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SOLVABILITY OF A NONLOCAL PROBLEM
BY A NOVEL CONCEPT OF FUNDAMENTAL FUNCTION



Abstract. Cauchy function, Green function and Riemann function are the several of the fundamental
functions used frequently in the expression of a fundamental solution in the literature. In order to
construct such functions, various ideas can be considered. The lesser-known one of these ideas is
contained in the papers [1–4] by Seyidali S. Akhiev. Inspired by these papers, the solvability of some
problems [12, 14, 15, 17–19] has been investigated. In this work, a novel kind of adjoint problem for
a generally nonlocal problem, and also Green’s functional via the solvability of that adjoint problem
are constructed [21]. By means of the obtained Green’s functional, an integral representation for the
solution of the nonlocal problem is established.1
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ÒÄÆÉÖÌÄ. ÊÏÛÉÓ ×ÖÍØÝÉÀ, ÂÒÉÍÉÓ ×ÖÍØÝÉÀ ÃÀ ÒÉÌÀÍÉÓ ×ÖÍØÝÉÀ ÞÉÒÉÈÀÃÉ ×ÖÍØÝÉÄÁÉÀ, ÒÏÌ-
ËÄÁÉÝ ËÉÔÄÒÀÔÖÒÀÛÉ áÛÉÒÀÃ ÂÀÌÏÉÚÄÍÄÁÀ ×ÖÍÃÀÌÄÍÔÖÒÉ ÀÌÏÍÀáÓÍÉÓ ßÀÒÌÏÓÀÃÂÄÍÀÃ. ÀÌ
×ÖÍØÝÉÄÁÉÓ ÀÓÀÂÄÁÀÃ ÀÒÓÄÁÏÁÓ ÒÀÌÃÄÍÉÌÄ ÌÉÃÂÏÌÀ. ÌÀÈ ÛÏÒÉÓ ÄÒÈ-ÄÒÈÉ ÍÀÊËÄÁÀÃ ÝÍÏ-
ÁÉËÉ ÌÏÚÅÀÍÉËÉÀ Ó. Ó. ÀáÉÄÅÉÓ ÍÀÛÒÏÌÄÁÛÉ [1–4]. ÀÌ ÓÔÀÔÉÄÁÆÄ ÃÀÚÒÃÍÏÁÉÈ ÂÀÌÏÊÅËÄÖË
ÉØÍÀ ÆÏÂÉÄÒÈÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÃÏÁÀ [12, 14, 15, 17–19]. ÍÀÛÒÏÌÛÉ ÆÏÂÀÃÉ ÀÒÀËÏÊÀËÖÒÉ
ÀÌÏÝÀÍÉÓÈÅÉÓ ÀÂÄÁÖËÉÀ ÀáÀËÉ ÔÉÐÉÓ ÛÄÖÙËÄÁÖËÉ ÀÌÏÝÀÍÀ, ÒÏÌËÉÓ ÀÌÏáÓÍÀÃÏÁÀÆÄ ÃÀÚ-
ÒÃÍÏÁÉÈ ÀÂÄÁÖËÉÀ ÂÒÉÍÉÓ ×ÖÍØÝÉÏÍÀËÉ [21]. ÌÉÙÄÁÖËÉ ÂÒÉÍÉÓ ×ÖÍØÝÉÏÍÀËÉÓ ÓÀÛÖÀËÄÁÉÈ
ÃÀÃÂÄÍÉËÉÀ ÀÒÀËÏÊÀËÖÒÉ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÉÍÔÄÂÒÀËÖÒÉ ßÀÒÌÏÃÂÄÍÀ.

1Reported on Conference “Differential Equation and Applications”, September 4-7, 2017, Brno
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1 Introduction
There are various papers related to the investigations on the differential systems involving general
boundary conditions [7,8,20,23]. To the best of our knowledge, there is no paper on the construction of
Green’s functional for an uncoupled system of linear ordinary differential equations with the exception
the abstract of conference [13]. This work deals with the construction of Green’s functional for such
a system with a general nonlocal condition. The main aim at this dealing is to identify the Green
function for the above-said system.

The rest of the work is organized as follows. In Section 2, the problem considered throughout the
work is stated in detail. In Section 3, the solution space and its adjoint space are introduced. In
Section 4, the adjoint operator, adjoint system and solvability conditions for the completely nonho-
mogeneous problem are given. In Section 5, Green’s functional is defined. In the last section, the
conclusions are emphasized.

2 Statement of the problem
Let R be the space of all real numbers, consider a bounded open interval G = (0, 1) in R. The problem
under consideration is stated as follows:

(V1U)(x) ≡ U ′(x) +A(x)U(x) = Z1(x), x ∈ G = (0, 1), (2.1)

V0U ≡ aU(0) +

1∫
0

g(ξ)U ′(ξ) dξ = Z0, (2.2)

where U(x) =

[
u1(x)
u2(x)

]
, Z1(x) =

[
z11(x)
z12(x)

]
, A(x) =

[
A1(x) 0

0 A2(x)

]
, g(ξ) =

[
g1(ξ) 0
0 g2(ξ)

]
are 2-

vectors and 2-square matrices defined on G, respectively; Z0 =

[
z01
z02

]
and a =

[
a1 0
0 a2

]
are 2-vector

and 2-square matrix with real entries, respectively. The symbol ′ denotes the ordinary derivative
of order one. Here A1(x), A2(x), z

1
1(x), z

1
2(x) ∈ Lp(G) with 1 ≤ p < ∞ and g1(ξ), g2(ξ) ∈ Lq(G)

( 1p + 1
q = 1). Lp(G) with 1 ≤ p < ∞ denotes the space of Lebesgue p-integrable functions on G.

L∞(G) denotes the space of measurable and essentially bounded functions on G, and W
(1)
p (G) with

1 ≤ p ≤ ∞ denotes the space of all functions u(x) ∈ Lp(G) having derivative du/dx ∈ Lp(G) [12,16,19].
The space W (1)

p (G) is equipped with the norm

∥u∥
W

(1)
p (G)

=

1∑
k=0

∥∥∥dku
dxk

∥∥∥
Lp(G)

.

The characteristic feature of this problem is that, instead of an ordinary boundary condition, it involves
a more comprehensive nonlocal boundary condition. The stated problem is investigated for a solution
vector U such that its entries u1 and u2 belong to the space W (1)

p (G).
Problem (2.1), (2.2) is a linear problem which can be considered as an operator equation

V U = Z (2.3)

with the linear operator V = (V1, V0) and Z = (Z1(x), Z0).
From the considerations given above, we have that V is bounded from W

(1)
p (G)2 into the Banach

space E2
p ≡ Lp(G)

2 × R2 of the elements Z = (Z1(x), Z0) with

∥z1∥Ep
= ∥z11(x)∥Lp(G) + |z01 |, ∥z2∥Ep

= ∥z12(x)∥Lp(G) + |z02 |, 1 ≤ p ≤ ∞.

If, for a given Z ∈ E2
p , problem (2.1), (2.2) has a unique solution U ∈ W

(1)
p (G)2 with ∥u1∥W (1)

p (G)
≤

c0∥z1∥Ep
and ∥u2∥W (1)

p (G)
≤ c1∥z2∥Ep

, then this problem is called a well-posed problem, where c0 and
c1 are constants independent of z1 and z2, respectively. Problem (2.1), (2.2) is well-posed if and only
if V :W

(1)
p (G)2 → E2

p is a (linear) homeomorphism.
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3 Adjoint space of the solution space
Problem (2.1), (2.2) is investigated by means of a novel concept of the adjoint problem which is
introduced in [2, 5]. Some isomorphic decompositions of the solution space W (1)

p (G)2 and its adjoint
space W (1)

p (G)2∗ are employed. Some of the principal features concerning with the solution space can
be given as follows: any function u ∈W

(1)
p (G) can be represented as

u(x) = u(α) +

x∫
α

u′(ξ) dξ, (3.1)

where α is a given point in G which is the set of closure points for G [12, 16, 19]. Furthermore, the
trace or the value operator D0u = u(γ) is bounded and surjective from W

(1)
p (G) onto R for a given

point γ of G. In addition, the value u(α) and the derivative u′(x) are unrelated elements of the
function u ∈W

(1)
p (G) such that for any real number ν0 and any function ν1 ∈ Lp(G), there exists one

and only one u ∈ W
(1)
p (G) such that u(α) = ν0 and u′(x) = ν1(x). Therefore, there exists a linear

homeomorphism between W
(1)
p (G)2 and E2

p . In other words, the space W (1)
p (G)2 has the isomorphic

decomposition W
(1)
p (G)2 = Lp(G)

2 × R2. The structure of the adjoint space is determined by the
following theorem.

Theorem 3.1 ([1, 2, 4, 12, 16, 19]). If 1 ≤ p < ∞, then any linear bounded functional F ∈ W
(1)
p (G)2∗

can be represented as

F (U) =

[
F 1(u1)
F 2(u2)

]
=



1∫
0

u′1(x)φ
1
1(x) dx+ u1(0)φ

1
0

1∫
0

u′2(x)φ
2
1(x) dx+ u2(0)φ

2
0

 (3.2)

with a unique element φ = (φ1(x), φ0) ∈ E2
q , where 1

p + 1
q = 1. Any linear bounded functional

F ∈W
(1)
∞ (G)2∗ can be represented as

F (U) =

[
F 1(u1)
F 2(u2)

]
=



1∫
0

u′1(x) dφ
1
1 + u1(0)φ

1
0

1∫
0

u′2(x) dφ
2
1 + u2(0)φ

2
0

 (3.3)

with a unique element φ = (φ1(e), φ0) ∈ Ê1 = (BA(Σ, µ))2 × R2, where µ is Lebesgue measure on R,
Σ is σ-algebra of the µ-measurable subsets e ⊂ G and BA(Σ, µ) is the space of all bounded additive
functions φ1(e) defined on Σ with φ1(e) = 0 when µ(e) = 0 [9]. The inverse is also valid, that is, if
φ ∈ E2

q , then (3.2) is bounded on W
(1)
p (G)2∗ for 1 ≤ p < ∞ and 1

p + 1
q = 1. If φ ∈ Ê1, then (3.3) is

bounded on W
(1)
∞ (G)2∗.

Proof. The operator NU ≡ (U ′(x), U(0)) : W
(1)
p (G)2 → E2

p is bounded and has a bounded inverse
N−1 represented by

U(x) = (N−1h)(x) ≡
x∫

0

h1(ξ) dξ + h0, h = (h1(x), h0) ∈ E2
p .

The kernel KerN of N is trivial and the image ImN of N is equal to E2
p . Hence, there exists a

bounded adjoint operator N∗ : E2∗
p → W

(1)
p (G)2∗ with KerN∗ = {0} and ImN∗ = W

(1)
p (G)2∗. In
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other words, for a given F ∈W
(1)
p (G)2∗, there exists a unique ψ ∈ E2∗

p such that

F = N∗ψ or F (U) = ψ(NU), U ∈W (1)
p (G)2. (3.4)

If 1 ≤ p < ∞, then E2∗
p = E2

q in the sense of an isomorphism [9]. Hence, the functional ψ can be
represented by

ψ(h) =

1∫
0

φ1(x)h1(x) dx+ φ0h0, h ∈ E2
p , (3.5)

with a unique element φ = (φ1(x), φ0) ∈ E2
q . Due to expressions (3.4) and (3.5), any F ∈ W

(1)
p (G)2∗

can uniquely be written by (3.2). For a given φ ∈ E2
q , the functional F written by (3.2) is bounded

on W
(1)
p (G)2. Hence, (3.2) is a general form for the functional F ∈W

(1)
p (G)2∗.

The proof is complete due to the fact that the case p = ∞ can likewise be shown [4,12,16,19].

Theorem 3.1 guarantees that W (1)
p (G)2∗ = E2

q for all 1 ≤ p < ∞, and W
(1)
∞ (G)2∗ = E2∗

∞ = Ê1.
The space E1 can also be considered as a subspace of the space Ê1 [4, 12,16,19].

4 Adjoint operator, adjoint system and solvability conditions
In this section, an explicit form for the adjoint operator V ∗ of V is investigated. To this end, any
f = (f1(x), f0) ∈ E2

q is taken as a linear bounded functional on E2
p and also we assume

f(V U) ≡
1∫

0

f1(x)(V1U)(x) dx+ f0(V0U), U ∈W (1)
p (G)2. (4.1)

By substituting expressions (2.1) and (2.2), and expression (3.1) for all entries of U ∈ W
(1)
p (G)2 (for

α = 0) into (4.1), we have

f(V U) ≡



1∫
0

f11 (x)
{
u′1(x) +A1(x)u1(x)

}
dx+ f10

(
a1u1(0) +

1∫
0

g1(ξ)u
′
1(ξ) dξ

)
1∫

0

f21 (x)
{
u′2(x) +A2(x)u2(x)

}
dx+ f20

(
a2u2(0) +

1∫
0

g2(ξ)u
′
2(ξ) dξ

)
 .

Hence, we obtain

f(V U) ≡
1∫

0

f1(x)(V1U)(x) dx+ f0(V0U) =

1∫
0

(w1f)(ξ)U
′(ξ) dξ + (w0f)U(0)

≡ (wf)(U) ∀ f ∈ E2
q , ∀U ∈W (1)

p (G)2, 1 ≤ p ≤ ∞, (4.2)

where

w1 =

[
w1

1

w2
1

]
, w0 =

[
w1

0

w2
0

]
,

(w1
1f

1)(ξ) = f11 (ξ) +

1∫
ξ

f11 (s)A1(s) ds+ f10 g1(ξ), w1
0f

1 =

1∫
0

f11 (x)A1(x) dx+ f10a1,

(w2
1f

2)(ξ) = f21 (ξ) +

1∫
ξ

f21 (s)A2(s) ds+ f20 g2(ξ), w2
0f

2 =

1∫
0

f21 (x)A2(x) dx+ f20a2.

(4.3)
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The operators w1
1, w

1
0, w

2
1 and w2

0 are linear and bounded from the space Eq of the pairs f = (f1(x), f0)
into the spaces Lq(G),R, Lq(G) and R, respectively. Therefore, the operator w = (w1, w0) : E

2
q → E2

q

represented by wf = (w1f, w0f) is linear and bounded. By (4.2) and Theorem 3.1, the operator
w is an adjoint operator for the operator V, when 1 ≤ p < ∞, in other words, V ∗ = w. When
p = ∞, w : E2

1 → E2
1 is bounded; in this case, the operator w is the restriction of the adjoint operator

V ∗ : E2∗
∞ →W

(1)
∞ (G)2∗ of V onto E2

1 ⊂ E2∗
∞ .

Equation (2.3) can always be transformed into the following equivalent equation

V Sh = Z (4.4)

with an unknown h = (h1, h0) ∈ E2
p by the transformation U = Sh, where S = N−1. If U = Sh, then

U ′(x) = h1(x), U(0) = h0. Hence, (4.2) can be rewritten as

f(V Sh) ≡
1∫

0

f1(x)(V1Sh)(x) dx+ f0(V0Sh)

=

1∫
0

(w1f)(ξ)h1(ξ) dξ + (w0f)h0 ≡ (wf)(h) ∀ f ∈ E2
q , ∀h ∈ E2

p , 1 ≤ p ≤ ∞.

Therefore, one of the operators V S and w becomes an adjoint operator for the other one. Consequently,
the equation

wf = φ (4.5)

with an unknown function f = (f1(x), f0) ∈ E2
q and a given function φ = (φ1(x), φ0) ∈ E2

q can be
considered as an adjoint equation of (4.4) (or of (2.3)) for all 1 ≤ p ≤ ∞, where

φ1 =

[
φ1
1

φ2
1

]
, φ0 =

[
φ1
0

φ2
0

]
.

Equation (4.5) can be written in explicit form as the system of equations

(w1
1f

1)(ξ) = φ1
1(ξ), ξ ∈ G,

w1
0f

1 = φ1
0,

(w2
1f

2)(ξ) = φ2
1(ξ), ξ ∈ G,

w2
0f

2 = φ2
0.

(4.6)

By expressions (4.3), the first and third equations in (4.6) are the integral equations for f11 (ξ), f21 (ξ),
respectively, and include f10 , f20 , respectively, as parameters; on the other hand, the second and fourth
equations in (4.6) are the algebraic equations for the unknowns f10 , f20 , respectively, and they include
some integral functionals defined on f11 (ξ), f21 (ξ), respectively. In other words, (4.6) is a system of four
integro-algebraic equations. This system called the adjoint system for (4.4) (or (2.3)) is constructed by
using (4.2) which is actually a formula of integration by parts in a nonclassical form. The traditional
type of an adjoint problem is defined by the classical Green’s formula of integration by parts [22],
therefore, has a sense only for some restricted class of problems [4, 12,16,19].

The following theorem concerning with the solvability of the problem can be derived.

Theorem 4.1 ([4, 12, 16, 19]). If 1 < p < ∞, then V U = 0 has either only the trivial solution or a
finite number of linearly independent solutions in W

(1)
p (G)2:

(1) If V U = 0 has only the trivial solution in W
(1)
p (G)2, then also wf = 0 has only the trivial

solution in E2
q . Then the operators V : W

(1)
p (G)2 → E2

p and w : E2
q → E2

q become linear
homeomorphisms.
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(2) If V U = 0 has m linearly independent solutions U1, U2, . . . , Um in W
(1)
p (G)2, then wf = 0 has

also m linearly independent solutions

f⋆ 1 ⋆ =
(
f⋆ 1 ⋆
1 (x), f⋆ 1 ⋆

0

)
, . . . , f⋆m⋆ =

(
f⋆m⋆
1 (x), f⋆m⋆

0

)
in E2

q . In this case, (2.3) and (4.5) have solutions U ∈ W
(1)
p (G)2 and f ∈ E2

q for the given
Z ∈ E2

p and φ ∈ E2
q if and only if the conditions

1∫
0

f⋆ i ⋆
1 (ξ)Z1(ξ) dξ + f⋆ i ⋆

0 Z0 = 0, i = 1, . . . ,m,

and
1∫

0

φ1(ξ)U
′
i(ξ) dξ + φ0Ui(0) = 0, i = 1, . . . ,m,

are satisfied, respectively.

5 Green’s functional
Consider the equation in the form of a functional identity

(wf)(U) = U(x) ∀U ∈W (1)
p (G)2, (5.1)

where f = (f1(ξ), f0) ∈ E2
q is an unknown pair and x ∈ G is a parameter [4, 12,16,19].

Definition 5.1 ([4, 12, 16, 19]). Let f(x) = (f1(ξ, x), f0(x)) ∈ E2
q be a pair with parameter x ∈ G. If

f = f(x) is a solution of (5.1) for a given x ∈ G, then f(x) is called Green’s functional of V (or of
(2.3)).

Theorem 5.1 ([4, 12, 16, 19]). If Green’s functional f(x) = (f1(ξ, x), f0(x)) of V exists, then any
solution U ∈W

(1)
p (G)2 of (2.3) can be represented by

U(x) =

1∫
0

f1(ξ, x)Z
1(ξ) dξ + f0(x)Z

0.

Additionally, KerV = {0}.

6 Conclusion
The proposed approach principally differs from the known classical construction methods of Green’s
function, it is based on the use of the structural properties of the space of solutions instead of the
classical Green’s formula of integration by parts, and it has a natural property which can be easily
applied to a very wide class of linear and some nonlinear boundary value problems involving linear
nonlocal nonclassical multi-point conditions with also integral-type terms. Because of these properties,
it is one of the scarce methods which are aimed at the derivation of a solution to such problems by
reducing to an integral equation in general. The proposed approach can successfully be employed also
for the functional differential problems resulting from the addition of some delayed, loaded (forced)
or neutral terms to the main operator as long as its linearity is conserved [6]. The work emphasizes
as a significant result that the unique solvability of the stated problem arises in the unique solvability
of the stated adjoint systems of integro-algebraic equations.
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