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Abstract. In the present paper, by using the coincidence degree theory of Mawhin introduced in [15],
we discuss the existence and uniqueness of periodic solutions to a large class of problems for a nonlinear
Volterra—Fredholm integro-differential equation involving the 1-Caputo fractional derivative. Two
examples are given to substantiate the validity of our findings.
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1 Introduction

In this paper, we consider the following nonlinear Volterra—Fredholm integro-differential equation

®u+ u(r) = h(T,u(T),/Tnl(T,S,u(S))dS,ing(T, s,u(s))ds), TEY, (1.1)

a

with the periodic conditions

u(a) = u(b), (1.2)

where J := [a,b], (—oo < a < b < 400) and CDgfb denote the ¥-Caputo derivative of fractional order
0<a<l,and

h:IXRXRXR— R, TOXR =R and Ky 109 X R — R

are continuous functions with @ = {(7,s) : a < s <7 < b} and 99 = J x J. For the sake of brevity,

we take
T b

Biu(r) = //@1(7',5,11(8)) ds and Bou(r) = /nz(r, s,u(s)) ds. (1.3)

In recent years, fractional differential equations have been investigated extensively in numerous ap-
plications in various sciences such as physics, engineering, etc. For more details see [1-3,17,18,22].

Beginning with the classical operators of Riemman-Liouville and Caputo, a large number of exten-
sions of those operators have been presented by many authors (see [4,5,22]). Many researchers were
interested in the subject of existence and uniqueness of solutions by using various methods such as
the fixed point theory and the coincidence degree theory (see [8-11,13,14,16]). The existence results
of such problems with different fractional derivatives can be found in [6,12,24].

In [23], Tidke examined the following nonlinear mixed Volterra—Fredholm integro-differential prob-
lem:

t

u(t) = f(u(t)7/ (t,s,u(s)) ds,

0

h(t,s,u(s >, t € [0,0],

£ o\ﬁ

u(0) +g(u

He proved the existence of solutions by means of Leray—Schauder nonlinear alternative theorem. For
the fractional mixed integro-differential equations with nonlocal integral initial conditions associated
with the Caputo fractional derivative of order « €10, 1],

t

d’;;lit) _ f<t,u(t),/ (t,s,u(s jh (t,s,u(s s>, telo,1],
0 0
- / g(s)u(s) ds

Anguraj et al. [7] proved the existence and uniqueness of solutions by applying some fixed-point the-
orems. In [19], Laadjal and Ma studied the existence and uniqueness of solutions for the following
nonlinear Volterra—Fredholm integro-differential equation of Caputo fractional order with the bound-
ary conditions:

t t
0;004( _ —|—)\1/l€1t8f13u dS—f—)\Q/K?QtSfQSu( ))dS,
0 0

au(0) 4 bu(1) =0,
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where t € [0,1], @ €]0, 1] and a, b are real constants with a+b # 0. The reasoning is mainly based upon
the contraction mapping principle and Krasnosel’skii’s fixed point theorem. However, if a + b = 0,
this method is not applicable to showing the existence of periodic solutions.

Motivated by the above works and using the technique of the coincidence degree theory of Mawhin
[15,20] for certain suitable operators, in this research, we prove some new existence and uniqueness
results for the large class of nonlinear Volterra-Fredholm integro-differential equations (1.1),(1.2),
involving the generalized -Caputo fractional derivative.

For the organization of the rest of this research, in Section 2, we recall some definitions of the
1-Caputo fractional operator and some results which will be used in the further stages. The study
of the existence and uniqueness of periodic solutions of our problem (1.1),(1.2) is given in Section 3.
Finally, we illustrate our mains results through two examples.

2 Basic concepts

We consider C(J,R) and C™(J,9R), the spaces of continuous and m times continuously differentiable
functions on J, respectively, with the norm || - || denoting the suppremum norm on C(J,R).

Definition 2.1 ([4]). Let J = [a,b] (—oo < a < b < 00) be a finite or infinite interval and @ > 0, u be
an integrable function defined on J and ¢ € C'1(J,R) be an increasing and positive function such that
¥'(1) # 0 for all 7 € J. Fractional integrals and fractional derivatives of a function u with respect to
another function ¢ are defined as follows:

3 u(r) = ﬁ / W (8)(W(r) — ()" u(s) ds

and

- ﬁ (w/tﬂ ) / W (5)(W(7) = (s)" " u(s) ds,

respectively, where n = [a] 4 1.
Lemma 2.1 ([4]). Let a« >0 and 8 > 0. Then we have
jgjrwjfi:/’u(r) = 32‘1’5”1)11(7) for all T € 3.

Lemma 2.2 ([18]). Let a >0, p> 0 and 7 € J. If u(r) = ((7) — (a))?~?, then

T = s (6r) = (e

Definition 2.2 ([4]). Let n — 1 < o < n with n € N and u,+¢ € C"(J,R) be two functions such that
1 is increasing and positive where ¢’ (7) # 0 for any 7 € J. The left -Caputo fractional derivative of
u of order « is given by

N e/ 1 dyn R
Ci)uﬁ’u(T): A ’d’( —) u(t), TEJ.

In particular, when 0 < o < 1, we have

“Dpiu(r) =
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Theorem 2.1 ([4]). Ifue C*(J,R) andn—1 < o < n, then

arbc@(ﬁ_ u(r) =u(r) — Z o (¢/17) a)ku(a).

k=0
In particular, when 0 < a < 1, we have
39D u(r) = u(r) — u(a).
Theorem 2.2 ([4]). Let u € CY(J,R) and a > 0. Then
DN I u(r) = u(7).

Theorem 2.3 ([4]). Let u,v € C*(J,R) and a > 0. Then

D u(r) = ‘DI u(r) = u(r +ZCk ()",

where

1 1 d\*
Ck—H(W E) (U.*'U)(a).
Remark 2.1. Let u € C*(J,R) and a > 0. Then

C’D‘:f;"/’ (1) =0 < u(r) ch Y(a))k.
Below we present definitions and the coincidence degree theory that are essential in proofs of our

results (see [15,20]).

Definition 2.3. We consider the normed spaces X and ). A Fredholm operator of index zero is a
linear operator £ : Dom(£) C X — Y such that

(a) dimker £ = codim Img £ < +o0;
(b) Jmg £ is a closed subset of Y.

By Definition 2.3, there exist continuous projections Q : Y — ) and P : X — X satisfying
JmgL=kerQ, ker£=0mgP, Y=TmgQ®dImgL, X =kerP ®kerl.
Thus the restriction of £ to Dom £ N ker P, denoted by £p, is an isomorphism onto its image.

Definition 2.4. Let Q2 C X be a bounded subset and £ be a Fredholm operator of index zero with
Dom £NQ # (. Then an operator N : Q — ) is said to be £-compact in Q if

(a) the mapping QN : Q — Y is continuous and QN (Q) C Y is bounded;
(b) the mapping (£p)~1(id — Q)N : Q — X is completely continuous.

Lemma 2.3 ([21]). Let X and Y be the Banach spaces, Q C X be a bounded open and symmetric
set with 0 € Q. Suppose that £ : Dom £ C X — Y is a Fredholm operator of index zero with
Dom£NO# T and N : X — Y is an L-compact operator on Q. Assume, moreover, that

Lr— Nz # —((Lx + N(—=z))

for any x € Dom £ N IN and any ¢ € (0,1], where 0N is the boundary of & with respect to X. Then
there exists at least one solution of the equation £x = N'x on Dom £N Q.
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3 Main results
Let the spaces
P {u €C@M) : u(r) =3 u(r): ve cm,zm} and Y = C(3,R)

be endowed with the norms
ullx = llully = [Julles
We consider the operator £ : Dom £ C X' — ) defined by

Lu = D%y, (3.1)

where
Dom&={uecXx: D uecy u(a)=u(b)}.

Lemma 3.1. Using the definition of £ given in (3.1), we have
ker € ={ueX: u(r)=u(a), 7 €J}

and

Jmg £ = {v €y: /bw’(s)(ww) = () u(s) ds = 0}-

Proof. By Remark 2.1, we find that for all u € X', the equation £u = C@';jrwu = 0 in J has a solution
of the form
u(t) =¢o =ula), €3,

and then
ker £ ={ueX: u(r)=u(a), 7 € J}.

For v € Jmg £, there exists u € Dom £ such that v = £u € ). Using Theorem 2.1, we obtain

u(r) = u(a) + 39 v(7)

=M®+f%y/W@XMﬂ—w®W”%®MS

for every 7 € J. Since u € Dom £, we have u(a) = u(b). Thus
b
[0 - v vl ds =0,
a
Furthermore, if v € ) and satisfies

b
/w%xww—w@w*M@w:m

then for any u(r) = jjfbv(T), using Theorem 2.2, we get v(7) = C@:“fpu(T). Therefore,

u(b) = u(a),

which implies that u € Dom £. So, v € Jmg £. Thus

Jmg £ = {v S /bw%s)(w(b) — ()" Tu(s)ds = 0}7

which completes the proof. O
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Lemma 3.2. Let £ be the operator defined by (3.1). Then £ is a Fredholm operator of index zero,
and the linear continuous projection operators Q@ :Y — Y and P : X — X can be written as

b
- e "(s —(s))* tu(s) ds
Q(v) = <w<b>—w(a>>aa/¢( )((6) ~ () o(s) d

and

P(u) = u(a).
Furthermore, the operator 2731 :Jmg £ — X NkerP can be written as
5 (w)(r) = 3%%0(r), TEJ.
Proof. Obviously, for each v € Y,
Q% = Qu and v = Q(v) + (v — Q(v)),

where (v — Q(v)) € ker @ = Jmg £.
Using the fact that Jmg £ = ker Q and Q% = Q, it follows that Jmg O N Jmg £ = 0. So,

Y =T0mg L& Img Q.

In the same way, we have Jmg P = ker £ and P? = P. It follows for each u € X that u = (u—P(u)) +
P(u), and then X = ker P + ker £. Clearly, we have ker P Nker £ = 0. So,

X = ker P & ker £.

Therefore,
dimker £ = 0im Jmg Q = codim Jmg £.

Consequently, £ is a Fredholm operator of index zero.
Now, we show that the inverse of £|pom ¢nker P 18 £7§1. Effectively, for v € Jmg £, by Theorem 2.2,
we have

85 (v) = "D (I v) = w. (3.2)
Furthermore, for u € Dom £ N ker P, we get
£ (8(u(7))) = T3 (“DGu(r)) = u(r) ~u(a), T €.
Using the fact that u € Dom £ N ker P, we have
u(a) = 0.

Thus
£31e(u) = u. (3.3)

Using (3.2) and (3.3) together, we get
€5 = (£]pom erker?)
which completes the demonstration. O
Let us introduce the following hypotheses:
(A1) There exist positive constants ~, 11, 72 such that
(7, u, B1(u), Ba(u)) — b(7, 1, B1 (W), B2(W))| < ylu — 0| + 71|B1u — BT + 12| Bou — B

for every 7 € J and u,u € R.
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(A2) There exists a constant p; > 0 such that
|/<;1(T, s,v) — 51(7,3,6)’ < p1lv — 7|
for every (7,s) € 0 and v,T € R.

(A3) There exists a constant pa > 0 such that
"%2(7-u S,’U) - '%2(7—7 876)’ < p2|U - U|
for every (7,s) € 99 and v, T € R.

Define N : X — Y by

Nu(r) == h(T,u(T),/Tm(T,s,u(s))ds,/bmg(r,s,u(s))ds), TEJ.

a a

The operator N is well defined because b, x1 and k3 are continuous functions.
We remark that problem (1.1)-(1.2) is equivalent to the problem £u = Nu.

Lemma 3.3. Suppose that (A1), (A2) and (A3) are satisfied. Then for any bounded open set Q C X,
the operator N is £-compact.

Proof. We consider for M > 0 the bounded open set Q = {u € X : |ju]|x < M}. We divide the proof
into three steps.

Step 1: QN is continuous.
Let (un)neN be a sequence such that u, — u in ). Then for each 7 € J, we have

b

o /¢’(8)(¢(b) = 9()" N () (5) = N(w)(s) | ds.

QN (ua)(7) = N ()| < = arya

a

By (A1), we have

| QN (un)(7) — QN (w)(7)|
b
IO S— "(s — () Huu(s) — u(s)| ds
< T ] YO0 — v () ~u()]d

a
b

L / s o s a—1 L(ug)(8) — . s s
+<¢(b)_¢(a))aa/w< 5(6) — ()7 B 1) (5) — B ()(s)] d
b
L /S _ s a—1 o (1 )(8) — ) s 5
+<¢(b)_¢(a))aa/¢< J5(6) — 0(5)™ [ Baun)(5) — Ba)(s)] d
b
Oﬂ/”un_ully / _ s a1 <
<w(b)_¢(a»au/w<s><w<b> v(s)° " d
b
L /S _ s a—1 1 2)(s) — . s s
+<¢(b)_¢(a))aa/¢< 5(6) — ()7 B ) (5) — B ()(s)] d
b
Qa2 ’ B 5 1 N ) )
b [0 — ) [Balm) ) ~ Bal) (5] 4
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Using (A2) and (A3), we get

b
| QN (un) (1) = QN (u)(7)] < M /W(S)(%D(b) —1(s)* " ds

b
alb—a)(nipr + n2p2)|fun —ully [, e
! () = p(a))e / W ($)((6) — ¥()* " d

< [y + (b= a)(mp1 + n2p2)] (e — ully.
Thus, for each 7 € J, we obtain
|Q/\f(un)(7') — Q/\f(u)(r)‘ — 0 as n — +oo,
and, therefore,
| ON (un) — Q,/\f(u)||y — 0 as n — +oo.
We conclude that QN is continuous.
Step 2: QN(Q) is bounded.
For 7 € J and u € ), we have

b

. / W () (0 (6) — 1(s))° LN (w)(5)| ds

a

b

+ e / ¥ (5)((6) = ¥ (5))° " [B1(0)(s) | ds

a

RN / W (8)(1(0) — () B (u)(s) — Ba(0)(s)| ds
b

b [ W)~ o) B0 ds

a

<O+ M+ (b —a)[(p1m1 + pan2) M + ki1 + K3m2],

where
h* = ||b('707070)||007 HT: sSup ‘K(Ta3a0a0)|
(r,s)€0
and
Ky = sup |k(7,s,0,0).
(7,8)€do
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Thus
|ON (W)[ly < b* +M + (b —a)[(p1m + panz) M + Kim + K5m2].

So, QN () is a bounded set in ).

Step 3: Egl(id — QN : Q — X is completely continuous.
We use the Arzela—Ascoli theorem, so we have to show that £, L(id—Q)N(Q) C X is equicontinuous
and bounded. First, for any u € Q and 7 € J, we get

L5 (Nu(r) — QNu(T)) = Jz‘fb {f) (T, u(r), B1u(r), Bou(r))

b
o / B (3)((6) — ()™ b (5, u(s), Bru(s), Byu(s)) ds

1 A / a—1
:ruo!¢“XW”_¢“” (5, u(s), Byu(s), Bau(s)) ds
b

WO @) [ ) (e b (s uls) Bols) Bonls)) ds
F(a)w)_w(&))a/w><w<b> (5))* (s, u(s), Bau(s), Bou(s)) d

a

Next, for all u € Q and 7 € J, we get

|£5" (id — QN u(7)]

< Foy / Y)W = 95 [0 (5,u(s), Bru(s), Bau(s)) — b(s,0,0,0)] ds

+7/¢ $))*~[h(s,0,0,0)| ds
+ F(la)a/w/(S)W(b) — () 1|h(s,u(s),%w(s),%gu(s)) - b(s,070,0)’ds
1 b
*wafiﬁ'@)@(b) —1(5))* " [h(5,0,0,0)| ds,
2[)* a 1
s al'(a )(1/1( Jr7/¢ lu(s)| ds
m /w 5))* 7B (u)(s) — B1(0)(s)| ds
e /w ) [B1(0)(s)| ds
m /w )27 HBa(u)(s) — Ba(0)(s)| ds

X /w )" Ba(0)(s)] ds



Periodic Solutions for Nonlinear Volterra—Fredholm Integro-Differential Equations

"(5)(10(b) = (5))* " u(s)| ds

AS

' (5)(1(0) — ()7 [B1 (w)(s) — B1(0)(s)| ds

¥ (5)(W(6) — 1(3))* 7B (u)(s) — Ba(0)(s)] ds

"(5)(w(0) — 1 (s)*7[B2(0)(s)| ds

AS

b
/
b
/
+ jwwxwwwwnaw%um@nm
b
/
b
/

Tla+1) [h + M + (b —a) [Kim + K312 + (mpr + 772/)2)./\/1]]

Therefore,

—1y; Y(b) —v(a) 1 . . .
54 id — @l < ZEADZEO [y ot 0= a) i + i + g+ mape) M)
This means that £5'(id — Q)N (Q) is umforﬁmly bounded in X.

It remains to bhOW that £7> (id — Q)N (Q) is equicontinuous.

Fora<m <71 <b,uc ), we have

|£5" (id — QNu(r2) — £5' (id — Q)Nu(r)|

e | [Pl v

—1
<

— () = ()| b (s, u(s), Bru(s), Bou(s))|] ds

+J—/W®WWNW@W“w@M$%M)%w ()| ds

b

[ 000 — (6 o s,u(s), Bau(s), Bau(s)) | ds

a

1 / ! a—1
I'(a) a/ﬁ’ (8)(¥(72) —¥(s)) ’f)(s,u(s),%lu(s),%Qu(S)) — 5(57070’0” ds
17, » -
*f@i/¢“”W“ﬂ—¢@»“ — (@) — (s))* "] Ih(s,0,0,0)| ds
+ 171/1/(3)(1/}(7 ) —0()* b (s, u(s), Biu(s), Bau(s)) — h(s,0,0,0)| ds
F(Oz) 2 ) 3 1 s 2 ,0,0,

+——f/w )~ [b(s,0,0,0)| ds
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b
x / $()((6) — () [B (s, u(s), Bru(s), Bau(s)) — b(s,0,0,0)| ds

a

[((m2) — (a))> — -
! T / v/ ()2~ Io(s,0,0,0)| ds
< 2A(Y(72) — ¥ (m))” +A[(¢( 1) = (a)® — (i $(a))°]

+A[(%(2) — 9(a)” — (d}(ﬁ) - w(a))a] = 2A(¢(72) — ¥(m))",

where

1 . . .
RrES)] [h + M+ (b — a)[Kins + K302 + (M1 —|—772p2),/\/l]:|_

The operator £5'(id — Q)N() is equicontinuous in X because the right-hand side of the above
inequality tends to zero as 71 — 7o and the limit is independent of u. The Arzela—Ascoli theorem

implies that £7_,1(id — Q)N(Q) is relatively compact in X'. As a consequence of Steps 1 to 3, we get
that A is £-compact in €, which completes the demonstration. O

Lemma 3.4. Assume that (A1), (A2) and (A3) are fulfilled. If the condition

v+ (np1 + n2p2)(b — a)
INa+1)

is satisfied, then there exists A > 0 independent of ¢ such that
L(u) — N(u) = —C[S(u) —l—N(—u)] = |u]lx <A, ¢(€(0,1].

Proof. Let u € X satisfy

(¥(b) —9(a))* <

L(u) = N(u) = —CL(u) — (N (~u),
then

1 ¢
m/\[(u) — mN(—u)

So, from the expressions for £ and N, for any 7 € J we get

Lu) =

Su(r) = DIu(r) = Tz H(r (7). Buulr), Bau(r)) — 15 {7 —u(r), Br (-)(), Bal-w)(r).

By Theorem 2.1, we have

(323 (b (s, u(s), Buu(s), Bou(s))) (7)
— ¢ (s, —u(s), B1 (—-w)(5), Ba(~w)(3) (7)]-

+ m
Thus, for every 7 € J, we obtain
< 1 f / a—1
)] < @) + 5 / Y5 (r) — ()" (s, u(s), Bru(s), Bou(s))| ds
/ e )% [ (s, —u(s). B2 (~w)(s), Ba(~w)(s)) | ds

C+1

<+1 /¢ )% [b (s, u(s), Bru(s), Bau(s)) — b(s,0,0,0)| ds



Periodic Solutions for Nonlinear Volterra—Fredholm Integro-Differential Equations 63

<+1 /¢ —1(s))* b (s,0,0,0)| ds

1 f / a—1
+ (CH)FM)a/w (8)(w(7) = (5))* B (s, —u(s), B1(—u)(s), Ba(~w)(s)) — h(s,0,0,0)| ds

<+1 /¢ —1(s))* b (s,0,0,0)| ds
< lu(e) + 2 +mlﬁ;jﬁ';”(b_“))(w(b)— o)

2(y + (m1p1 + n2p2)(b — a))
Ia+1)

+ (¥ (6) — () *[|ullx,

hence

2(b* + (m~wi +n263)(b — a)) o

1F(Ol +21)2 (d}(b) - w(a))

2(y + (mp1 + n2p2)(b — a))
INa+1)

[ullx < fu(a)] +

+

(1 (6) = ()™ [|ullx-

We deduce that

()| + 2O 2s2) 0] (4 (6) — h(a)”

[1 _ 2(v+(n1ff1(‘gi21”)2)(h_u)) (¥(b) — 1/’(‘1))&]

Jullx <

The demonstration is completed. O

Lemma 3.5. If conditions (A1), (A2), (A3) and (3.4) are satisfied, then there exists a bounded open
set Q C X with

L(w) = N(u) # —C[L(u) + N (—u)] (3.5)
for any u € 9Q and any ¢ € (0,1].

Proof. Using Lemma 3.4, there exists a positive constant .4 independent of ¢ such that if u satisfies

L(w) = N(w) = —¢[Lw) + N (-w)], ¢€(0,1],

then |u|lx < A. So, if
Q={ueX; |ux <V} (3.6)

such that ¥ > A, we deduce that
L(u) = N(u) # —¢[L(u) = N(~u)]
for all u € 9Q = {u € X; ||lu||lx =9} and ¢ € (0,1]. O

Theorem 3.1. Assume (Al), (A2), (A3) and (3.4) are satisfied. Then there exists at least one
solution of problem (1.1), (1.2).

Proof. 1t is clear that the set  defined in (3.6) is symmetric, 0 € Q and X NQ = Q # &. In addition,
by assuming (A1), (A2), (A3) and (3.4), Lemma 3.5 implies

L) = N(u) # —([L(w) - N(-u)]

for each u € &' N 9N = 9N and each ¢ € (0,1]. By Lemma 2.3, problem (1.1), (1.2) has at least one
solution on Dom £ N 2, which completes the proof. O

Now, we investigate the existence and uniqueness of periodic solutions for our problem (1.1), (1.2).
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Theorem 3.2. Let (Al), (A2) and (A3) be satisfied. Moreover, assume that
(A4) there exist the constants 7 > 0 and 7,7, = 0 such that
[6(7, u, B (1), Ba(u) — b(7, T, B (W), B2(W)| = Flu — U] — 73 [B1at — B1°| — 7o Bou — B,
for every T € J and u,u € K.
If

(M1p1 +Tap2)(b—a)  2[y + (n1p1 + 12p2)(b — a)] a
5 + T+ 1) (1(b) —(a))™ < 1, (3.7)

then problem (1.1),(1.2) has a unique solution in Dom £ N (.

Proof. Note that condition (3.7) is stronger than condition (3.4). Then, by Theorem 3.1, we find that
problem (1.1), (1.2) has at least one solution in Dom £ N Q.

Now, we prove the uniqueness result. Suppose that problem (1.1), (1.2) has two solutions uy,us €
Dom £ N Q. Then for each 7 € J, we have

D% () = (7, ur (1), B1(u1) (1), Ba(u1) (7)),

a

‘D up(7) = h(7, ua(7), By (u2)(7), Ba(u2) (7)),

a

where B, B, are defined as in (1.3) and
ui(a) =ug(b), us(a)=us(b).

Let
U(T) =uy (1) —ug(r) forall 7€3.

Then

LU(r) = “D2MU(r) = D2y (1) — DYy (7)

= b (7, w1 (), B1(u1)(7), B2(w1) (7)) — b(7,u2(7), B1(u2)(7), B2 (u2)(7)). (3.8)

Using the fact that Jmg £ = ker Q, we have

/ ' ()((6) — (s))>!

a

x [h(s,ul(s), B (11)(5), Ba(ur)(s)) — b(s,us(s), By (ua)(s), %Q(uQ)(s))} ds = 0.
Since b is a continuous function, there exists 7o € [a, b] such that
b (70, u1(70), B1(u1)(70), B2 (u1)(70)) — b(7, u2(70), B1(u2)(70), B2(u2)(70)) = 0.
In view of (A4), we have

(b — a)(771p1 + TI2p2)
7

|u1(70) — u2(70)| < lur — uzfx,

then

(b— a)(mfl + Map2)

U(1)| <
|U(70)] =

1] x- (3.9)
On the other hand, by Theorem 2.1, we have
ToP D (r) = U(r) — (a),

which implies that
U(a) = U(ro) — T3 DG U(ro)
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and, therefore,
U(r) = TP DTU(T) + Ulmo) — T DL U(ro).

Using (3.9), for every 7 € J we obtain
U] < I3 DG UT)| + (7o) + [T DG (o )|

(6 =) s +Tapa) g, 2000 = B(@)? ey
= I8 + = ey IR (3.10)

By (A1), (A2), (A3) and (3.8), we find that

<

(D3] = [B(r,w1(7), Bu () (7), Ba(ua)(7)) — b7, 2(7), B 112) (), Ba(uz) (7))
< [v+ (6= a)(mupr + n2p2)] 14 -

Then
[D Ul < [y + (6 — @) (mps + m2p2)] 4] (3.11)

Substituting (3.11) in the right-hand side of (3.10), for every 7 € J we get

‘ﬂ(7)| < [(ﬁlpl +ﬁzp2)(b — a) + 2[7 + (771101 +772p2)(b _ a)} (1[1(5) - ¢(a))“} H‘u”X

5 MNa+1)
Therefore,
(M1p1 +Map2)(b—a)  2[y + (mp1 + n2p2)(b — a)] o
el < | = T ot ($(6) = ¥(@)°] 0]x-

Hence, by (3.7), we conclude that
[l = 0.

As a result, for any 7 € J, we get
() =0 = uy(7) = ua(7).

This completes the proof. O

4 Examples

In this section, we illustrate the applicability of Theorems 3.1 and 3.2 through two examples.

Example 4.1. Consider the following problem for a nonlinear Volterra—Fredholm integro-differential
fractional equation:

1.97

‘D27 u(r) = b(r,u(r), Bru(r), Bau(r)), 7€ [0,1], (4.1)
u(0) = u(1),
where
(7. (7). Bra(r). Bau(r)) = e + T I (u(r)] +2) + = Buu(r) + o Bau(r),
with ] .
Bu(r) = /m(T, s,u(s)) ds = / S sinu(s)ds, 7€ [0,1],
0 0
and

1 1
Bou(r) = /FLQ(T7S,H(S)) ds = /Ld& T €0,1].
0 0
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We have 1
a=g and (1) =

It is clear that the function h € C([0, 1] x R3,9R).
Then for all 7 € [0, 1] and u, u € R, we obtain

|5 (7,1, B1(u), Ba(w)) — h(7, T, B (1), Bo(w)) | < y|u — 1| + 71 [Bru — B11| + 72| Bou — Boi|

and

|Hl(TaSa | <p1|u7ﬁ|a (775)607

|I<62(7',S, _HZ | <p2|u—ﬁ|, (T,S) 600,
with 9 = {(7,s): 0<s <7 <1} and dp = [0,1] x [0,1], which imply that (A1), (A2) and (A3) are
satisfied with ) . . .

and pg =

TS T T AT Ea 3

Further, by some simple calculations, we see that

v+ (Mp1 + n2p2)(b — a)
INa+1)

(¥ (b) — 9 (a))® =~ 0.10859 < % .

Theorem 3.1 implies that problem (4.1), (4.2) has at least one solution.

Example 4.2. Consider the following problem for a nonlinear Volterra—Fredholm integro-differential
fractional equation:

" Tu(r) = h(r,u(r), Buu(r), Bau(r)), €= [Le,

u(l) = u(e),
where
1 1 3 1
b (7, u(r), Byu(r), Bou(r)) = =) + 302 (cosu( )+ u( )) + 7 Biu(r) + %3 Bou(T),
with . .
Biu(r) = /m(r,s,u(s)) ds = /T367677—2 sin(u(s))ds, 7€ [l,€],
and

€

. 671177
Bou(T) /HZ(T’S’u(S))dS/?ﬂ(l—i—u(s))ds’ T €[l el.

Here, a = % ,and (1) =1In7.
It is easy to see that h € C([1,e] x ]R3, R). Then, for all 7 € [1,¢] and u,u € R, we obtain
b (7,1, B1(u), Ba(w)) — h(7, T, B1 (1), Bo(W))| < y|u — 1| + 71 [Bru — B1u| + 02| Bou — Boil,
’nlrsu —mrsulgplu—u| (1,8) €0,

]/@2 T,8,u) — Ko (T, 8, ] < p2lu—1|, (7,8) € 0y,
and
|B(,u,B1(u), Ba(u)) — b(7, 1, By (1), Ba ()| = F|u — u — 7, |Bru — B1i| — 7, Bou — Boul,

with 0 = {(7,s): 1 <s<7<e}anddy=][1,e] x[1,e], which imply that (A1), (A2), (A3) and (A4)
are satisfied with

5 1 1 1 1 1

= —— = —— = = —— = = — = — d = — .
v 6627 0 6627 m Ut 7\/;(_7 12 T2 237 P1 677 entt P2 37612
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By simple calculations, we see that

(Mp1 +Map2)(b —a) | 2[y+ (mp1 +nm2p2)(b — a)] o
! + St (1(6) — (a))* ~ 0.2604 < 1.

So, by Theorem 3.2, our problem has a unique solution.

5

Conclusions

The main contribution of this work is to provide some sufficient conditions ensuring the existence and
uniqueness of periodic solutions to a large class of nonlinear Volterra—Fredholm integro-differential
fractional equations involving the -Caputo fractional derivative, by using the coincidence degree
theory of Mawhin [15]. To illustrate the applicability of our research, we have discussed two examples.
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