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Abstract. In this paper, a second-order method in time and space steps is constructed for a frac-
tional diffusion equation in the presence of drift and functional delay. The basis of the algorithm
is Alikhanov’s method. To take into account the effect of functional delay, the interpolation and
extrapolation constructions are used. The local error of the method is investigated. Using the discrete
Gronwall inequality and some additional estimates, the convergence of the method is proved and the
orders of convergence with respect to the partitioning steps in time and space are obtained. The
results of numerical experiments on test examples are presented.
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1 Introduction
Fractional differential equations, including those with delay, are used in the mathematical modeling
of various objects (see, e.g., [2]). The presence of time-fractional derivatives in diffusion equations
in combination with the nonlinear delay effect requires a complex technique of fractional discrete
Gronwall inequalities to prove the convergence [3,5,6,12]. The additional presence of a term with the
first derivative (drift) somewhat simplifies the technique. So, in [7], a family of h2 +∆-order methods
based on the [4, p. 49] L1-algorithm is constructed for an equation with a drift and functional delay,
for which their stability and convergence are studied. In particular, the unconditional stability of a
purely implicit method is proved.

In [13], for a fractional (in time and space) equation with a drift and constant lumped delay, an
analogue of Alikhanov’s method [1] of order of ∆2 in time step is developed and studied. In this paper,
using interpolation procedures with the given properties, the results of [13] are generalized to the case
of functional delay. To prove the convergence, the technique of discrete, but not fractional, Gronwall
inequality is used [8, 11, 13]. To take into account the functional delay, the method of interpolation
and extrapolation with specified properties [9] is used.

2 Problem definition
We consider an equation of the form

∂u(x, t)

∂t
+ λ

∂αu(x, t)

∂tα
=
∂2u

∂x2
+ f

(
x, t, u(x, t), ut(x, · )

)
, (2.1)

where 0 ⩽ t ⩽ T , 0 ⩽ x ⩽ X are independent variables, u(x, t) is the desired function of solution,
ut(x, · ) = {u(x, t+ s), τ ⩽ s < 0} is a history of the desired function at time t, τ is the value of delay,
λ ⩾ 0. The Caputo fractional derivative of order α, 0 < α < 1, is determined by the formula

dαF (t)

dtα
=

1

Γ(1− α)

t∫
0

F ′(ξ)

(t− ξ)α
dξ, t > 0.

We set the boundary conditions

u(0, t) = u0(t), u(X, t) = u1(t), 0 ⩽ t ⩽ T, (2.2)

and the initial conditions

u(x, t) = φ(x, t), 0 ⩽ x ⩽ X, −τ ⩽ t ⩽ 0. (2.3)

2.1 Assumptions
We assume that the solution u(x, t) of problem (2.1)–(2.3) exists and is unique. In addition, in proving
the convergence of numerical algorithms, we assume the necessary smoothness of the solution u(x, t).

Denote by Q = Q[−τ, 0) the set of functions v(s), piecewise continuous on [−τ, 0) with a finite
number of break points of the first kind, at the break points continuous on the right. We define the
norm of functions on Q by the relation

∥v( · )∥Q = sup
s∈[−τ,0)

|v(s)|.

In addition, we assume that the functional f(x, t, u, v( · )) is defined on [0, X]× [0, T ]×R×Q and is
Lipschitz by the last two arguments, i.e., there is a constant Lf such that for all x ∈ [0, X], t ∈ [0, T ],
u1 ∈ R, u2 ∈ R, v1( · ) ∈ Q, v2( · ) ∈ Q,∣∣f(x, t, u1, v1( · ))− f(x, t, u2, v2( · ))

∣∣ ⩽ Lf

(
|u1 − u2|+ ∥v1( · )− v2( · )∥Q

)
. (2.4)
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3 Discretization
We introduce the time step ∆ = τ

M0
, where M0 is a natural number and let M = [ T∆ ] . Enter the

points tj = j∆, j = −M0, . . . ,M . We divide the segment [0, X] into parts with the step h = X/N ,
by entering the points xi = ih, i = 0, . . . , N . The approximation of the function u(xi, tj) at the nodes
of the grid will be denoted by uji .

3.1 Interpolation
For every fixed i = 0, . . . , N , we introduce a discrete prehistory to the moment tm, m = 0, . . . ,M :
{uji}m = {uji ,m−M0 ⩽ j ⩽ m}. The interpolation operator (with extrapolation by step) of a discrete
prehistory is a mapping I: that associates a discrete prehistory {uji}m with a function um(t)i defined
on [tm − τ, tm +∆].

We say that the interpolation operator has the order of error p on the exact solution u(x, t) if there
are constants C1 and C2 such that for all i, m and t ∈ [tm − τ, tm +∆], the inequality

um(t)i − u(xi, t)| ⩽ C1 max
m−M0⩽j⩽m

∥um(tj)i − u(xi, tj)∥+ C2∆
p

is fulfilled.
In what follows, for the method under consideration, we will use a piecewise linear interpolation

um(t)i =
1

∆

(
(tj − t)uj−1

i + (t− tj−1)u
j
i

)
, tj−1 ⩽ t ⩽ tj , j ⩽ m, (3.1)

with extrapolation by step

um(t)i =
1

∆

(
(tm − t)um−1

i + (t− tm−1)u
m
i

)
, tm ⩽ t ⩽ tm +∆. (3.2)

This interpolation operator is of second order if the exact solution u(x, t) is twice continuously differ-
entiable with respect to t [9].

Note also that the operator of a piecewise linear interpolation with extension extrapolation is
Lipschitz with the Lipschitz constant LI = 2 in the following sense: if um(t)i and vm(t)i are the results
of a piecewise linear interpolation with extrapolation by continuation of two histories, respectively,
{uji}m and {uji}m, then for every t ∈ [tm − τ, tm+1,

|um(t)i − vm(t)i| ⩽ LI max
m−M0⩽j⩽m

∥uji − vji ∥ (3.3)

is executed.

3.2 Approximation of the fractional derivative
Given a set of numbers {yj}m+1

j=0 , we introduce a difference operator that approximates the Caputo
derivative (Alikhanov’s method [1]) at the point tm+σ = tm + σ∆, σ = 1− α

2 ,

Dα
∆y

j |m+σ =
∆−α

Γ(2− α)

m∑
j=0

cm−j(y
j+1 − yj), (3.4)

where
if m = 0, then c0 = a0;
if m ⩾ 1, then

cj =


a0 + b1, j = 0,

aj + bj+1 + bj , 1 ⩽ j ⩽ m− 1,

am − bm, j = m,



Convergence of Alikhanov’s Method for Fractional Diffusion Equation with Drift and Functional Delay 123

in which
a0 = σ1−α, al = (l + σ)1−α − (l − 1 + σ)1−α (l ⩾ 1)

and
bl =

1

2− α

[
(l + σ)2−α − (l − 1 + σ)2−α

]
− 1

2

[
(l + σ)1−α − (l − 1 + σ)1−α

]
.

This operator can be written as

Dα
∆y

j
∣∣
m+σ

=
∆−α

Γ(2− α)

(
c0y

m+1 −
m∑
j=1

(cm−j − cm−j+1)y
j − cmy

0
)
. (3.5)

Note the properties of the coefficients [1]

c0 ⩾ c1 ⩾ · · · ⩾ cm ⩾ 0.

If the exact solution u(x, t) to problem (2.1)–(2.3) is thrice continuously differentiable with respect
to t, then [1]

∂αu(xi, tm+σ)

∂tα
= Dα

∆u(xi, tj)
∣∣
m+σ

+Qm
i , |Qm

i | ⩽ C4∆
3−α. (3.6)

3.3 Approximation of integer derivatives
We introduce a difference operator that approximates the second derivative with respect to x,

δ2xu
m
i =

umi−1 − 2umi + umi+1

h2
. (3.7)

If the exact solution u(x, t) to problem (2.1)–(2.3) is four times continuously differentiable with
respect to x, then

∂2u

∂x2
u(xi, tm) = δ2xu(xi, tm) + Pm

i , |Pm
i | ⩽ C5h

2. (3.8)

To approximate the term with a drift, for any m = 0, 1, . . . ,M−1, we use the formula for numerical
differentiation with respect to three nodes tm−1, tm, tm+1, at the point tm+σ and get the operator

δtu
m
i

∣∣
m+σ

=
(2σ + 1)um+1

i − 4σumi + (2σ − 1)um−1
i

2∆
. (3.9)

The values u−1
i and u0i will be taken from the functional initial conditions (2.3).

If the exact solution u(x, t) of problem (2.1)–(2.3) is thrice continuously differentiable with respect
to t, then [13]

∂u(xi, tm+σ)

∂t
= δtu(xi, tm)

∣∣
m+σ

+Rm
i , |Rm

i | ⩽ C6∆
3. (3.10)

3.4 Difference scheme
Let us discretize (2.1) at the nodes (xi, tm+σ) by using approximations (3.4), (3.7), (3.9) and also the
piecewise linear interpolation (3.1) with extrapolation (3.2) of the prehistory of the discrete model.
We obtain a scheme

δtu
m
i

∣∣
m+σ

+ λDα
∆u

j
i

∣∣
m+σ

= σδ2xu
m+1
i + (1− σ)δ2xu

m
i + f

(
xi, tm+σ, u

m(tm+σ)i, u
m
tm+σ

( · )i
)
, (3.11)

i = 1, . . . , N − 1, m = 0, . . . ,M − 1.

The scheme is supplemented with the initial conditions

uji = φ(xi, tj), j = −M0, . . . , 0, i = 1, . . . , N − 1,

and the boundary conditions

uj0 = u0(tj), ujN = u1(tj), j = 0, . . . ,m,
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where um(tm+σ)i is the result of interpolation at a point tm+σ, umtm+σ
( · )i is the history of interpolation

with extrapolation at this point. Let us transform schema (3.11). Using (3.4), (3.9) and (3.7), we get

(2σ + 1)um+1
i − 4σumi + (2σ − 1)um−1

i

2∆
+ λ

∆−α

Γ(2− α)

m∑
j=0

cmm−j(u
j+1
i − uji )

= σ
um+1
i−1 − 2um+1

i + um+1
i+1

h2
+ (1− σ)

umi−1 − 2umi + umi+1

h2

+ f
(
xi, tm+σ, u

m(tm+σ)i, u
m
tm+σ

( · )i
)
,

− 2σ∆

h2
um+1
i−1 +

[
1 + 2σ +

2λc0∆
1−α

Γ(2− α)
+

4σ∆

h2

]
um+1
i − 2σ∆

h2
um+1
i−1

=
2(1− σ)∆

h2
umi−1 +

2(1− σ)∆

h2
umi+1 +

(
4σ − (1− σ)4∆

h2
+

2λc0∆
1−α

Γ(2− α)

)
umi

+ 2∆f
(
xi, tm+σ, u

m(tm+σ)i, u
m
tm+σ

( · )i
)

− (2σ − 1)um−1
i − 2λ∆1−α

Γ(2− α)

m−1∑
j=0

cmm−j(u
j+1
i − uji ).

We denote

A = −2σ∆

h2
, B =

(
1 + 2σ +

2λc0∆
1−α

Γ(2− α)
+

4σ∆

h2

)
,

Fm
i =

2(1− σ)∆

h2
umi−1 +

2(1− σ)∆

h2
umi+1 +

(
4σ − (1− σ)4∆

h2 +
2λc0∆

1−α

Γ(2− α)

)
umi

−(2σ − 1)um−1
i − 2λ∆1−α

Γ(2− α)

m−1∑
j=0

cmm−j(u
j+1
i − uji ) + 2∆f

(
xi, tm+σ, u

m(tm+σ)i, u
m
tm+σ

( · )i
)

and get the system
Aum+1

i−1 +Bum+1
i +Aum+1

i−1 = Fm
i .

This system has diagonal dominance

D = |B| − 2|A| = 1 + 2σ +
2λc0∆

1−α

Γ(2− α)
⩾ 1.

4 Residual analysis
For i = 1, . . . , N − 1 and m = 0, . . . ,M − 1, the residual (without interpolation) of method (3.11) is
called the grid function

ψm
i = δtu(xi, tm)

∣∣
m+σ

+ λDα
∆u(xi, tj)

∣∣
m+σ

− σδ2xu(xi, tm+1)− (1− σ)δ2xu(xi, tm)− f
(
xi, tm+σ, u(xi, tm+σ), utm+σ

(xi, · )
)
.

Lemma 4.1 (Residual order without interpolation). If the function u(x, t) of the exact solution to
problem (2.1)–(2.3) is four times continuously differentiable with respect to x and thrice continuously
differentiable with respect to t, and also the second derivative with respect to x is twice continuously
differentiable with respect to t, then for the residual (without interpolation) of method (3.11),

|ψm
i | ⩽ C7(h

2 +∆2), i = 1, . . . , N − 1, m = 1, . . . ,M − 1,

is executed.
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Proof. Using (3.10), (3.6) and (3.8) we get

ψm
i =

∂u(xi, tm+σ)

∂t
−Rm

i + λ
(∂αu(xi, tm+σ)

∂tα
−Qm

i

)
− σ

(∂2u
∂x2

u(xi, tm+1)− Pm+1
i

)
− (1− σ)

(∂2u
∂x2

u(xi, tm)− Pm
i

)
− f

(
xi, tm+σ, u(xi, tm+σ), utm+σ (xi, · )

)
. (4.1)

Since the second derivative of the exact solution with respect to x is twice continuously differen-
tiable with respect to t, we have the representations

∂2u

∂x2
u(xi, tm) =

∂2u

∂x2
u(xi, tm+σ)− σ∆

∂3u

∂x2∂t
u(xi, tm+σ) + P̌m

i , |P̌m
i | ⩽ Č5∆

2,

∂2u

∂x2
u(xi, tm+1) =

∂2u

∂x2
u(xi, tm+σ) + (1− σ)∆

∂3u

∂x2∂t
u(xi, tm+σ) + P̆m

i , |P̆m
i | ⩽ C̆5∆

2,

hence it follows that

σ ∂2u∂x2 u(xi, tm+1) + (1− σ)
∂2u

∂x2
u(xi, tm) =

∂2u

∂x2
u(xi, tm+σ) + Ṕm

i , |Ṕm
i | ⩽ Ć5∆

2.

Substituting this equality into (4.1) and using the fact that u(xi, tm+σ) is the exact solution of equation
(2.1), as well as the estimate for Pm

i , Qm
i , Rm

i and Ṕm
i , we get

|ψm
i | ⩽ C7(h

2 +∆2), C7 = C6 + λC4T
1−α + C5 + Ć5.

The residual with a piecewise linear interpolation of method (3.11) is called the grid function

ψ̂m
i = δtu(xi, tm)

∣∣
m+σ

+ λDα
∆u(xi, tj)

∣∣
m+σ

− σδ2xu(xi, tm+1)− (1− σ)δ2xu(xi, tm)− f
(
xi, tm+σ, û

m(xi, tm+σ), û
m
tm+σ

(xi, · )
)
, (4.2)

where ûm(xi, t) for t ∈ [max{0, tm − τ}, tm+1] is the result of the piecewise linear interpolation (3.1)
with extrapolation to continuation (3.2) of the discrete history of the exact solution, and when −τ ≤
t ≤ 0 ûm(xi, t) = φ(xi, t).

Lemma 4.2 (Residual order with a piecewise linear interpolation). Under the conditions of the
previous lemma, for the residual with a piecewise constant interpolation of method (3.11),

|ψ̂m
i | ⩽ C8(h

2 +∆2), i = 1, . . . , N − 1, m = 1, . . . ,M − 1,

is performed.

Proof. The residual with interpolation and the residual without interpolation are related by the rela-
tionship

ψ̂m
i = ψm

i + f
(
xi, tm+σ, u(xi, tm+σ), utm+σ

(xi, · )
)
− f

(
xi, tm+σ, û

m(xi, tm+σ), û
m
tm+σ

(xi, · )
)
.

Using the Lipschitz property (2.4) of f and the fact that a piecewise linear interpolation with extension
extrapolation has second order, we get

|ψ̂m
i | ⩽ |ψm

i |+
∣∣∣f(xi, tm+σ, û

m(xi, tm+σ), û
m
tm+σ

(xi, · )
)
− f

(
xi, tm+σ, u(xi, tm+σ), utm+σ

(xi, · )
)∣∣∣

⩽ |ψm
i |+ Lf

(∣∣ûm(xi, tm+σ)− u(xi, tm+σ)
∣∣+ ∥∥ûmtm+σ

(xi, · )− utm+σ
(xi, · )

∥∥
Q

)
⩽ |ψm

i |+ 2LfC2∆
2.

Using the assertion of the previous Lemma 4.1, we obtain the estimate

|ψ̂m
i | ⩽ C8(h

2 +∆2), C8 = C7 + 2LfC2.
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5 Error analysis
We determine the error of method (3.11)

εji = u(xi, tj)− uji , j = 0, . . . ,M, i = 0, . . . , N.

Denote
εj+σ
i = σεj+1

i + (1− σ)εji .

Under the absolute value of the accumulated error by the moment tm during the time τ , we mean
the value

ε̃mi = max
m−M0⩽j⩽m

|εji |, m = 0, . . . ,M, i = 0, . . . , N.

Under the absolute value of the accumulated error by the moment tm for the entire time, we mean
the value

ε̂mi = max
0⩽j⩽m

|εji |, m = 0, . . . ,M, i = 0, . . . , N.

A layered error vector εm, m = 0, . . . ,M , is a vector with coordinates (εm1 , . . . , εmN−1). The layered
vectors ε̃m by the moment tm at the time τ and ε̂m by tm for the entire time are defined similarly.

For the vectors u = (u1, . . . , uN−1) and v = (v1, . . . , vN−1), we introduce the scalar product

(u, v) = h
N−1∑
i=1

uivi and energy norm ∥u∥2 = (u, u).

Let the time tm, m = 0, . . . ,M , be fixed. Denote Em = ∥εm∥ and, respectively,

Ẽm = ∥ε̃m∥ and Êm = ∥ε̂m∥.

We note the estimates that follow from the definitions

Em ⩽ Ẽm ⩽ Êm, Êm ⩽ Êm+1.

Lemma 5.1 ([1]). Let a set of numbers ymi , m = 0, 1, . . . ,M − 1, be given. Then

[
σym+1

i + (1− σ)ymi
]
Dα

∆y
j
i

∣∣∣
m+σ

⩾ 1

2
Dα

∆(y
j
i )

2
∣∣∣
m+σ

.

Lemma 5.2 ([13]). Let there exist a set of (N − 1)-dimensional vectors ym, m = 0, 1, . . . ,M − 1.
Then (

σym+1 + (1− σ)ym, δty
m|m+σ

)
⩾ 1

4∆
(Gm+1 −Gm),

Gm+1 = (2σ + 1)∥ym+1∥2 − (2σ − 1)∥ym∥2 + (2σ2 + σ − 1)∥ym+1 − ym∥2.

Besides,

Gm+1 ⩾ 1

σ
∥ym+1∥2.

The following statement gives the form of the sum over l from 1 to m of the operators Dα
∆y

j |l+σ.
This representation significantly shortens the derivation of the main estimate in the Order of Con-
vergence Theorem as compared to the proof of the similar Order of Convergence Theorem given
in [13].

Lemma 5.3. Given a set of numbers {yj}m+1
j=0 , then for every m ⩾ 1 the following is performed:

m∑
l=1

Dα
∆y

j
∣∣
l+σ

=
∆−α

Γ(2− α)

(m+1∑
j=2

cm−j+1y
j − (c0 − cm)y1 −

( m∑
j=1

cj

)
y0
)
. (5.1)
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Proof. Let us verify the assertion of the lemma by induction on m.
From (3.5) with m = 1, we get

Dα
∆y

j
∣∣
1+σ

=
∆−α

Γ(2− α)

(
c0y

2 − (c0 − c1)y
1 − c1y

0
)
,

and equality (5.1) holds for m = 1.
Suppose that equality (5.1) holds for m− 1, i.e.,

m−1∑
l=1

Dα
∆y

j
∣∣
l+σ

=
∆−α

Γ(2− α)

( m∑
j=2

cm−jy
j − (c0 − cm−1)y

1 −
(m−1∑

j=1

cj

)
y0
)
.

Adding this equality to (3.5), we get that (5.1) holds for index m.

Lemma 5.4 (Gronwall inequality, see, e.g., [11]). Let a set of non-negative numbers ym, m =
0, 1, . . . ,M − 1, be given and

ym+1 ⩽ A+∆B

m∑
l=0

yl.

Then
ym+1 ⩽ A exp (Bm∆).

Theorem 5.1 (Order of Convergence Theorem). Suppose that the smoothness conditions of the
solution formulated in Lemma 4.1 are satisfied, then for the accumulated error of method (3.11)

Êm ⩽ C(h2 +∆2), m = 1, . . . ,M,

is performed.

Proof. From (3.11) and (4.2), for any m = 0, . . . ,M − 1, i = 1, . . . , N − 1, we get the error equation

δtε
m
i

∣∣
m+σ

+ λDα
∆ε

j
i

∣∣
m+σ

= σδ2xε
m+1
i + (1− σ)δ2xε

m
i + ψ̂m

i

+ f
(
xi, tm+σ, û

m(xi, tm+σ), û
m
tm+σ

(xi, · )
)
− f

(
xi, tm+σ, u

m(tm+σ)i, u
m
tm+σ

( · )i
)
.

Multiply this equality by hεm+σ
i and sum over i from 1 to N − 1, we get

h

N−1∑
i=1

εm+σ
i δtε

m
i

∣∣
m+σ

+ λh

N−1∑
i=1

εm+σ
i Dα

∆ε
j
i

∣∣
m+σ

= σh

N−1∑
i=1

εm+σ
i δ2xε

m+1
i + (1− σ)h

N−1∑
i=1

εm+σ
i δ2xε

m
i + h

N−1∑
i=1

εm+σ
i ψ̂m

i

+ h

N−1∑
i=1

εm+σ
i

(
f
(
xi, tm+σ, û

m(xi, tm+σ), û
m
tm+σ

(xi, · )
)
− f

(
xi, tm+σ, u

m(tm+σ)i, u
m
tm+σ

( · )i
))

(5.2)

or

LP =
(
εm+σ, δtε

m|m+σ

)
+ λ

(
εm+σ, Dα

∆ε
j |m+σ

)
= (εm+σ, δ2xε

m+σ) + (εm+σ, ψ̂m) + (εm+σ, fm − f̂m) = RP. (5.3)

Let us estimate from above each term on the right-hand side of (5.3).
By definition (5.3), the operator −δ2x is positive definite and self-adjoint; moreover, the conditions

[10, p. 315]
κ∥y∥2 ⩽ (−δ2xy, y) ⩽

4

h
∥y∥2, κ =

9

X
,
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hold, whence
(εm+σ, δ2xε

m+σ) ⩽ −κ∥εm+σ∥2, κ =
9

X
.

By definition of the scalar product, we obtain

(εm+σ, ψ̂m) =
(√

κεm+σ,
ψ̂m

√
κ

)
⩽ κ

2
∥εm+σ∥2 + 1

2κ
∥ψ̂m∥2.

In a similar way, we obtain

(εm+σ, fm − f̂m) ⩽ κ

2
∥εm+σ∥2 + 1

2κ
∥fm − f̂m∥2.

Thus, the entire right-hand side of relation (5.3) is estimated from above by the quantity

RP ⩽ 1

2κ
∥ψ̂m∥2 + 1

2κ
∥fm − f̂m∥2. (5.4)

By virtue of Lemma 4.2, we have the estimate

∥ψ̂m∥2 = h

N−1∑
i=1

|ψ̂m
i |2 ⩽ X(C8)

2(h2 +∆2)2. (5.5)

Since the function f and the interpolation operator are Lipschets (2.4), (3.3), we have∣∣∣f(xi, tm+σ, û
m(xi, tm+σ), û

m
tm+σ

(xi, · )
)
− f

(
xi, tm+σ, u

m(tm+σ)i, u
m
tm+σ

( · )i
)∣∣∣

⩽ Lf

(
|ûm(xi, tm+σ)− um(tm+σ)i|+ ∥ûmtm+σ

(xi, · )− umtm+σ
( · )i∥Q

)
⩽ 2LfLI max

m−M0⩽j⩽m
∥uji − u(xi, tj)∥ = 2LfLI ε̃

m
i ,

hence

∥fm − f̂m∥2

= h

N−1∑
i=1

∣∣∣f(xi, tm+σ, û
m(xi, tm+σ), û

m
tm+σ

(xi, · )
)
− f

(
xi, tm+σ, u

m(tm+σ)i, u
m
tm+σ

( · )i
)∣∣∣2

⩽ (2LfLI)
2(Ẽm)2 ⩽ (2LfLI)

2(Êm)2. (5.6)

Thus, from (5.4)–(5.6) we get

RP ⩽ 1

2κ
X(C8)

2(h2 +∆2)2 +
1

2κ
(2LfLI)

2(Êm)2. (5.7)

Let us estimate from below each term on the left-hand side of the relation (5.3).
Lemma 5.2 implies that

(εm+σ, δtε
m|m+σ) ⩾

1

4∆
(Gm+1 −Gm),

Gm+1 = (2σ + 1)∥εm+1∥2 − (2σ − 1)∥εm∥2 + (2σ2 + σ − 1)∥εm+1 − εm∥2. (5.8)

Besides,
Gm+1 ⩾ 1

σ
∥εm+1∥2. (5.9)

Lemma 5.1 implies

λ
(
εm+σ, Dα

∆ε
j |m+σ

)
= λh

N−1∑
i=1

εm+σ
i Dα

∆ε
j
i

∣∣
m+σ

⩾ λ

2
h

N−1∑
i=1

Dα
∆(ε

j
i )

2
∣∣
m+σ

=
λ

2
Dα

∆∥εj∥2
∣∣
m+σ

,
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thus
LP ⩾ 1

4∆
(Gm+1 −Gm) +

λ

2
Dα

∆∥εj∥2
∣∣
m+σ

. (5.10)

Substituting into (5.3) the estimates (5.7) and (5.10), we obtain

1

4∆
(Gm+1 −Gm) +

λ

2
Dα

∆(E
j)2

∣∣
m+σ

⩽ 1

2κ
X(C8)

2(h2 +∆2)2 +
1

2κ
(2LfLI)

2(Êm)2. (5.11)

First, consider this inequality for m = 0. Given (5.9) and also that E0 = Ẽ0 = Ê0 = 0,

Dα
∆(E

j)2
∣∣
σ
=

∆−α

Γ(2− α)
a0(E

1)2,

we obtain
1

4σ∆
(E1)2 +

λ∆−αa0
2Γ(2− α)

(E1)2 ⩽ 1

2κ
X(C8)

2(h2 +∆2)2.

Since the second term on the left-hand side is non-negative, we obtain the estimate

(E1)2 ⩽ C9∆(h2 +∆2)2, C9 =
2σ

κ
X(C8)

2. (5.12)

From (5.8) with m = 0, we get G1 = (2σ2 + 3σ)(E1)2, hence it follows that

G1 ⩽ C10∆(h2 +∆2)2, C10 =
C9

2σ2 + 3σ
. (5.13)

Now we replace the index m in inequality (5.11) by l and sum it over all l from 1 to m, then we
get

1

4∆
(Gm+1 −G1) +

λ

2

m∑
l=1

Dα
∆(E

j)2
∣∣
l+σ

⩽ m

2κ
X(C8)

2(h2 +∆2)2 +
1

2κ
(2LfLI)

2
m∑
l=1

(Êl)2. (5.14)

Lemma 5.3, taking into account E0 = 0, implies

λ

2

m∑
l=1

Dα
∆(E

j)2
∣∣
l+σ

=
λ∆−α

2Γ(2− α)

(
c0(E

m+1)2 +

m∑
j=2

cm−j+1(E
j)2 − (c0 − cm)(E1)2

)
⩾ λ∆−α

2Γ(2− α)

(
− (c0 − cm)(E1)2

)
,

thus inequality (5.14) implies

1

4∆
(Gm+1 −G1)− λ∆−α

2Γ(2− α)

(
(c0 − cm)(E1)2

)
⩽ m

2κ
X(C8)

2(h2 +∆2)2 +
1

2κ
(2LfLI)

2
m∑
l=1

(Êl)2,

or given (5.9) implies

(Em+1)2 ⩽ G1 +
4σλ∆1−α

2Γ(2− α)

(
(c0 − cm)(E1)2

)
+

2σ∆m

κ
X(C8)

2(h2 +∆2)2 +
2σ∆

κ
(2LfLI)

2
m∑
l=1

(Êl)2.
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Using (5.12) and (5.13), we get

(Em+1)2 ⩽ C10∆(h2 +∆2)2 +
4σλ∆1−α

2Γ(2− α)
(c0 − cm)C9∆(h2 +∆2)2

+
2σ∆m

κ
X(C8)

2(h2 +∆2)2 +
2σ∆

κ
(2LfLI)

2
m∑
l=1

(Êl)2

or

(Em+1)2 ⩽ C11(h
2 +∆2)2 + C12∆

m∑
l=1

(Êl)2, (5.15)

C11 = C10T +
4σλT 2−α(c0 − cm)C9

2Γ(2− α)
+

2σT

κ
X(C8)

2, C12 =
2σ

κ
(2LfLI)

2.

Consider a non-decreasing sequence Ê0 = 0, Ê1, . . . , Êm, . . . .
Let k be the first number when the condition Êk+1 > Êk is satisfied (such a number can be found,

since otherwise any error is zero and the assertion of the theorem trivially holds), then Êk+1 = Ek+1

and (5.15) implies

(Êk+1)2 ⩽ C11(h
2 +∆2)2 + C12∆

k∑
l=1

(Êl)2.

By definition, the same relation holds for all indices less than k.
Take any index m > k. Two situations are possible.

A). Êm+1 > Êm, then Êm+1 = Em+1 and

(Êm+1)2 ⩽ C11(h
2 +∆2)2 + C12∆

m∑
l=1

(Êl)2. (5.16)

B). Êm+1 = Êm, then there is an index s < m such that Êm+1 = Êm = · · · = Ês+1 > Ês. Since
Ês+1 = Es+1, from (5.15) it follows that

Êm+1 = Ês+1 ⩽ C11(h
2 +∆2)2 + C12∆

s∑
l=1

(Êl)2 ⩽ C11(h
2 +∆2)2 + C12∆

m∑
l=1

(Êl)2.

Thus, relation (5.16) holds for all indices m = 0, . . . ,M − 1.
Applying the Gronwall inequality (Lemma 5.4), we obtain

(Êm+1)2 ⩽ C11(h
2 +∆2)2 exp (C12m∆) ⩽ C13(h

2 +∆2)2, C13 = C11 exp (C12T ).

Extracting the square root, we obtain the assertion of the theorem for C =
√
C13.

6 Numerical experiments
We consider the standard rates

ρx∆,h = log2
(ε∆,2h

ε∆,h

)
, ρt∆,h = log2

(ε2∆,h

ε∆,h

)
.

Example 1. Consider the problem with a constant delay

∂u(x, t)

∂t
+ 0.5 · ∂

αu(x, t)

∂tα
=
∂2u

∂x2
+ u(x, t)− u3(x, t)− u(x, t− τ)

+
(
3t2 − t3 + (t− τ)3 +

32−α

Γ(4− α)

)
x2(1− x)2 + t9x6(1− x)6 (6.1)
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for α = 0.5, τ = 0.1 with the boundary conditions

u(0, t) = 0, u(1, t) = t3, 0 ⩽ t ⩽ 1

and the initial conditions

u(x, t) = u(x, t) = t3x2(1− x2), 0 ⩽ x ⩽ 1, −τ ⩽ t ⩽ 0.

The exact solution of the equation is u(x, t) = t3x2(1− x2). Table 1 shows the numerical study of
convergence for problem (6.1) in both space and time. This table shows a comparison of the results
of calculations by the method from [7] and method (3.11).

Figure 1. Approximate solution of equation (6.1) by method (3.11) for h = 0.01, ∆ = 0.005.

Table 1. Absolute errors and standard convergence rates when approximating the solution u of (6.1)

method [7] method (3.11)
h ∆ ε∆,h ρt∆,h ε∆,h ρt∆,h

0.5 0.125× 2−1 3.1351× 10−2 - 6.4571× 10−3 -
0.125× 2−2 1.9841× 10−2 0.6601 1.1141× 10−3 2.5350
0.125× 2−3 9.1058× 10−3 1.1236 2.6678× 10−4 2.0621

0.25 0.125× 2−1 1.1854× 10−2 - 1.5184× 10−3 -
0.125× 2−2 7.3457× 10−3 0.6904 3.4573× 10−4 2.1348
0.125× 2−3 3.0051× 10−3 1.2894 1.0032× 10−4 1.7850

0.125 0.125× 2−1 2.3789× 10−3 - 1.6731× 10−3 -
0.125× 2−2 6.9892× 10−4 1.7670 4.1732× 10−4 2.0032
0.125× 2−3 4.2192× 10−4 0.7281 1.2360× 10−4 1.7554

Example 2. Consider the problem with a variable delay

∂u(x, t)

∂t
+
∂αu(x, t)

∂tα
=
∂2u

∂x2
+u(x, t)−u(x, t−2t2)+(−t2+2t)+

2ext2−α

Γ(3− α)
x2(1−x)2+t9x6(1−x)6 (6.2)
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for α = 0.5 with the boundary conditions

u(0, t) = t2, u(1, t) = et2, 0 ⩽ t ⩽ 1

and the initial conditions

u(x, t) = u(x, t) = t2ex, 0 ⩽ x ⩽ 1, −τ ⩽ t ⩽ 0.

The exact solution of the equation is u(x, t) = t2ex. The exact solution of the equation is u(x, t) =
t3x2(1− x2). Unlike the previous example, this problem cannot be numerically implemented without
interpolation procedures. This is the main difference between method (3.11) and the algorithm of [13].
Table 2 shows the numerical study of convergence for problem (6.2) in both space and time.

Figure 2. Approximate solution of equation (6.2) by method (3.11) for h = 0.0625, ∆ = 0.005.

Table 2. Absolute errors and standard convergence rates when approximating the solution u of (6.2)

method [7] method (3.11)
h ∆ ε∆,h ρt∆,h ε∆,h ρt∆,h

0.5 0.125× 2−1 2.2699× 10−1 - 5.8928× 10−2 -
0.125× 2−2 1.1841× 10−1 0.9388 1.8094× 10−2 1.7034
0.125× 2−3 4.1058× 10−2 1.5280 5.0610× 10−3 1.8380

0.25 0.125× 2−1 7.0917× 10−2 - 1.5892× 10−2 -
0.125× 2−2 4.5189× 10−2 0.6501 4.6024× 10−3 1.7878
0.125× 2−3 3.0045× 10−2 0.5888 1.5975× 10−3 1.5265

0.125 0.125× 2−1 3.4889× 10−2 - 5.3466× 10−3 -
0.125× 2−2 1.9892× 10−2 0.8105 1.8449× 10−3 1.5350
0.125× 2−3 1.0304× 10−2 0.9489 4.1760× 10−4 3.6784
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