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ON THE CONVERGENCE RATE ANALYSIS OF
ONE DIFFERENCE SCHEME FOR BURGERS’ EQUATION



Abstract. We consider an initial boundary value problem for the 1D nonlinear Burgers’ equation.
A three-level finite difference scheme is studied. Two-level scheme is used to find the values of unknown
function on the first level. The obtained algebraic equations are linear with respect to the values of the
unknown function for each new level. It is proved that the scheme is convergent at rate O(7*~14+h*~1)
in discrete Ly-norm when an exact solution belongs to the Sobolev space W&, 2 < k < 3.
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1. INTRODUCTION

We will study the finite difference method for a numerical solution of initial boundary value problem
for a forced Burgers’ equation

ou ou 0%u

u(0,t) =u(l,t) =0, t€[0,7), wu(z,0)=¢), xe€l0,1], (1.2)

where Q = (0,1) x (0,T), and parameter v = const > 0 defines the kinematic viscosity.

Assume that a solution of this problem belongs to the fractional-order Sobolev space W (Q), k > 2,
whose norms and seminorms we denote by || - ||y (q) and | - [ (), respectively.

Certain numerical methods (Galerkin, least squares, collocation, method of lines, finite differences,
etc.) are devoted to problems posed for Burgers’ equation (see, e.g., [1, 2, 3, 7, 10, 11, 14, 15, 16, 19]).
In some cases, the Hopf—Cole transformation [9, 13] is used before approximation in order to reduce
Burgers’ equation to a linear heat equation.

H. Sun and Z. Z. Sun [19] investigated a three-level difference scheme for the problem (1.1),(1.2)
and ascertained a second-order convergence in the maximum-norm under the assumption that the
exact solution belongs to C43(Q).

In the present article, a three-level difference scheme is studied for the problem (1.1),(1.2). All
the obtained algebraic equations are linear with respect to the values of an unknown function on the
upper level. It is proved that the scheme is convergent at rate O(7*~! + h*~1) when an exact solution
belongs to the Sobolev space W¥(Q), 2 < k < 3. The error estimate is derived by using the certain
well-known techniques (see, e.g., [18, 4]) that employ the generalized Bramble-Hilbert Lemma. For
the upper layers, the difference equations are the same as in [19] and are obtained by using the well
known approximations for derivatives. For the first layer, the difference equations are constructed with
the help of approximation of d(u)?/dz by the way offered in [5, 6]. In the case of sufficiently smooth
solutions, they represent the second order approximations for obtaining additional initial data. At
the same time, they represent approximation of the equation (1.1) to within the accuracy O(r + h?) .

Despite the last circumstance, the order of convergence by discrete Lo-norm does not decrease and
remains still second order on sufficiently smooth solutions. “The study of the local approximation is
insufficient for determination of the order of the difference approximation and proper evaluation of
the quality of a difference operator” (Samarskii [17, Chapter 2, Section 1.3, Example 1]).

2. A FINITE DIFFERENCE SCHEME AND MAIN RESULTS

The finite domain [0,1] x [0,7] is divided into rectangle grids by the points (x;,t;) = (ih,jT),
1=0,1,...,n,5=0,1,2,...,J, where h = 1/n and 7 = T'/J denote the spatial and temporal mesh
sizes, respectively.

Letw={x;: i=0,1,....,n},w={x;: i=1,2,....n— 1}, wt ={z;: i=1,2,...,n}.

The value of the mesh function U at the node (z;,;) is denoted by U/, that is, U(ih,j7) = U.
For the sake of simplicity sometimes we will use notation without subscripts: Uij =U, Uij oy ,
Uijf1 = U. Moreover, let

70 _ ut+0° 7 Uittt +yit

) =1,2,....
2 ) 2 ) j 9 )
We define the difference quotients in x and ¢ directions as follows:
Ui — Uifl 1 Ul 1— 2U1 + Uifl
Uiz = ———, (Ui)g =5, Wis1 = Vi), Uiz = . [ ;
) Ui+t —yi ) Uit —yi-1 ) Uitt —oui 4 yi-1
i, =2 Y AV Y. —
(U )t - = ) (U )‘g - 2 ) (U )tt - 72 .

Let Hy be a set of functions defined on the mesh w and equal to zero at x =0 and x = 1. On Hy
we define the following inner product and norm:

U, V) =Y hU(x)V(z), |Ull=UU)">

rew
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Let, moreover,
U, V= > hU(x)V(z), |U)=(UU]">
rewt
We need the following averaging operators for the functions defined on Q:

. t+h ) t+h
Sv = - /v(x,f) ¢, Sv:= > /U(x,f) dg,
t t—h
1 x+h 1 x+h
Pov = 7 / v(&, t)dE, Puv:= 72 / (h — |z - §|)v(£,t) d€.
T z—h
Note that )
° Jv 4 0v 0%v ov =~
Sa—’t}g, SE—’Ut, ’P@—’Ufz, P%—'PUE
We approximate the problem (1.1), (1.2) by of the difference scheme:
LU =F/, i=1,2,...,n—1, j=0,1,...,J -1, (2.1)
Ul=Ul=0, j=0,1,...,J, U’=o(x;), i=0,1,...,n. (2.2)
where
1 _
LU = (U°); + 5 AU° V(T )z,

0

AU =0T, + (UT"),, FO=PF",

. . 1 . .
LUT = (U7); + S AU7 — V(0 ze, j=1,2,...,
AU = U3, + (UT)s, F7=PF .

Theorem 2.1. The finite difference scheme (2.1), (2.2) is uniquely solvable.
Proof. Note that

(YV_% + (YV)%, V)=0, if V € H,. (2.3)
Considering inner products (EUj,Uj) and (EUO,ﬁO), we obtain
1 . . — C—dy
E(||UJ+1”2_HUJ 1||2)+V||U%]|2:(FJ7UJ)7 .7:1727"' ) (24)
1 —0 —0
Z(||U1||2—HU°||2)+V||U§]|2=(FO,U ). (2.5)
Summing up the equalities (2.4) with respect to 7 from 1 to k, we get
g up q P J ) g
k k
o (TP + ORI = TP = T°1P) + 20 Y T2 =2 (FI,T7). (2.6)
j=1 =1
Adding the equalities (2.5) and (2.6) gives
1 k . 1 k .
o (02 4 UIP) 4203 0y [T202 = L0 +2 3 o3 (F9,07), k=12,  (27)
=0 j=0

where 0; =1 for j > 1 and 09 = 1/2.
If we rewrite the equality (2.5) in the form

1 —0 1 —0
> UM+ 1U°1%) + vl Uz 1P = - IU°(1* + (F°, T ), (2.8)

we will see that the equalities (2.7), (2.8) can be written all in the same key

J J
TP+ 07 )1%) + 207> ol|Tz )P = llell® + 27> _on(F7,T”), §=0,1,2,....  (29)
k=0 k=0

N —
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Since the difference scheme (2.1),(2.2) is linear on each new level with respect to the unknown
values, its unique solvability follows directly from (2.9). O

Remark. Let the external source f(x,t) be equal to 0. Then we rewrite (2.9) as

J
E(U’)+ VZ ox|UZ > = 0.5]¢l% j=0,1,....
k=0
The left-hand side of this equality is the energy of the system at time ¢ = ¢;. As we see, the difference
scheme is energy conservative and, besides, kinetic energy
U2 + 10712

E(UY) = | 1

is monotonically decreasing, i.e.,

B(UTY < B(UY) for j > 0.
Theorem 2.2. Let the exact solution of the initial boundary value problem (1.1),(1.2) belong to
W¥(Q), 2 < k < 3. Then the convergence rate of the finite difference scheme (2.1), (2.2) is determined

by the estimate
|07 —ud|| < e(rF 1 + hk_l)”“”W;“(Q)’

where ¢ = ¢(u) denotes the positive constant, independent of h and .
The correctness of Theorem 2.2 follows from the consequence of Lemmas 3.1, 4.2 and 4.4, proved
in the next sections.
3. A PRIORI ESTIMATE OF DISCRETIZATION ERROR

Let Z := U — u, where u is an exact solution of the problem (1.1), (1.2), and U is a solution of the
finite difference scheme (2.1),(2.2). Substituting U = Z + w into (2.1), (2.2), we obtain

1

77l = 5 (MUY — ) 407, (3.1)
t
- 1
70— vZe, = —5 (AU® = Au) 40, (3.2)
zZ0=0, Zi=7l=0, j=0,1,2,..., (3.3)

where W/ 1= FJ — Lo/,
Denote
B =2+ 1Z77?, j=12,....
Lemma 3.1. For a solution of the problem (3.1)—(3.3), the relations
By < ||re°%, (3.4)

j
Bijn <aBi+ery [P j=12,..., (3.5)
k=1
are valid, where
Tc? c1
€1 = exp ( 3 ) p =, = [uller @)-

Proof. Multiplying (3.2) by 70, we obtain

_ 0 — 1 — —
(20, 2%+ v(Z2,72) = -5 (AU — A, Z°%) + (10, Z°).
Taking into account U° = u® we have

AU° — A = u°Zs + (u"Z")

)

Ko

therefore due to (2.3)
(AU — Au®,Z°) = 0
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and we get
(20,2") +v(Z
From this, via Z° = 0, we see that

1 v 1
2P+ 2P = 5 (90, 2,
o e L YT 012 0 ~1
127017 + 5 12z 117 = (797, Z7),
where
VT 1
12117 + 20 1232 < 3 IO + 22
and
I1ZE 2 < 2%,
= 2
and also
124> < I7e) ]| 21
and

124 < [l7%°].
On the basis of the above consideration, we come to the conclusion that (3.4) is true.
Now, let us multiply (3.1) by Z” scalarly:
1, . ~ —j 1
= (1257 1257 ) + v Z20P = —5
Noticing in the right-hand side of (3.6) that
AU — A = (UIZ] + (U7Z7)) + (29T + (2°T7),),

o o
x x

AU/ — A, Z0) 4+ (99, Z7), j=1,2,....  (36)

and taking into account (2.3), we obtain
: N iy TIN _ (imd i BIN _ (i =i =
(AU — A, Z7) = (Zju; +(Z7a’).,27) = (Zju%7Z )= (27’ Z5) = (27 Z ,ug) - (27 Z5,u?).
Applying here the Cauchy—Bunyakovsky inequality, the e-inequality, and finally the Friedrichs’
inequality

IVIZ < < IVs1%,

ool —

we obtain
(AU = 8, Z7)| < e (12211127 + 112°)1 12 )
< e (GIZ00P + 1271 + 1217 + 5 IZ20P) < (2217 + 1o IZ20R). (37)
Now, let us estimate the second term in the right-hand side of (3.6)
(.2 < N Z7) < 592 + 51777 < g 9P 4+ e 12200 (38)

After substituting (3.7) and (3.8) in (3.6), we arrive at

1 ; - —j € . R — € , Cx =i
Zi+L)2 _ || 7zi-1)2 Z212 < *(* 22+ =72 2) — W72+ = | Z2])2
= (1272 =127 2) + o ZL0P < s (S1291P + o I1Z21P) + o IR + 4 1221
ec . g . c _—
< N2+ — |92+ =1 Z2))2
< SR+ o W + 527

Cx
4v °

Here choose ¢ = Then we obtain

1 . X 1 . 02 .
- Zj—‘,—l 2 Zj—l 2 < —||\pd 2 ||\ zZI 2
& (129 = 1272) < IR + 2 2],
that is,
2
ZIH2 — 252 < w2+ S0 1272, j=1,2 3.9
| ° =1l I < o IWI1°+ 5~ 12705, 5=1,2,..... (3.9)
Suppose
c? 1
a:=—, bi=—
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From (3.9) we find '
Bjp1 < (L+ar)B; + 07| W77, j=1,2,..

t

whence

J
Bij1 < (1+ar) By +br(1+ar) ' Y JWHP, j=1,2,.... (3.10)
k=1
Since j < T/, we obtain
(1+ar) < (14 ar)?/" < exp(Ta),
and on the basis of (3.10), the validity of (3.5) follows directly. Thus Lemma 3.1 is proved. O

4. ESTIMATION OF THE TRUNCATION ERROR

In order to determine the rate of convergence of the finite difference scheme (2.1), (2.2) with the help
of Lemma 3.1, it is sufficient to estimate a truncation error eventuated while replacing a differential
equation by a difference scheme, ¥. Towards this end, we will need the following result.

Lemma 4.1. Assume that the linear functional [(u) is bounded in I/sz(E), where k =k + ¢, k is an
integer, 0 < € < 1, and l(P) = 0 for every polynomial P of degree k in two variables. Then, there
exists a constant c, independent of u, such that |l(u)| < clulys g)-

This lemma is a particular case of the Dupont—Scott approximation theorem [12] and represents a
generalization of the Bramble-Hilbert lemma [8] (see, e.g., [18, p. 29]).

Let us introduce the elementary rectangles e = e(x,t) = {(z,t) : |z —a;| < h, |t —t;| < T},
eo = (zi—1,Ti41) X (0,7), @ = (0,1) x (0,7), Q; = (0,1) x (tj-1,t4+1).
Lemma 4.2. If a solution u of the problem (1.1), (1.2) belongs to the Sobolev space W¥(Q), 2 < k < 3,
then for the truncation error W/ = FJ — L/ the estimate

711 < e(7 + B> llullfye g,y 421,

.)7
J
is true, where the constant ¢ > 0 does not depend on the mesh steps.

Proof. Apply operator P to the equation (1.1):

1 ot outt Ou\J+1 Ju\J—1 v, - -
- s - _ 2 (gL J—1\_  _
2P< oo g (05 ) g (W AW g = B

With the help of this equality, the expression ¥ can be written in the form

1
W:X1+Xa+6X47

where
Jdu ° /0u
w=P(5) +5(5).
1 o(w)?  d(u)? 1, ., - 9
X2 _ZP< O O ) _§(u)§;’ X4 = 3(u)§—2Au
We assert that the following inequalities hold for a = 1,2, 3:

Xl < e+ ) 2 ullwpe), 2<k<3. (4.1)

First of all, note that x,, as a linear functional with respect to u(z,t), vanishes on the polynomials
of second degree and is bounded in W¥, k > 1. Consequently, using Lemma 4.1 and the well known
techniques from [18], we see that the estimate (4.1) for a = 1 is true.

Now, let us note that

Xo = X, () = 0) 1= 3 (PSvg —v), vi= (w).

The linear functional £(v) is bounded for v € W&, k > 2, and vanishes on polynomials of second
degree. For this functional the estimate
()] < e(r + B2 ollwpe), 2<k <3, (4.2)

is obtained.



40 Givi Berikelashvili, Nodar Khomeriki and Manana Mirianashvili

Since Sobolev space W¥(Q), k > 1, is an algebra with respect to a pointwise multiplication,
consequently, [uul[wzey < cllullws ), ¢ = c(u). Therefore, (4.2) proves the validity of (4.1) in the
case where a = 2.

We will present estimates y, in a more convenient form. We have

= 3(u ) —u(u+a)g — (u(@+a))
= 3(u ) —u(u—2u+1a), — (u(ﬂ—Qu—i—ﬂ))% — 2uuge — 2(uu),
= (u)g — 2uug — Tzuuzt; - T2(uu5t)§:,

whence

Xs = h2u§u5x Tzuuho - T2(U’£Ltt)o =X+ X+ X (4.3)

since
2 _ _ 22
(u)g — 2uu, = U%(Ui+1 +uim1) — 2uus = h Ug Uz z-

When u € WE(Q), 2 < k < 3, the terms in the right-hand side of (4.3) can be estimated as follows:
X, < P2 lluller g luz ol < e(m+ R Pllullwze) < o(m + 1) 2 [ullyr-z(),

| < 72 luller gyl g | < o7 + B)* 2 lullyyr-2 oy

‘ ttw

///| = 72|y uy Ug,o T Uy 1 < ||UHC1(Q)(‘“

Ix o+ [uzgial) < e(m+ )2 fully e

Ttz

and therefore (4.1) is true for a = 3 also.
Finally, (4.1) yields

2 = ST AN < elr+ m3ulfg o,y @ =1.2.3,

rEw

which completes the proof of Lemma 4.2. O
Lemma 4.3. For any function v € W5 (Q), 1 < k < 3, the inequalities
g, I < e(m+ 1) 2 lollwp ), (4.4)
logoll < e(7 + 1) llvllwgq) (4.5)
are true.

Proof. v?t is bounded when v € W3 (@), A > 1, and vanishes on the first degree polynomials. Therefore
for 1 < A < 2 we have

09, < e(7 + )P ollw eo)
16 11 = Zhlvo 2 < el + )PP ollfr g
which confirms the validity of (4.4) in the case where 1 < k < 2.5. Further,

0 _
‘U%t‘ QTh’//

0 zi—1

—1/2
Dzt dwdt‘ (27h) Hazat

Lz 60

—1/2

lve,II < er (4.6)

H axé)t‘ L>(Q-)

In order to obtain the desired estimate, it is sufficient to use the inequality giving estimate of the
Ly-norm of the function in the near-border stripe via its W3'-norm in the domain (cf. [18, p. 161])

0]l agr) < 7P lvllwp gy 05 <A<

This relation along with (4.6) confirms the validity of (4.4) for 2.5 < k < 3.
When 1 < k < 2.5, (4.5) can be proved similarly to the previous case. In the event of 2.5 < k < 3,
we use the relation

- 0%u .
jua] < [P8 551+ I(u— S)zal.
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Here the first term in the right-hand side is estimated again analogously to the previous case, and for
the second term Lemma 4.1 is used. g

Lemma 4.4. If a solution u of the problem (1.1),(1.2) belongs to the Sobolev space W (Q), k > 2,
then for the truncation error U = FO — Lu° the estimate

10| < e(r + 1) 2 ullfyp ) 2 <k <3,

@)y
is true, where the constant ¢ > 0 does not depend on the mesh steps.

Proof. Apply operator P to the equation (1.1):

o_Lpopy_lp0u®  ou
F _27?(f +f)_27)(8t+ 8t)

Via this equality we rewrite U0 as

P(@(u)z L ow)? L—T> i

1
4 ox ‘t:O ox

\I}OZCI_ECZ_gC& t:()v
where . 5
u ~
(1:=P o ug, Gy = 2(utis + (ulr)s) — 5 (@2 + (w)?)s.
4.7)
Uy o 10?0 (
G _2((u) + @) )f% 2P( Ox t—0+ Oox ‘t:‘r
We assert that the inequalities
ICall < e(m + 1) lullws ) 2<k <3, (4.8)

hold for a = 1,2, 3.
Expression ¢; can be estimated similarly to x,.
Further, notice that
ov 81})

G = Glw) = I(0) == 5 B+ 0)g — 5 P(50 + 50 ), vi= (W)

It is easy to verify that I(v), as a linear functional with respect to v, vanishes on the polynomials
of second degree and is bounded when v € W¥(Q), k > 2. For that functional we can derive the
following estimate
(@) < e(r + 1) 2 |ollwp gy 2 <k <3
The latter along with [luullyxg) < c||u||%V§(Q), k > 1, states the validity of (4.8) in the case oo = 3,
as well.
Now, let us pass to the estimation of (5. If we take into account that

Qo = 2utle + Tulle,, 2utte = (u)?e — h*Uotz 4,
T T xt T T T

(4.7) will give

1
G = Tuug, — hQU;UEz + 3 (4uu — 3(0)* — (u)2);
1 I ~ ~
= Tuug, — h2u§u§z ~3 (2[(u)2 — (u)Q] + [(u)2 — 2uu + (u)ﬂ)g
or )
.
2 = Tuug, — hZU%ugz - T(u)zgt ) (ut)zg =G+G+G +6G". (4.9)

In the right-hand side of (4.9), the first and the second terms can be estimated by using Lemma 4.3:
Il < erllullegg)lug, Il < e(m +B)*2llullwp ), 2<k <3,
1511 < chllulleig)luzall < elr +h)*2|lullwgq), 2<k<3.

The term ¢}’ can be estimated in a similar way, if we make replacement (u)? := v in it.

Change the term (5" as follows:
7 2 (ue)fiy — (ue)iy
? (ut)2§ _ i+ i _

2 (Utip1 — Upi—1) (Ug i1 + Ugi—1) — 2y Ug i1+ U1
— o —tn S

T T
2 2h 2 2h ot 2
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from which again via Lemma 4.3 we get

Fi

10.

11.

12.

13.
14.

15.

16.

17.
18.

19.

A
G

" k—2
1657 < erlug,| < e(r +B)*?[lullwg ), 2<k <3

nally, all of these estimates confirm the validity of (4.8) in the case a = 2.
The inequalities (4.8) prove Lemma 4.4. O
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