 1,

is true, where the constant c > 0 does not depend on the mesh steps.

Proof. Apply operator P to the equation (1.1):
1

2
P
(
∂uj−1

∂t
+

∂uj+1

∂t
+

(
u
∂u

∂x

)j+1

+
(
u
∂u

∂x

)j−1
)
− ν

2
(uj+1 + uj−1)x x = F j .

With the help of this equality, the expression Ψ can be written in the form

Ψ = χ1 + χ3 +
1

6
χ4 ,

where

χ1 = P
(∂u
∂t

)
+

◦
S
(∂u
∂t

)
,

χ2 :=
1

4
P
(∂(û)2

∂x
+

∂(ǔ)2

∂x

)
− 1

2
(u)2◦

x
, χ4 := 3(u)2◦

x
− 2Λu.

We assert that the following inequalities hold for α = 1, 2, 3:
|χα | ≤ c(τ + h)k−2∥u∥Wk

2 (e), 2 < k ≤ 3. (4.1)
First of all, note that χ1 , as a linear functional with respect to u(x, t), vanishes on the polynomials

of second degree and is bounded in W k
2 , k > 1. Consequently, using Lemma 4.1 and the well known

techniques from [18], we see that the estimate (4.1) for α = 1 is true.
Now, let us note that

χ2 = χ2(u) = ℓ(v) :=
1

2
(P̂

◦
Svx − v◦

x
), v := (u)2.

The linear functional ℓ(v) is bounded for v ∈ W k
2 , k > 2, and vanishes on polynomials of second

degree. For this functional the estimate
|ℓ(v)| ≤ c(τ + h)k−2∥v∥Wk

2 (e), 2 < k ≤ 3, (4.2)
is obtained.
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Since Sobolev space W k
2 (Q), k > 1, is an algebra with respect to a pointwise multiplication,

consequently, ∥uu∥Wk
2 (e) ≤ c∥u∥Wk

2 (e), c = c(u). Therefore, (4.2) proves the validity of (4.1) in the
case where α = 2.

We will present estimates χ3 in a more convenient form. We have
χ3 = 3(u)2◦

x
− u(û+ ǔ)◦

x
− (u(û+ ǔ))◦

x

= 3(u)2◦
x
− u(û− 2u+ ǔ)◦

x
−

(
u(û− 2u+ ǔ)

)
◦
x
− 2uu◦

x
− 2(uu)◦

x

= (u)2◦
x
− 2uu◦

x
− τ2uu

t t
◦
x
− τ2(uut t)◦x,

whence
χ3 = h2u◦

x
ux x − τ2uu

t t
◦
x
− τ2(uut t)◦x := χ′

3
+ χ′′

3
+ χ′′′

3
, (4.3)

since
(u)2◦

x
− 2uu◦

x
= u◦

x
(ui+1 + ui−1)− 2uu◦

x
= h2u◦

x
ux x.

When u ∈ W k
2 (Q), 2 < k ≤ 3, the terms in the right-hand side of (4.3) can be estimated as follows:

|χ′
3
| ≤ h2∥u∥C1(Q)|ux x| ≤ c(τ + h)k−2∥u∥W 2

2 (e)
≤ c(τ + h)k−2∥u∥Wk−2

2 (e),

|χ′′
3
| ≤ τ2∥u∥C1(Q)|ut t

◦
x
| ≤ c(τ + h)k−2∥u∥Wk−2

2 (e),

|χ′′′
3
| = τ2|ui+1ut t

◦
x
+ u◦

x
ut t,i−1| ≤ ∥u∥C1(Q)(|ut t

◦
x
|+ |ut t,i−1|) ≤ c(τ + h)k−2∥u∥Wk−2

2 (e)

and therefore (4.1) is true for α = 3 also.
Finally, (4.1) yields

∥χα∥2 =
∑
x∈ω

h|χα |2 ≤ c(τ + h)2k−3∥u∥2Wk
2 (Qj)

, α = 1, 2, 3,

which completes the proof of Lemma 4.2. �

Lemma 4.3. For any function v ∈ W k
2 (Q), 1 < k ≤ 3, the inequalities

∥v0◦
xt
∥ ≤ c(τ + h)k−3∥v∥Wk

2 (Q), (4.4)

∥v0x x∥ ≤ c(τ + h)k−3∥v∥Wk
2 (Q) (4.5)

are true.

Proof. v0◦
xt

is bounded when v ∈ Wλ
2 (Q), λ > 1, and vanishes on the first degree polynomials. Therefore

for 1 < λ ≤ 2 we have
|v0◦

xt
| ≤ c(τ + h)λ−3∥v∥Wλ

2 (e0),

∥v0◦
xt
∥2 =

∑
ω

h|v0◦
xt
|2 ≤ c(τ + h)2λ−5∥v∥2Wλ

2 (Qτ )
,

which confirms the validity of (4.4) in the case where 1 < k ≤ 2.5 . Further,

|v0◦
xt
| = 1

2τh

∣∣∣∣
τ∫

0

xi+1∫
xi−1

∂2v

∂x∂t
dx dt

∣∣∣∣ ≤ (2τh)−1/2
∥∥∥ ∂2v

∂x∂t

∥∥∥
L2(e0)

,

∥v0◦
xt
∥ ≤ cτ−1/2

∥∥∥ ∂2v

∂x∂t

∥∥∥
L2(Qτ )

. (4.6)

In order to obtain the desired estimate, it is sufficient to use the inequality giving estimate of the
L2-norm of the function in the near-border stripe via its Wλ

2 -norm in the domain (cf. [18, p. 161])

∥v∥L2(Qτ ) ≤ cτ1/2∥v∥Wλ
2 (Q), 0.5 < λ ≤ 1.

This relation along with (4.6) confirms the validity of (4.4) for 2.5 < k ≤ 3.
When 1 < k ≤ 2.5, (4.5) can be proved similarly to the previous case. In the event of 2.5 < k ≤ 3,

we use the relation
|ux x| ≤ |PŜ ∂2u

∂x2
|+ |(u− Ŝ)x x|.
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Here the first term in the right-hand side is estimated again analogously to the previous case, and for
the second term Lemma 4.1 is used. �

Lemma 4.4. If a solution u of the problem (1.1), (1.2) belongs to the Sobolev space W k
2 (Q), k > 2,

then for the truncation error Ψ0 = F 0 − Lu0 the estimate
∥Ψ0∥ ≤ c(τ + h)k−2∥u∥2Wk

2 (Q), 2 < k ≤ 3,

is true, where the constant c > 0 does not depend on the mesh steps.

Proof. Apply operator P to the equation (1.1):

F 0 =
1

2
P(f0 + f1) =

1

2
P
(∂u0

∂t
+

∂u1

∂t

)
+

1

4
P
(
∂(u)2

∂x

∣∣∣
t=0

+
∂(u)2

∂x

∣∣∣
t=τ

)
− νuxx.

Via this equality we rewrite Ψ0 as

Ψ0 = ζ1 −
1

6
ζ2 −

1

2
ζ3, t = 0,

where
ζ1 := P ∂u

∂t
− u0

t , ζ2 := 2(uu◦
x
+ (uu)◦

x
)− 3

2

(
(û)2 + (u)2

)
◦
x
,

ζ3 :=
1

2

(
(û)2 + (u)2

)
◦
x
− 1

2
P
(
∂(u)2

∂x

∣∣∣
t=0

+
∂(u)2

∂x

∣∣∣
t=τ

)
.

(4.7)

We assert that the inequalities
∥ζα∥ ≤ c(τ + h)k−2∥u∥Wk

2 (Q), 2 < k ≤ 3, (4.8)
hold for α = 1, 2, 3.

Expression ζ1 can be estimated similarly to χ1 .
Further, notice that

ζ3 = ζ3(u) = I(v) :=
1

2
(v̂ + v)◦

x
− 1

2
P
(∂v̂
∂x

+
∂v

∂x

)
, v := (u)2.

It is easy to verify that I(v), as a linear functional with respect to v, vanishes on the polynomials
of second degree and is bounded when v ∈ W k

2 (Q), k > 2. For that functional we can derive the
following estimate

∥I(v)∥ ≤ c(τ + h)k−2∥v∥Wk
2 (Q), 2 < k ≤ 3.

The latter along with ∥uu∥Wk
2 (Q) ≤ c∥u∥2

Wk
2 (Q)

, k > 1, states the validity of (4.8) in the case α = 3,
as well.

Now, let us pass to the estimation of ζ2. If we take into account that
2uu◦

x
= 2uu◦

x
+ τuu◦

xt
, 2uu◦

x
= (u)2◦

x
− h2u◦

x
uxx,

(4.7) will give

ζ2 = τuu◦
xt

− h2u◦
x
ux x +

1

2

(
4uu− 3(û)2 − (u)2

)
◦
x

= τuu◦
xt

− h2u◦
x
ux x − 1

2

(
2
[
(û)2 − (u)2

]
+
[
(û)2 − 2ûu+ (u)2

])
◦
x

or
ζ2 = τuu◦

xt
− h2u◦

x
uxx − τ(u)2◦

xt
− τ2

2
(ut)

2
◦
x
:= ζ ′2 + ζ ′′2 + ζ ′′′2 + ζ ′′′′2 . (4.9)

In the right-hand side of (4.9), the first and the second terms can be estimated by using Lemma 4.3:
∥ζ ′2∥ ≤ cτ∥u∥C(Q)∥u◦

xt
∥ ≤ c(τ + h)k−2∥u∥Wk

2 (Q), 2 < k ≤ 3,

∥ζ ′′2 ∥ ≤ ch∥u∥C(Q)∥uxx∥ ≤ c(τ + h)k−2∥u∥Wk
2 (Q), 2 < k ≤ 3.

The term ζ ′′′2 can be estimated in a similar way, if we make replacement (u)2 := v in it.
Change the term ζ ′′′′2 as follows:
τ2

2
(ut)

2
◦
x
=

τ2

2

(ut)
2
i+1 − (ut)

2
i−1

2h
=

τ2

2

(ut,i+1 − ut,i−1)(ut,i+1 + ut,i−1)

2h
= τ2u◦

xt

ut,i+1 + ut,i−1

2
,
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from which again via Lemma 4.3 we get
∥ζ ′′′′2 ∥ ≤ cτ |u◦

xt
| ≤ c(τ + h)k−2∥u∥Wk

2 (Q), 2 < k ≤ 3.

Finally, all of these estimates confirm the validity of (4.8) in the case α = 2.
The inequalities (4.8) prove Lemma 4.4. �
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