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1. STATEMENT OF THE PROBLEM

In a plane of independent variables x and ¢ we consider a wave equation with a nonlinear dissipative
term (see [16, p. 57], [17])

Lu = ug — Uge + g(x, t,u)uy = f(2,1), (1.1)
where f, g are the given and w is an unknown real functions.

By Dr = {(z,t) : 0 <z < Et, 0 < t < T} we denote a triangular domain lying inside of the
characteristic angle ¢t > |z| and bounded by the segments 17 : z = %t, Yor: x=0,0<t<T and
V3,1 ° t:T,ngSET,0<E<1. For T = 400, we assume that Do, := {(z,t) €ER?: 0 <z <
kt, 0 <t < 400}

For the equation (1.1), we consider the Cauchy—Darboux problem on finding a solution u(x,t) in
the domain Dr by the conditions [2, p. 284]

|§17T =0, u‘%”;‘?zT =0. (12)

Note that, the problem
Upt — Ugy + a(, )uy + b(z, )us + c(z, t)u + d(z, t,u) = f(z,t),
(aiur + ﬂiut + ’Ylu)| T = 07 1= 17 27 U(O, 0) = O

Vi,

in a linear case has been investigated in [4,11,12,18,22,23] and in a nonlinear case in [1,6-8,10,13-15].
As is mentioned in [4,23], the problems of such a matter arise under mathematical simulation of small
harmonic wedge oscillations in a supersonic flow and of string oscillations in a cylinder filled with a
viscous liquid. It should also be noted that when passing from the nonlinearity d(z,t,u) appearing
in [1,6-8,10,13-15] to the nonlinearity of type g(z,t, u)u; in the equation (1.1), as it will be seen
below when studying the boundary value problem, there arise difficulties, and not only of technical
character.

Below, we will show that under definite requirements imposed on the nonlinear function g the
problem (1.1),(1.2) is locally solvable. The conditions of global solvability of the problem will be
obtained, violation of these conditions may, generally speaking, give rise to a soluion destruction after
a lapse of a finite time interval. The question on the uniqueness of a solution of the problem (1.1), (1.2)
will also be considered in the present work.

Definition 1.1. Let f € C(D7), g € C(Dr x R). The function u is said to be a general solution of
the problem (1.1), (1.2) of the class C! in the domain D7 if u € C*(D7) and there exists a sequence

of functions u,, € C%(Dr, fT) such that u, — v and Lu, — f, as n — 0o, respectively, in the spaces
C'(Dr) and C(Dr), where C*(Dr,T'r) := {v € C*(Dr) : vls, , = 0, v, , = 0}, I := 31,7 U 1.

Remark 1.1. Below, for the sake of simplicity of our exposition, sometimes instead of a generalized
solution of the problem (1.1), (1.2) of the class C! in the domain D7 we will speak about a generalized
solution of that problem.

Remark 1.2. Obviously, a classical solution of the problem (1.1), (1.2) from the space u € C2(Dy,I'r)
is a generalized solution of that problem. In its turn, if a generalized solution of the problem (1.1),(1.2)
belongs to the space C?(Dr), it will also be a classical solution of the problem.

Definition 1.2. Let f € C(Dr), g € C(D7 x R). We say that the problem (1.1),(1.2) is locally
solvable in the class C, if there is a positive number Ty = To(f,g) < T such that for any T} < Ty,
this problem has a generalized solution of the class C! in the domain Dr,.

Definition 1.3. Let f € C(Dy), g € C(Ds x R). We say that the problem (1.1), (1.2) is globally
solvable in the class C*, if for any finite 7 > 0 this problem has a generalized solution of the class C'*
in the domain Dr,.

When investigating the problem (1.1), (1.2), below, in Section 4, we will need to study the following
mixed problem: in the domain Dy, 4, := Dy N {t1 < t < t2}, where 0 < t; < to < T, find a solution
u(x,t) of the equation (1.1) by the initial

u|t=t1 =¥ ut’tztl = ¢ (13)
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and boundary

=0, =0 (1.4)

a,y o wl,,
0Dy, 15071, T T1OD¢, .ty F2,7

conditions.

Remark 1.3. Analogously, just as in the case of the problem (1.1),(1.2), we introduce the notions
of a generalized solution, local and global solvability of the problem (1.1),(1.3), (1.4).

2. EQUIVALENT REDUCTION OF THE PROBLEM (1.1),(1.2) TO THE NONLINEAR
INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE

In new independent variables £ = % (t+x),n= % (t —x), the domain D7 will pass into a triangular

domain Ep with vertices at the points O(0,0), Q1 (+L;, £L.), Qz(%, %) of the plane of variables &, 7,

T+k° T+k
and the problem (1.1), (1.2) will pass into the problem (see Figure 2.1)
-~ 1 N ~
L = gy + 5 g(§ =, & +n,u) (g +uy) = f(& ), (§m) € Er, (2.1)
v:z|%)T =0, (ue-— an)|y” ) (2.2)

with respect to a new unknown function (&, n) := u(§ — n,& + 1) with the right-hand side f(&,7n) :=
f(f - Uaf + 77) Herea

T T
n = <E< = €= <n< = — 2.
nrin=k 0<8§<Er T 2T §=mn, 0<n<nr % (2.3)
1-k
0<ki=—r<1. (2.4)
1+ k

FIGURE 1

Remark 2.1. According to Definition 1.1, we introduce the notion of a generalized solution w of
the problem (2.1),(2.2) of the class C! in the domain Er, i.e., there exists a sequence of function

U, € C*(Ep,I'y) :={w € C*(Er) : w|y, , =0, (we —wy)|y, , = 0} such that

nh_)néo Hun - uHC(ET) =0, nh—>H;o ||Lun - fHC(ET) =0, (25)
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where I'r := vy 7 Uz 1.

Note that, if u is a generalized solution of the problem (1.1), (1.2) in a sense of Definition 1.1, then
u will be a generalized solution of the problem (2.1),(2.2) in a sense of the given definition, and vice
versa.

By G we denote a triangular domain with vertices at the points O, @, QT(ﬁTTk, H_Lk
with respect to the straight line £ = 7, and as is easily seen, Gy N {n < £} = Er.

We continue the functions u,, and fevenly with respect to the straight line £ = 7 into the domain
Gr retaining for them previous notation, i.e.,

), symmetric

un(§,m) =un(n€),  f(&n)=fn.€), (&n) € Cr. (2.6)
Remark 2.2. Since ﬂET € C(Er) and @, |5, € 8’2(ET, I'r), taking into account (2.6), we have

feC(Gr), uneC*Gr), (2.7)
=0, (2.8)

|

=0, ﬁn

*
Y1, T ’YI,T

where 77 7 := 0Q7 € 0Gr, ie, i E=kn, 0<n< H_Lk
Remark 2.3. Note that, for the functions 1, ]F‘v7 continued to the domain G, the limiting equalities
of type (2.5) remain valid, i.e.,

nll)ngo [[tn — ﬂHc(@T) =0, ”h_?;o (| Lty — f“c(@T) =0. (2.9)

If Py = (&0,m0) € E7, we denote by Py MyPyNy the characteristic with respect to the equation (2.1)
rectangle whose vertices No and M lie, respectively, on the segments v1 7 and 77 , i.e., by virtue of
(2.3): No = (&0, k&0), Mo = (kno,mo), P1 = (kno, k&y). Since P, € Gp, we construct analogously the
characteristic rectangle PoM; P;N; with vertices Ny and M; lying, respectively, on the segments v; 7
and 77 7. Continuing this process, we get the characteristic rectangle P; 1 M; P; N; for which N; € v,

M; € 7, where N; = (&, k&), My = (kni,mi), Piyr = (kni, k&), it Pi= (&,mi), i =0,1,....
It is easily seen that

Py = (k¥ &0, k*™00),  Pamy1 = (K2 o, K2 1E),
Moy, = (K200, k*™n0),  Mamia = (k¥ 260, K™ H1&), m=0,1,2,.... (2.10)
Noy = (K™ €0, K24 1&0),  Namyr = (B2 lng, K27+ 21p0),
As is known, for any function v of the class C? in the closed characteristic rectangle P; 1 M;P;N;
the equality (see, e.g., [3, p. 173])
v(P;) = v(M;) + v(N;) — v(Piyy) + / Ovdé&dm, i=0,1,..., (2.11)
P 1 M; P;N;
where 0 = %;7 , is valid.
From (2.10), by virtue of (2.8), we have w, (M;) = ,(N;) = 0,i=0,1,2,.... Therefore, (2.11) for
v = u,, results in
T €0s10) = T (P0) = To(M) + T (No) = To(P) [ D dydm
Py Mo PoNo
= —Un(P) + / O, dé; dny
Py Mo PyNo
= —TUn (M) — U (N1) + Up (P) — / O, d& dmy + / O, déy dmy
Py M Py Ny Py Mo Py N
—ap) - [ Btadadn+ [ Dudadn=--

Py M Py Ny Py MoPyNy
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()" (P) + Y (1) / B, dey dny, (60v0) € Er (2.12)
=0 P 1 M; P;N;

Since the point P, from (2.12) tends to the point O, as m — oo, by virtue of (2.8), we have

lim u,(P,) = 0. Hence, passing in the equality (2.12) to the limit, as m — oo, for the function
m—r o0

U, € C?(Gr) in the domain E7 we obtain the following integral representation:

o

Wnom) = > (-0 [ D dédn, (Gom) € Br. (2.13)
=0 P11 M; P;N;
Remark 2.4. Since 1, € C(Er) and there are the inequalities (2.4), and owing to (2.10),
mes Py 1 M; PN; = k** (&0 — kno)(no — k&o), (2.14)
therefore the series in the right-hand side of the equality (2.13) is uniformly and absolutely convergent.

It can be easily seen that by virtue of (2.4) and (2.14),

(oo} (oo}

S [ Bwdadn-Y 1 [ Fdadn
=0 P11 M;P;N; =0 P 1 M;P;N;
< Z ||ﬁ7jn - J?Hc(éT) mes P; 1 M; P;N; = Hﬁﬂn - ﬂ|c(§T) Z k> (€0 — ko) (o — k&o)
i=0 =0
oo 1=~ 7
= 1322 HD“n_fHC(éT)' (2.15)

Remark 2.5. By (2.5) for ¢ = 0 and (2.15), passing in the equality (2.13) to the limit, as n — oo,
for a generalized solution @ of the problem (2.1), (2.2) we obtain the following integral representation:

ieom) = > (-1 [ Fderdm. (om) € Er. (2.16)

=0 P; 1 M;P;N;

Remark 2.6. From the above reasonings it follows that for any ]7 € C(E7), the linear problem
(2.1),(2.2) has a unique generalized solution & which is representable in the form of a uniformly and

absolutely convergent series (2.16) and for f € C*(E7) is a classical solution of that problem, i.e.,
u € CQ(ET,FT).

According to (2.16), we introduce into consideration the operator -1 : C(Er) — C(E7) acting
by the formula

@ PEm=3 (-0 [ Fdewdm, €< Er (2.17)
=0 P11 M; P;N;
In the integrand here, according to (2.6), under f we mean the right-hand side of the equation
(2.1) which is continued evenly from the domain Er to the domain Gr with respect to the straight
line ¢ =7, and due to (2.7), we have f € C(E7).

Remark 2.7. By virtue of (2.17) and Remark 2.6, a unique generalized solution @ of the problem
(2.1),(2.2) is representable in the form u = 7! f, and in view of (2.4), (2.14), the estimate

aemi<y. [ 1 dedn < alflom, YR
iZOPH»lMiPiN'i =0
62 +n2 . T2 -
= m”f”c(ﬁﬂ < m”f“c@ﬂ
holds which in its turn yields
. T2
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Remark 2.8. Standard reasonings (see, e.g., [9]) show that the function @ € C*(E7) is the generalized
solution of the problem (2.1), (2.2), if and only if it is a solution of the following nonlinear Volterra
type integro-differential equation

W) + 5 07 (o€~ €+ m D@+ T) (€)= O 6, € eBr  (219)

3. LOCAL SOLVABILITY OF THE PROBLEM (1.1), (1.2)

Lemma 3.1. The operator O-! deﬁneciby the formula (2.17) is the linear continuous operator acting
from the space C(ET) to the space C*(Er).

Proof. To this end, we first show that for f € C(Er), the series from the right-hand side of (2.17),
differentiated formally with respect to & and to 7 converges uniformly on the set Ep. Indeed, as it
can be easily verified, we have

(L) = 2 (@ FEn)]

[kZ" fdny + k242 fdmy — k21 fdgl} . (3)
Nzn/P2n P2n+242n+1 M2n+/1N2n

(@) n)]

[W / fdg, + k2 / fde — k2t / fdm] . (3.2)

Map Pap, Papt2Nanta Napt1Map

I
8

3
I
o

(LQf)(£, 77) =

Mz &>

0

3
Il

By virtue of (2.10), we have the equalities
|N2mP2m| = k2m(77 - k£)7 ‘P2m+2M2m+1| = k2m+1(€ - k77>7 |M2m+1N2m‘ = k2m(1 - k2)§7
| Mo Poma| = E*™ (& = kn), | PamsoNomy1| = 2" (= kE), [ Nami1 Mam| = E*™(1 — k),

which in view of (2.4) imply that the series (3.1) and (3.2) are uniformly and absolutely convergent,
and the estimate

~ ~ 37~
max {HLlch(ETy ||L2f||C(ET)} < 1_ 74 ||f||c(ET) (33)
holds.
From (3.3), in view of (2.18) and the fact that ||v||cr = max{||v||c, ||vellc, [|vgllc}, it follows that
Lemma 3.1 is valid. O

Introducing the notation v1 := @, vg := Ug, vs := U, and differentiating formally the equality (2.19)
with respect to £ and n for (§,n) € Er, we obtain

Ul(fﬂ?) = _1 El_l(g(g - 7775 +77a7)1)(7)2 +’l)3)) + (E_lf)(gan)v

2
va(€,m) = *%Ll(g(f — 1,6 +m,01)(v2 +v3)) + (L) (€ m), (3.4)
U3(§7"7) = _%L2(g(£ - 77a§ + navl)(UQ + U3)) + (L2f)(£a77>7

where the linear operators L, and Lo are defined by the equalities (3.1) and (3.2).

Remark 3.1. It is not difficult to check that if u € C1(E7) is a solution of the nonlinear equation
(2.19), then the functions vy := u, vy := Ug, vs := «, of the class C(Er) satisfy the system of nonlinear
equations (3.4), and vice versa, if the functions vy, vo and v of the class C(Er) satisfy the system
of equations (3.4), then v; € C*(E7) and Vi = U2, U2y = v3, and u = vy will be a solution of the
equation (2.19) of the class C!(E7).

We will now proceed to the proof of the local solvability of the system of nonlinear integral equa-
tions (3.4).
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Let us consider the following conditions:
lg(x,t,s)| <m(r), |g(w,t,s2) = g(z.t,s51)| < c(r)lsa = s1l, (x,t) € Dr, |s|,|sal,[s2| <7, (3.5)

where m(r) and ¢(r) are some nonnegative ‘continuous functions of argument r > 0. Obviously, the
conditions (3.5) will be fulfilled if g, g5 € C(Dr x R).

Theorem 3.1. Let f € C(Dy) and the function g € C(Dr x R) satisfy the conditions (3.5). Then
there exists a positive number Ty = To(f,g) < T such that for any Ty < Ty the problem (1.1),(1.2)
has at least one generalized solution in the domain Dr, .

Proof. By Remarks 2.1 and 2.8, the problem (1.1),(1.2) in the space C'(Dr) is equivalent to the
system of nonlinear integral equations (3.4) in the class C(E7). Below, we will prove the solvability
of the system (3.4) by using the principle of contracted mappings (see, e.g., [21, p. 390]).

Assume V := (v1, va,v3) and introduce the vector operator ® := (®1, P5, P3) acting by the formula

(22V)(€,m) = —5 T (9(E — &+ myvr)e2 + v5)) + (O &),
(‘I)2V)(§»77) = _% Ll (g(g - 7776 + 77#&)(“2 + U?))) + (Llf)(fﬂl)» (36)

1
(@3V) (&) = =5 La(9(& = m, €+ my01)(v2 +v3)) + (L2f)(€m).
Taking into account (3.6), the system (3.4) can be rewritten in the vector form
V=2oV. (3.7

Let
— — (T TR3
WVixy := Jnax {HUZ'”C(FT)}’ Ve X :=C(Em;R?),

where C(Er;R?) is a set of continuous vector functions V : Ep — R3.

We fix the number R > 0 and denote by Br(T) :={V € Xr: ||V|x, < R} a closed ball of radius
R in the Banach space X1 with center in a zero element.

Below, we will prove that there exists the positive number Ty = Tp(f,9) < T such that for any
T < Tp:

(i) ® maps the ball Bg(Ty) into itself;

(ii) @ is a contractive mapping on the set Br(T}).

Indeed, by the estimates (2.18), (3.3) and the first inequality (3.5), from (3.6) for V € Bgr(Th1),
when T7 < T, we have

T2 ~
3.8
3T ~ .
|(‘I’zv)(§a77)‘ < 1_ 2;4 (Rm(R) + ||f||C(FT))a (5777) € ET17 = 273
From these estimates, owing to the fact that k2 < 1, it follows that
Ty (Th + 3) ~
12V xr, < -z (RM(R) + || fllezm)- (3.9)
For the fixed R > 0, we require for the value T} to be so small that
T, (T1 + 3) ~
e (BmR) + | llec,)) < R (3.10)

Then from (3.9) and (3.10) it follows that ®U € Br(T}), and hence the condition (i) is fulfilled.
Next, by (2.18) and (3.5), from (3.6), for V; = (v},v?,v3) € Br(Ty), i = 1,2, we have

1) V) e

|(@1V2 = 21V1)(€ )| = % 57 g€ = m.€ +m,03) (05 + o) — 9(€ = € +m 0D F +])|
- % ‘ﬁ—l [(g(ﬁ—n,&mv%)—g(ﬁ—n,&mv}))(v§+v§)+g(§—n,§+n,vi)(v§—v§+v§—v§)} ’
7

<
- 1-k?

(Re(R) +m(R))[[Va = Vil xr, -
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Analogously, taking into account (3.3), we have

3T :
[(@:V2 — @;V1)(&m)] < 1= 24 (Re(R) +m(R))|IVa — Villxg,, i=2,3. (3.11)
We now choose the number T3 so small that
Ty (T + 3)
2 (Re(R) + m(R)) < g = const < 1, (3.12)

and hence ||V, — @V x, < q||Va — Vi||x,, . Thus the operator ® is a contractive mapping on the
set Br(T1), i.e., the condition (ii) is fulfilled.

It follows from (3.11) and (3.12) that there exists the number Ty = To(f, g) < T such that for any
Ty < Ty, both conditions (i) and (ii) are fulfilled for the mapping ® : Br(T1) — Bgr(T1). Therefore,
by the principle of contracted mappings, there exists the solution V' of the equation (3.7) in the space
C’(ET1 3 RS) O

Remark 3.2. From the above reasonings as in proving Theorem 3.1 dealt with the contraction of
the mapping @, it immediately follows that if u; and us are two possible solutions of the problem
(1.1),(1.2) of the class C1(Dz), then there exists the positive number Ty = T4 (||uy |, [[uz]|) < T such
that Ul |DT1 = U2|DT1 .

4. A PRIORI ESTIMATES OF A SOLUTION OF THE PROBLEM (1.1), (1.3), (1.4) IN THE CLASSES
O(Dthfa) AND Cl(Dthh)

Assume
wr =Dy i, N{t =7} t1 <7 <ty
Yistrote = Dy oty Vi, 0= 1,2,
Loyt 1= Yt0 00 U V258005

and introduce into consideration the space

CQ(EtlJQ’Ftl’Q) = {U < CQ(Etl’b) : U{’Yl;ﬂ,tz - 0, UI|'Y2;t1,t2 - 0}
Let

feCDr), g C(Dr xR), ¢ € C' (@), ¥ € C@y,). (4.1)
Definition 4.1. The function u € C'(Dy, +,) is said to be a generalized solution of the problem

(1.1),(1.3), (1.4) if there exists a sequence of functions u, € C?(Dy, t,,1, +,) such that the limiting
equalities

Jim {uy = ulleap,, ,,) =0 lm |[Lun = flloo,, ,,) =0 (4.2)
and

Jimlunlg, = ¢ller@,) =0, Im [lunlz, —¢lea,) =0 (4.3)
hold.

Lemma 4.1. Let the conditions (4.1) and
g(z,t,8) > —Myp, (z,t,5) € Dy x R, My := const >0, (4.4)

be fulfilled. Then for a generalized solution u € C*(Dy, 4,) of the problem (1.1),(1.3), (1.4) an a priori
estimate

lulles,, .,y < allflem,, ., +Ielc@y) + [Yllew.,)) (4.5)
with the positive constant ¢y = ¢1(T'), independent of u, f, ¢, and ¥ is valid.
Proof. Let u be a generalized solution of the problem (1.1), (1.3), (1.4). Then by Definition 4.1, there

exists the sequence of functions u,, € C%(Dy, 1,,t,.1,) such that the limiting equalities (4.2), (4.3)
are valid.

Consider the function u,, € C?(Dy, +,,T,.+,) as a solution of the following mixed problem

Lu, = fn, (4.6)
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’Uﬂl‘wtl = ¥n, unt|wt1 = Q/Jm (47)
uﬂ|’¥1;t1,t2 =0, unz|72;t1,t2 =0. (48)

Here,
On = Un|wt17 {lpn = “”t|wt1’ fn = L'Ltn (49)

Multiplying both parts of the equality (4.6) by u,: and integrating the obtained equality with
respect to the domain Dy, 4,.r == {(z,t) € Dy, 4, : t1 <t < T}, t1 <7 <y, we have
1

3 / (uflt)t dx dt — / UppaUnt dT dt + / g(x,t,un)uit dx dt = / Fntng dz dt.

Dtl,tz;ﬂ' Dtl‘tz:r Dtl,fQ:T Dtl,tg;ﬂ'

Taking into account (4.8) and applying Green’s formula to the left-hand side of the last equality,
we obtain

1
/ fnunt dr dt = / 271/15 [(unmyt - Unth)Q + u?zt(y? - l/g):l ds

Dy tgir Y1ty
1 1
by fderade - [ v ayder [ gt ded, (2.0
wWr wtl Dtl,tQ;T

where v := (v, 1) is a unit vector of the outer normal to Dy, 1,:7-
Taking into account the fact that the operator v a% — Ug % is the directional derivative, tangent
to 71.4,,7, owing to the first condition (4.8), we have

(unxl/t - untVac)|,yl_t1 LT 0. (4.11)
Since v, = \/11? , Uy = IEEQ and 0 < k < 1, therefore
+ +
(v} — ”5)|ww < 0. (4.12)

Consequently, by (4.4), (4.11), (4.12), from (4.10), we have

wp(7) == /(ufm +u?,)dr < /(ufm +u?,) dr +2 / frntint dx dt + 2Mp / u?, drdt. (4.13)

wr (= Diy to;r Dy to;r

Bearing in mind the inequality 2f,un; < u2, + f2, by (4.7) and (4.13), we get

wp (1) < (14 2M7) / uit dx dt + / ffl dx dt + /((p;? + wi) dx,
Dy toir Dty tgr Wty

whence, in view of the expression for the function w,(7), it follows that

wn(r) S mr [ @) do 4 1Fall iy ) + 16t + 1l
0
where mp := 142M7. Hence, since the value an||%2(Dt i)’ being the function of 7, is nondecreasing,
1,257

by the Gronwall’s lemma (see, e.g., [5, p. 13]), we have
wa(r) < expmrr) [ fallaion ooy + 19610y + 1l ] (114)

If (z,t) € Dy, +,, then by virtue of the first condition (4.8), we obtain the equality

x

U (2,8) = U (2, 1) — un(kt, t) = /um(a, t) do,

kt

which owing to the Schwartz inequality and (4.14) results in
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Tt Tt
[un (z,8)|? < / do / [Una (0, )2 do < (kt — x) / [Una (0, 1)]? do < (kt — 2)wn (t) < ktw,(t)

wt

< ktz exp(mrtz) [anHQC(ﬁT) mes Dy, 1,7 +meswy, ([ onll2n @, ) + H%HQC@I))}

1~ ~
= 5 K*ta(t3 = 11) exp(mrta) | fulle o,y + B2 trt2 exp(mats) [ onlén z,,)

+ k2 tts exp(mrta) [l @, )- (4.15)

Thus, using the obvious inequality

(

n
1=

1 n
2 2
a/q; ) S |a'i | )
1 i=1

we obtain

~ /T TmT
lunlle,, . < Ty 5 ex0 () Ifullcny

~ Tm ~ Tm
+ Tk exp (TT) ||(Pn||cl(wt1) =+ Tk exp (TT) ||1/1n|\C(m1)'

Passing in the last inequality to the limit, as n — oo, by virtue of (4.2), (4.3), (4.9), we obtain the

estimate (4.5) in which
~ TmT T
c1(T) = Tkexp (T) max{ 5,1}. O

Remark 4.1. Repeating the same reasoning as in Lemma 4.1, for a generalized solution of the problem
(1.1), (1.2) we obtain an a priori estimate

||U||C(ET) < COHch(ﬁT)»

~ T T
co =Tk Eexp(m; )

Below, using the classical method of characteristics and taking into account (4.5), we obtain a priori
estimate in the space C'(Dy, 4,) for a generalized solution of the problem (1.1), (1.3), (1.4).
We have the following

where

Lemma 4.2. Under the conditions of Lemma 4.1, if
1~
ty—ty < 5 kb, (4.16)

for a generalized solution of the problem (1.1),(1.3),(1.4) an a priori estimate
HUHCI(ELQ) < (2T|\f||c(5T) +lleller @) + ||¢||C(wt1)) exp [2(Ky,y + 1T (4.17)
holds. Here,

Koy =K(Ifle@, + Ielor@,) + 1¢le@.,)), (4.18)

where

K(s):= sup lg(z,t,s1)| < o0,
(z,t)€Dr, [s1|<c1s

¢ is the constant from the a priori estimate (4.5), and

||U||cl(5tl,t2) = maX{HUHc(ENz)a ||Ux||c(5t1,t2)a ||Ut||c(5t1,t2)}'

Proof. Let u be a generalized solution of the problem (1.1),(1.3),(1.4). The limiting equalities (4.2),
(4.3) are valid, where u,, can be considered as a solution of the problem (4.6)—(4.8) with right-hand
sides fn, ¢n, ¥p from (4.9). For the fixed natural n we introduce the functions

1. 2 . 3 ._
Uy = Upt — Ung, Uy = Unt + Ung, Uy = Up, (4.19)
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which in view of (4.7), (4.8) for ¢; <t < ¢ satisfy the initial and boundary conditions

1 _ ! 2 _ / 3 _
un|th - 1/}?1 — Pno u”|wt1 - wn + P> un‘wtl = Pn, (420)
1—k
(@+4i% —0, =0, (u,—u2)| ~0. (4.21)
1+k Yisty,to V2s5tq o

YLty to

By virtue of (1.1), and (4.19), the unknown functions ul, u2, u3 satisfy the following system of

partial differential equations of the first order

oul  oul 1

a5t + Bz fn(z,t) — 59(%15’”%)(“; +ul),

ou?  ou? 1

5t ox fn(z,t) — gg(x,t, ul)(uy +up), (4.22)
Oup,  Oup _ o

ot or "

Taking into account (4.16), we divide the domain Dy, ;, into three subdomains
Diy 4 i={(2,1) € Dy gy 0 t —t1 <@ < (L+k)ty —t},
D2;t1,t2 = {(x,t) c Dt17t2 <z <t— tl},

D3;t1,t2 = {($,t) S Dtth : (1 +E)t1 —t<x< %t}

For (z,t) € D1y, +,, integration equations of the system (4.22) along the corresponding characteristic
curves and bearing in mind the initial conditions (4.20), we obtain

U}L(x,t):—%/g(PT,ui(PT))(u}Z(PT)—I—ui(PT)) dr + fn(PT)dT+wn(x_t+t1)_‘P;z(x_t"’tl)a

tl tl
t t

ui($7t):_%/Q(Q‘nui(QT))(”i(QT)"'”i(QT)) dr + fn(QT>dT+wn(x+t_tl)+90;L($+t_t1)7

t1 ty
t

Wb (2, 1) = /ui(@»dr n(a+t—t),

t1

where P; := (z —t+7,7), Qr := (z +¢ —7,7). Passing in this system to the limit, as n — oo, in the
space C'(D1., +,) and taking into account (4.2), (4.3), (4.6), (4.7), (4.9) and (4.10), we have

2

t1
—o'(x—t+1t1),

wie,t) = =3 [oPrt PO) (P + 2(P)) dr+ [ F(P)dr v~ t+ 1)

t

u?(z,t) :f%/g(QT,u?’(QT))(ul(QT)+u2(QT)) dT+/f(QT) dr + P(z +t —t1) (4.23)
+¢’Ex+t—t1), 1
u?(z,t) :/ul(QT) dr + o(x + 1t —t1).

t1

Here, by (4.2) and (4.19),

ul = —ug, U= Fug, U= (4.24)
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In case (x,t) € Day, +,, integrating equations of the system (4.22) along the corresponding charac-

teristic curves and taking into

1

U (2, 8) = 1, (0, — z) —

t
:/

account the initial conditions (4.20), we obtain

3
P u;,

g(

(Po)) (uk(Py) + 2 (P,)) dr + / Ju(Py) dr,

Q) (L (@) + 12 (Qy)) dr + / @) +inletot)

t
1
w2 t) = =5 [ o(@ i
ty
+on(z+t—t1),
t
B (2,1) = /u;(QT)dT Fon@tt—t).
ty

Since due to (4.21) the equality ul (0,t — x) = u2(0,¢ — ) holds, bearing in mind the second equality
of the obtained system and the notation P? := (t —z — 7,7), we can rewrite the system (4.25) in the

form

t—x

1

Up,

t1

t

un (@,1)

T2
t1

t

t1

o (t—a—t)— 5

L / 9(Qrr (@) (uh(Qr) +u

t—x

(@06 =—5 [ a(PRub (PP + (PR dr [ fu(PRydr + 6t =2~ 1)

ty

(Po)(ul(P,) + u2(P,)) dr + / fulPy)dr,

t

/g(

t—x

1 .
P ud

2

t

Q-)) d7_+/fn(Q'r)dT+7/)n,(‘T+t*t1)+Q0;1(ft+t7t1),
t1

() = / W (Q)dr + pula +t— 1),

Passing here to the limit as n — oo in the space C(Da., +,) and taking into account (4.2), (4.3), (4.6),
(4.7), (4.9) and (4.19), we have

t—x

t

t1

ud(z,t) =

t
ty

e,t) = —5 [ 9Qr @) (@) + (@) dr+ [ £(@)dr bl t)

x

wet) = —5 [ oPRa PP + (P2 dr [ fPRdr vt - o)
wlt=a =) =5 [ o(Prad PP+ (P)dr + [ F(P)ar

: (4.26)

t1

+<P/(‘:C +t- tl)a

uM(Qr) dr + p(x +t — ).
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For (x,t) € Dsy, +,, integrating equations of the system (4.22) along the characteristic curves, in
view of the initial and boundary conditions (4.20), (4.21), we obtain

U}z(xat):_%/g(Pﬂui(P'r))(uqlm(PT)'i‘ufzz(Pf)) dr+|fn(Pr) dT—|—1/Jn(x—t—|—t1)—goln(x—t—f—tl),
tl tl
,]\{;, t t
@ = (U 2 L [hnat@ @ @) drt [f@adn o

k+1 k+1
t

wot) = [ ub(@)dr

ztt
k41

Since by (4.21) there is on 1.4, +, the equality u2 = % L due to the first equality of the obtained

system and the notation P2 := (% (x +t) + 7,7), the system (4.27) can be rewritten in the form

t

t
ub(wt) = =5 [ 9P POk (P +E(P) drt [ fulPr)dria(a—tata) gl a—t),
’lL2 T — Eil _1 n 3 U3 3 ul 3 ’LL2 3 T v 3 P
et = 2 2t/gua, (P (uh(P2) + w2 (P2)) d +t/fn<PT>d
k—1 L k=1
-H%(%+1(x+ty+h)—w%<%+1@+¢)+h)
—%/Q(Qmui(Qr))(u}l(Qr)+U72L(Q'r))d7'+/fn(Qr)dT,
wot) = [ ub(@)dr

Passing in this system to the limit, as n — oo, in the space C(Ds., +,) and taking into account (4.2),
(4.3), (4.6), (4.7), (4.9) and (4.10), we have

ul(x,t)——f/g(Pﬂu (PT))(ul(PT)+u2(PT)) dr+[f(P;) dr+(z—t+t1)—¢' (x—t+t1),
ty t1
ot = 2 | - / g(P2,u (P2)) (uM(P2) + u2(P2)) dr + / F(P)dr
k-1 k=1
+w(7€,+1(x+t)+t1)—cp(%ﬂ(ﬁt)ﬂl) (4.28)
1 t ( t
—5 [ 9@ @) @) + @) dr + [ 5Qn)ar,
. k+1 pE)
o) = [ W@ ar
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By the a priori estimate (4.5), for a generalized solution u® = u of the problem (1.1), (1.3), (1.4) we get

lg(@,t,u?(2,1)| < Ky, (2,t) € Dy, 4, (4.29)
where K, , is defined in (4.18).
Let . '
v(t):= sup |u'(§ 7)), 1=1,2,3, F(t):= sup |f(& 7). (4.30)
(&,7)ED; ¢ (&,7)ED,

It follows from (4.23), (4.26) and (4.28) by virtue of (4.29) and (4.30) that

t

u' (2, 8)] < (Kgp + 1)/ [ (1) + v ()] dr + 2t flo,, ) + ler@,) + 1Wllo@,), ©=1,2,3.
ty
whence taking into account the fact that the right-hand sides of these inequalities are nondecreasing,
by virtue of (4.30), we obtain

t
VO] < Ko+ 1) [ [0+ 0] dr + 20 o, ) + Ielcrag) + W0,
ty

t<t<ty, i=1,23.
Putting v(¢) := uax v'(t), the obtained inequalities result in
717
t

o) < 2o + D) [ o7 dr + 20l e, ) + Ilron) + Wlow,) B<t<ta (131
ty
From (4.31), applying Gronwall’s lemma, we obtain
o(t) <[22l Fllom, )+ Iellcr @) + [Wllcw,)) exp (Ko + D, 6 <t<ts
From (4.24) and (4.30), it now easily follows that

lelers, ..y < [2talfllo,, .y + Ielcr@a) + 1l epRKps + 1)),

which proves Lemma 4.2. O

5. THE UNIQUENESS OF A SOLUTION OF THE PROBLEMS (1.1), (1.2) AND (1.1),(1.3), (1.4)

Lemma 5.1. Let the conditions (3.5), (4.1), (4.4), (4.16) be fulfilled. Then the problem (1.1),(1.3),
(1.4) may have no more than one generalized solution of the class C*(Dy, +,).

Proof. Indeed, assume that the problem (1.1),(1.3),(1.4) has two possible different generalized so-
lutions u! and u? of the class C! in the domain Dy, ;,. According to Definition 1.1, there exists a

sequence of functions u, € C?(Dy, 1,,T4, +,) such that the limiting equalities

i~ enp,, ) =00l 12— flogs, ) =0 (5.1)
and ' '
nll)n;o ||u’zrl|Wt1 - QOHCI(EH) =0, nlinéo ||U3n|wt1 - ,(/}HC(D“) =0, i=12, (52)
hold.
We take advantage here the well-known notation 0 := §2/9t* — 9? /02 and put w,, := u2 —u,,. It
can be easily seen that the function w,, € C?(Dy, +,,4, +,) satisfies the following equalities:
Uwn, + gn = fn, (53)
wn‘wtl = S,Env Wm&|wt1 = 1/1n, (54)
Wy | =0, Wnel =0, (5.5)
Y1ty ,to V25t ,to

where

In = g(x,t,ui)uit — g(x,t,u}l)uit, fn = Lui — Lu}l, (5.6)
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O = w"}wt , {/}vn = w”t|w, , (5.7)
1 “1
and by virtue of (5.2) and (5.7), the equalities
Jim [onllor@,) =0, lim [Ynle@,) =0, i=1,2 (5.8)

hold.
By the first equality of (5.1), there is the number A = const > 0, independent of the indices ¢ and
n, such that

||U;||Cl(5t1‘t2) S A. (59)
According to the second equalities of (5.1) and (5.6), we have
1m [fllo, .., =0 (5.10)

By (3.5), (5.9) and the first equality of (5.6), it is not difficult to see that
2
g2 = (9.t ) + (9o, t,02) = glatul))uhy ) < 2m(A)l, + 2422 (A2 (5.11)

Multiplying both parts of the equality (5.3) by w,: and integrating the obtained equality with
respect to the domain Dy, 1,, by virtue of (5.4), (5.5), just in the same manner as when obtaining
inequality (4.13), from (4.10)—(4.12), we have

wn (1) = /(w2$+wit)d$ < / ((Zn/2_~_&i) dx +2 / (fn — gn)wns dz dt. (5.12)

wr Wty Diy toir

By virtue of the estimate (5.11) and the Cauchy inequality, we obtain

2 / (frn — Gn)wne dzdt < /(fn—gn)dedt+ / w?, dz dt

Dy tor Dyt Dyt
<2 / f2drdt+2 / g2 dx dt + / w2, dx dt
t,to;T Dty to;r Dty to;r
<2 / f2 dedt +4A%C(A) / w2 dzdt + (14 4m?(A)) / w2, dedt. (5.13)
Dil,tQ;‘r Dtl,tQ;T Dtl,tQ;T

Next, in view of the equality

wp(z,t) = /wm(g,t) d¢, (z,t) € Dy, 1yir
kt
which follows from the first equality of (5.5), reasoning in a standard manner, we obtain the following
inequality:
/ w? dxdt < (KT)? / w2, da dt. (5.14)

Dy to:r Dy toir

It follows from (5.12)—(5.14) that

w2 [@Reidesz [ facd
Wty Dtl to;T
+ART? A2 (A) / W2 dzdt + (1 + 4m2(A)) / W2, da dt

Dy tyir Dy tyir

< /(~’2+w)dx+2 / F2 d dt+ (AR2T2 A% (A)+ 1+ 4m?(A)) / (g teny) do dt

Wty Diytosr Dty ,toir



The Cauchy-Darboux Problem for Wave Equations with a Nonlinear Dissipative Term 69

= (4k2T2A202(A)+1+4m2(A))/wn(a) da+/($;?+zli)dx+2 / f2 dxdt,

t1 Wty Dt,l,tz;r
whence due to the Gronwall’s lemma, we find that
wn(7) < (1813, oy + 193y + 21 FallEn by )s B <7 < b (5.15)

where
¢ i= exp (4k*T? AP (A) + 1+ 4m?(A)) (t2 — t1).

Reasoning analogously as in the obtaining estimate (4.15) and taking into account obvious inequal-
ities

anniz(Dtl,tZ) < ||f"||2C'(5tl,t2)meSDtlltW ||¢5”||%2(th) < ||$n||264(5t1) mes we, ,
Hw’ﬂ”%@(wtl) S ||{¢)n||2c(wt1) mes wy, ,
by virtue of (5.15), for (z,t) € Dy, +, we have
o )1 <R (1) <K (mes s |4, b mes 1l 205 Dol )
< R0+ D (1802, + 19alEe,) + 1alEm,, )

Hence it immediately follows that

lonllom, ) <RIVl T T) (184lc@,) + oy + Ialem, ). (5:16)

According to the definition of the function w,, and the first equality of (5.1), we can easily see that

. 2 1 _
A fenller @, ) = I0° = wller @, .,
and all the more,
. L2 )
nh~>nolo ||wnHC(5t1,t2) - ”u —u ||C(Dt17t2).

Therefore, passing in the inequality (5.16) to the limit, as n — oo, and taking into account (5.8) and

(5.10), we obtain [[u® — u'(|p, , ) =0, ie u' =u’ O

ty)
Theorem 5.1. Let the conditions (3.5), (4.1), (4.4) be fulfilled. Then the problem (1.1),(1.2) may
have no more than one generalized solution of the class C*(Dr).

Proof. We take a natural number n so large that A = % < %%Tl, where 77 is the number

appearing in Remark 3.2, and put T; :=T1 + (1 — 1)A, i = 2,. ..,n+ 1. Then if u; and uy are the
two possible solutions of the problem (1.1),(1.2) of the class C'(Dr), then owing to Remark 3.2, we
have u1|p,, = u2|p,, , whence by virtue of Lemma 5.1, we find that ui|p,, ., = ua|p,, 5. Further,

continuing analogous reasoning step by step, in the domains Dr, 1, D1y 135 - - - » D13, 70,1, We find that
U1|Dr, 7y, = UQ‘DTi’T/LLFl, i=2,...,n, and hence u1|p, = uz2|p,. Thus this proves the uniqueness of
a solution of the problem (1.1),(1.2) in the class C1(Dr). O

6. SOLVABILITY OF THE PROBLEM (1.1), (1.2)

As is known, if a global a priori estimate of a solution is obtained and the existence of a local
solution of the evolution problem is established, then reasoning in a standard manner, we obtain the
existence of the global solution of that problem (see, e.g., [20]). In our case, the a priori estimate of a
solution of the problem (1.1), (1.3), (1.4) is obtained under the assumption that the height At := to—t;
of the trapezoid Dy, 4, is less than the defined value (see (4.16)). Therefore, in this case, to prove the
existence of the global solution, we have to modify the above-mentioned general approach, making it
convenient for our case.
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Remark 6.1. In the assumption that the condition (4.16) is fulfilled, we consider first the question
on the solvability of the problem (1.1),(1.3),(1.4) of the class C! in the domain Dy, ;, taking into
account that if u is a generalized solution of that problem of the class C! in the domain Dy, ,, then
ub = wy — ug, u? = uy + Uy, ud := u is a continuous solution of the system of nonlinear Volterra
type integral equations (4.23), (4.26), (4.28), respectively, in the domains D1, ¢, Doty 1y, D3ty ts,
and vice versa, if u', 2, u? is a continuous solution of the above-mentioned system, then v := u? is
a generalized solution of the problem (1.1),(1.3),(1.4) of the class C! in the domain Dy, 4,, and the

equalities u! 1= u; — ug, u? 1= uy + u, are valid.

We rewrite the systems (4.23), (4.26) and (4.28) in the vector form

U(P) = (®U)(P), P € Dy, 4,, (6.1)
where U := (u!,u?,u?) and ® := (@1, ®2, ®3), and the operators
L (U) = @(U)|D1;t1yt2, ®3(U) := <I>(U)|D2;tlyt2, ®3(U) := <I>(U)|D3;t11t2 (6.2)

are defined by the right-hand sides of the systems (4.23), (4.26) and (4.28), respectively.
Let

HUHth,t2 = 1r£1?<x3{HuiHC(Etl‘tz)}7 U e th,tg = C(Etl,tz;R3)~

We fix the number R > 0 and denote by Br(t1,t2) :={U € X4, 1, : [|Ullx,,,, < R} a closed ball
of radius R in the Banach space X, ;, with the center in a zero element.
Below, it will be shown that there exists the positive number tJ € (¢1,7] such that for any to < t39:
(i) ® maps the ball Bg(t1,t2) into itself;
(ii) @ is a contracting mapping on the set Br(t1,t2).
Assume
R= 2(2T||f||c(5T) + ||<P‘|Cl(m1) + ||1/}||C(m1))-
For ||U]x,, ,, < R, by virtue of (6.1), from (4.31), we have
¢
|(@U) (@, 1)] < 2(Kp +1) / o(r)dr + 26l fleo, )+ Ielo@y) + IWllo@,)
t1

S 2Ky + DR —t1) + 2T\ fllem, + el @) + [¥lle@,). tr <t <t
whence for

Aty =ty —t] < ——
PR S UK, + 1)

we obtain
|((I)U)(.’£,t)| < R’ (xvt) € Dtl,t2' (64)

The value K here is defined in Lemma 4.2.

Thus, by (6.4), in the case (6.3), the operator ® maps the ball Bg(t1,t2) into itself, i.e., item (i) is
fulfilled.

Let us now show that item (ii) is likewise fulfilled, that is, the operator ® is a contracted mapping
in that ball. Indeed, for U; := (u},u?,u?), i = 1,2, and P € D1y, 4,, from (4.23), by virtue of (3.5)
for

2
ty

(P1U)(P) = - /g(PnUB(PT))(Ul(PT)JruZ(PT)) dT+/f(PT)d7+¢($*t+f1)*<ﬁ'(fﬂ*t+t1),

we have

[ (9P P)) = e ()] a(Pr) + (P,

t1

+ |9(Pr, w (P)| [ub(Pr) — ub(Pr) + w3 (Pr) — wd(Py)]) dr

(@102 — @1U1) (=, 1)] <

N | =
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1
3.3 11 2 2
< c(R)RAt [Juy — ulHC(Bl;tl,Q) + 5 m(R) Aty (|Jug — Uch(Blatlh) + [Jug — u1||0(51;t1,t2))
< ((R)R+m(R)ALIV: — Uillogp,, )
whence in view of (4.23) and (6.3), for

. (1~ 1 1
Atl = tg—tl :mln{§ kt174(K§0’¢+1) 5 2(C(R)R—|—m(R))} (65)

we obtain
1
’(‘P%UQ - (I)}U1)(.T7t)| < By Uz — U1||c(51;t1)1/2), (x,t) € D1ty to- (6.6)
The estimates, analogous to (6.6) are likewise valid for the operators

t

/g(QT,US(QT))(ul(QT)—FuQ(QT)) d7'+/f(Q7—) dr+(z+t—t))+¢ (z+t—11)

t1

(@IU)(P) := —

N =

and
(@LU)(P) = / Q) dr + p(a + 1 — 1)

from (6.2), namely,

1 )
|(@i02 — @i Uh)(@, )] < 5 V2 = Uillem,,, .p)» (@:1) € Diityiay i =2,3. (6.7)
The same reasonings in the case (6.5) result in the following estimates:
) , 1 . .
[(®4U — @LUL ) (x,1)| < 5102 =Uillow,,, .,y @1 € Dty 1=2,3; j=1,2,3 (6.8)
Bearing in mind (6.1), (6.2), (6.5)—(6.8), the estimate
1
[®U2 — @Uillep, ,.) < 5 102 = Uillem, ..y (@,t) € Dy, (6.9)
1:t2 2 (Dty 1y

holds.
Thus, in the case (6.5), by virtue of (6.4), (6.9) and theorem on the contracted mapping it follows
that the system (6.1) in the class C(Dy, +,) is solvable, and hence the following lemma is valid.

Lemma 6.1. The problem (1.1), (1.3), (1.4) has a unique solution of the class C* in the domain Dy, +,
if the condition (6.5) is fulfilled.

Let t7 = Ty < T, where T} is taken from Theorem 3.1 when the problem (1.1),(1.2) has a unique
generalized solution of the class C! in the triangular domain Dr,.
We take a natural number n so large that the inequality

T-—1T; 1~
L < 5 (6.10)

n
holds.

Accordingly, we divide the interval [T},T] into n equal segments [Ty, T5], [T%, T3], . . ., [T, Tnt1] of
the same length A := T=5

In the domain Dy, 1,, consider the problem (1.1),(1.3),(1.4) in which as the initial functions ¢
and ¢ we take traces of the solution w and its derivative u; of the problem (1.1),(1.2) in the domain
Dy, on the interval wr,. In view of (6.10), the condition (4.16) of Lemma 4.2 is fulfilled, and hence
we have the following a priori estimate

[uller Dy 2y < L= CTfllomy) + lelcr@n) + ¥llo@a)) exp [2(Kpy +1)T]. (6.11)

Remark 6.2. From the definition of the value K = K(s), s > 0 it is easy to see that it is the
nondecreasing function with respect to the variable s.
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Remark 6.3. It is not difficult to see that by virtue of (6.11) and (4.17), if u is a solution of the
problem (1.1),(1.3), (1.4) of the class C! in the domain D7, 7, then the estimate

lult=rllcr@,) + utli=rllc@,) <201 V7 € [T, T3] (6.12)
is valid, and hence

Koo, = K(Iflc@y) +luli=rllcr @) +luli=rlc@,) < K(Ifllc@, +2L1) V7€ [T, T2]. (6.13)

By Lemma 6.1, in view of (6.5) and (6.13), for the value At; for which there exists the unique
solution of the problem (1.1),(1.3), (1.4) of the class C! in the domain D, 1,, where to = T} + At
the following lower bound

1~ 1 1
a0 min {5 M S S0 1) SO () (o1
is valid.

Continuing this process of constructing a local solution of the problem (1.1),(1.3),(1.4) in the
domains Dy, | ., by (6.14), for the length At of the interval [t;_1,%;], independently on the step
number ¢, there exists the natural number 7y such that ¢;, > ¢». This latter means that the problem
(1.1),(1.3),(1.4) has the unique solution in the domain Dr, 1,. The same process, owing to the
estimate (6.14), allows one to construct step by step a unique solution of the problem (1.1), (1.3), (1.4)
in the domains Dr, 1y,..., D7, 1,,,, and since T, = T, this proves the existence of a generalized
solution of the problem (1.1), (1.2) in the domain Dy.

Thus the following theorem is valid.

Theorem 6.1. Let f € C(Dr), g € C(Dr x R) and the conditions (3.5) and (4.4) be fulfilled. Then
the problem (1.1), (1.2) has a unique generalized solution of the class C* in the domain Dr.

Remark 6.4. From Theorem 6.1 we arrive at the global solvability of the problem (1.1),(1.2) in the
sense of Definition 1.3.

7. THE CASE OF NONEXISTENCE OF A GLOBAL SOLUTION OF THE PROBLEM (1.1), (1.2)

Below, we will show that violation of the condition (4.4) may result in the nonexistence of global
solvability of the problem (1.1),(1.2) in the sense of Definition 1.3. To simplify our exposition, we
consider the case k = 1, i.e., when 7 7 is the characteristic of the equation (1.1). Indeed, let
g(z,t,8) = —|s|“s, s € R and the nonlinearity exponent o > —1.

Lemma 7.1. Let u be a strong generalized solution of the problem (1.1),(1.2) of the class C' in the
domain Dy in the sense of Definition 1.1. Then the following integral equality

/uDgo dxdt:/|u|o‘uut<p dxdt—i—/fgo dz dt (7.1)
Dr Dr Dr

is valid for any function ¢ such that

¢ € C*(Dr), ¢ls, . =0, @ty

Y3, T

=0, ¢zl =0 (7.2)

Y2, T

Proof. According to the definition of a strong generalized solution u of the problem (1.1),(1.2) of
the class C! in the domain D, the function u € C*(D7) and there exists the sequence of functions

u, € C?*(Dr, 1~“T) such that the equalities

nlggo [tin — uHcl(BT) =0, nh—)ngo | L, — f||c(5T) =0 (7.3)

are valid.

Assume f,, := Lu,. We multiply both parts of the equality Lu, = f, by the function ¢ and
integrate the obtained equality with respect to the domain Dr. As a result of integration by parts of
the left part of that equality, in view of (7.2) and the conditions (1.2), we obtain

/uana dxdt:/|un|aununtgp da:dt+/fn<p dx dt.
Dr D~ Dr

Passing in this equality to the limit, as n — oo, owing to (7.3), we obtain (7.1). O
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Below, the use will be made of the test functions method (see, e.g., [19, pp. 10-12]). We introduce
into consideration the function ¢ := ©°(x,t) such that

p" € C* (D), "+ <0, %[, >0, flo =0, ¢, =0 (7.4)
and
_ [mrd ,_a+t2
T=1

It can be easily verified that in the capacity of the function ° satisfying the conditions (7.4) and
(7.5), we can take the function

)z =), (x,t) € Dy,
¢ (1) {07 o

for a sufficiently large positive n.
Put pr(x,t) == @Y (%, %), T > 0. By virtue of (7.4), it can be easily seen that

T°>T
- der dor dor
or € C*(Dr), or +TW <0, ¢r|, >0, . = 0, ¢r|, =0, 5l = 0. (7.6)
Y2, T V3, T
Given f, we consider the function
¢(T) := / for dxdt, T > 0. (7.7)

Dt
The following theorem on the nonexistence of global solvability of the problem (1.1),(1.2) holds.
Theorem 7.1. Let g(z,t,5) = —|s|%, s € R, a > —1, f € C(Dw), and f > 0 in the domain Dy,.
Then if
lim inf (T .
lim inf {(T) > 0, (7.8)

there exists the positive number T* := T*(f) such that for T > T* the problem (1.1),(1.2) fails to
have a strong generalized solution u of the class C' in the domain Dr.

Proof. Suppose that in the conditions of this theorem there exists a strong generalized solution u of
the problem (1.1),(1.2) of the class C! in the domain Dz. Then by Lemma 7.1, there is the equality
(7.1) in which, due to (7.6), in the capacity of the function ¢ is taken the function ¢ = pr, i.e.,

/uDng dxdtz/\u|auut<pT dxdt+/fg0T dzx dt. (7.9)
DT DT

Dt
Taking into account (1.2) and (7.6), we have

1

a—+2
Dt

/ |u|“uurpr dedt = or % |u|*T2 dx dt
Dr

1 8<pT 1
= at2 222 g dt>7/ 20 da dt.
a+2/|“| or = gy | e de
DT DT

Hence by (7.7), it follows from (7.9) that

1
—T/|u|pg0T dzx dt < /chpT dedt —((T), p:==a+2>1. (7.10)
P Dr Dr

If in the Young’s inequality with parameter € > 0

5 / 1 1
ab§*0p+mbp;a7bzo, 7+7/:17p>1’
p pe p p
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1 ’
we take a = |u|pr, b= % ,E= % , then in view of the fact that % =p’ — 1, we obtain
2z
L 0er| 1 T ~1 | Or)?’
uOeprl = b B < Ly L Berl?.

v pT D 0P

Pr T
By virtue of (7.10) and the last inequality, we have
Tp,71 D p/

0<— | jﬁ‘l dx dt — (T). (7.11)
p E o
T

Since ¢r(z,t) = (%, %), in view of (7.4), (7.5), after the change of variables = Txy, t = Ty,
it can be easily verified that

D" 1 [mpzis Ko
/ F dl‘ dt = T2(p,_1) ‘w0|p,71 dﬂ?ldtl = m .
T T Dr=1

Hence, bearing in mind (7.11), we obtain

Ko
0< p/Tp’ -1

= ¢(T). (7.12)

Since p’ = ;E5 > 1, by virtue of (7.5), we have

ko

li ——— =0.
Tﬂlrfoo p'Tp/71

Therefore, owing to (7.8), there exists the positive number T% := T*(f) such that for T > T*,
the right-hand side of the inequality (7.12) is negative, whereas the left-hand side equals zero. The
obtained contradiction shows that if u is a strong generalized solution of the problem (1.1),(1.2) of
the class C! in the domain Dy, then necessarily T < T*, which proves Theorem 7.1. 0

Remark 7.1. It is easy to check that if f € C(Dy), f > 0, and f(x,t) > ct=™ for t > 1, where
¢ = const > 0,0 < m = const < 2, then the condition (7.8) is fulfilled and hence for g = —|s|*s, s € R,
a > —1 the problem (1.1),(1.2) for sufficiently large T fails to have a strong generalized solution u of
the class C! in the domain Dy.

Indeed, introducing in (7.7)the transformation of independent variables x and ¢ by formula z = T'z4,
t = Tt,, after simple transformations we will have

(:(T) = T2 / f(TfL‘l,Ttl)gOO(.’L‘l,tl) dl‘l dtl
Dr=
> eTr?m / tl_mgoo(l‘l, tl) dxydt] + T2 / f(TJ,‘l, Tt1)<p0(x1, tl) dxq dty
DTzlﬂ{tlszl} DTer‘I{t1<T71}
in the assumption that 7" > 1. Further, let 773 > 1 be an arbitrary fixed number. Then from the last
inequality, when T > T > 1, for the function ¢ we have
¢(T) > 1™ / t7" 0% (w1, t1) day dty > ¢ / 7% (w1, t1) day dta,

DT:lm{tlzTil} DTzlﬁ{tlszl}

which immediately results in the validity of (7.8).
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