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ÁÀÃÉ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ.
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1 Formulation of the main results
On a finite interval [a, b], we consider the differential equation

u′′ = f(t, u) (1.1)

with the Neumann two-point boundary conditions

u′(a) = c1, u′(b) = c2, (1.2)

where f : [a, b] × R → R is a function satisfying the local Carathéodory conditions, while c1 and c2
are real constants.

A number of interesting and unimprovable in a certain sense results concerning the existence and
uniqueness of a solution of problem (1.1), (1.2) are known (see, e.g., [1–3, 5–8, 12] and the references
therein). In the present paper, general theorems on the existence and uniqueness of a solution of
that problem are proved which are nonlinear analogues of the first Fredholm theorem. Based on
these theorems, unimprovable sufficient conditions, different from the above mentioned results, for the
solvability and unique solvability of problem (1.1), (1.2) are obtained.

We use the following notation.
R is the set of real numbers; R+ = [0,+∞[ ; R− = ]−∞, 0];

[x]− =
|x| − x

2
;

L([a, b]) is the space of Lebesgue integrable functions.

Definition 1.1. Let pi ∈ L([a, b]) (i = 1, 2) and

p1(t) ≤ p2(t) for almost all t ∈ [a, b]. (1.3)

We say that the vector function (p1, p2) belongs to the set Neum([a, b]) if for any measurable function
p : [a, b] → R, satisfying the inequality

p1(t) ≤ p(t) ≤ p2(t) for almost all t ∈ [a, b], (1.4)

the homogeneous Neumann problem

u′′ = p(t)u, (1.5)
u′(a) = 0, u′(b) = 0 (1.6)

has only the trivial solution.

Theorem 1.1. Let there exist (p1, p2) ∈ Neum([a, b]) and an integrable in the first and non-
decreasing in the second argument function q : [a, b]× R+ → R+ such that

lim
x→+∞

b∫
a

q(t, x)

x
dt = 0, (1.7)

and on the set [a, b]× R the inequality

p1(t)|x| − q(t, |x|) ≤ f(t, x) sgn(x) ≤ p2(t)|x|+ q(t, |x|) (1.8)

holds. Then problem (1.1), (1.2) has at least one solution.

Corollary 1.1. Let on the set [a, b] × R inequality (1.8) be satisfied, where pi ∈ L([a, b]) (i = 1, 2)
are the functions satisfying inequality (1.3), and q : [a, b]× R+ → R+ is an integrable in the first and
non-decreasing in the second argument function satisfying condition (1.7). Let, moreover,

b∫
a

p2(t) dt ≤ 0, mes {[t ∈ [a, b] : p2(t) < 0} > 0, (1.9)
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and there exist a number λ ≥ 1 such that
b∫

a

[p1(t)]
λ
−
dt ≤ 4(b− a)

π2

(
π

b− a

)2λ

. (1.10)

Then problem (1.1), (1.2) has at least one solution.
Corollary 1.2. Let on the set [a, b] × R inequality (1.8) be satisfied, where p1 : [a, b] → R− and
p2 : [a, b] → R are integrable functions satisfying inequalities (1.3) and (1.9), while q : [a, b]×R+ → R+

is an integrable in the first and non-decreasing in the second argument function satisfying condition
(1.7). Let, moreover, there exist t0 ∈ ]a, b[ such that the function p1 is non-increasing and non-
decreasing in the intervals ]a, t0[ and ]t0, b[ , respectively, and

t0∫
a

√
|p1(t)| dt ≤

π

2
,

b∫
t0

√
|p1(t)| dt ≤

π

2
,

b∫
a

√
|p1(t)| dt < π. (1.11)

Then problem (1.1), (1.2) has at least one solution.
Theorem 1.2. Let on the set [a, b]× R the inequality

p1(t)|x− y| ≤ (f(t, x)− f(t, y)) sgn(x− y) ≤ p2(t)|x− y| (1.12)

be satisfed, where (p1, p2) ∈ Neum([a, b]). Then problem (1.1), (1.2) has one and only one solution.
Corollary 1.3. Let on the set [a, b]× R condition (1.12) hold, where pi ∈ L([a, b]) (i = 1, 2) are the
functions satisfying inequalities (1.3) and (1.9). If, moreover, for some λ ≥ 1 inequality (1.10) is
satisfied, then problem (1.1), (1.2) has one and only one solution.
Corollary 1.4. Let on the set [a, b]×R inequality (1.12) hold, where p1 : [a, b] → R− and p2 : [a, b] → R
are integrable functions satisfying inequalities (1.3) and (1.9). Let, moreover, there exist t0 ∈ ]a, b[
such that the function p2 is non-increasing and non-decreasing in the intervals ]a, t0[ and ]t0, b[ ,
respectively, and satisfies inequality (1.11). Then problem (1.1), (1.2) has one and only one solution.

The following two corollaries of Theorem 1.2 concern the linear differential equation

u′′ = p(t)u+ q(t), (1.13)

where p and q ∈ L([a, b]).
Corollary 1.5. Let

b∫
a

p(t) dt ≤ 0, mes{t ∈ [a, b] : p(t) < 0} > 0, (1.14)

and let there exist a number λ ≥ 1 such that
b∫

a

[p(t)]λ
−
dt ≤ 4(b− a)

π2

(
π

b− a

)2λ

. (1.15)

Then problem (1.13), (1.2) has one and only one solution.
Corollary 1.6. Let there exist a number t0 ∈ ]a, b[ such that the function p along with (1.14) satisfies
the conditions

p0(t) = ess sup
{
[p(s)]− : a < s < t

}
< +∞ for a < t < t0, (1.16)

p0(t) = ess sup
{
[p(s)]− : t < s < b

}
< +∞ for t0 < t < b, (1.17)

t0∫
a

√
p0(t) dt ≤

π

2
,

b∫
t0

√
p0(t) dt ≤

π

2
,

b∫
a

√
p0(t) dt < π. (1.18)

Then problem (1.13), (1.2) has one and only one solution.
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Remark 1.1. In the case, where instead of (1.14) the more hard condition

p(t) ≤ 0 for a < t < b, mes{t ∈ [a, b] : p(t) < 0} > 0 (1.19)

is satisfied, the results analogous to Corollary 1.5 previously were obtained in [5,6,12]. More precisely,
in [12] it is required that along with (1.19) the inequalities

b∫
a

|p(t)| dt ≤ 4

b− a
, ess sup{|p(t)| : a ≤ t ≤ b} < +∞

be satisfied (see [12, Theorem 3]), while in [5] and [6] it is assumed, respectively, that

b∫
a

|p(t)| dt ≤ 4

b− a

(see [5, Corollary 1.2]), and
b∫

a

|p(t)|λ dt ≤ 4(b− a)

π2

(
π

b− a

)2λ

,

where λ ≡ const ≥ 1 (see [6, Corollary 1.3]).

Example 1.1. Suppose

p(t) ≡ −
(

π

b− a

)2

,

ε is arbitrarily small positive number, while λ is so large that(
1 +

ε

π

)λ

>
π

2
.

Then instead of (1.15) the inequality

b∫
a

[p(t)]λ
−
dt <

4(b− a)

π2

(
π + ε

b− a

)2λ

(1.20)

is satisfied. On the other hand, the homogeneous problem (1.5), (1.6) has a nontrivial solution u0(t) =

cos π(t−a)
b−a , and the nonhomogeneous problem (1.13), (1.2) has no solution if only

c1 + c2 +

b∫
a

u0(t)q(t) dt ̸= 0.

Consequently, condition (1.15) in Corollary 1.5 is unimprovable and it cannot be replaced by condition
(1.20).

The above example shows also that condition (1.10) in Corollaries 1.1 and 1.3 is unimprovable in
the sense that it cannot be replaced by the condition

b∫
a

[p1(t)]
λ
−
dt <

4(b− a)

π2

(
π + ε

b− a

)2λ

,

where ε is a positive constant independent of λ.
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Note that condition (1.10) in the above mentioned corollaries is unimprovable also in the case
where λ = 1, and it cannot be replaced by the condition

b∫
a

[p1(t)]− dt <
4 + ε

b− a

no matter how small ε > 0 would be (see [5, p. 357, Remark 1.1]).

Example 1.2. Suppose t0 ∈ ]a, b[ and

p(t) =


− π2

4(t0 − a)2
for a ≤ t ≤ t0,

− π2

4(b− t0)2
for t0 < t ≤ b.

Then inequalities (1.16), (1.17) hold, and instead of (1.18) we have

t0∫
a

√
p0(t) dt =

π

2
,

b∫
t0

√
p0(t) dt =

π

2
.

On the other hand, the homogeneous problem (1.5), (1.6) has a nontrivial solution

u0(t) =


(t0 − a) cos π(t− a)

2(t0 − a)
for a ≤ t ≤ t0,

(t0 − b) cos π(b− t)

2(b− t0)
for t0 < t ≤ b,

while the nonhomogeneous problem (1.13), (1.2) has no solution if only

(t0 − a)c1 + (b− t0)c2 +

b∫
a

u0(t)q(t) dt ̸= 0.

Consequently, condition (1.18) in Corollary 1.6 is unimprovable in the sense that it cannot be replaced
by the condition

t0∫
a

√
p0(t) dt ≤

π

2
,

b∫
t0

√
p0(t) dt ≤

π

2
.

From the above said it is also clear that condition (1.11) in both Corollary 1.2 and Corollary 1.4
is unimprovable and it cannot be replaced by the condition

t0∫
a

√
|p1(t)| dt ≤

π

2
,

b∫
t0

√
|p1(t)| dt ≤

π

2
.

2 Auxiliary propositions
2.1. Lemma on a priori estimate. In the segment [a, b], we consider the differential inequality

p1(t)|u(t)| − q(t) ≤ u′′(t) sgn(u(t)) ≤ p2(t)|u(t)|+ q(t), (2.1)

where
(p1, p2) ∈ Neum([a, b]), (2.2)
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and q ∈ L([a, b]) is a non-negative function.
A function u : [a, b] → R is said to be a solution of the differential inequality (2.1) if it is continu-

ously differentiable, has an absolutely continuous on [a, b] first derivative, and almost everywhere on
this segment satisfies inequality (2.1).

Lemma 2.1. If condition (2.2) holds, then there exists a positive constant r0 such that for any non-
negative function q ∈ L([a, b]) every solution of the differential inequality (2.1) admits the estimate

|u(t)| ≤ ro

(
|u′(a)|+ |u′(b)|+

b∫
a

q(s) ds

)
for a ≤ t ≤ b. (2.3)

Proof. Assume the contrary that the lemma is not true. Then for any natural number k there exist
a non-negative function qk ∈ L([a, b]) and a solution uk of the differential inequality (2.1) such that

∥uk∥ > k2
(
|u′

k(a)|+ |u′
k(b)|+

b∫
a

qk(s) ds

)
,

where ∥uk∥ = max{|uk(t)| : t ∈ [a, b]}.
Let Ik be the set of all t ∈ [a, b] at which there exists u′′

k(t),

u0k(t) = uk(t)/∥uk∥ for t ∈ [a, b], q0k(t) = kq(t)/∥uk∥ for t ∈ Ik.

Then

p1(t)|u0k(t)| − q0k(t)/k ≤ u′′
0k(t) sgn(u0k(t)) ≤ p2(t)|u0k(t)|+ q0k(t)/k for t ∈ Ik, (2.4)

|u′
0k(a)|+ |u′

0k(b)| <
1

k
, ∥u0k∥ = 1, (2.5)

b∫
a

q0k(s) ds <
1

k
. (2.6)

Put

I1k =

{
t ∈ Ik : |u0k(t)| ≥

1

k

}
, I2k = Ik \ I1k,

p0k(t) =


u′′
0k(t)

u0k(t)
for t ∈ I1k,

p1(t) for t ∈ I2k,

q1k(t) =


0 for t ∈ I1k,

u′′
0k(t)− p1(t)u0k(t) for t ∈ I2k,

Pk(t) =

t∫
a

p0k(s) ds.

Then
u′′
0k(t) = p0k(t)u0k(t) + q1k(t) for t ∈ Ik. (2.7)

On the other hand, according to conditions (2.4) and (2.5) we have

|u′′
0k(t)| ≤ ℓ(t) + q0k(t) for t ∈ Ik,

p1(t)− q0k(t) ≤ p0k(t) ≤ p2(t) + q0k(t) for t ∈ Ik,

|q1k(t)| ≤ (|p1(t)|+ ℓ(t) + q0k(t)) /k for t ∈ Ik,
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where ℓ(t) = |p1(t)|+ |p2(t)|.
If along with these estimates we take into account inequality (2.6), then it becomes evident that

|u′
0k(t)− u′

0k(τ)| ≤
t∫

τ

ℓ(s) ds+
1

k
for a ≤ τ < t ≤ b, (2.8)

Pk(a) = 0,

t∫
τ

p1(s) ds−
1

k
< Pk(t)− Pk(τ) <

t∫
τ

p2(s) ds+
1

k
for a ≤ τ < t ≤ b, (2.9)

b∫
a

|p0k(s)| ds < ℓ0, (2.10)

b∫
a

|q1k(s)| ds <
ℓ0
k
, (2.11)

where

ℓ0 = 1 +

b∫
a

(|p1(s)|+ ℓ(s)) ds.

By virtue of conditions (2.5), (2.8) and(2.9), the sequences (uk)
+∞
k=1, (u′

k)
+∞
k=1, (Pk)

+∞
k=1 are uniformly

bounded and equicontinuous on [a, b]. By the Arzelà–Ascoli lemma, without loss of generality we can
assume that these sequences are uniformly convergent.

Put
u(t) = lim

k→+∞
u0k(t), P (t) = lim

k→+∞
Pk(t). (2.12)

If we pass to the limit in inequality (2.9) as k → +∞, then we get

P (a) = 0,

t∫
τ

p1(s) ds ≤ P (t)− P(τ) ≤
t∫

τ

p2(s) ds for a ≤ τ < t ≤ b.

Hence it is clear that the function P is absolutely continuous and admits the representation

P (t) =

t∫
a

p(s) ds for a ≤ t ≤ b, (2.13)

where p ∈ L([a, b]) is a function satisfying inequality (1.4).
By Lemma 1.1 from [4], conditions (2.10), (2.12) and (2.13) guarantee the validity of the equality

lim
k→+∞

t∫
a

p0k(s)u0k(s) ds =

t∫
a

p(s)u(s) ds for a ≤ t ≤ b. (2.14)

In view of (2.7) we have

u′
0k(t) = u′

0k(a) +

t∫
a

(p0k(s)u0k(s) + q1k(s)) ds for a ≤ t ≤ b.

If along with this identity we take into account conditions (2.5), (2.11) and (2.14), then we find

u′(t) =

t∫
a

p(s)u(s) ds for a ≤ t ≤ b

u′(a) = u′(b) = 0, ∥u∥ = 1.
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Consequently, u is a nontrivial solution of the homogeneous problem (1.5), (1.6). On the other hand,
due to conditions (1.4) and (2.2), this problem has no nontrivial solution. The contradiction obtained
proves the lemma.

2.2. Lemmas on two-point boundary value problems for equation (1.5). Let p ∈ L([a, b]).
We consider the differential equation (1.5) with the boundary conditions

u′(a) = 0, u(b) = 0, (2.15)

or
u(a) = 0, u′(b) = 0. (2.16)

Lemma 2.2 (T. Kiguradze). Let

p(t) ≥ −p0(t) for almost all t ∈ [a, b], (2.17)

where p0 ∈ L([a, b]) is a non-negative function. If, moreover, for some λ ≥ 1 the inequality

b∫
a

(b− t)pλ0 (t) dt ≤
(

π

2(b− a)

)2λ−2

holds, then problem (1.5), (2.15) has only the trivial solution. And if

b∫
a

(t− a)pλ0 (t) dt ≤
(

π

2(b− a)

)2λ−2

,

then problem (1.5), (2.16) has only the trivial solution.

This lemma is a corollary of Theorem 1.3 from [10].

Lemma 2.3. Let inequality (2.17) hold where p0 ∈ L([a, b]) is a non-negative non-decreasing (non-
increasing) function such that

b∫
a

√
p0(t) dt <

π

2
. (2.18)

Then problem (1.5), (2.15) (problem (1.5), (2.16)) has only the trivial solution.

Proof. We consider only problem (1.5), (2.15) since problem (1.5), (2.16) can be considered analo-
gously.

Assume that problem (1.5), (2.15) has a nontrivial solution u. Without loss of generality we can
assume that u′(b) < 0. Then there exists a0 ∈ [a, b[ such that

u(t) > 0, u′(t) < 0 for a0 < t < b, (2.19)
u′(a0) = 0.

By virtue of conditions (2.17) and (2.19), almost everywhere on [a0, b] the inequality

u′′(t)u′(t) ≤ −p0(t)u
′(t)u(t)

is satisfied. If along with this we take into account the fact that p0 is a non-decreasing function, then
we obtain

u′ 2(t) ≤ −2

t∫
a0

p0(s)u
′(s)u(s) ds ≤ p0(t)

(
−

t∫
a0

u′(s)u(s) ds

)
= p0(t)(u

2(a0)− u2(t)) for a0 ≤ t ≤ b.
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Consequently, √
p0(t) ≥

−u′(t)√
u2(a0)− u2(t)

for a0 < t ≤ b.

Integrating this inequality from a0 to b, we get

b∫
a0

√
p0(t) dt ≥ −

b∫
a0

−u′(t) dt√
u2(a0)− u2(t)

=

1∫
0

dx√
1− x2

=
π

2
,

which contradicts inequality (2.18). The contradiction obtained provers the lemma.

Remark 2.1. From Lemma 2.3 it follows, in particular, that if p : [a, b] → R− is a non-decreasing (a
non-increasing) function and for some t0 ∈ ]a, b[ the inequalities

t0∫
a

√
|p(s)| ds ≤ π

2
, p(t0) > − π2

4(b− t0)2

(
p(t0) > − π2

4(t0 − a)2
,

b∫
t0

√
|p(s)| ds ≤ π

2

)

hold, then the Dirichlet problem

u′′ = p(t)u, u(a) = u(b) = 0

has only the trivial solution. This result generalizes Z. Nehari’s theorem [11, Theorem 1], where it is
assumed that

b∫
a

√
|p(s)| ds ≤ π

2
.

Along with Lemmas 2.2 and 2.3, below we need Lemma 2.4 as well, concerning problem (1.5), (1.6).

Lemma 2.4. If condition (1.14) holds, then every solution of problem (1.5), (1.6) has at least one
zero in the interval ]a, b[ .

Proof. Assume the contrary that problem (1.5), (1.6) has a solution u not having a zero in ]a, b[ . Then
by (1.6),

u(t) ̸= 0 for a ≤ t ≤ b,

and almost everywhere on [a, b] the equality

u′′(t)

u(t)
= p(t)

holds. If we integrate this identity from a to b, then by conditions (1.6) and (1.14) we get

0 <

b∫
a

u′ 2(t)

u2(t)
dt =

b∫
a

p(t) dt ≤ 0.

The contradiction obtained provers the lemma.

2.3. Lemmas on the set Neum([a, b]).

Lemma 2.5. Let pi ∈ L([a, b]) (i = 1, 2) be functions satisfying inequalities (1.3), (1.9) and (1.10),
where λ ≥ 1. Then

(p1, p2) ∈ Neum([a, b]).
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Proof. Assume the contrary that
(p1, p2) ̸∈ Neum([a, b]).

Then there exists a function p ∈ L([a, b]), satisfying condition (1.4), such that problem (1.5), (1.6) has
a nontrivial solution u.

Inequalities (1.4) and (1.9) imply inequalities (1.14). Hence by Lemma 2.4 follows the existence of
t1 ∈ ]a, b[ such that

u(t1) = 0. (2.20)

On the other hand, by Lemma 2.2 inequality (1.4) and equalities (1.6) and (2.20) result in

(π
2

)2λ−2

< (t1 − a)2λ−2

t1∫
a

(t1 − t)[p1(t)]
λ
−
dt < (t1 − a)2λ−1

t1∫
a

[p1(t)]
λ
−
dt,

(π
2

)2λ−2

< (b− t1)
2λ−2

b∫
t1

(t− t1)[p1(t)]
λ
−
dt < (b− t1)

2λ−1

b∫
t1

[p1(t)]
λ
−
dt.

Thus (π
2

)4λ−4

< ((t1 − a)(b− t1))
2λ−1

( t1∫
a

[p1(t)]
λ
−
dt

)( b∫
t1

[p1(t)]
λ
−
dt

)
.

Hence, in view of the inequalities

(t1 − a)(b− t1) ≤
1

4
(b− a)2,( t1∫

a

[p1(t)]
λ
−
dt

)( b∫
t1

[p1(t)]
λ
−
dt

)
≤ 1

4

( b∫
a

[p1(t)]
λ
−
dt

)2

,

it follows that (π
2

)4λ−4

< 2−4λ(b− a)4λ−2

( b∫
a

[p1(t)]
λ
−
dt

)2

.

Consequently,
b∫

a

[p1(t)]
λ
−
dt >

4(b− a)

π2

(
π

b− a

)2λ

,

which contradicts inequality (1.10). The contradiction obtained provers the lemma.

Lemma 2.6. Let p1 : [a, b] → R− and p2 : [a, b] → R be integrable functions satisfying inequalities
(1.3) and (1.9). Let, moreover, there exist t0 ∈ ]a, b[ such that the function p1 is non-increasing and
non-decreasing in the intervals ]a, t0[ and ]t0, b[ , respectively, and inequalities (1.11) are satisfied.
Then

(p1, p2) ∈ Neum([a, b]).

Proof. Let p ∈ L([a, b]) be an arbitrary function satisfying inequality (1.4), and let u be an arbitrary
solution of problem (1.5), (1.6).

Inequalities (1.4) and (1.9) result in inequalities (1.14). Hence by Lemma 2.4 follows the existence
at least one zero of the function u in ]a, b[ . Consequently, there exists t1 ∈ ]a, b[ such that

u′(a) = 0, u(t1) = 0, (2.21)
u(t1) = 0, u′(b) = 0. (2.22)
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If along with (1.11) we take into account the monotonicity of the function p1 in the intervals ]a, t0[
and ]t0, b[ , then it becomes clear that either

a < t1 ≤ t0,

t1∫
a

√
|p1(t)| dt <

π

2
, (2.23)

or

t0 ≤ t1 < b,

b∫
t1

√
|p1(t)| dt <

π

2
. (2.24)

However, if condition (2.23) (condition (2.24)) holds, then by Lemma 2.3 problem (1.5), (2.21)
(problem (1.5), (2.22)) has only the trivial solution. Thus we have proved that u(t) ≡ 0. Hence, in
view of the arbitrariness of a solution u of problem (1.5), (1.6) and a function p, we have (p1, p2) ∈
Neum([a, b]).

2.4. Lemma on the solvability of problem (1.1), (1.2). Along with problem (1.1), (1.2) we
consider the auxiliary problem

u′′ = (1− λ)p(t)u+ λf(t, u), (2.25)
u′(a) = λc1, u′(b) = λc2, (2.26)

where p ∈ L([a, b]), and λ is a parameter.
According to Corollary 2 from [9], the following lemma is valid.

Lemma 2.7. Let problem (1.5), (1.6) have only the trivial solution and let there exist a positive
constant r such that for any λ ∈ ]0, 1[ an arbitrary solution u of problem (2.25), (2.26) admits the
estimate

|u(t)|+ |u′(t)| < r for a ≤ t ≤ b. (2.27)

Then problem (1.1), (1.2) has at least one solution.

3 Proof of the main results
Proof of Theorem 1.1. By Lemma 2.1, there exists a positive constant r0 such that every solution u
of the differential inequality

p1(t)|u(t)| − q(t, |u(t)|) ≤ u′′(t) sgn(u(t)) ≤ p2(t)|u(t)|+ q(t, |u(t)|) (3.1)

admits the estimate

∥u∥ ≤ r0

(
|u′(a)|+ |u′(b)|+

b∫
a

q(s, ∥u∥) ds
)
, (3.2)

where
∥u∥ = max {|u(t)| : a ≤ t ≤ b} .

On the other hand, according to equality (1.7), there exists a number r1 such that

r0

(
|c1|+ |c2|+

b∫
a

q(s, x) ds

)
< x for x ≥ r1. (3.3)

Put

r2 =

(
1

r0
+

b∫
a

(|p1(s)|+ |p2(s)|) ds
)
r1, r = r1 + r2.
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Let p ∈ L([a, b]) be an arbitrary function satisfying inequality (1.4), λ ∈ ]0, 1[ , and u be an arbitrary
solution of problem (2.25), (2.26). By Lemma 2.7 and condition (2.2), it suffices to state that u admits
estimate (2.27).

By virtue of inequality (1.8), the function u is a solution of problem (3.1), (2.26). Thus it admits
the estimate

∥u∥ ≤ r0

(
|c1|+ |c2|+

b∫
a

q(s, ∥u∥) ds
)
.

Hence in view of (3.3) we have
∥u∥ ≤ r1.

If along with this inequality we take into account conditions (2.26) and (3.3), we find

|u′(t)| ≤ |u′(a)|+
b∫

a

|u′′(s)| ds ≤ |c1|+
b∫

a

q(s, r1) ds+

b∫
a

(|p1(s)|+ |p2(s)|) |u(s)| ds

≤ r1/r0 + r1

b∫
a

(|p1(s)|+ |p2(s)|) ds = r2 for a ≤ t ≤ b.

Therefore estimate (2.27) is valid.

Proof of Theorem 1.2. Inequality (1.12) yields inequality (1.8), where q(t, |x|) ≡ |f(t, 0)|. Conse-
quently, all the conditions of Theorem 1.1 are fulfilled which guarantees the solvability of problem
(1.1), (1.2).

Let u1 and u2 be arbitrary solutions of the above mentioned problem. Put

u(t) = u1(t)− u2(t).

In view of condition (1.12), the function u is a solution of the differential inequality

p1(t)|u(t)| ≤ u′′(t) sgn(u(t)) ≤ p2(t)|u(t)|,

satisfying the boundary conditions (1.6). Hence by Lemma 2.1 it follows that u(t) ≡ 0. Consequently,
problem (1.1), (1.2) has one and only one solution.

By Lemma 2.5, Theorems 1.1 and 1.2 yield Corollaries 1.1 and 1.3, respectively. By Lemma 2.6,
Theorems 1.1 and 1.2 yield Corollaries 1.2 and 1.4, respectively.

In the case, where f(t, x) ≡ p(t)x+ q(t), Corollary 1.3 results in Corollary 1.5, and Corollary 1.4
results in Corollary 1.6.
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