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Abstract. In this paper, a discrete scheme is presented for solving singularly perturbed convection-
diffusion equations. The stability and convergence of the proposed scheme are analyzed in the discrete
maximum norm. Error estimates are carried out for both Bakhvalov (B-mesh) and Shishkin-type (S-
mesh) meshes. Three numerical examples are solved to authenticate the theoretical findings.
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ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ßÀÒÌÏÃÂÄÍÉËÉÀ ÓÉÍÂÖËÀÒÖËÀÃ ÛÄÛ×ÏÈÄÁÖËÉ ÊÏÍÅÄØÝÉÀ-ÃÉ×ÖÆÉÉÓ
ÂÀÍÔÏËÄÁÄÁÉÓ ÀÌÏáÓÍÉÓ ÃÉÓÊÒÄÔÖËÉ ÓØÄÌÀ. ÛÄÌÏÈÀÅÀÆÄÁÖËÉ ÓØÄÌÉÓ ÓÔÀÁÉËÖÒÏÁÀ ÃÀ ÊÒÄ-
ÁÀÃÏÁÀ ÂÀÀÍÀËÉÆÄÁÖËÉÀ ÃÉÓÊÒÄÔÖË ÌÀØÓÉÌÀËÖÒ ÍÏÒÌÀÛÉ. ÝÃÏÌÉËÄÁÉÓ ÛÄ×ÀÓÄÁÀ áÃÄÁÀ
ÒÏÂÏÒÝ ÁÀáÅÀËÏÅÉÓ (B-mesh), ÀÓÄÅÄ ÛÉÛÊÉÍÉÓ ÔÉÐÉÓ (S-mesh) ÁÀÃÄÄÁÉÓÈÅÉÓ. ÈÄÏÒÉÖËÉ
ÃÀÓÊÅÍÄÁÉÓ ÃÀÓÀÃÀÓÔÖÒÄÁËÀÃ ÀÌÏáÓÍÉËÉÀ ÓÀÌÉ ÒÉÝáÅÉÈÉ ÌÀÂÀËÉÈÉ.
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1 Introduction
Singularly perturbed problems of convection-diffusion equations are crucial tools to explain mathe-
matical modelling of many physical events and various biological phenomena. Their practices appear
in electronic circuit systems [4], control theory [7], thermo-elasticity [30], direct current motors [29],
chemical-reactor theory [2], population dynamics [24], spread of HIV infection [6], modelling of semi-
conductor devices [35] and heat transfer problems [32] (see also the references therein).

This article deals with a singularly perturbed convection-diffusion boundary value problem of the
form

Lu = εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), 0 < x < l, (1.1)
u(0) = A, u(l) = B, (1.2)

where 0 < ε < 1 is the perturbation parameter, a(x) ≥ α > 0, b(x) ≥ β > 0 and f(x) are sufficiently
smooth functions.

In general, the class of such problems involves the boundary layers. Whereas the solution of these
problems changes quickly within a layer region, it behaves slowly and uniformly outside the layer
region. Due to the presence of the perturbation parameter, traditional numerical approaches are not
suitable when ε → 0. Thus it is important to develop uniformly convergent numerical methods with
respect to ε. For more details about singular perturbation theory, one can refer to [25,27,28,33].

Lots of techniques have been introduced to accomplish this complexity. Finite element and discon-
tinuous Galerkin methods were applied in [2,21,22,32,36,39–41]. The reproducing kernel method was
performed in [7]. The exponentially fitted collocation method was used in [18]. The streamline upwind
Petrov–Galerkin technique was implemented in [20]. By using the fourth-order Runge–Kutta formula,
the initial value method was considered in [24]. The fitted mesh method was suggested in [4,35]. The
fitted non-polynomial cubic spline method was introduced in [14].

In addition to the above-mentioned techniques, various numerical schemes have been established
on different meshes to obtain numerical solution of singularly perturbed convection-diffusion boundary
value problems. In [19,26], hybrid type difference schemes were proposed. High-order finite difference
schemes were presented in [10,17,23]. Numerov type scheme was constructed in [37]. The exponentially
fitted difference scheme was established on a uniform mesh in [3]. In [38], by using Richardson
extrapolation, the convergence order of the difference scheme was improved. Another schemes have
been described in a series of articles [8, 12,15,16,34].

Recently, different kinds of singularly perturbed convection-diffusion boundary value problems
(SPCDBVPs) have been considered. This type of problems with integral boundary conditions were
studied in [5, 30, 31]. Their nonlocal forms were examined in [2, 5]. Delay type SPCDBVPs were
discretized on layer-adapted meshes in [6, 9].

This paper aims to present uniform and robust discretization for solving SPCDBVPs and compare
the obtained results for both B-mesh and S-mesh.

The structure of the study is as follows: The asymptotic behavior of the exact solution is given in
Section 2. In Section 3, by using interpolating quadrature rules and linear basis functions, the finite
difference scheme is constructed on a non-uniform mesh. Section 4 is devoted to the error analysis
according to the node points of Shishkin and Bakhvalov meshes. In Section 5, numerical experiments
are included and the obtained results are tabulated.

Notation 1. Throughout the paper, C, C0 and C1 are generic positive constants independent of the
perturbation parameter. For any continuous function v(x), we use the maximum norm

∥v∥∞ = max
[0,l]

|v(x)|.

2 Some feautures of the analytical solution
In this section, we give the asymptotic behavior of the exact solution and its derivative that is required
to analyze the stability and convergence.
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Lemma 2.1. The solution u(x) of problem (1.1), (1.2) holds the following estimates:

∥u∥∞ ≤ C0 (2.1)

and
|u′(x)| ≤ C

{
1 +

1

ε
e−

αx
ε

}
, (2.2)

where
C0 = |A|+ |B|+ α−1∥f∥∞.

Proof. First, we prove (2.1). For this purpose, we define the following barrier function:

ψ
±
(x) = ±u(x) + |A|+ |B|+ α−1(l − x)∥f∥∞.

By applying the maximum principle to the barrier function, we obtain

ψ
±
(0) = |A|+ |B|+ α−1l∥f∥∞ ±A ≥ 0,

ψ
±
(l) = |A|+ |B| ±B ≥ 0.

Thus we can write

Lψ(x) = −(|A|+ |B|)b(x) + a(x)∥f∥∞
α

− b(x)(l − x)∥f∥∞
α

± f(x)

≤ −(|A|+ |B|)b(x)− ∥f∥∞ ± f(x) ≤ 0.

According to the maximum principle, we find the following relations:

|A|+ |B|+ (l − x)∥f∥∞
α

± u(x) ≥ 0,

|u(x)| ≤ |A|+ |B|+ 1

α
(l − x)∥f∥∞,

which hints at the proof of (2.1). Now, we show the proof of (2.2). Rewriting another form of equation
(1.1), we have

εu′′(x) + a(x)u′(x) = F (x), (2.3)
where

F (x) = f(x) + b(x)u(x).

From (2.3), we get

u′(x) = u′(0) e
− 1

ε

x∫
0

a(τ) dτ
+

1

ε

x∫
0

F (ξ) e
− 1

ε

x∫
ξ

a(τ) dτ

dξ. (2.4)

By integrating (2.4) on (0, l), we write

B −A = u′(0)

l∫
0

e
− 1

ε

x∫
0

a(τ) dτ
dx+

1

ε

l∫
0

x∫
0

F (ξ) e
− 1

ε

x∫
ξ

a(τ) dτ

dξ dx.

Hence we obtain

u′(0) =

B −A− 1
ε

l∫
0

x∫
0

F (ξ) e
− 1

ε

x∫
ξ

a(τ) dτ

dξ dx

l∫
0

e
− 1

ε

x∫
0

a(τ) dτ
dx

. (2.5)

Denominator of (2.5) is evaluated as
l∫

0

e
− 1

ε

x∫
0

a(τ) dτ
dx ≥

l∫
0

e
− 1

ε

x∫
0

a∗ dτ
dx =

l∫
0

e−
a∗x
ε dx =

ε

a∗
(1− e

−a∗l
ε ) = γ0ε, (2.6)
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where
γ0 ̸= γ0ε > 0 (a∗ = max

(0,l]
a(x)).

Applying the mean-value theorem to the integral term in (2.5), we get

∣∣∣∣− 1

ε

l∫
0

[ x∫
0

F (ξ) exp
(
− 1

ε

x∫
ξ

a(τ) dτ

)
dξ

]
dx

∣∣∣∣ ≤ 1

ε

l∫
0

[ x∫
0

|F (ξ)| exp
(
− 1

ε

x∫
ξ

a(τ) dτ

)
dξ

]
dx

≤ ∥F∥∞
ε

l∫
0

x∫
0

e−
α(x−ξ)

ε dξ dx =
∥F∥∞
ε

ε

α

l∫
0

[1− e−
αx
ε ] dx ≤ ∥F∥∞l

α
= C1. (2.7)

Taking into consideration (2.6) and (2.7), we find

|u′(0)| ≤ |A|+ |B|+ C1

γε
=
C

ε
. (2.8)

Using relation (2.8), we obtain the following estimation:

|u′(x)| = u′(0) e
− 1

ε

x∫
0

a(τ) dτ
+

1

ε

x∫
0

|F (ξ)|e
− 1

ε

x∫
ξ

a(τ) dτ

dξ

≤ C

ε
e−

a∗x
ε +

∥F∥∞
α

(1− e−
αx
ε ) ≤ C

ε
e−

a∗x
ε +

∥F∥∞
α

.

The proof of (2.2) is reached.

3 Discretization
In this section, we construct the difference scheme on a non-uniform mesh. Let ωN be any non-uniform
mesh on [0, l]:

ωN =
{
0 < x1 < x2 < · · · < xN−1 < l, hi = xi − xi−1

}
and

ωN = ωN ∪ {x = 0}.

Before constructing difference scheme, we define some notation for the mesh functions. For any mesh
function v(x) defined on ωN , we use the following implicit difference rules:

vi = v(xi), vx̄,i =
vi − vi−1

hi
,

vx,i =
vi+1 − vi
hi+1

, vx̄x̂,i =
1

~i
(vx,i − vx̄,i) .

The discrete maximum norm is denoted by

∥v∥∞ = ∥v∥∞,ωN
= max

0≤i≤N
|vi|.

To design the difference method for problem (1.1), (1.2), we start by using the following integral
identity:

~−1
i

xi+1∫
xi−1

Luφi dx = ~−1
i

xi+1∫
xi−1

(
εu′′ + a(x)u′ − b(x)u

)
φi dx = ~−1

i

xi+1∫
xi−1

f(x)φi dx, (3.1)
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where the basis function

φi =


φ
(1)
i =

(x− xi−1)

hi
, x ∈ (xi−1, xi),

φ
(2)
i =

(xi+1 − x)

hi+1
, x ∈ (xi, xi+1),

0, x ̸∈ (xi−1, xi+1).

φi is a solution of the following problems:

εφ
(1)

′′

i = 0, φ
(1)
i (xi) = 1, φ

(1)
i (xi−1) = 0,

εφ
(2)

′′

i = 0, φ
(2)
i (xi) = 1, φ

(2)
i (xi+1) = 0.

Moreover,
~i =

1

2
(hi + hi+1)

and

~−1
i

xi+1∫
xi−1

φi dx = ~−1
i

(hi
2

+
hi+1

2

)
= 1.

For the first term of (3.1), appyling interpolating quadrature rules in [1], we have

~−1
i

xi+1∫
xi−1

εu′′(x)φi dx = −~−1
i ε

xi∫
xi−1

u′φ
(1)

′

i dx− ~−1
i ε

xi+1∫
xi

u′φ
(2)

′

i dx

= −~−1
i εux̄,i

xi∫
xi−1

φ
(1)

′

i dx− ~−1
i εux,i

xi+1∫
xi

φ
(2)

′

i dx = ~−1
i ε(ux,i − ux̄,i) = εux̄x̂,i. (3.2)

For the second term of (3.1), we obtain

~−1
i

xi+1∫
xi−1

a(x)u′(x)φi dx = ~−1
i

xi+1∫
xi−1

[a(x)− a(xi)]u
′(x)φi dx+ ~−1

i ai

xi+1∫
xi−1

u′(x)φi dx

= −~−1
i ai

xi+1∫
xi−1

u(x)φ′
i dx+Ra,i = aiux,i +Ra,i, (3.3)

where

Ra,i = ~−1
i

xi+1∫
xi−1

[a(x)− a(xi)]u
′(x)φi dx.

For the third term of (3.1), we can write

~−1
i

xi+1∫
xi−1

b(x)u(x)φi dx = ~−1
i

[ xi+1∫
xi−1

[b(x)− b(xi)]u(x)φi dx+ b(xi)

xi+1∫
xi−1

u(x)φi dx

]

= ~−1
i bi

xi+1∫
xi−1

u(x)φi dx+Rb,i = bi~−1
i ui

xi+1∫
xi−1

φi dx+R
(1)
i +Rb,i = biui +R

(1)
i +Rb,i, (3.4)
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where

Rb,i = ~−1
i

xi+1∫
xi−1

[b(x)− b(xi)]u(x)φi dx,

and the error term from the interpolating quadrature rule is indicated by

R
(1)
i = bi~−1

i

xi+1∫
xi−1

dxφi(x)

xi+1∫
xi−1

du(ξ)

dξ

[
T0(x− ξ)− (x− xi−1)

~i
T0(xi+1 − ξ)

]
dξ.

Here, T0 is computed by the following formula:

Ts(λ) =


λs

s!
, λ ≥ 0,

0, λ < 0.

For the right-hand side of (3.1), we get

~−1
i

xi+1∫
xi−1

f(x)φi(x) dx = ~−1
i

xi+1∫
xi−1

[f(x)− f(xi)]φi(x) dx+ ~−1
i

xi+1∫
xi−1

f(xi)φi(x) dx = fi +Rf,i, (3.5)

where

Rf,i = ~−1
i

xi+1∫
xi−1

[f(x)− f(xi)]φi(x) dx.

Combining (3.2), (3.3), (3.4) and (3.5), we find the following difference scheme:

εux̄x̂,i + aiux,i − biui = fi +Ri, i = 1, . . . , N − 1, (3.6)
u0 = A, uN = B, (3.7)

where
Ri = Rf,i − (R

(1)
i +Ra,i +Rb,i). (3.8)

Neglecting the remainder term in (3.6), for the approximate solution y we obtain the following differ-
ence problem:

εyx̄x̂,i + aiyx,i − biyi = fi, i = 1, . . . , N − 1, (3.9)
y0 = A, yN = B. (3.10)

4 The stability and convergence
To research the robustness of the presented scheme, let ui be the solution of problem (3.6), (3.7) and
let yi be the solution of problem (3.9), (3.10). The error function zi = yi −ui, i = 0, 1, 2, . . . , N , is the
solution of following problem:

εzx̄x̂,i + aizx,i − bizi = Ri, i = 1, . . . , N − 1, (4.1)
z0 = 0, zN = 0. (4.2)

Lemma 4.1. For problem (4.1), (4.2), the following inequality is satisfied:

|zi| ≤ Chi

n−1∑
i=1

|Ri|.

Proof. The proof of the lemma is similar to that given in [3].



76 Baransel Gunes, Mutlu Demirbas

Lemma 4.2. For all remainder terms in (3.8), the following estimate is valid:

|Ri| ≤ Chi.

Proof. Using the mean-value theorem, we get

|a(x)− a(xi)| = |a′(ηi)| |x− xi|, ηi ∈ (xi, x) ≤ Chi.

Thus we can write

|Ra,i| ≤ ~−1
i

xi∫
xi−1

Chiφi(x) dx ≤ Chi~−1
i

xi∫
xi−1

φi(x) dx ≤ Chi.

Similarly, it can be shown that |Rb,i| ≤ Chi and |Rf,i| ≤ Chi. Now, we estimate R(1)
i :

|R(1)
i | ≤ bi~−1

i

xi+1∫
xi−1

dx|φi(x)|
xi+1∫

xi−1

∣∣∣du(ξ)
dξ

∣∣∣ ∣∣∣[T0(x− ξ)− (x− xi−1)

~i
T0(xi+1 − ξ)

]∣∣∣ dξ
≤ C0~i

xi+1∫
xi−1

(
1 +

1

ε
e−

αξ
ε

)
dξ = C0~i

{
1 + α−1

(
e−

αxi+1
ε − e−

αxi−1
ε

)}
≤ Chi.

Lemma 4.3. For the remainder term Ri of scheme (3.6), (3.7), the following estimate is satisfied on
the Bakhvalov mesh:

|yi − ui| ≤ CN−1,

and for the Shishkin mesh, it is written as

|yi − ui| ≤ CN−1 lnN.

Proof. First, we consider Bakhvalov-type mesh for solving problem (3.6), (3.7). For an even number
N , we divide each of the subintervals [0, σ] and [σ, l] into N

2 equidistant subintervals. The transition
point σ is taken as

σ = min
i

{ l
2
, α−1ε| ln ε|

}
.

The node points xi are specified as follows: if σ < l
2 ,

xi =


−α−1ε ln

[
1− (1− ε)

2i

N

]
, i = 0, 1, . . . ,

N

2
,

σ +
(
i− N

2

)
h, i =

N

2
+ 1, . . . , N,

and if σ = l
2 ,

xi =


−α−1ε ln

[
1−

(
1− exp

(−αl
2ε

) 2i

N

)]
, i = 0, 1, . . . ,

N

2
,

σ +
(
i− N

2

)
h, i =

N

2
+ 1, . . . , N,

where
h =

2(l − σ)

N
.

According to the grade mesh’s node points, we take the following estimations. First, for xi ∈ [0, σ]
and α < l

2 , we find

hi = xi − xi−1 = α−1ε
{

ln
(
1− (1− ε)

2(i− 1)

N

)
− ln

(
1− (1− ε)

2i

N

)}
.
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Applying the mean-value theorem according to i, we obtain

hi = α−1ε
[ 2(1− ε)N−1

1− 2i(1− ε)N−1

]
≤ 2α−1(1− ε)N−1 ≤ 2α−1N−1.

Now, we consider α = l
2 on the interval [0, σ]. Hence we have

hi = xi − xi−1 = α−1ε
{

ln
(
1− (1− e−

αl
2ε )

2(i− 1)

N

)
− ln

(
1− (1− e−

αl
2ε )

2i

N

)}
.

From here, we can write the inequality

e−
αxi−1

ε − e−
αxi
ε ≤ 2(l − ε)N−1.

Thus we obtain
hi = xi − xi−1 ≤ CN−1, hi+1 = xi − xi−1 ≤ CN−1

and
~i =

(hi + hi+1)

2
≤ CN−1.

For the interval [σ, l], taking σ = l
2 , we find that h = 2(l − σ)/N = lN−1. Consider σ = −α−1ε ln ε.

Using the inequalities
1

ε
e−

αt
ε ≤ 1

and
~i ≤ CN−1,

we can show that
|Ri| ≤ CN−1.

Subsequently, we use Shishkin-type mesh for solving problem (3.6), (3.7). For an even number N , we
divide each of the subintervals [0, σ] and [σ, l] into N

2 equidistant subintervals. The transition point σ
is taken as

σ = min
i

{ l
2
, α−1ε lnN

}
.

We use the notation h(1) for the mesh width in [0, σ] and the notation h(2) for the width in [σ, l].
Hence the mesh stepsizes satisfy

h(1) =
2σ

N
, h(2) =

2(l − σ)

N
,

h(1) ≤ lN−1, lN−1 ≤ h(2) ≤ 2lN−1, h(1) + h(2) = 2lN−1.

The node points xi are specified as

ωN =


xi = ih(1), i = 0, 1, . . . ,

N

2
, xi ∈ [0, σ],

xi = σ +
(
i− N

2

)
h(2), i =

N

2
+ 1, . . . , N, xi ∈ [σ, l].

We evaluate the error approximations according to the node points of Shishkin mesh. First, we
consider the case σ = l

2 . Then l
2 ≤ α−1ε lnN , h(1) = h(2) = h = lN−1. Hence we can write

|Ri| ≤ C
{
N−1 + ε−1lN−1

}
≤ C

{
N−1 + α−1N−1 lnN

}
.

So, we obtain
|Ri| ≤ CN−1 lnN, i = 1, 2, . . . , N.
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Now, we deal with the case σ = α−1ε lnN , so that α−1ε lnN < l
2 . We estimate separately Ri on

[0, σ] and [σ, l]. In the layer region [0, σ], we write the following inequality:

|Ri| ≤ C(1 + ε−1)h(1) ≤ C(1 + ε−1)
2α−1ε lnN

N
.

Thus we find
|Ri| ≤ CN−1 lnN, i = 1, 2, . . . ,

N

2
.

It remains to estimate Ri for the layer region [σ, l]. In this case, we have

|Ri| ≤ C
{
h(2) + α−1

(
e−

αxi−1
ε − e−

αxi
ε

)}
, i =

N

2
, . . . , N. (4.3)

Since
xi = α−1ε lnN +

(
i− N

2

)
h(2),

it follows that

e−
αxi−1

ε − e−
αxi
ε = e

−α(α−1ε ln N+(i−1−N
2

))h(2)

ε − e
−α(α−1ε ln N+(i−N

2
))h(2)

ε

=
1

N

(
e

−α(i−1−N
2

)h(2)

ε − e
−α(i−N

2
)h(2)

ε

)
=

1

N
e

−α(i−1−N
2

)h(2)

ε (1− e
−αh(2)

ε ) ≤ N−1.

This inequality together with (4.3) give the bound

|Ri| ≤ CN−1.

Thu, the proof of the lemma is completed.

5 Numerical results
In this section, we test the numerical method on three examples. Toward this end, the difference
problem (3.9), (3.10) is written obviously

(ε~−1
i h−1

i )yi−1 − (εh−1
i h−1

i+1 + εh−1
i h−1

i + aih
−1
i+1 + bi)yi + h−1

i+1(ε~
−1
i + ai)yi+1 = fi,

y0 = A, yN = B (i = 1, 2, . . . , N − 1).

We rewrite this expression according to the following form:

Aiyi−1 − Ciyi +Biyi+1 = −Fi, i = 1, 2, . . . , N − 1,

where

Ai = ε~−1
i h−1

i , Bi = h−1
i+1(ε~

−1
i + ai), Ci = εh−1

i h−1
i+1 + εh−1

i h−1
i + aih

−1
i+1 + bi, Fi = −fi.

Example 5.1 ([13]). Consider the problem

Lu = εu′′(x) + (1 + ε)u′(x)− u(x) = 0, 0 < x < 1,

u(0) = 0, u(1) = 1,

the exact solution of which is u(x) = e
−x
ε −e−x

e
−1
ε −e−1

. Absolute errors are defined by

eN = max
0≤i<N

|yi − ui|

and the convergence rates are computed as

pN = log2
( eN
e2N

)
.
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Error approximations and orders of convergence are given in Tables 5.1, 5.2 for different values of ε
and N .

Table 5.1. Maximum pointwise errors and order of convergence on B-mesh
ε N

128 256 512 1024
eN 0.0429922095 0.0225593905 0.0115460020 0.0058356975

10−2 e2N 0.0225353745 0.0115375278 0.0058349400 0.0029327746
p 0.9318838321 0.9673939687 0.9846036635 0.9926388976
eN 0.0423380939 0.0222654226 0.0114280413 0.0057892575

10−4 e2N 0.0222571673 0.0114228719 0.0057878366 0.0029134134
p 0.9276863301 0.9628795803 0.9814820693 0.9906679103
eN 0.0422330787 0.0222095516 0.0114015305 0.0057768729

10−6 e2N 0.0222042150 0.0113970733 0.0057753292 0.0029077320
p 0.9275398545 0.9625168641 0.9812524155 0.9903944328
eN 0.0422201907 0.0222022984 0.0113979575 0.0057751142

10−8 e2N 0.0221973383 0.0113935955 0.0057735942 0.0029068634
p 0.9275464039 0.9624859339 0.9812337004 0.9903861899
eN 0.0422190013 0.0222014454 0.0113975273 0.0057749004

10−10 e2N 0.0221965294 0.0113931768 0.0057733833 0.0029067564
p 0.9275583324 0.9624835350 0.9812319511 0.9903859112

Table 5.2. Maximum pointwise errors and order of convergence on S-mesh
ε N

128 256 512 1024
eN 0.0701539163 0.0386089625 0.0203376914 0.0104541171

10−2 e2N 0.0386089625 0.0203125711 0.0104541171 0.0053011524
p 0.8615878562 0.9265629279 0.9600846989 0.9796933165
eN 0.1164941911 0.0696264997 0.0382962309 0.0201571709

10−4 e2N 0.0671450910 0.0382962309 0.0201420309 0.0103594904
p 0.7949041840 0.8624340864 0.9269932512 0.9603401395
eN 0.1536545053 0.0969881244 0.0554798716 0.0298472965

10−6 e2N 0.0969881244 0.0554798716 0.0298472965 0.0155070658
p 0.6638100553 0.8058436590 0.8943641873 0.9446745307
eN 0.1877618298 0.1197683012 0.0711238601 0.0390887200

10−8 e2N 0.1197683012 0.0689229676 0.0390887200 0.0205505616
p 0.6486576835 0.7971893985 0.8635812830 0.9275745213
eN 0.2102571839 0.1336327415 0.0845994163 0.0478587059

10−10 e2N 0.1336327415 0.0830687954 0.0470859244 0.0254126858
p 0.6538815671 0.6858949885 0.8453518562 0.9132325302

Example 5.2. We solve the following convection-diffusion equation:

Lu = εu′′(x) +
(1 + x2

2

)
u′(x)− 1

2
u(x) = e

−x
ε , 0 < x < 1,

with
u(0) = 0, u(1) = 1.

The exact solution of this problem is unknown. Thus we use the double-mesh principle. The order of
convergence is calculated as

pN = log2
( eN
e2N

)
,



80 Baransel Gunes, Mutlu Demirbas

where the maximum pointwise errors are denoted by

eN = max
0≤i<N

|yNi − y2Ni |.

The computed results are shown in Tables 5.3, 5.4.

Table 5.3. Maximum pointwise errors and order of convergence on B-mesh
ε N

128 256 512 1024
eN 0.0269493405 0.0134853862 0.0067297647 0.0033578900

10−2 e2N 0.0134767824 0.0067297647 0.0033578900 0.0016761978
p 0.9997738794 1.0027688774 1.0032242063 1.0053996406
eN 0.0265537894 0.0132449498 0.0066100583 0.0033012582

10−4 e2N 0.0132449498 0.0066100583 0.0033012582 0.0016495551
p 1.0034753869 1.0068478705 1.0106470070 1.0190390235
eN 0.0266163738 0.0132353950 0.0065942324 0.0032906622

10−6 e2N 0.0132353950 0.0065942324 0.0032906622 0.0016438256
p 1.0079127865 1.0082260610 1.0128267837 1.0132207317
eN 0.0266797788 0.0132486354 0.0065968674 0.0032911024

10−8 e2N 0.0132486354 0.0065968674 0.0032911024 0.0016438581
p 1.0099029347 1.0101327947 1.0132102155 1.0184851665
eN 0.0267164932 0.0132563027 0.0065984643 0.0032914253

10−10 e2N 0.0132563027 0.0065984643 0.0032914253 0.0016439217
p 1.0110522022 1.0166418176 1.0184178559 1.0215708849

Table 5.4. Maximum pointwise errors and order of convergence on S-mesh
ε N

128 256 512 1024
eN 0.0295817240 0.0156316335 0.0080396803 0.0040779502

10−2 e2N 0.0155829893 0.0080396803 0.0040779502 0.0020539607
p 0.9247341171 0.9592585019 0.9792939815 0.9894355928
eN 0.0529849507 0.0292186899 0.0154434378 0.0079419705

10−4 e2N 0.0292186899 0.0153875454 0.0079419705 0.0040281899
p 0.8586911557 0.9251283817 0.9594250445 0.9793652951
eN 0.0752147791 0.0431197162 0.0232235123 0.0121049380

10−6 e2N 0.0431197162 0.0232235123 0.0120821666 0.0061791319
p 0.8026684861 0.8927615023 0.9427069908 0.9701196240
eN 0.0931675714 0.0557940092 0.0306946111 0.0161631501

10−8 e2N 0.0537222546 0.0306946111 0.0161457073 0.0083072798
p 0.7943080341 0.8621248304 0.9268347481 0.9602603497
eN 0.1053237522 0.0664862963 0.0377641197 0.0201298965

10−10 e2N 0.0656608505 0.0372530345 0.0200622369 0.0104088398
p 0.6817254808 0.8356990655 0.9125336858 0.9515304917

Example 5.3. We take into account another problem

Lu = εu′′(x) + (1 + ε)u′(x)− (1 + x)u(x) = 4 sin(πx), 0 < x < 1,

u(0) = 0, u(1) = 1,

whose exact solution is unknown. Applying the double-mesh principle again, the experimental results
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in Tables 5.5, 5.6 are obtained.

Table 5.5. Maximum pointwise errors and order of convergence on B-mesh
ε N

128 256 512 1024
eN 0.0667522832 0.0345294730 0.0175999724 0.0088806119

10−2 e2N 0.0345294730 0.0175999724 0.0088806119 0.0044503567
p 0.9509888676 0.9722551471 0.9868421744 0.9967381020
eN 0.0663355100 0.0349167344 0.0179308677 0.0090871973

10−4 e2N 0.0349167344 0.0179308677 0.0090871973 0.0045738304
p 0.9258627271 0.9614733335 0.9805379956 0.9904325211
eN 0.0660621198 0.0347793257 0.0178639732 0.0090554988

10−6 e2N 0.0347793257 0.0178639732 0.0090554988 0.0045592630
p 0.9255933015 0.9611769717 0.9801869781 0.9899934602
eN 0.0660591268 0.0347772358 0.0178628913 0.0090549544

10−8 e2N 0.0347772358 0.0178628913 0.0090549544 0.0045589905
p 0.9256146309 0.9611776558 0.9801863380 0.9899929516
eN 0.0660597492 0.0347772386 0.0178628782 0.0090549472

10−10 e2N 0.0347772386 0.0178628782 0.0090549472 0.0045589869
p 0.9256281109 0.9611788274 0.9801864232 0.9899929545

Table 5.6. Maximum pointwise errors and order of convergence on S-mesh
ε N

128 256 512 1024
eN 0.1120071067 0.0617245242 0.0325838824 0.0167545464

10−2 e2N 0.0617245242 0.0324956302 0.0167545464 0.0084974410
p 0.8596745574 0.9255980829 0.9596058842 0.9794522871
eN 0.1883181882 0.1130816482 0.0622338684 0.0327903298

10−4 e2N 0.1086728100 0.0622338684 0.0327417371 0.0168545876
p 0.7931813231 0.8615929845 0.9265690608 0.9601290844
eN 0.2505570717 0.1583092810 0.0906028926 0.0487554853

10−6 e2N 0.1583092810 0.0906028926 0.0487554853 0.0253340638
p 0.6623934195 0.8051168214 0.8939925710 0.9444860263
eN 0.3064359626 0.1956434924 0.1164230695 0.0639998541

10−8 e2N 0.1956434924 0.1126382890 0.0639998541 0.0336514918
p 0.6473584949 0.7965297992 0.8632364376 0.9273981534
eN 0.3432540403 0.2188305892 0.1385452384 0.0784555977

10−10 e2N 0.2183350311 0.1362377247 0.0772409469 0.0416643209
p 0.6527330779 0.6836881727 0.8429193737 0.9130639212

6 Discussion and conclusion

In this research, numerical solution of singularly perturbed convection-diffusion boundary value prob-
lems is investigated. The finite difference scheme is established on a non-uniform mesh. The stability
and convergence of the method are analyzed. Three numerical examples are solved and error approxi-
mations are shown in Tables 5.1–5.6. The computational results show that the order of convergence is
close to 1. Namely, the order of convergence of the scheme is O(N−1) on B-mesh and it is O(N−1 lnN)
for S-mesh. According to the obtained results, the proposed method gives more appropriate results
on Bakhvalov mesh and it is very effective for solving these problems.
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