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1 Introduction

In the present paper we propose one way to expand the possibilities of applying the constructive
approach to the study of functional differential equations [1,4,6]. Our study is based on the main
results of the theory of functional differential equations [1]. In order to illustrate the main idea of
constructive approach, let us consider one example. Let £ : AC" — L be a bounded linear operator
and £ = col{f},..., "} : AC — R" be a bounded linear vector functional. Here, L™ is the space of
summable z : [0, 7] — R™ with the standard norm

T
Mm=/mwm8
0

ere, | - |, denotes a norm in , is the space of absolutely continuous z : [0,7] — wi
h denot in R"), AC" is th f absolutel ti 0,T R"™ with
the norm

zllacr = |2(0)]5 + [|&]|Ln-

For X = (x1,...,2,) with components x; € AC", £X denotes the (n x n)-matrix, whose columns are
the values of £ on the components of X: ¢X = (¢'z;), i,j = 1,...,m. Consider the boundary value
problem

(Lx)(t) = f(t), bz =«, t€]0,T], (1.1)

where f € L™, a € R", under the assumption that the homogeneous equation Lz = 0 has the
fundamental (n x n)-matrix X. As is known, in this case problem (1.1) has a unique solution if and
only if the matrix = ¢X is invertible. The key idea of the constructive study of the solvability of
(1.1) is as follows.

o Two n X n-matrices, °I" and “T", with rational elements are constructed according to a specially
developed procedure based on a computer-assisted proof [6] such that

IT T <1

(1Al Lef {laij|}7 ;=; for the (n x n)-matrix A);
o the invertibility of the matrix I is verified with the use of the reliable computer experiment;

« if there exists an inverse matrix *I'"*, then due to the theorem on inverse operator [2, p. 207],
the inequality
1

< —
5T || g

[ g

guarantees the invertibility of T' which, in turn, means the solvability of (1.1).

Matrix “T" is defined by the equality
“T=9L%X,

where the operator £ : AC" — LL" is an approximation of £ within the class of the so-called com-
putable operators, the elements of the matrix *X are piecewise polynomials with rational coefficients
(the ways of constructing the matrices *X and T are not discussed in this paper, those are described
in [6]).

Notation and definitions

Let Q = {t, Z”:'Bl, where t, are real numbers, be such that
O=to<ty <+ <ty <tmr1=1T. (1.2)
On the partition © (1.2), we define a set of intervals

7= {375 13)
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where Jg = (—00,0), each interval J,, ¢ =1,...,m + 1, may have one of the following kinds:

[tqflvtq]a [tqfl,tq)a (tqflatq}a (tq,l,tq).
The conditions

m—+1
U jq:[O’TL quﬁj%:@, (I17£(I2,
=1

are assumed to be fulfilled.

Definition 1.1. We say that a function h : [0,7] — R is a-computable over the partition £ (1.2)
and the set J (1.3) if for every j =1,...,m + 1, there exists an integer ¢;, 0 < ¢; < m + 1 such that
h(t) € 3y, for t € J;.

Denote by B the set of all polynomials with rational coefficients.

Definition 1.2. A function A : [0,T] — R is called computable over the partition © (1.2) and the set
J (1.3) if the following conditions hold:

(i) h e,
(ii) numbers t4, ¢ =1,...,m+ 1, from (1.2) are rational,

(iii) the function h is a-computable over Q (1.2) and J (1.3).

Let £ =col{Ly,...,L,} : AC" — L™ be the linear operator given by

n Nij
(‘C €T + Zzpz] 1"] z_] )} 6 [O’T]’
j=1k=1 (1.4)
z;i(§) =0,§ <0,
where pfj eL!, hfj is a piecewise continuous function, i =1,...,n.

Definition 1.3. An operator £ (1.4) is called computable over the sets  (1.2) and J (1.3) if the
following conditions hold:

(1) pf] € ’B;
(ii) the functions hfj are computable over  (1.2) and 7 (1.3),

Lj:L...,n,k::l,...,nij.

Formulation of the problem
Let t4, ¢ = 1,...,m, be rational numbers, “pfj € P be approximation of pfj such that
k k k
lpi; — “pijllL < pijs
where ”pfj are rational numbers, 4,5 =1,...,n, k =1,...,n;;. Define the sets Q and J as
+1 ~_ [~ +1
— (e, 3= G s
Jo = (—00,0), 3 = [tg—1,tq), ¢=1,....m, Tpy1 = [tm,T].
The functions hfj are approximated by piecewise constant functions “hfj given by
m+1

ah?j(t) = Z X5 ( )qhicga € [OaT]a

q=1
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where Xz, () is the characteristic function of J Jq, qhw is a rational approximation of hfj(tq_l) with a

rational error estimate ghfj such that

|h5(tg) — Ghijl < Ghi

177

i,j=1,...,n, k=1,...,n. Define the operator “£L = col{*Ly,...,*L,} by the equality

n  MNij
(aﬁix) + ZZ p’L] ‘j(t)]a te [OvT]a
j=1k=1 (1.6)
where i = 1,...,n. It is clear that the operator £ (1.6) is computable over €, and J, since “hfj(t)
S qu as t € Sq, i, =1,...,n, k = 1,...,n4. This kind of computable operators has been used

for constructive research until recently (see [1,3,4,6-10]). It seems interesting to construct other
kinds of computable operators. In [11], one class of the so-called admissible delay functions and the
corresponding computable operators were proposed. Further, some new kinds of such functions will
be considered in Section 2. An example of computable operator will be given in Section 3.

2 Admissible delay functions
2.1 Increasing delay functions
Let 7, be a real number, 0 < 7, < T. Define some classes of functions & : [0,7] — R.

(i) The function h : [0,7] — R is strictly increasing continuous one passing through the points
(71,0), (T,72), where 71,72 are real numbers such that

Te <m<T, 0<y<T. (21)
Define the numbers ¢, as follows:
2(:1 =7, tq = h_l(tq71)7 q= 2) cee,Mm,

where m is such that both conditions ¢,, < T and h_l(tm) > T are fulfilled. By construction,
we have
(O0,0), te [to,t1)7

h(t) €  [tg—1,tq), tE [tg,tg+1), g=1,...,m,
[tm,l,tm)7 t e [tm,tm+1]7
to=0, tymy1=1T.
Thus the function h is a-computable over the partition €2 and the set J given by
Q= {tq};n:bla J= {7q}2":+ol,
Jo=(—00,0), Jy=[tg—1,tq), ¢=1,....m, Tpy1 = [tm,T].

(ii) The function h: [0,7] — R is defined as follows:
h(t) = Xyq.,, (DA(E), t €[0,T],

where the function h : [0,7] — R is strictly increasing one passing through the points (71, 0),
(73,74), here, 1, v3 and -4 are real numbers such that

Te <M1 <73 <T, 0<yy<nrs. (2.3)
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Define the numbers ¢,:
tlz’yl, tq:h_l(tqfl), q:27...,m—1,

where m is such that both conditions t,,_1 < v3 and *h™*(t,,_1) > 73 are fulfilled. From this

we have
(OO,O)7 te [to,tl),

h(t) € [tq—htq)? te [tQ’tq-‘rl)a q:17"'7ma
[tO;tl)v te [tmatm—&-l]a
to =0, tm = V35 tm-{-l =T

It is clear that the function h is a-computable over the partition {2 and the set J given by

Q= {tq};nibla J= {3q}2":+ol,

N ) (2.4)
Jo = (—O0,0), Jg = [tq_l,tq), g=1,....m, JTpt1= [tm,T].

(iii) The function h : [0,T] — R is of the form
h(t) = Xy, oy (DR(E), £ € 10,7,

where the function h : [0,T] — R is strictly increasing one passing through the points (y1,72),
(7v3,74), here, 71, 72, 73 and 74 are real numbers such that

T <m<y<T, 0<v2<m, 72<7<7s (2.5)
Define the numbers ¢, as
t1:717 tq:hil(tq—l)a q:27"'7m_17

where m is such that both conditions ¢,,_1 < 73 and “hil(tm,l) > ~v3 are fulfilled. Thus we
have
[to,tl), t e [to,tl),
h(t) € € [tg—1.tq)s tE [tg,tgs1), g=1,...,m,
[to,h), te [tm,tm+1],
to=0, tm =73, tmi1="1T.

It is obvious that the function h is a-computable over the partition Q and the set J given by

=’ =0 (2.6)

QO = {tq m—+1 5= {jq m—+1
30 = (_0070)3 jq = [tqflatq)7 q= 17' ..,m, j’n’H»l = [tm7T]

Definition 2.1. The functions h proposed above will be called admissible functions.

Next, we prove that there exist sets © (1.2) and J (1.3) such that any finite set of admissible
functions are a-computable over these sets. As a preliminary, we prove two auxiliary lemmas. Let h
be an admissible function and let h be a-computable over Qy and Jg, where

Qo = {to <t < <ty < tm0+1}7 tq are real numbers,

m—+1

2.7

Jo = U Jgo Jg=ltg-1,tq). 27
q=1

Denote by Q,7 the sets
Q=QuU {tm-‘rl}a m=mo+1, tm <tmi1,

J= jo U jm+17 jm+1 = [tm7tm+1).

Further, we have the following alternatives:
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A1l. The function h is a-computable over Q and J.
A2. The function h is not a-computable over ) and J

Consider the case where alternative Al is true. Let m be a positive integer and

52:{717...777%}, tm <711 <--- < Ts < tmt1, Tr are real numbers,
m+1
j—UJr, [Tr—1,7r), T=1,...,m+ 1L

Lemma 2.1. The function h is a-computable over Q and J, where
~ m ~

a=0uQ, J=J3,ulJI-
Proof. Under the conditions, there exists an interval J,, such that h(t) € Jy, as t € Jp41. Also, we
find that if ¢ € J,., then h(t) € Jy,, since I, C Tppq, r=1,...,m+ L. O

Let alternative A2 be true. In this case, there are m elements t2 € Q, m > 1 such that
tgo <0 <ty, r=1,....m, to=h(tm), tg =h(tmi1).

Let 7. = h=*(#?), r = 1,...,m. Note that t,,, < 7. < t;r1, 7 = 1,...,m. Define the set of numbers

Q) and the set of mtervals J as follows:

ﬁ:QU{TT il,

LJ

ﬁCs

+
jr = [Trflv’rr)y To = tm»TﬁL—i-l = tm+1~
By construction,
h(t) S jq0+1, teJ,
h(t) € Jg, tE Tyt
So, h is a-computable over Q and J. Let m, be a positive integer and
T <or<---< of” < T, oy bereal numbers, r=1,...,m+ 1.

Define the set of numbers Q and the set of intervals J:

m+1 m m+1 mT+1~
Q=ou{rn}r,uJ{o, 3=J9,U U 7.
r=1 q=1 r=1 v=1 (29)
3;: =[ov"YoY), ol=1_1, oMtl=r1,
Lemma 2.2. The function h is a-computable over Q and J from (2.9).
Proof. Under the construction h(t) € 3, fort € 5?7 v=1,....m.-+1,r=1,..., m+1. O

Let h; be an admissible function and 2; be the corresponding set of points of form (2.2), (2.4) or
(2.6), i =1,...,n. Define the set Q as
Q=] (2.10)
i=1

Let Q = {0 =t <t < - < tm < tms1 =T}. Without loss of generality, we assume that
0NQ ={0,T},i#j,ij=1,....n
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Theorem 2.1. There exist a set of points Q@ (1.2) and a set of intervals J (1.3) such that all functions
hi, i =1,...,n, are a-computable over ) and J.

Proof. The proof follows from the way of constructing the desired sets Q2 and J. Describe this step by
step.

Step 1. Let q = 1, m = 1, Q) = {O = to,tl = Z1}7 jo = (—OO,O)7 31 = [to,tl). It is clear that all
functions h; are a-computable over Q and J = Jy U J,, since either h;(t) € Jg or h;(t) € J; as
tEJl,izl,...,n

Step 2. ¢q=qg+1,m=m+1 Ifg= ﬁz—i— 1, we complete the proof, otherwise we continue. Add
the point ¢, to the set Q: Q = QU {t,}, and add the new interval J,,, = [t;,—1, %) to the set J:
J=0UJ.

Step 2.1. Consider each function h;, i =1,...,n. There are two cases:

o there exists j; such that h;(t) € Jj, as t € Jp, that is, h; is a-computable over £ and

J; let QF = 0;
e h; is not a-computable over 2 and J, that is, there are m; elements t, €9, mi > 1
such that

tgg <ti, <tlg, r=1,...,mf, to=hi(tm-1), tg =h(tm).

(2 0 1

Let 7/ = hi_l(tfq), r=1,...,m!. Define the set of numbers Qf and the set of intervals
53 as follows:
- m{+1
Qq Q U {T T 117 U U j iq)
q=1 r=1
Ji, = [7{;1,7{(}), 7'21 =tm—1,Tmi11 = tm

Note that under the construction, h; is a-computable over KNZ;I and Ef Let Qf =

{ }rl

Step 2.2. Main conclusion. Let 29 = U QY. There are two cases:

1. Q7 = @. All functions h; are a-computable over € and J;

2. Q1 # @, let Q1 = {1} < --- < 7,9} and let I = [r7470), 1 = 1,... 70, + 1,

7'8 = tm_1, T qu = t,n; redefine the sets 2 and J as follows:
m—1 mg+1
a=quq, 1= Jyu J (2.11)
j=1 r=1
next, for each function h;, i = 1,...,n, we have:

o if the set Qf is empty, then h; is a-computable over Q and J (2.11) according to Lemma
2.1,

o if the set Qf is not empty, then h; is a-computable over Q and J (2.11) according to
Lemma 2.2.

Remark 2.1. Obviously, m; < m x n.

Step 2.3. Get back Step 2.
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2.2

Decreasing delay functions

In this section, we propose some classes of decreasing delay functions. The presentation of the material
is done in the same way as it has been done in the previous section. Consider the following functions
h:[0,T] = R.

(i)

(i)

The function A : [0, T] — R is given by
h(t) = X1 (t)h(t)a le [OzTL

where the function £ : [0,T] — R is strictly decreasing one passing through the points (s, v4),
(71,0), where 71,3 and 4 are real numbers,

Te <3< <T, 0<rys<nrs. (2.12)
Let t1 = 73, t2 = 1. Under the construction, we have

[to,t1), t€ [to,t1],
h(t) c [to,tl), te (tl,tg}, to =0, t3 = T.
(_0070)7 te (t27t3}7

Define the partition £ and intervals J, as follows:

Q= {07t17t27T}a

2.13
j0 = (_0070)7 j1 = [t07t1]7 j2 = (t17t2]7 j3 = (t27T] ( )
Obviously, the function h is a-computable over Q and J = {fiq}gzo.

The function & : [0,7] — R is defined as follows:
h(t) = Xy (DB(), ¢ € (0,7,

where the function h : [0,7] — R is strictly decreasing one passing through the points (s, 74),
(T, 72), here, 2, 3 and ~y4 are the real numbers

T <73 <T, 0<y<7vs, 0<vy <. (2.14)
Let t; = 3. Next, we have

to,t t to,t
h(t)e [07 1)7 S [07 l]a t(): ’ tQZT
[to.t1), t€ (t1,ta],

Thus the function h is a-computable over Q and J = {J,}2_,, where
0= {O,tl,T}, jo = (—OO,O)7 31 = [to,tl], 32 = (tl,T]. (215)

The function h : [0,T] — R is defined as

h(t) = Xy (DR(D), ¢ € (0,7,

here, the function b [0,7] — R is strictly increasing one passing through the points (y3,74),
(71,72), 715 Y2, 3 and 74 are the real numbers such that

T <73 <M <T, 0<y<73, 0<y <. (2.16)
Let tl = 3, tg =7- ‘We have

[t03t1)7 te [thtl]a
h(t) S [to,tl), te (tl,tg}, to=0, t3="T.
[to,t1), t € (ta,t3],

It is clear that the function A is a-computable over 2 and J = {jq}gzo given by

Q= {O,tl,tQ,T}, j() = (—OO,O)7 31 = [to,tl], 32 = (tl,tgL 33 = (tQ,T]. (2.17)
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Definition 2.2. The functions h proposed above will be called admissible functions.

Next, it is proved that there exist the sets €2 (1.2) and J (1.3) such that any finite set of admissible
functions h are a-computable over these sets. As a preliminary, we prove two auxiliary statements.
Let h be an admissible function and let h be computable over Qg and Jy given by

Qo ={to<t1 < - <tmy <tmet1}, g are real numbers,

m—+1
. - (2.18)
Jo = U Jgo Jg=(tg-1,tq].
q=1
Let t,,4+1 be a real number, m = mgy + 1. Define the sets 2, J as
Q= QO U {tm+1}, m = mgy + ]., tm < tm+1, J= 30 U jm+1, jm+1 = (tm,tm+1]. (219)

There are two alternatives.

A1l. The function h is a-computable over €2 and J,

A2. The function h is not a-computable over € and J.
Let alternative Al be true. Define

Q= {n <--<ma}, tm <7, Tm <tmi1, Tr are real numbers,
m+1
=% =@-nmnl r=1...m+1
r=1

(m is a positive integer).
Lemma 2.3. The function h is a-computable over Q and J, where

m+1

(=

m
Q=0uQ, J3=[J3,U .
qg=1 r=1
Proof. By construction, there exists an interval J,, such that h(t) € J,, as ¢t € Jy,41. Also, we find

that if £ € J,., then h(t) € Jg,, since I C Tpny1, 7 =1,..., 70+ 1. O
Let alternative A2 be true. In this case, there are m elements t2 € Q, m > 1 such that

tgo < tg <tg, r=1...,m, tg =h(tm), tg =h(tmt1).

Let 7, = A=Y (t0), r =1,..., M, tymy < Tr < tms1, 7 =1,..., 7. Define the sets Q2 and J as follows:
_ ~ m ﬁ@+1~
Q=ou{rn}r,, =307
q=1 r=1

Jr = [Tr—la'rr)a 70 =tm, T+l = tm+1-

Obviously, N
h(t) S jq0+1, teJy,

h(t) € qu, te jiﬁ+1~
So, h is a-computable over Q and J. Let
Tr—1 <0T1 <~'~<Ufﬁr <7, r=1,....,m+1

(m is a positive integer). Define the sets Q and J as follows:

1 m A1 i1
Q=0u{r}L, U LJ{U;f y, I= quu 37,
r=1 q=1 r=1 v=1 (220)
~ -1 r+1
W=t ak), o) =11, ofTl=r1.
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Lemma 2.4. The function h is a-computable over Q and J from (2.20).
Proof. By construction, h(t) € 3, aste€ 3?, v=1,....m.+1,r=1,...,m+1. O

Let h; be an admissible function, €; be the corresponding set of form (2.13), (2.15) or (2.17),
i =1,...,n. Define the set () by the equality

Q= 0 Q. (2.21)
=1

We assume that Q = {0 =y < < --- < bm < tmq1 = T} and ;NQ; = {0, T}, i £ j,i,j=1,...,n.

Theorem 2.2. There exist the sets Q (1.2) and J (1.3) such that all functions h;, i = 1,...,n, are

a-computable over Q and J.

Proof. The proof is carried out by constructing the desired sets 2 and J as follows.

Step 1. Let =1, m =1, Q={0=to,t; =1}, Jo = (—00,0), J1 = [to,t1). Obviously, all functions
h; are a-computable on Q and J = Jo U Jy, since h;(t) € Ty ast € J1,i=1,...,n.

Step 2. ¢=q+1, m=m+1. If ¢ =m+ 1, we complete the proof, otherwise we continue. Add %
to Q:Q=QU{t,}, and add the interval J,,, = (ty—1,tm] to the set T: T =TUT,,.

Step 2.1. Consider each function h;, i = 1,...,n. There are two cases:
o there exists j; such that h;(t) € J;, as t € J,,, that is, h; is a-computable over  and
J; let QF = 0;
e h; is not a-computable over 2 and J, that is, there are m elements t;”q e, ml>1
such that
tg <ti, <tg, r=1....ml te =hi(tm-1), tg =h(tm).

Let 77 = hi_l(t;-"q), r=1,...,m]. Define the sets flf and Ef as
m—1 mi+1
a=au{yt, 3= Usu U3,
q=1 r=1
Efq = [Tirq_l,Tz;), 7'21 = tm—1, Tmit1 = tm.
It is clear that h; is a-computable over Q7 and J. Let Qf = {r }iql
Step 2.2. Main conclusion. Define Q¢ = CJ Q. There are two cases:
1. Q9 = @, all functions h; are a—coirzlpl)utable over 2 and J;
2. Q1 # @, let Q1 = {1} < --- < 7;%} and let I = [r7=470), 1 = 1,... 70, + 1,

- a 'q
qu =tm_1, T;nqﬂ = t,n; redefine the sets 2 and J as follows:
m—1 mg+1
a=qua’, 1=Ju J I (2:22)
j=1 r=1
thus for each function h;, i = 1,...,n, we have
o if the set Q7 is empty, then h; is a-computable over  and J (2.11) according to
Lemma 2.3,
o if the set Q isn’t empty, then h; is a-computable over Q and J (2.11) according to
Lemma 2.4.

Remark 2.2. Obviously, mq < m X n.
Step 2.3. Get back to Step 2.
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3 Computable operators

In this section, we propose one way to construct computable operators.

3.1 Approximation of delay functions hfj

To simplify the text below, we omit the indices in the function notation hfj from (1.4). Let h be a
linear admissible function from Section 2.1. There are the following cases:

(i) The function h is linear one passing through the points (y1,0), (T, v2),

V2 e = Y172
71—’}/17 71—’7/17

h(t) =co+crt, ¢ = t € 0,77, (3.1)

where the real numbers 71, 72 are from (2.1). We approximate =1, 72 by rational numbers %,
%y, respectively, such that

T <'m<T, *m<m<*nte T>%>e ‘=212 -—¢ (3.2)
where € > 0 is a given rational error bound. Denote by *h the linear function passing through
the points (%v1,0), (T, *y2) given by

a

Vo a, _ ‘v

“h(t) ="co +"art, “c= ma Co T —any’

te0,7]. (3.3)

Note that under the construction, *h(t) > h(t), t € [0,T]. Define the intervals C, such that

Cr € 01’7 C, = [Q 67"}7 Q»,« =%, — Ucrv Cr ="+ vcra

where V¢, > |¢. — %c,|, r = 0,1. The intervals C,, r = 0,1, can be found as a solution of the
following system of interval equations [5]:

Co+Ci[" 1, +¢e] =0, Co+CiT=["—¢, %l
Thus we obtain the rational estimates
ley — %cr| < max {|%, — C,|,|"¢ — Cy|} d:ef”cr, r=0,1

Finally, we have
Ih(t) — “h(t)| < T"c1 + Yco & vh, te[0,T]. (3.4)

Remark 3.1. It is obvious that the function “h is computable over the sets €2 and Z defined as

follows:
Q= {t}yt,  I={3, 5,
Jo = (—00,0), TJg=[tq-1,t¢), g=1,...,m, Tpy1 = [tm,T], (3.5)

tO:07 tlza’Yl» tq:ah_l(tqfl)a q:27"'7m7

where m is such that both conditions t,, < T and *h™*(t,,) > T are fulfilled.

(ii) The function h is defined by the equality

h(t) _ €o +Clt, te [0/73); te [O T]
07 te [’\/37T]7 ’ ’ (36)
4 Y174
1 = ) Co = — )
Y3 —MN Y3—MN
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where 1, 73 and 74 are from (2.3). The numbers -1, 73 and 74 are approximated by rational
numbers %v1, ®y3 and *v4, respectively, as follows:

Te < ‘Wl < T,

‘1 <y < g
T>%3>%1 te,

Y3 >3 > Y3 — €, (3.7)
g >ty >e, >4 >y —e
Define the approximation function ®h:

a Ycit, t e |0,%s3),
iy =4 O 060 e o,
07 te [ 73aT]a

a

(3.8)
Go = e, T
ayg —ay’ %3 —m
From the above, we get the rational estimates
() — “h(t)] < “y5¥cr + “co R, t € [0,T),
here,

(3.9)
a a a — 1y def o
ley — %¢p] <max {|%¢. — C,|,|% — C,|} =

= "¢, r=0,1,
the intervals C, = [C ., C,] are the solutions of the system

Co + Ci1[*1,%n +¢] =0,
Co + Ci[*v3 — ¢, “y3] = [*ya — €, %74

Remark 3.2. We observe that the function ®h is computable over the sets 2 and Z defined as
follows:

1 ~ 1
Q={t 3ot T={3,
jq:[tq_l,tq), q:l,...,m,
to = 0, tl = a’yl, t

50 = (_007 0)7

T = [tm, T), (3.10)
q = ah_l(tqfl)v q= 27 s, M — ]-, ty = a,74’
here, m is such that both conditions ¢,,_; < 74 and “hil(tm_l) > @y are fulfilled.
(iii) The function h is given by the equality
t, te ) )
hit) =44 o)y e,
07 3 ¢ [’717'73% (311)
Y4 — 72 7273 — V174
a=—", C0=———
V3"

73—

where 71, 3 and 4 are from (2.3). The numbers ~;, 3 and 4 are approximated by rational
numbers %v1, “y3 and *v4, respectively, as follows:

T*<a’71<T, @

71 <1 <7+,

m>%e>e 2 >7 > % -k, (3.12)
T>%3>%%1+e, “y3>732>%3—c¢,
“y3 > Yy > g,

Vo> > —e€
Define the approximation function ®h as

a et t 0.
ah(t) _ co + “cit, € [ ) 73)7 . te [O,T],
0, te [a"}/g,T],

a

V4
acl _

- a,}/3 _a,},1 ?

a

(3.13)
_ "n'mn
a,}/3 _ a,},1
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Similarly to the previous, we obtain

() — “h(t)] < “y5%c1 + Vco R, t € [0,T),

|Cr - acr| S maX{|aCr *Qr|7 |acr *67"‘} d:efvcra r= 07 ]-7

(3.14)

the intervals C, = [C,., C,] are the solutions of the interval system
Co + C1["m, "1+ el = ["72 — &, %2,
Co+ Ci["v3 —&,“v3] = ["74 — &, “yal.

Remark 3.3. It can easily be checked that the function ®h is computable over the sets £ and
7 defined similarly to (3.10).

Next, consider the approximation of the function h from Section 2.2. We have the following cases:

e The function h is defined as follows:

0, t e |0, ,
h(t) = 0.7): ¢ 10,7,
(&) + Clt7 te [73aT]’ (315)
Y4 Y174
c1 = Co = —

- ) 0 )

Y3 —MN 3N
where 71, 73 and 74 are from (2.12). The numbers 71, 73 and -4 are approximated by rational
numbers *v1, *y3 and *v4, respectively, such that

Te <%y3 <T, “y3—e <3< %3,
T>%1>%3+e, “m>2m2%—c¢, (3.16)
Gy >y >e, >y > %y —e.

Denote by “h the approximation function

0, t €[0,%3),
h(t) = [a V3) te 0,7,
co+cit, te [y, T, (3.17)
Oy "M%
CQ=—"——, Q= —"——.
dyg — 9y 3N

We have

h(t) = *h(t)] < “m Yer + Vo B R, € [0,T], (3.18)
ey — % < max{|%, — C,|,[%, — C,|} € e, r=0,1,

the intervals C, = [C ., C,] are the solutions of the interval system
Co+ Ci["vs —&,“v3] = ["7a — &, “74l,
Co + C1["y3 —¢,"y3] = 0.
Remark 3.4. The function ®h is computable over the sets 2 and Z defined as

Q={0,t1,12, T}, IT={L}:_,, (3.19)
j0 = (_0070)7 jl - [Oatl]v j2 - (tlth]a j3 = (t27T]7 .

where t1 = %3, to = 1.

o The function A is expressed as

0, t € (0,73,
ht) = Ol o),
Co —|— Clt, t S [735 T]a (320)
Y2 — 7y _ Trya—ms
LN S o= ————

1 = )
T —n3 T —n3
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where 72, 73 and 74 are from (2.14). The numbers 72, 73 and 74 are approximated by the
rational numbers %y, 3 and ®v,4 as follows:

T <3 <T, “y3—e <y <%,
“Yyu—e>"2>e, ‘1 >72 > % ¢, (3.21)
Gyg >y >e, Yy >y > Yy — e

Denote by “h the approximation function

t a
ap(ty = 4 €0, o,
Co + Cltv te [’W&T]a

(3.22)
ag, — Ly —C oy Geg = T %y — %yq%7y3
T -y’ T — 3
Next, we obtain
IB(t) = “h(t)] < *y1 Per +Yeo € Vh, t € [0,T], (3.23)
ey — e < max {|%, — C, |, %, — Crl} € e, 7 =0,1,
the intervals C, = [C,., C,] are the solutions of the interval system
CO + Cl[a’YS — &, a’Y:ﬂ = [a’Y4 — &, a’74]7
CO —+ ClT = [a")/g — &, a’}/g].
Remark 3.5. The function ®h is computable over the sets 2 and Z given by
Q=1{0,%3,T}, IT={Zy,71,1},
{ 'Y3~ } g { ON 1 23 (3.24)
Jo = (—00,0)7 J1 = [07 73]7 Jo = ( VS;T]-
e The function h is defined by the equality
07 te [07 73)7
h(t)=qecotat, teym), t€I0,T],
07 te [07 V15 T]» (325)
M2 — V4 _ M17Y4 — 7273
a=———, qg=——"""
Y13 Y173

where 1, ¥2, 73 and 74 are from (2.16). The numbers 71, v2, 73 and 74 are approximated by
the rational numbers %1, “y,, 3 and %4, respectively, as follows:

T <3 <T, “vy3—e < y3 <%y,

T>%1>%3+e, “m>2m2>%—c¢, (3.26)
‘yy—e>>e, =7 >ty '
Yz > Ty >, Ty > s > Yy — e
Define the approximation function ®h as
0, t € [0,%5),
ah(t) = co + Cltv te [a’737 a’yl)7 te [OaT]a
07 te [07 a’)/l) T]) (327)
o, _ 2" o 'mta e

C1 Co

Gy — Ay 41— %3
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Thus we obtain

|h(t) — “h(t)| < “11"c1 + "o d:acvh t € [0,T],

aet (3.28)
|Cr_acr| Smax{|acr_gr|7|a C ‘} Yc Cr, 7':0,].,
the intervals C, = [C,.,C,] are the solutions of the interval system
Co + Ci["y3 — &, "y3] = ["va — &, “74],
Co+ Ci[*n1 — &, "] =["12 — ¢, “12l.
Remark 3.6. The function ®h is computable over the sets 2 and Z given by
Q={0,t1,t2, T}, I =1{T ,
{0, 11,22 }~ (T} (3.20)
jO = (—O0,0), jl = [O;tl]a J2 = (t17t2]7 j?) = (t27T]7
where t; = %3, to = %¥1.
3.2 Construction of computable operators
Let £ =col{Ly,...,L,} : AC" — L™ be the linear operator given by the equality
n  MNij
(Lax)(t) = s(t) + > Y ply(8) s [hf; ()], ¢ € (0,7,
P (3.30)
1‘1(5) - Ov 6 < 07
where pf; € L', hf; are from (3.1), (3.6) and (3.11), @ = 1,...,n. Construct the corresponding
approximating operator *L = col{*Ly,...,%L,} : AC" — L™ as follows:
n  MNij
(“Lix)(t) = () + Y D> “ply(0)ay[*hl; ()], t€[0,T),
Pt (3.31)

k

here, the functions @ pm are from (1.6), hlj are from (3.3), (3.8) and (3.13), i = 1,...,n. Due to
Theorem 2.1, there exist a set Q (2.2) with rational elements and a set J (2.3) such that all functions

ahfj are computable over ) and J. This implies that the operator L is computable over {2 and J, too.
Define the operator £ = col{Ly,...,L,} : AC" — L™ as follows:

n  MNij

2V (t) = i k(4) i [hE.
(;Cl )(t) z(t) + ]; ;pz] (t) J [h’L] (t)]v te [07 TL (3’32)
:L‘l(g) =0, f <0,

where pfj €L, hfj are from (3.15), (3.20) and (3.25),% = 1,...,n. The corresponding approximating
operator L = col{*L4,...,°L,} : AC" — L™ has the form

n Mij

(“L;z) +;; Pl hE ()], t€0,T], 5.33)

z;(§) =0, £<0,
here, the functions “pfj are from (1.6), hfj are from (3.17), (3.22) and (3.27), ¢ =1,...,n. By virtue

of Theorem 2.2, there exist the sets  (2.2) and J (2.3) such that all functions “hfj are computable
over 2 and J. This implies that the operator *L£ is computable over Q2 and J.
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3.3 Illustrative example

Let us give an example of application of the proposed way of constructing a computable operator for
the study of the solvability of one boundary value problem for delay differential equations. Consider
the following equation:

4
E(t)+ ) pit) z[*hi(t)] = f(t), t €[0,1],
; (3.34)
z(§) =0, £<0,
where f € L,
pilf) = 31+ ha() =1,
SRV JON . SRS W
pg(t): §t, ahg(t) :t_17
a _ § a — z E
and the set of boundary conditions
l’(O) = q, ’JZ(].) = Ba x('rl) =, :L'(TZ) = Ba
l‘(O) =Q, x(l) = /Ba I(Tl) =Q, j"(TZ) = B7
#0) = a, o(1) =B, #(n)=a, o(r)= b, (3:36)
2(0) =a, @(1)=p, @(n)=qa, i(r) =72,

here, a, f € R, 7 = 1%, Ty = lo. By means of a reliable computing experiment, it is proved that all
boundary value problems (3.35), (3.36) are uniquely solvable. In addition, for the equation

#(t) + Y pilt) alha(t)) = £(2), t€ 0.1,

z(§) =0, £<0,

(3.37)

where p; € L', h; has form (3.1), it is proved that all boundary value problems (3.37), (3.36) are
likewise uniquely solvable if the following inequalities are fulfilled:

Ipi = “pillis <2070 |ha(t) = “hs(t)] < 10717, ¢ € [0,1]. (3.38)
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