
Memoirs on Differential Equations and Mathematical Physics
Volume 83, 2021, 99–120

Songkran Pleumpreedaporn, Weerawat Sudsutad,
Chatthai Thaiprayoon, Sayooj Aby Jose

QUALITATIVE ANALYSIS OF GENERALIZED PROPORTIONAL
FRACTIONAL FUNCTIONAL INTEGRO-DIFFERENTIAL LANGEVIN
EQUATION WITH VARIABLE COEFFICIENT AND NONLOCAL
INTEGRAL CONDITIONS



Abstract. In this paper, the existence and uniqueness of solutions for a nonlinear generalized pro-
portional fractional functional integro-differential Langevin equation involving variable coefficient via
nonlocal multi-point integral conditions are investigated by using Banach’s, Schaefer’s and Krasnosel-
skii’s fixed point theorems. Different types of Ulam–Hyers stability are also established. Finally, an
example is given to demonstrate applicability to the theoretical findings.

2010 Mathematics Subject Classification. 34A08, 34B10, 34B15, 34D20.

Key words and phrases. Existence and uniqueness, fixed point theorem, fractional Langevin equa-
tion, generalized proportional fractional derivative, nonlocal integral condition, Ulam–Hyers stability.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÁÀÍÀáÉÓ, ÛÄ×ÄÒÉÓÀ ÃÀ ÊÒÀÓÍÏÓÄËÓÊÉÓ ÖÞÒÀÅÉ ßÄÒÔÉËÉÓ ÈÄÏÒÄÌÄÁÉÓ
ÂÀÌÏÚÄÍÄÁÉÈ ÂÀÌÏÊÅËÄÖËÉÀ ÀÌÏÍÀáÓÍÄÁÉÓ ÀÒÓÄÁÏÁÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀ ÀÒÀßÒ×ÉÅÉ ÂÀÍÆÏÂÀÃÄ-
ÁÖËÉ ÐÒÏÐÏÒÝÉÖËÉ ßÉËÀÃ-×ÖÍØÝÉÏÍÀËÖÒÉ ÉÍÔÄÂÒÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ËÀÍÑÄÅÀÍÉÓ ÂÀÍÔÏ-
ËÄÁÉÓÈÅÉÓ ÝÅËÀÃÉ ÊÏÄ×ÉÝÉÄÍÔÉÓ ÛÄÌÝÅÄËÉ ÀÒÀËÏÊÀËÖÒÉ ÌÒÀÅÀËßÄÒÔÉËÉÀÍÉ ÉÍÔÄÂ-
ÒÀËÖÒÉ ÐÉÒÏÁÄÁÉÈ, ÀÂÒÄÈÅÄ ÃÀÃÂÄÍÉËÉÀ ÓáÅÀÃÀÓáÅÀ ÔÉÐÉÓ ÖËÀÌ-äÀÉÄÒÓÉÓ ÌÃÂÒÀÃÏÁÀ.
ÍÀÛÒÏÌÉÓ ÁÏËÏÓ ÌÏÝÄÌÖËÉÀ ÈÄÏÒÉÖËÉ ÃÀÓÊÅÍÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÌÀÂÀËÉÈÉ.
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1 Introduction
Fractional differential equations have used to be an excellent instrument in the mathematical mod-
elling of dynamical systems and real world problems, such as aerodynamics, polymer science, frac-
tals and chaotic, nonlinear control theory, signal and image processing, bioengineering and chemical
engineering, etc. However, a number of various definitions of fractional derivative and integral op-
erators of non-integer order can be found in literature. For more details, we refer the reader to
the books [20, 24, 29, 32]. Recently, Jarad et al. [22] introduced a new type of fractional derivative
operator, the so-called generalized proportional fractional (GPF) derivatives extended by local deriva-
tives [9]. The characteristic of the new derivative is that it involves two fractional orders, preserves the
semigroup property, possesses nonlocal character and upon limiting cases it converges to the original
function and its derivative. The GPF derivative is well behaved and has a various helpful over the
classical derivatives in the sense that it generalizes previously defined derivatives in the literature.
We list some recent papers which have been refined in frame of GPF derivative and other related
works [2, 7, 8, 37].

Several interesting and important areas of investigation fractional differential equations are devoted
to the existence theory and stability analysis of the solutions. In recent years, many authors have
discussed the questions on existence, uniqueness and different types of Ulam–Hyers (UH) stability
of solutions of initial and boundary value problems for fractional differential equations. The UH
stability is the essential and special type of stability analysis that researchers studied in the field of
mathematical analysis. The concept of Ulam stability of functional equations was firstly initiated by
Ulam [40, 41] and Hyers [21] who presented the partial answer to the Ulam question in the case of
Banach space. Thereafter, this type of stability is called the UH stability. In 1950, the Hyers stability
was generalized by Aoki [10]. Rassias [33,34] provided an interesting generalization of the UH stability
of linear and nonlinear mappings. The UH stability was initially applied to a linear differential equation
by Obloza [31]. We refer the reader to the recent works [1,5,11,12,14,17,23,28,36,42,43]. It should be
noted that the above-said areas of interest (existence and stability) have been fabulously deliberated
within the Riemann–Liouville, Caputo, Hilfer or Hadamard derivatives.

In 1908, Paul Langevin [26] introduced a concept of Langevin equation in a sense of ordinary deriva-
tive which is an important equation of mathematical physics. It is well known that a Langevin equation
have been widely used to describe the dynamical processes of various fluctuating environments such
as physics, chemistry and electrical engineering [16, 30, 44]. However, for a system in complex media,
the ordinary Langevin equation does not provide the correct representation of dynamical systems.
One of the possible ways of the ordinary Langevin equation is to replace the ordinary (integer-order)
derivative by the fractional-order derivative. The fractional Langevin equation was studied by various
researchers (for some recent works on fractional Langevin equations, see [6,13,15,18,27,38,39,45]). It is
to be noted that most exiting in literature results dealt with a fractional Langevin equation, have been
reported in the case of a constant coefficient H(t). However, the paper [4] has first discussed fractional
Langevin equation containing variable coefficient and supplemented with nonlocal-terminal fractional
boundary conditions. On the other hand, we claim that our approach in this paper is totally different
from paper [4] in the sense that different fractional derivative is accommodated, different boundary
conditions are associated, different fixed point theorems are used and UH stability is discussed which
has not studied in [4].

Motivated by [4, 15, 38, 39], in this paper we study th existence, uniqueness and different types of
UH stability for a nonlinear GPF functional integro-differential Langevin equation involving a variable
coefficient via nonlocal multi-point integral conditions:

C
a D

β,ρ(C
a D

α,ρ
+H(t)

)
x(t) = f(t, x(t), x(θ(t)), (Sx)(t)), t ∈ (a, T ], a > 0,

x(a) = γ, x(η) =

m∑
i=1

δiaIµi,ρx(ξi) + κ,
(1.1)

where C
a Dq,ρ denotes the GPF derivative operator of Caputo type of order q ∈ {α, β}, 0 < α, β ≤ 1,

1 < α+ β ≤ 2, ρ > 0, aIµi,ρ denotes the GPF integral opertator of order µi > 0, ρ > 0, i = 1, . . . ,m,
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H ∈ C([a, T ],R), f ∈ C([a, T ]× R3,R), θ : [a, T ] → [a, T ],

(Sx)(t) =
t∫

a

ϕ(t, s, x(s)) ds, t ∈ [a, T ],

ϕ : [a, T ]2 × R → [a,∞) is a continuous function. γ, κ, δi ∈ R and η, ξi ∈ (a, T ), i = 1, 2, . . . ,m.
The manuscript is structured as follows. In Section 2, we give some definitions and lemmas. In

Section 3, we establish some appropriate conditions for the existence results of solutions of problem
(1.1) by applying a variety of fixed point theorems due to Banach, Schaefer and Krasnoselskii. In
Section 4, we set up applicable results for different types of Ulam–Hyers stability to the solution of
problem (1.1). An example illustrating our results is given in Section 5.

2 Preliminaries
This section is devoted to definitions and lemmas that will be used throughout the paper. For their
justifications and proofs, we refer the reader to [22].

Definition 2.1 ([22]). For 0 < ρ ≤ 1, α ∈ C and Re(α) > 0, the GPF integral of f of order α is

(aIα,ρf)(t) =
1

ραΓ(α)

t∫
a

e
ρ−1
ρ (t−s)(t− s)α−1f(s) ds = ρ−αe

ρ−1
ρ t

aIα(e
1−ρ
ρ sf)(t),

where aIα is the Riemann–Liouville fractional integral [24].

Definition 2.2 ([22]). For 0 < ρ ≤ 1, α ∈ C with Re(α) ≥ 0, the Caputo type GPF derivative of f
of order α is

(Ca Dα,ρf)(t) =
1

ρn−αΓ(n− α)

t∫
a

e
ρ−1
ρ (t−s)(t− s)n−α−1(Dn,ρf)(s) ds,

where n = [Re(α)] + 1 and [Re(α)] represents the integer part of the real number α.

Lemma 2.1 ([22]). For 0 < ρ ≤ 1 and n = [Re(α)] + 1, we have (Ca Dα,ρ
aIα,ρf)(t) = f(t), and

(aIα,ρ C
a Dα,ρf)(t) = f(t)− e

ρ−1
ρ (t−a)

n−1∑
k=0

(Dk,ρf)(a)

ρkk!
(t− a)k.

Lemma 2.2 ([22]). Let α, β ∈ C be such that Re(α) ≥ 0 and Re(β) > 0. Then, for any 0 < ρ ≤ 1
and n = [Re(α)] + 1, we have

(i) (
aIα,ρe

ρ−1
ρ s(s− a)β−1

)
(t) =

Γ(β)

ραΓ(β + α)
e

ρ−1
ρ t(t− a)β+α−1, Re(α) > 0.

(ii) (
C
a Dα,ρe

ρ−1
ρ s(s− a)β−1

)
(t) =

ραΓ(β)

Γ(β − α)
e

ρ−1
ρ t(t− a)β−α−1, Re(β) > n.

(iii) (
C
a Dα,ρe

ρ−1
ρ s(s− a)k

)
(t) = 0, Re(α) > n, k = 0, 1, . . . , n− 1.

Lemma 2.3 (Arzelá–Ascoli theorem [3]). A subset M in C([a, b],R) with norm

∥f∥ = sup
t∈[a,b]

|f(t)|

is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b].
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Lemma 2.4 (Banach’s fixed point theorem [19]). Let M be a non-empty closed subset of a Banach
space E. Then any contraction mapping T from M into itself has a unique fixed point.

Lemma 2.5 (Schaefer’s fixed point theorem [19]). Let M be a Banach space and T : M → M be a
completely continuous operator and let the set G = {x ∈ M : x = κTx, 0 < κ ≤ 1} be bounded. Then
T has a fixed point in M.

Lemma 2.6 (Krasnoselskii’s fixed point theorem [25]). Let M be a closed, bounded, convex and
nonempty subset of a Banach space X. Let A, B be the operators such that

(i) Ax+ By ∈ M whenever x, y ∈ M;

(ii) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists z ∈ M such that z = Az + Bz.

For the sake of computational convenience, we make use of the following constants:

Λ :=
(η − a)αe

ρ−1
ρ (η−a)

ραΓ(α+ 1)
−

m∑
i=1

δi(ξi − a)α+µie
ρ−1
ρ (ξi−a)

ρα+µiΓ(α+ µi + 1)
̸= 0, (2.1)

Ω1 :=
(T − a)α+β

ρα+βΓ(α+ β + 1)

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)
, (2.2)

Ω2 :=
(T − a)α+β+1

ρα+βΓ(α+ β + 2)

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+ β + µi + 2)
+

(η − a)α+β+1

ρα+βΓ(α+ β + 2)

)
, (2.3)

Ω3 := aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)
, (2.4)

Ω4 :=
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|. (2.5)

Let E = C([a, T ],R) be the Banach space of all continuous functions from [a, T ] into R equipped
with the norm ∥x∥E = sup

t∈[a,T ]

{|x(t)|}. In order to transform the main problem into a fixed point

problem, problem (1.1) must be converted to an equivalent Volterra integral equation. Next, we
provide the following lemma.

Lemma 2.7. Let h : [a, T ] → R be a continuous function, 0 < α, β ≤ 1, 1 < α+β ≤ 2, and ρ, µi > 0,
i = 1, 2, . . . ,m. Then the function x ∈ E is the solution to the following linear GPF Langevin equation
equipped with the nonlocal integral conditions

C
a Dβ,ρ

(
C
a Dα,ρ +H(t)

)
x(t) = h(t), t ∈ (a, T ],

x(a) = γ, x(η) =

m∑
i=1

δiaIµi,ρx(ξi) + κ,
(2.6)
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if and only if x satisfies the following Volterra integral equation:

x(t) = aIα+β,ρh(t)− aIα,ρH(t)x(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρh(ξi)− aIα+β,ρh(η)

−
m∑
i=1

δiaIα+µi,ρH(ξi)x(ξi) + aIα,ρH(η)x(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a), (2.7)

where Λ is given by (2.1).

Proof. Let x be a solution of problem (2.6). By using Lemma 2.1 with Lemma 2.2(i), the first equation
of (2.6) can be written as an equivalent integral equation

x(t) = aIα+β,ρh(t)− aIα,ρH(t)x(t) + c1
(t− a)αe

ρ−1
ρ (t−a)

ραΓ(α+ 1)
+ c2e

ρ−1
ρ (t−a), (2.8)

where c1, c2 ∈ R.
From the first condition, x(a) = γ, we get c2 = γ. Taking the GPF integral operator aIµi,ρ into

both sides of (2.8), we have

aIµi,ρx(t) = aIα+β+µi,ρh(t)− aIα+µi,ρH(t)x(t) + c1
(t− a)α+µie

ρ−1
ρ (t−a)

ρα+µiΓ(α+ µi + 1)
+

γ(t− a)µie
ρ−1
ρ (t−a)

ρµiΓ(µi + 1)
.

From the second condition, we obtain c1 as follows:

c1 =
1

Λ

( m∑
i=1

δiaIα+β+µi,ρh(ξi)− aI
α+β,ρh(η)−

m∑
i=1

δiaIα+µi,ρH(ξi)x(ξi)

+ aIα,ρH(η)x(η) +

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
,

where Λ is defined by (2.1). Substituting c1 and c2 into (2.8), we get the Volterra integral equa-
tion (2.7).

Conversely, it is easily shown by direct calculation that the solution x(t) is given by (2.7) and
satisfies problem (2.6) under the given boundary conditions.

3 Main results
In this section, we establish the existence results of solutions for problem (1.1), which is studied by
applying Banach’s, Schaefer’s and Krasnolselskii’s fixed point theorems. Throughout this paper, the
expression aIb,ρf(s, x(s), x(θ(s)), (Sx)(s))(c) means that

aIb,ρFx(s)(c) :=
1

ρbΓ(b)

c∫
a

e
ρ−1
ρ (c−s)(c− s)b−1Fx(s) ds, c ∈ [a, T ],

where b ∈ {α, α+ µi, α+ β, α+ β + µi} and c ∈ {t, T, η, ξi}, i = 1, 2, . . . ,m. For simplicity, we set

Fx(t) = f
(
s, x(s), x(θ(s)), (Sx)(s)

)
(t).
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In view of Lemma 2.7, an operator A : E → E is defined by

(Ax)(t) = aIα+β,ρFx(s)(t)− aIα,ρH(s)x(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi) + aIα,ρH(s)x(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a), (3.1)

where Λ is defined by (2.1).
To proceed further, we introduce the following assumptions:

(H1) The functions f : [a, T ]× R3 → R and H : [a, T ] → R are continuous.

(H2) There exist the positive constants L1, L2 such that∣∣f(t, u1, u2, u3)− f(t, v1, v2, v3)
∣∣ ≤ L1

(
|u1 − v1|+ |u2 − v2|

)
+ L2|u3 − v3|,

for each t ∈ [a, T ] and ui, vi ∈ R, i = 1, 2, 3.

(H3) The function ϕ : [a, T ]2 × R → R is continuous and there exists a constant ϕ0 > 0 such that

|ϕ(t, s, u)− ϕ(t, s, v)| ≤ ϕ0|u− v|,

for each t, s ∈ [a, T ] and u, v ∈ R.

(H4) There exist the functions σ, τ , φ, ω ∈ C([a, T ],R+) such that

|f(t, u, v, w)| ≤ σ(t) + τ(t)|u|+ φ(t)|v|+ ω(t)|w|, u, v, w ∈ R, t ∈ [a, T ],

with
σ∗ = sup

t∈[a,T ]

σ(t), τ∗ = sup
t∈[a,T ]

τ(t), φ∗ = sup
t∈[a,T ]

φ(t), ω∗ = sup
t∈[a,T ]

ω(t).

(H5) |f(t, u, v, w)| ≤ g(t), ∀ (t, u, v, w) ∈ [a, T ]× R3 and g ∈ C([a, T ],R+).

3.1 Existence and uniqueness result via Banach’s fixed point theorem
The existence and uniqueness result of a solution for problem (1.1) will be proved by using Banach’s
fixed point theorem (Banach contraction mapping principle).

Theorem 3.1. Assume that (H1)–(H3) hold. If L < 1, where

L := 2L1Ω1 + L2ϕ0Ω2 +Ω3, (3.2)

and Ωi, i = 1, 2, 3, are given by (2.2)–(2.4), respectively, then (1.1) has a unique solution in E.

Proof. Firstly, we transform problem (1.1) into a fixed point problem, x = Ax, where A is defined
as in (3.1). Observe that the fixed points of the operator A are solutions of problem (1.1). Applying
Banach’s fixed point theorem, we show that A has a fixed point which is a unique solution of problem
(1.1).

Let sup
t∈[a,T ]

|f(t, 0, 0, 0)| := M1 < ∞. Next, we define a set Br1 := {x ∈ E : ∥x∥E ≤ r1} with

r1 ≥ Ω1M1 +Ω4

1− [2L1Ω1 + L2ϕ0Ω2 +Ω3]
.
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Notice that Br1 is a bounded, closed and convex subset of E. The proof is divided into two steps.
Step 1. We show that ABr1 ⊂ Br1 .

For any x ∈ Br1 , we have

|(Ax)(t)| ≤ aIα+β,ρ|Fx(s)|(T ) + aIα,ρ|H(s)| |x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)|(ξi) + aIα+β,ρ|Fx(s)|(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)|(ξi) + aI
α,ρ|H(s)| |x(s)|(η)

+

m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

≤ aIα+β,ρ
(
|Fx(s)− f(s, 0, 0, 0)|+ |f(s, 0, 0, 0)|

)
(T ) + aIα,ρ|H(s)| |x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ
(
|Fx(s)− f(s, 0, 0, 0)|+ |f(s, 0, 0, 0)|

)
(ξi)

+ aIα+β,ρ
(
|Fx(s)− f(s, 0, 0, 0)|+ |f(s, 0, 0, 0)|

)
(η) +

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)|(ξi)

+ aIα,ρ|H(s)| |x(s)|(η) +
m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|.

By using the property 0 < e
ρ−1
ρ (u−s) ≤ 1 for a ≤ s < u < t ≤ T and (H2)–(H3), we obtain

|(Ax)(t)| ≤ 1

ρα+βΓ(α+ β)

T∫
a

(T − s)α+β−1
(
(2L1 + L2ϕ0(s− a))r1 +M1

)
ds+ r1aI

α,ρ|H(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|
ρα+β+µiΓ(α+ β + µi)

×
ξi∫
a

(ξi − s)α+β+µi−1
(
(2L1 + L2ϕ0(s− a))r1 +M1

)
ds

+
1

ρα+βΓ(α+ β)

η∫
a

(η − s)α+β−1
(
(2L1 + L2ϕ0(s− a))r1 +M1

)
ds+ r1aIα,ρ|H(s)|(η)

+ r1

m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) +
m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

= (2L1r1 +M1)

[
(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
+ L2ϕ0r1

[
(T − a)α+β+1

ρα+βΓ(α+ β + 2)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+ β + µi + 2)
+

(η − a)α+β+1

ρα+βΓ(α+ β + 2)

)]

+ r1

[
aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]
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+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

≤ (2L1r1 +M1)Ω1 + L2ϕ0Ω2r1 +Ω3r1 +Ω4 ≤ r1,

then ∥Ax∥E ≤ r1, which implies that ABr1 ⊂ Br1 .
Step 2. We show that the operator A : E → E is a contraction mapping.

Let x, y ∈ E. Then for t ∈ [a, T ], we have

|(Ax)(t)− (Ay)(t)| ≤ aIα+β,ρ|Fx(s)− Fy(s)|(T ) + aIα,ρ|H(s)| |x(s)− y(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)− Fy(s)|(ξi) + aIα+β,ρ
(
|Fx(s)− Fy(s)|

)
(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)− y(s)|(ξi) + aIα,ρ|H(s)| |x(s)− y(s)|(η)
)

≤

{
2L1

[
(T − a)α+β

ρα+βΓ(α+β+1)
+

(T − a)α

|Λ|ραΓ(α+1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+β+µi + 1)
+

(η − a)α+β

ρα+βΓ(α+β+1)

)]

+ L2ϕ0

[
(T − a)α+β+1

ρα+βΓ(α+β+2)
+

(T − a)α

|Λ|ραΓ(α+1)

( m∑
i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+β+µi+2)
+

(η − a)α+β+1

ρα+βΓ(α+β+2)

)]

+ aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)}

∥x− y∥E

=
[
2L1Ω1 + L2ϕ0Ω2 +Ω3

]
∥x− y∥E = L∥x− y∥E,

which implies that ∥Ax − Ay∥E ≤ L∥x − y∥E. As L < 1, hence, by Banach’s fixed point theorem
(Lemma 2.4), the operator A is a contraction mapping. Therefore, A has only one fixed point, which
implies that problem (1.1) has a unique solution in E.

3.2 Existence result via Schaefer’s fixed point theorem
Next, the second existence result is based on Schaefer’s fixed point theorem.
Theorem 3.2. Assume that (H1) and (H4) hold. Then problem (1.1) has at least one solution on
[a, T ].
Proof. To show that A has at least a fixed point in E, the proof is divided into four steps.
Step 1. We show that the operator A is continuous.

Let {xn} be a sequence such that xn → x in E. Then, for each t ∈ [a, T ], we get

|(Axn)(t)− (Ax)(t)| ≤ aIα+β,ρ|Fxn(s)− Fx(s)|(T ) + aIα,ρ|H(s)| |xn(s)− x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fxn
(s)− Fx(s)|(ξi) + aIα+β,ρ|Fxn

(s)− Fx(s)|(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |xn(s)− x(s)|(ξi) + aIα,ρ|H(s)||xn(s)− x(s)|(η)
)

≤
[

(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)

+
(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
∥Fxn − Fx∥E +

[
aIα,ρ|H(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]

∥xn − x∥E

= Ω1∥Fxn
− Fx∥E +Ω3∥xn − x∥E.
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Since f and H are continuous, by the Lebesgue dominated convergent theorem, we have

|(Axn)(t)− (Ax)(t)| −→ 0 as n → ∞.

Hence,
∥Axn −Ax∥E −→ 0 as n → ∞.

Therefore, the operator A is continuous.
Step 2. We show that the operator A maps a bounded set into the bounded set in E.

Indeed, we show that for any r2 > 0, there exists a constant M2 > 0 such that for each x ∈ Br2 =
{x ∈ E : ∥x∥E ≤ r2}, we have ∥Ax∥E ≤ M2.

Then, for any t ∈ [a, T ] and x ∈ Br2 , we have

|(Ax)(t)| ≤ aIα+β,ρ|Fx(s)|(T ) + aIα,ρ|H(s)| |x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)|(ξi) + aIα+β,ρ|Fx(s)|(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)|(ξi) + aIα,ρ|H(s)| |x(s)|(η)

+

m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

≤ aIα+β,ρ
(
σ(s) + τ(s)|x(s)|+ φ(s)|x(θ(s))|+ ω(s)|(Sx)(s)|

)
(T ) + aIα,ρ|H(s)| |x(s)|(T )

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ
(
σ(s) + τ(s)|x(s)|+ φ(s)|x(θ(s))|+ ω(s)|(Sx)(s)|

)
(ξi)

+ aIα+β,ρ
(
σ(s) + τ(s)|x(s)|+ φ(s)|x(θ(s))|+ ω(s)|(Sx)(s)|

)
(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |x(s)|(ξi) + aIα,ρ|H(s)| |x(s)|(η) +
m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

≤ (σ∗ + τ∗r2 + φ∗r2)

[
(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
+ ω∗r2

[
(T − a)α+β+1

ρα+βΓ(α+ β + 2)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+ β + µi + 2)
+

(η − a)α+β+1

ρα+βΓ(α+ β + 2)

)]

+ r2

[
aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

= (σ∗ + τ∗r2 + φ∗r2)Ω1 + (ω∗Ω2 +Ω3)r2 +Ω4,

and we get the estimate

∥Ax∥E ≤
[
(τ∗ + φ∗)Ω1 + ω∗Ω2 +Ω3

]
r2 + σ∗Ω1 +Ω4 := M2,

where Ωi, i = 1, 2, 3, 4, are given by (2.2)–(2.5), respectively.
Step 3. We show that the operator A is equicontinuous.
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Let Br2 be a bounded set of E as defined in Step 2, then, for x ∈ Br2 and t1, t2 ∈ [a, T ] with
t1 < t2, we have

|(Ax)(t2)− (Ax)(t1)|

≤ 1

ρα+βΓ(α+ β)

t1∫
a

∣∣∣e ρ−1
ρ (t2−s)(t2 − s)α+β−1 − e

ρ−1
ρ (t1−s)(t1 − s)α+β−1

∣∣∣ |Fx(s)| ds

+
1

ρα+βΓ(α+ β)

t2∫
t1

e
ρ−1
ρ (t2−s)(t2 − s)α+β−1|Fx(s)| ds

+
1

ραΓ(α)

t1∫
a

∣∣∣e ρ−1
ρ (t2−s)(t2 − s)α−1 − e

ρ−1
ρ (t1−s)(t1 − s)α−1

∣∣∣ |H(s)| |x(s)| ds

+
1

ραΓ(α)

t2∫
t1

e
ρ−1
ρ (t2−s)(t2 − s)α−1|H(s)| |x(s)| ds+ |γ|

∣∣∣e ρ−1
ρ (t2−a) − e

ρ−1
ρ (t1−a)

∣∣∣
+

∣∣(t2 − a)αe
ρ−1
ρ (t2−a) − (t1 − a)αe

ρ−1
ρ (t1−a)

∣∣
|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|
ρα+β+µiΓ(α+ β + µi)

×
ξi∫
a

e
ρ−1
ρ (ξi−s)(ξi − s)α+β+µi−1

∣∣f(s, x(s), x(θ(s)), (Sx)(s))∣∣ ds
+

1

ρα+βΓ(α+ β)

η∫
a

e
ρ−1
ρ (η−s)(η − s)α+β−1

∣∣f(s, x(s), x(θ(s)), (Sx)(s))∣∣ ds
+

m∑
i=1

|δi|
ρα+µiΓ(α+ µi)

ξi∫
a

e
ρ−1
ρ (ξi−s)(ξi − s)α+µi−1|H(s)| |x(s)| ds

+
1

ραΓ(α)

η∫
a

e
ρ−1
ρ (η−s)(η − s)α−1|H(s)| |x(s)| ds+

m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)

≤ 1

ρα+βΓ(α+ β)

t1∫
a

∣∣∣e ρ−1
ρ (t2−s)(t2 − s)α+β−1 − e

ρ−1
ρ (t1−s)(t1 − s)α+β−1

∣∣∣
×
(
σ∗ + τ∗r2 + φ∗r2 + ω∗r2(s− a)

)
ds+

1

ρα+βΓ(α+ β)

t2∫
t1

e
ρ−1
ρ (t2−s)(t2 − s)α+β−1

×
(
σ∗ + τ∗r2 + φ∗r2 + ω∗r2(s− a)

)
ds

+
r2

ραΓ(α)

t1∫
a

∣∣∣e ρ−1
ρ (t2−s)(t2 − s)α−1 − e

ρ−1
ρ (t1−s)(t1 − s)α−1

∣∣∣ |H(s)| ds

+
r2

ραΓ(α)

t2∫
t1

e
ρ−1
ρ (t2−s)(t2 − s)α−1|H(s)| ds

+ |γ|
∣∣e ρ−1

ρ (t2−a) − e
ρ−1
ρ (t1−a)

∣∣+ ∣∣(t2 − a)αe
ρ−1
ρ (t2−a) − (t1 − a)αe

ρ−1
ρ (t1−a)

∣∣
|Λ|ραΓ(α+ 1)
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×
( m∑

i=1

|δi|
ρα+β+µiΓ(α+ β + µi)

ξi∫
a

(ξi − s)α+β+µi−1
(
σ∗ + τ∗r2 + φ∗r2 + ω∗r2(s− a)

)
ds

+
1

ρα+βΓ(α+ β)

η∫
a

(η − s)α+β−1
(
σ∗ + τ∗r2 + φ∗r2 + ω∗r2(s− a)

)
ds

+ r2

m∑
i=1

|δi|
ρα+µiΓ(α+ µi)

ξi∫
a

e
ρ−1
ρ (ξi−s)(ξi − s)α+µi−1|H(s)| ds

+
r2

ραΓ(α)

η∫
a

e
ρ−1
ρ (η−s)(η − s)α−1|H(s)| ds+

m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
,

which implies that
|(Ax)(t2)− (Ax)(t1)| −→ 0, as t1 → t2,

As a result of Steps 1–3 together with the Arzelá–Ascoli theorem (Lemma 2.3), we conclude that
the operator A : E → E is completely continuous.
Step 4. We show that the set D = {x ∈ E : x = εAx, 0 < ε < 1} is bounded (A priori bounds).

Let x ∈ D, then x = εAx. For any t ∈ [a, T ], one can get the estimate

(Ax)(t) = ε

[
aIα+β,ρFx(s)(t)− aI

α,ρH(s)x(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi) + aI
α,ρH(s)x(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a)

]
.

It follows from (H3)-(H4) and 0 < ε < 1 that for any t ∈ [a, T ],

|x(t)| = |ε(Ax)(t)| ≤ (σ∗ + τ∗r2 + φ∗r2)

[
(T − a)α+β

ρα+βΓ(α+ β + 1)

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
+ ω∗r2

[
(T − a)α+β+1

ρα+βΓ(α+ β + 2)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi+1

ρα+β+µiΓ(α+ β + µi + 2)
+

(η − a)α+β+1

ρα+βΓ(α+ β + 2)

)]

+ r2

[
aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ| |δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ|

= (σ∗ + τ∗r2 + φ∗r2)Ω1 + (ω∗Ω2 +Ω3)r2 +Ω4.

Thus,
∥x∥E ≤

[
(τ∗ + φ∗)Ω1 + ω∗Ω2 +Ω3

]
r2 + σ∗Ω1 +Ω4 := N < ∞.
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This implies that D is bounded.
Hence, as a consequence of Schaefer’s fiexd point theorem (Lemma 2.5), the operator A has at

least one fixed point which is the solution of problem (1.1).

3.3 Existence result via Krasnoselskii’s fixed point theorem
By using Krasnoselskii’s fixed point theorem, we obtain the last existence theorem.

Theorem 3.3. Assume that (H1), (H3), (H5) hold. Then problem (1.1) has at least one solution on
[a, T ] if Ω3 < 1, where Ω3 is defined by (2.4).

Proof. Let sup
t∈[a,T ]

|g(t)| = ∥g∥E. By choosing a suitable Br3 = {x ∈ E : ∥x∥E ≤ r3}, where

r3 ≥ Ω1∥g∥E +Ω4

1− Ω3

with ∥g∥E = sup
t∈[a,T ]

|g(t)|, we define the operators A1 and A2 on Br3 by

(A1x)(t) = aIα+β,ρFx(s)(t) +
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)
)
,

(A2x)(t) =
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

(
aIα,ρH(s)x(s)(η)−

m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a) − aIα,ρH(s)x(s)(t).

To show that A1x+A2y ∈ Br3 , let x, y ∈ Br3 . Then we have

∥A1x+A2y∥E ≤ sup
t∈[a,T ]

{
aIα+β,ρ|Fx(s)|(t) + aIα,ρ|H(s)| |y(s)|(t)

+
(t− a)αe

ρ−1
ρ (t−a)

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)|(ξi) + aIα+β,ρ|Fx(s)|(η)

+

m∑
i=1

|δi|aIα+µi,ρ|H(s)| |y(s)|(ξi) + aIα,ρ|H(s)| |y(s)|(η)

+

m∑
i=1

|γ| |δi|(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
+ |γ|e

ρ−1
ρ (η−a) + |κ|

)
+ |γ|e

ρ−1
ρ (t−a)

}

≤ ∥g∥E
[

(T − a)α+β

ρα+βΓ(α+β+1)
+

(T − a)α

|Λ|ραΓ(α+1)

( m∑
i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+β+µi+1)
+

(η − a)α+β

ρα+βΓ(α+β+1)

)]

+ ∥x∥E
[
aIα,ρ|H(s)|(T ) + (T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+µi,ρ|H(s)|(ξi) + aIα,ρ|H(s)|(η)
)]

+
(T − a)α

|Λ|ραΓ(α+ 1)

( m∑
i=1

|γ||δi|(ξi − a)µi

ρµiΓ(µi + 1)
+ |γ|+ |κ|

)
+ |γ| ≤ Ω1∥g∥E +Ω3r3 +Ω4 ≤ r3.

This implies that A1x+A2y ∈ Br3 , which satisfies assumption (i) of Lemma 2.6.
Show that assumption (ii) of Lemma 2.6 is satisfied, the continuity of f and H implies that the

operator A1 is continuous. For x ∈ Br3 , we obtain ∥A1x∥E ≤ Ω1∥g∥E. This means that the operator
A1 is uniformly bounded on Br3 . Next, we show that the operator A1 is equicontinuous. Setting

sup
(t,z1,z2,z3)∈[a,T ]×B3

r3

|f(t, z1, z2, z3)| = f∗ < ∞,
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for a ≤ t1 < t2 ≤ T , we have

|(A1x)(t2)− (A1x)(t1)| ≤
∣∣
aIα+β,ρFx(s)(t2)− aIα+β,ρFx(s)(t1)

∣∣
+

∣∣(t2 − a)αe
ρ−1
ρ (t2−a) − (t1 − a)αe

ρ−1
ρ (t1−a)

∣∣
|Λ|ραΓ(α+ 1)

( m∑
i=1

|δi|aIα+β+µi,ρ|Fx(s)|(ξi) + aIα+β,ρ|Fx(s)|(η)
)

≤ f∗
[

1

ρα+βΓ(α+ β + 1)

(∣∣(t2 − a)α+β − (t1 − a)α+β − (t2 − t1)
α+β

∣∣+ (t2 − t1)
α+β

)
+

∣∣(t2 − a)αe
ρ−1
ρ (t2−a) − (t1 − a)αe

ρ−1
ρ (t1−a)

∣∣
|Λ|ρα+βΓ(α+ 1)

(
(η − s)α+β

ραΓ(α+ β + 1)
+

m∑
i=1

|δi|(ξi − s)α+β+µi

ρα+µiΓ(α+ β + µi + 1)

)]
,

which is independent of x and |(A1x)(t2) − (A1x)(t1)| → 0 as t1 → t2. Therefore, the operator A1

is equicontinuous. So, the operator A1 is relatively compact on Br3 . Then, by the Arzelá–Ascoli
theorem, the operator A1 is compact on Br3 , and assumption (ii) of Lemma 2.6 is satisfied. It is easy
to see that, using Ω3 < 1, we come to the conclusion that the operator A2 is a contraction mapping,
and also assumption (iii) of Lemma 2.6 holds. Hence, the operators A1 and A2 satisfy all assumptions
of Krasnoselskii’s fixed point theorem (Lemma 2.6). Therefore, problem (1.1) has at least one solution
on [a, T ].

4 Ulam–Hyers stability results
In this section, we investigate some necessary and sufficient conditions for Ulam–Hyers (UH) stabil-
ity, generalized Ulam–Hyers (GUH) stability, Ulam–Hyers–Rassias (UHR) stability, and generalized
Ulam–Hyers–Rassias (GUHR) stability of problem (1.1).

Definition 4.1 ([35]). Problem (1.1) is UH stable if there exists a real number Φ > 0 such that for
ϵ > 0 and solution z ∈ E1 = C1([a, T ],R) of the inequality∣∣∣Ca Dβ,ρ

(
C
a Dα,ρ +H(t)

)
z(t)− f

(
t, z(t), z(θ(t)), (Sz)(t)

)∣∣∣ ≤ ϵ, t ∈ [a, T ], (4.1)

there exists a solution x ∈ E1 of problem (1.1) with

|z(t)− x(t)| ≤ Φϵ, t ∈ [a, T ].

Definition 4.2 ([35]). Problem (1.1) is GUH stable if there exists Φf ∈ C(R+,R+) with Φf (0) = 0
such that for each solution z ∈ E1 of inequality (4.1) there exists a solution x ∈ E1 of problem (1.1)
such that

|z(t)− x(t)| ≤ Φf ϵ, t ∈ [a, T ].

Definition 4.3 ([35]). Problem (1.1) is UHR stable with respect to Φf ∈ C([a, T ],R+) if there exists
a real number Cf,Φ > 0 such that for ϵ > 0 and for each solution z ∈ E1 of the inequality∣∣∣Ca Dβ,ρ

(
C
a Dα,ρ +H(t)

)
z(t)− f

(
t, z(t), z(θ(t)), (Sz)(t)

)∣∣∣ ≤ ϵΦf (t), t ∈ [a, T ], (4.2)

there exists a solution x ∈ E1 of problem (1.1) with

|z(t)− x(t)| ≤ Cf,ΦϵΦf (t), t ∈ [a, T ].

Definition 4.4 ([35]). Problem (1.1) is GUHR stable with respect to Φf ∈ C([a, T ],R+) if there
exists a real number Cf,Φ > 0 such that for each solution z ∈ E1 of the inequality∣∣∣Ca Dβ,ρ

(
C
a Dα,ρ +H(t)

)
z(t)− f

(
t, z(t), z(θ(t)), (Sz)(t)

)∣∣∣ ≤ Φf (t), t ∈ [a, T ],

there exists a solution x ∈ E1 of problem (1.1) such that

|z(t)− x(t)| ≤ Cf,ΦΦf (t), t ∈ [a, T ].
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Remark 4.1. It is clear that

(i) Definition 4.1 =⇒ Definition 4.2;

(ii) Definition 4.3 =⇒ Definition 4.4;

(iii) Definition 4.3 for Φf ( · ) = 1 =⇒ Definition 4.1.

Remark 4.2. A function z ∈ E1 is a solution of inequality (4.1) if and only if there exists a function
v ∈ C([a, T ],R) (dependent on z) such that

(i) |v(t)| ≤ ϵ, ∀ t ∈ [a, T ].

(ii) C
a Dβ,ρ(Ca Dα,ρ +H(t))z(t) = f(t, z(t), z(θ(t)), (Sz)(t)) + v(t), t ∈ [a, T ].

By Remark 4.2, the solution of the problem

C
a Dβ,ρ(Ca Dα,ρ +H(t))z(t) = f

(
t, z(t), z(θ(t)), (Sz)(t)

)
+ v(t), t ∈ [a, T ],

can be written by

z(t) = aIα+β,ρFz(s)(t)− aIα,ρH(s)z(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFz(s)(ξi)− aIα+β,ρFz(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)z(s)(ξi) + aIα,ρH(s)z(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a) + aIα+β,ρv(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρv(s)(ξi)− aIα+β,ρv(s)(η)
)
.

Firstly, we present an important lemma that will be used in the proofs of the first stability theorem.

Lemma 4.1. If z ∈ E1 satisfies (4.1), then the function z is a solution of the inequality

|z(t)− (Az)(t)| ≤ Ω1ϵ, 0 < ϵ ≤ 1, (4.3)

where Ω1 is given by (2.2).

Proof. From Remark 4.2, we obtain the inequality

|z(t)− (Az)(t)| ≤
∣∣∣∣aIα+β,ρv(s)(t) +

(t− a)αe
ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

×
( m∑

i=1

δiaIα+β+µi,ρv(s)(ξi)− aIα+β,ρv(s)(η)
)∣∣∣∣

≤
[

(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
ϵ = Ω1ϵ,

where Ω1 is given by (2.2), from which inequality (4.3) follows.

Now, we present the UH and GUH results.
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Theorem 4.1. Assume that (H1), (H2), (H3) are satisfied with L < 1, where L is defined by (3.2).
Then problem (1.1) is both UH stable and GUH stable on [a, T ].
Proof. Let z ∈ E1 be a solution of (4.1) and let x be the unique solution of problem (1.1),

C
a Dβ,ρ(Ca Dα,ρ +H(t))x(t) = f

(
t, x(t), x(θ(t)), (Sx)(t)

)
, t ∈ (a, T ]

x(a) = γ, x(η) =

m∑
i=1

δiaI
µi,ρx(ξi) + κ.

By applying the triangle inequality |u− v| ≤ |u|+ |v| and Lemma 4.1, we have

|z(t)− x(t)| =
∣∣∣∣z(t)− aIα+β,ρFx(s)(t) + aIα,ρH(s)x(s)(t)

− (t− a)αe
ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi) + aIα,ρH(s)x(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
− γe

ρ−1
ρ (t−a)

∣∣∣∣
=

∣∣z(t)− (Az)(t)+(Az)(t)− (Ax)(t)
∣∣ ≤ |z(t)− (Az)(t)|+ |(Az)(t)− (Ax)(t)| ≤ Ω1ϵ+L|z(t)−x(t)|.

This yields
|z(t)− x(t)| ≤ Ω1ϵ

1− L
.

By setting Φ = Ω1

1−L and L < 1, we end up with
|z(t)− x(t)| ≤ Φϵ.

Hence, problem (1.1) is UH stable. Moreover, if we set Φf (ϵ) = Φϵ, with Φf (0) = 0, then problem
(1.1) is GUH stable.

Remark 4.3. A function z ∈ E1 is a solution of inequality (4.2) if and only if there exists a function
w ∈ C([a, T ],R) (dependent on z) such that

(i) |Θ(t)| ≤ ϵΨΘ(t), ∀ t ∈ [a, T ].

(ii) C
a D

β,ρ(Ca D
α,ρ + λ(t))z(t) = f(t, z(t), z(θ(t)), (Sz)(t)) + Θ(t), t ∈ [a, T ].

By Remark 4.3, the solution of the problem
C
a Dβ,ρ(Ca Hα,ρ +H(t))z(t) = f

(
t, z(t), z(θ(t)), (Sz)(t)

)
+Θ(t), t ∈ [a, T ],

can be written by

z(t) = aIα+β,ρFz(s)(t)− aIα,ρH(s)z(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFz(s)(ξi)− aIα+β,ρFz(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)z(s)(ξi) + aIα,ρH(s)z(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
+ γe

ρ−1
ρ (t−a) + aIα+β,ρw(s)(t)

+
(t− a)αe

ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρw(s)(ξi)− aIα+β,ρw(s)(η)
)
.

Next, we construct lemma that will be used in the proofs of the second stability theorem.
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Lemma 4.2. Let z ∈ E1 be a solution of inequality (4.2). Then the function z satisfies the inequality

|z(t)− (Az)(t)| ≤ Ω1ΨΘ(t)ϵ, 0 < ϵ ≤ 1, (4.4)

where Ω1 is given by (2.2).

Proof. From Remark 4.3, we obtain the inequality

|z(t)− (Az)(t)| ≤
∣∣∣∣aIα+β,ρΘ(s)(t) +

(t− a)αe
ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

×
( m∑

i=1

δiaIα+β+µi,ρΘ(s)(ξi)− aIα+β,ρΘ(s)(η)

)∣∣∣∣
≤

[
(T − a)α+β

ρα+βΓ(α+ β + 1)
+

(T − a)α

|Λ|ραΓ(α+ 1)

×
( m∑

i=1

|δi|(ξi − a)α+β+µi

ρα+β+µiΓ(α+ β + µi + 1)
+

(η − a)α+β

ρα+βΓ(α+ β + 1)

)]
ΨΘ(t)ϵ

= Ω1ΨΘ(t)ϵ,

where Ω1 is given by (2.2), which leads to inequality (4.4).

Next, we are ready to prove UHR and GUHR stability results.

Theorem 4.2. If assumptions (H1), (H2), (H3) are satisfied, L < 1, where L is defined by (3.2), then
problem (1.1) is both UHR stable and GUHR stable on [a, T ].

Proof. Let z ∈ E1 be a solution of inequality (4.2) and let x be the unique solution of problem (1.1).
By applying the triangle inequality and Lemma 4.1, we get

|z(t)− x(t)| =
∣∣∣∣z(t)− aIα+β,ρFx(s)(t) + aIα,ρH(s)x(s)(t)

− (t− a)αe
ρ−1
ρ (t−a)

ΛραΓ(α+ 1)

( m∑
i=1

δiaIα+β+µi,ρFx(s)(ξi)− aIα+β,ρFx(s)(η)

−
m∑
i=1

δiaIα+µi,ρH(s)x(s)(ξi) + aIα,ρH(s)x(s)(η)

+

m∑
i=1

γδi(ξi − a)µie
ρ−1
ρ (ξi−a)

ρµiΓ(µi + 1)
− γe

ρ−1
ρ (η−a) + κ

)
− γe

ρ−1
ρ (t−a)

∣∣∣∣
=

∣∣z(t)− (Az)(t) + (Az)(t)− (Ax)(t)
∣∣∣

≤ |z(t)− (Az)(t)|+ |(Az)(t)− (Ax)(t)|
≤ Ω1ΨΘ(t)ϵ+ L|z(t)− x(t)|,

where L is defined by (3.2), which implies that

|z(t)− x(t)| ≤ Ω1ΨΘ(t)ϵ

1− L
.

By setting Cf,Φ = Ω1

1−L with L < 1, we get the inequality

|z(t)− x(t)| ≤ Cf,ΦϵΨΘ(t).

Hence, problem (1.1) is UHR stable. Moreover, if we set Φf (t) = ϵΨΘ(t), with Φf (0) = 0, then
problem (1.1) is GUHR stable.
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5 An example
In this section, we present an example which illustrates the validity and applicability of the main
results.
Example. Consider the following boundary value problem for the nonlinear GPF integro-differential
Langevin equation

C
0 D

√
π
2 ,

√
2

2

(
C
0 D

√
3

2 ,
√

2
2 +

1

16
(t− a)2e

ρ−1
ρ (t−a)

)
x(t) = f

(
t, x(t), x(θ(t)), (Sx)(t)

)
, t ∈ [0, 2],

x(0) = 0, x(1) =
√
2 0I

1
2 ,

√
2

2 x
(1
2

)
− 1

2
0I

3
2 ,

√
2

2 x
(4
3

)
− 0I

5
2 ,

√
2

2 x
(3
2

)
+

1

10
.

(5.1)

Here,

α =

√
3

2
, β =

√
π

2
, ρ =

√
2

2
,

a = 0, T = 2, m = 3, γ = 0, η = 1,

κ =
1

10
, µ1 =

1

2
, µ2 =

3

2
, µ3 =

5

2
,

ξ1 =
1

2
, ξ2 =

4

3
, ξ3 =

3

2
,

δ1 =
√
2 , δ2 = −1

2
, δ3 = −1, θ(t) =

t

2

and
H(t) =

1

16
(t− a)2e

ρ−1
ρ (t−a).

Obviously, the function H satisfies the assumption (H1) for all t ∈ [a, T ]. From the all given all data,
we obtain that Λ ≈ 1.49603 ̸= 0, Ω1 ≈ 8.26497, Ω2 ≈ 4.17132, Ω3 ≈ 0.17389 and Ω4 ≈ 0.17303.

(i) Let f : [a, T ]× R3 → R be a function defined by

f(t, x(t), x(θ(t)), (Sx)(t))= 1

4
+
1

9
t3+

2 sin2(πt)

(t+5)2
|x|

1+|x|
− x(1.5t)

(t+5)2
+
(t+1)3

et+2

t∫
a

cos2(πt)
(es2+3)2

x(s) ds.

For x1, x2, y1, y2, z1, z2 ∈ R and t ∈ [a, T ], we have∣∣f(t, x1, y1, z1)− f(t, x2, y2, z2)
∣∣ ≤ 1

25

(
|x1 − y1|+ |x2 − y2|

)
+

1

3
|z1 − z2|,

|ϕ(t, s, x1)− ϕ(t, s, y1)| ≤
1

16
|x1 − y1|.

The assumptions (H1)–(H3) are satisfied with L1 = 1
25 , L2 = 1

3 , and ϕ0 = 1
16 . Hence

L := 2L1Ω1 + L2ϕ0Ω2 +Ω3 ≈ 0.92199 < 1.

This ensures the existence of the unique solution for (5.1) according to Theorem 3.1. Further, we
compute

Φ :=
Ω1

1− L
≈ 105.95156 > 0.

Thus, by Theorem (4.1), problem (5.1) is UH stable and, consequently, GUH stable.

(ii) Let f : [a, T ]× R3 → R be a function defined by

f
(
t, x(t), x(θ(t)), (Sx)(t)

)
=

e−t

(t+ 8)2
+

6e−2t

(t+ 8)2
|x|

2 + |x|

+
5

4(2 + t)2
|x(0.25t)|

|x(0.25t)|+ 9
+

(t+ 3)3 cos2(πt)
(et + 2)2

t∫
a

sin2(t− s)

(et−s + 2)2
x(s) ds.
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It is easy to see that for all x1, x2, y1, y2, z1, z2 ∈ R and t ∈ [a, T ], we get∣∣f(t, x1, y1, z1)− f(t, x2, y2, z2)
∣∣ ≤ 1

32

(
|x1 − y1|+ |x2 − y2|

)
+

1

3
|z1 − z2|,

|ϕ(t, s, x1)− ϕ(t, s, y1)| ≤
1

9

∣∣x1 − y1|.

The assumptions (H1)–(H3) are satisfied with L1 = 1
32 , L2 = 1

3 , and ϕ0 = 1
9 . Hence

L := 2L1Ω1 + L2ϕ0Ω2 +Ω3 ≈ 0.84495 < 1.

Furthermore, for x, y, z ∈ R and t ∈ [a, T ], it follows that

|f(t, x, y, z)| ≤ e−t

(t+ 8)2
+

2e−2t

(t+ 8)2
|x|+ 1

8(2 + t)2
|y|+ 27

(et + 2)4
|z|.

The hypothesis (H4) is also valid with

σ(t) =
e−t

(t+ 8)2
, τ(t) =

2e−2t

(t+ 8)2
, φ(t) =

1

8(2 + t)2
, ω(t) =

27

(et + 2)4

and
σ∗ =

1

64
, τ∗ =

1

32
, φ∗ =

1

32
, ω∗ =

1

3
.

Therefore, all the assumptions of Theorem (3.2) are fulfilled, which allow to conclude that system
(5.1) has at least one solution on [a, T ]. Moreover, we obtain

Cf,Φ :=
Ω1

1− L
≈ 53.30408555 > 0.

Thus, by Theorem 4.2, system (5.1) is UHR stable and, consequently, GUHR stable.

6 Conclusion
In this paper, we construct the equivalence between problem (1.1) and the Volterra integral equation.
We prove the existence results of solutions for the GPF integro-differential Langevin equation via a
variable coefficient with nonlocal integral conditions (1.1) using a variety of fixed point theorems due
to Banach, Schaefer and Krasnoselskii. Moreover, we discuss the stability analysis of UH, GUH, UHR
and GUHR for the proposed problem (1.1). In addition, an example was given to illustrate our main
results. We believe that the all results of this paper will provide considerable potential to interested
researchers to develop relevant results concerning qualitative properties of nonlinear GPF differential
equations. In a forthcoming work, we shall focus on studying the different types of existence results
and stability analysis to an impulsive GPF differential equation with nonlocal integral multi-point
conditions.
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