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Abstract. In this paper, in order to expand the possibilities of the constructive approach to the
study of functional differential equations, one way of constructing a new kind of so-called computable
operators is discussed. An illustrative example is given.

2020 Mathematics Subject Classification. 34K06, 34K10, 65L03, 65L10.

Key words and phrases. Delay differential equations, boundary value problems, constructive,
approach, computable operator, reliable computing.

რეზიუმე. ნაშრომში, ფუნქციონალური დიფერენციალური განტოლებების შესწავლის კონსტრუქ-
ციული მიდგომის შესაძლებლობების გაფართოების მიზნით, განხილულია ახალი ტიპის ე.წ.
გამოთვლადი ოპერატორების აგების ერთი გზა. მოყვანილია საილუსტრაციო მაგალითი.



On a Class of Delay Differential Equations with Computable Operators 137

1 Introduction
In the present paper we propose one way to expand the possibilities of applying the constructive
approach to the study of functional differential equations [1, 4, 6]. Our study is based on the main
results of the theory of functional differential equations [1]. In order to illustrate the main idea of
constructive approach, let us consider one example. Let L : ACn → Ln be a bounded linear operator
and ℓ = col{ℓ1, . . . , ℓn} : AC → Rn be a bounded linear vector functional. Here, Ln is the space of
summable z : [0, T ] → Rn with the standard norm

∥z∥Ln =

T∫
0

|z(s)|n ds

(here, | · |n denotes a norm in Rn), ACn is the space of absolutely continuous x : [0, T ] → Rn with
the norm

∥x∥ACn = |x(0)|n + ∥ẋ∥Ln .

For X = (x1, . . . , xn) with components xi ∈ ACn, ℓX denotes the (n× n)-matrix, whose columns are
the values of ℓ on the components of X: ℓX = (ℓixj), i, j = 1, . . . ,m. Consider the boundary value
problem

(Lx)(t) = f(t), ℓx = α, t ∈ [0, T ], (1.1)
where f ∈ Ln, α ∈ Rn, under the assumption that the homogeneous equation Lx = 0 has the
fundamental (n× n)-matrix X. As is known, in this case problem (1.1) has a unique solution if and
only if the matrix � = ℓX is invertible. The key idea of the constructive study of the solvability of
(1.1) is as follows.

• Two n× n-matrices, aΓ and vΓ, with rational elements are constructed according to a specially
developed procedure based on a computer-assisted proof [6] such that

|||Γ−a Γ ||| ≤ |||vΓ|||

( |||A||| def
= {|aij |}ni,j=1 for the (n× n)-matrix A);

• the invertibility of the matrix aΓ is verified with the use of the reliable computer experiment;

• if there exists an inverse matrix aΓ−1, then due to the theorem on inverse operator [2, p. 207],
the inequality

∥vΓ∥Rn×n <
1

∥aΓ−1∥Rn×n

guarantees the invertibility of Γ which, in turn, means the solvability of (1.1).

Matrix aΓ is defined by the equality
aΓ = aLaX,

where the operator aL : ACn → Ln is an approximation of L within the class of the so-called com-
putable operators, the elements of the matrix aX are piecewise polynomials with rational coefficients
(the ways of constructing the matrices aX and vΓ are not discussed in this paper, those are described
in [6]).

Notation and definitions

Let Ω = {tq}m+1
q=0 , where tq are real numbers, be such that

0 = t0 < t1 < · · · < tm < tm+1 = T. (1.2)

On the partition Ω (1.2), we define a set of intervals

I = {Iq}m+1
q=0 , (1.3)
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where I0 = (−∞, 0), each interval Iq, q = 1, . . . ,m+ 1, may have one of the following kinds:

[tq−1, tq], [tq−1, tq), (tq−1, tq], (tq−1, tq).

The conditions
m+1⋃
q=1

Iq = [0, T ], Iq1 ∩ Iq2 = ∅, q1 ̸= q2,

are assumed to be fulfilled.

Definition 1.1. We say that a function h : [0, T ] → R is a-computable over the partition Ω (1.2)
and the set I (1.3) if for every j = 1, . . . ,m+ 1, there exists an integer qj , 0 ≤ qj ≤ m+ 1 such that
h(t) ∈ Iqj for t ∈ Ij .

Denote by P the set of all polynomials with rational coefficients.

Definition 1.2. A function h : [0, T ] → R is called computable over the partition Ω (1.2) and the set
I (1.3) if the following conditions hold:

(i) h ∈ P,
(ii) numbers tq, q = 1, . . . ,m+ 1, from (1.2) are rational,
(iii) the function h is a-computable over Ω (1.2) and I (1.3).

Let L = col{L1, . . . ,Ln} : ACn → Ln be the linear operator given by

(Lix)(t) = ẋi(t) +

n∑
j=1

nij∑
k=1

pkij(t)xj [h
k
ij(t)], t ∈ [0, T ],

xi(ξ) = 0, ξ < 0,

(1.4)

where pkij ∈ L1, hk
ij is a piecewise continuous function, i = 1, . . . , n.

Definition 1.3. An operator L (1.4) is called computable over the sets Ω (1.2) and I (1.3) if the
following conditions hold:

(i) pkij ∈ P,
(ii) the functions hk

ij are computable over Ω (1.2) and I (1.3),

i, j = 1, . . . , n, k = 1, . . . , nij .

Formulation of the problem

Let tq, q = 1, . . . ,m, be rational numbers, apkij ∈ P be approximation of pkij such that

∥pkij − apkij∥L1 ≤ vpkij ,

where vpkij are rational numbers, i, j = 1, . . . , n, k = 1, . . . , nij . Define the sets Ω̃ and Ĩ as

Ω̃ = {tq}m+1
q=0 , Ĩ = {Ĩq}m+1

q=0 ,

Ĩ0 = (−∞, 0), Ĩq = [tq−1, tq), q = 1, . . . ,m, Ĩm+1 = [tm, T ].
(1.5)

The functions hk
ij are approximated by piecewise constant functions ahk

ij given by

ahk
ij(t) =

m+1∑
q=1

χ
Ĩq
(t)aqh

k
ij , t ∈ [0, T ],
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where χ
Ĩq
( · ) is the characteristic function of Ĩq, a

qh
k
ij is a rational approximation of hk

ij(tq−1) with a
rational error estimate v

qh
k
ij such that

|hk
ij(tq)− a

qh
k
ij | ≤ v

qh
k
ij ,

i, j = 1, . . . , n, k = 1, . . . , nij . Define the operator aL = col{aL1, . . . ,
aLn} by the equality

(aLix)(t) = ẋi(t) +

n∑
j=1

nij∑
k=1

apkij(t)xj [
ahk

ij(t)], t ∈ [0, T ],

xi(ξ) = 0, ξ < 0,

(1.6)

where i = 1, . . . , n. It is clear that the operator aL (1.6) is computable over Ω̃m and Ĩ, since ahk
ij(t)

∈ Ĩq as t ∈ Ĩq, i, j = 1, . . . , n, k = 1, . . . , nij . This kind of computable operators has been used
for constructive research until recently (see [1, 3, 4, 6–10]). It seems interesting to construct other
kinds of computable operators. In [11], one class of the so-called admissible delay functions and the
corresponding computable operators were proposed. Further, some new kinds of such functions will
be considered in Section 2. An example of computable operator will be given in Section 3.

2 Admissible delay functions
2.1 Increasing delay functions
Let τ∗ be a real number, 0 < τ∗ < T . Define some classes of functions h : [0, T ] → R.

(i) The function h : [0, T ] → R is strictly increasing continuous one passing through the points
(γ1, 0), (T, γ2), where γ1, γ2 are real numbers such that

τ∗ < γ1 < T, 0 < γ2 < T. (2.1)

Define the numbers tq as follows:

t1 = γ1, tq = h−1(tq−1), q = 2, . . . ,m,

where m is such that both conditions tm < T and h−1(tm) ≥ T are fulfilled. By construction,
we have

h(t) ∈


(∞, 0), t ∈ [t0, t1),

[tq−1, tq), t ∈ [tq, tq+1), q = 1, . . . ,m,

[tm−1, tm), t ∈ [tm, tm+1],

t0 = 0, tm+1 = T.

Thus the function h is a-computable over the partition Ω and the set I given by

Ω = {tq}m+1
q=0 , I = {Iq}m+1

q=0 ,

I0 = (−∞, 0), Iq = [tq−1, tq), q = 1, . . . ,m, Im+1 = [tm, T ].
(2.2)

(ii) The function h : [0, T ] → R is defined as follows:

h(t) = χ
[0,γ3)

(t)h̃(t), t ∈ [0, T ],

where the function h̃ : [0, T ] → R is strictly increasing one passing through the points (γ1, 0),
(γ3, γ4), here, γ1, γ3 and γ4 are real numbers such that

τ∗ < γ1 < γ3 < T, 0 < γ4 < γ3. (2.3)
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Define the numbers tq:

t1 = γ1, tq = h−1(tq−1), q = 2, . . . ,m− 1,

where m is such that both conditions tm−1 < γ3 and ah−1(tm−1) ≥ γ3 are fulfilled. From this
we have

h(t) ∈


(∞, 0), t ∈ [t0, t1),

[tq−1, tq), t ∈ [tq, tq+1), q = 1, . . . ,m,

[t0, t1), t ∈ [tm, tm+1],

t0 = 0, tm = γ3, tm+1 = T.

It is clear that the function h is a-computable over the partition Ω and the set I given by

Ω = {tq}m+1
q=0 , I = {Iq}m+1

q=0 ,

I0 = (−∞, 0), Iq = [tq−1, tq), q = 1, . . . ,m, Im+1 = [tm, T ].
(2.4)

(iii) The function h : [0, T ] → R is of the form

h(t) = χ
[γ1,γ3)

(t)h̃(t), t ∈ [0, T ],

where the function h̃ : [0, T ] → R is strictly increasing one passing through the points (γ1, γ2),
(γ3, γ4), here, γ1, γ2, γ3 and γ4 are real numbers such that

τ∗ < γ1 < γ3 < T, 0 < γ2 < γ1, γ2 < γ4 < γ3. (2.5)

Define the numbers tq as

t1 = γ1, tq = h−1(tq−1), q = 2, . . . ,m− 1,

where m is such that both conditions tm−1 < γ3 and ah−1(tm−1) ≥ γ3 are fulfilled. Thus we
have

h(t) ∈


[t0, t1), t ∈ [t0, t1),

[tq−1, tq), t ∈ [tq, tq+1), q = 1, . . . ,m,

[t0, t1), t ∈ [tm, tm+1],

t0 = 0, tm = γ3, tm+1 = T.

It is obvious that the function h is a-computable over the partition Ω and the set I given by

Ω = {tq}m+1
q=1 , I = {Iq}m+1

q=0 ,

I0 = (−∞, 0), Iq = [tq−1, tq), q = 1, . . . ,m, Im+1 = [tm, T ].
(2.6)

Definition 2.1. The functions h proposed above will be called admissible functions.

Next, we prove that there exist sets Ω (1.2) and I (1.3) such that any finite set of admissible
functions are a-computable over these sets. As a preliminary, we prove two auxiliary lemmas. Let h
be an admissible function and let h be a-computable over Ω0 and I0, where

Ω0 =
{
t0 < t1 < · · · < tm0

< tm0+1

}
, tq are real numbers,

I0 =

m+1⋃
q=1

Iq, Iq = [tq−1, tq).
(2.7)

Denote by Ω, I the sets
Ω = Ω0 ∪ {tm+1}, m = m0 + 1, tm < tm+1,

I = I0 ∪ Im+1, Im+1 = [tm, tm+1).
(2.8)

Further, we have the following alternatives:
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A1. The function h is a-computable over Ω and I.

A2. The function h is not a-computable over Ω and I.

Consider the case where alternative A1 is true. Let m̃ be a positive integer and

Ω̃ =
{
τ1, . . . , τm̃

}
, tm < τ1 < · · · < τm̃ < tm+1, τr are real numbers,

Ĩ =

m̃+1⋃
r=1

Ĩr, Ĩr = [τr−1, τr), r = 1, . . . , m̃+ 1.

Lemma 2.1. The function h is a-computable over Ω and I, where

Ω = Ω ∪ Ω̃, I =

m⋃
q=1

Iq ∪
m̃+1⋃
r=1

Ĩr.

Proof. Under the conditions, there exists an interval Iq0 such that h(t) ∈ Iq0 as t ∈ Im+1. Also, we
find that if t ∈ Ĩr, then h(t) ∈ Iq0 , since Ĩr ⊂ Im+1, r = 1, . . . , m̃+ 1.

Let alternative A2 be true. In this case, there are m̃ elements t0r ∈ Ω, m̃ ≥ 1 such that

tq0 < t0r < tq1 , r = 1, . . . , m̃, tq0 = h(tm), tq1 = h(tm+1).

Let τr = h−1(t0r), r = 1, . . . , m̃. Note that tm < τr < tm+1, r = 1, . . . , m̃. Define the set of numbers
Ω̃ and the set of intervals Ĩ as follows:

Ω̃ = Ω ∪ {τr}m̃r=1, Ĩ =

m⋃
q=1

Iq ∪
m̃+1⋃
r=1

Ĩr,

Ĩr = [τr−1, τr), τ0 = tm, τm̃+1 = tm+1.

By construction,
h(t) ∈ Iq0+1, t ∈ Ĩ1,

...
...

h(t) ∈ Iq1 , t ∈ Ĩm̃+1.

So, h is a-computable over Ω̃ and Ĩ. Let m̃r be a positive integer and

τr−1 < σ1
r < · · · < σm̃r

r < τr, σν
r be real numbers, r = 1, . . . , m̃+ 1.

Define the set of numbers Ω and the set of intervals I:

Ω = Ω ∪ {τr}m̃r=1 ∪
m̃+1⋃
r=1

{σν
r }

m̃r
ν=1, I =

m⋃
q=1

Iq ∪
m̃+1⋃
r=1

m̃r+1⋃
ν=1

Ĩνr ,

Ĩνr = [σν−1
r , σν

r ), σ0
r = τr−1, σm̃r+1

r = τr.

(2.9)

Lemma 2.2. The function h is a-computable over Ω and I from (2.9).

Proof. Under the construction h(t) ∈ Ĩr for t ∈ Ĩνr , ν = 1, . . . , m̃r + 1, r = 1, . . . , m̃+ 1.

Let hi be an admissible function and Ωi be the corresponding set of points of form (2.2), (2.4) or
(2.6), i = 1, . . . , n. Define the set Ω̃ as

Ω̃ =

n⋃
i=1

Ωi. (2.10)

Let Ω̃ = {0 = t̃0 < t̃1 < · · · < t̃m̃ < t̃m̃+1 = T}. Without loss of generality, we assume that
Ωi ∩ Ωj = {0, T}, i ̸= j, i, j = 1, . . . , n.
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Theorem 2.1. There exist a set of points Ω (1.2) and a set of intervals I (1.3) such that all functions
hi, i = 1, . . . , n, are a-computable over Ω and I.

Proof. The proof follows from the way of constructing the desired sets Ω and I. Describe this step by
step.

Step 1. Let q = 1, m = 1, Ω = {0 = t0, t1 = t̃1}, I0 = (−∞, 0), I1 = [t0, t1). It is clear that all
functions hi are a-computable over Ω and I = I0 ∪ Iq, since either hi(t) ∈ I0 or hi(t) ∈ I1 as
t ∈ I1, i = 1, . . . , n.

Step 2. q = q + 1, m = m + 1. If q = m̃ + 1, we complete the proof, otherwise we continue. Add
the point t̃q to the set Ω: Ω = Ω ∪ {t̃q}, and add the new interval Im = [tm−1, tm) to the set I:
I = I ∪ Im.

Step 2.1. Consider each function hi, i = 1, . . . , n. There are two cases:
• there exists ji such that hi(t) ∈ Iji as t ∈ Im, that is, hi is a-computable over Ω and

I; let Ωq
i = ∅;

• hi is not a-computable over Ω and I, that is, there are m̃q
i elements triq ∈ Ω, m̃q

i ≥ 1
such that

tq0 < triq < tq1 , r = 1, . . . , m̃q
i , tq0 = hi(tm−1), tq1 = h(tm).

Let τ riq = hi
−1(triq ), r = 1, . . . , m̃q

i . Define the set of numbers Ω̃q
i and the set of intervals

Ĩqi as follows:

Ω̃q
i = Ω ∪ {τ riq}

m̃q
i

r=1, Ĩqi =

m−1⋃
q=1

Iq ∪
m̃q

i+1⋃
r=1

Ĩriq ,

Ĩriq = [τ r−1
iq

, τ riq ), τ0iq = tm−1, τm̃q
i+1 = tm.

Note that under the construction, hi is a-computable over Ω̃q
i and Ĩqi . Let Ωq

i =

{τ riq}
m̃q

i
r=1.

Step 2.2. Main conclusion. Let Ωq =
n⋃

i=1

Ωq
i . There are two cases:

1. Ωq = ∅. All functions hi are a-computable over Ω and I;
2. Ωq ̸= ∅, let Ωq = {τ1q < · · · < τ

m̃q
q } and let Irq = [τ r−1

q , τ rq ), r = 1, . . . , m̃q + 1,
τ0q = tm−1, τ m̃q+1

q = tm; redefine the sets Ω and I as follows:

Ω = Ω ∪ Ωq, I =

m−1⋃
j=1

Ij ∪
m̃q+1⋃
r=1

Irq; (2.11)

next, for each function hi, i = 1, . . . , n, we have:
• if the set Ωq

i is empty, then hi is a-computable over Ω and I (2.11) according to Lemma
2.1,

• if the set Ωq
i is not empty, then hi is a-computable over Ω and I (2.11) according to

Lemma 2.2.
Remark 2.1. Obviously, m̃q ≤ m× n.

Step 2.3. Get back Step 2.
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2.2 Decreasing delay functions
In this section, we propose some classes of decreasing delay functions. The presentation of the material
is done in the same way as it has been done in the previous section. Consider the following functions
h : [0, T ] → R.

(i) The function h : [0, T ] → R is given by

h(t) = χ
[γ3,T ]

(t)h̃(t), t ∈ [0, T ],

where the function h̃ : [0, T ] → R is strictly decreasing one passing through the points (γ3, γ4),
(γ1, 0), where γ1, γ3 and γ4 are real numbers,

τ∗ < γ3 < γ1 < T, 0 < γ4 < γ3. (2.12)

Let t1 = γ3, t2 = γ1. Under the construction, we have

h(t) ∈


[t0, t1), t ∈ [t0, t1],

[t0, t1), t ∈ (t1, t2],

(−∞, 0), t ∈ (t2, t3],

t0 = 0, t3 = T.

Define the partition Ω and intervals Iq as follows:

Ω = {0, t1, t2, T},
I0 = (−∞, 0), I1 = [t0, t1], I2 = (t1, t2], I3 = (t2, T ].

(2.13)

Obviously, the function h is a-computable over Ω and I = {Iq}3q=0.

(ii) The function h : [0, T ] → R is defined as follows:

h(t) = χ
[γ3,T ]

(t)h̃(t), t ∈ [0, T ],

where the function h̃ : [0, T ] → R is strictly decreasing one passing through the points (γ3, γ4),
(T, γ2), here, γ2, γ3 and γ4 are the real numbers

τ∗ < γ3 < T, 0 < γ4 < γ3, 0 < γ2 < γ4. (2.14)

Let t1 = γ3. Next, we have

h(t) ∈

{
[t0, t1), t ∈ [t0, t1],

[t0, t1), t ∈ (t1, t2],
t0 = 0, t2 = T.

Thus the function h is a-computable over Ω and I = {Iq}2q=0, where

Ω = {0, t1, T}, I0 = (−∞, 0), I1 = [t0, t1], I2 = (t1, T ]. (2.15)

• The function h : [0, T ] → R is defined as

h(t) = χ
[γ3,γ1]

(t)h̃(t), t ∈ [0, T ],

here, the function h̃ : [0, T ] → R is strictly increasing one passing through the points (γ3, γ4),
(γ1, γ2), γ1, γ2, γ3 and γ4 are the real numbers such that

τ∗ < γ3 < γ1 < T, 0 < γ4 < γ3, 0 < γ2 < γ4. (2.16)

Let t1 = γ3, t2 = γ1. We have

h(t) ∈


[t0, t1), t ∈ [t0, t1],

[t0, t1), t ∈ (t1, t2],

[t0, t1), t ∈ (t2, t3],

t0 = 0, t3 = T.

It is clear that the function h is a-computable over Ω and I = {Iq}3q=0 given by

Ω = {0, t1, t2, T}, I0 = (−∞, 0), I1 = [t0, t1], I2 = (t1, t2], I3 = (t2, T ]. (2.17)
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Definition 2.2. The functions h proposed above will be called admissible functions.
Next, it is proved that there exist the sets Ω (1.2) and I (1.3) such that any finite set of admissible

functions h are a-computable over these sets. As a preliminary, we prove two auxiliary statements.
Let h be an admissible function and let h be computable over Ω0 and I0 given by

Ω0 = {t0 < t1 < · · · < tm0
< tm0+1}, tq are real numbers,

I0 =

m+1⋃
q=1

Iq, Iq = (tq−1, tq].
(2.18)

Let tm+1 be a real number, m = m0 + 1. Define the sets Ω, I as

Ω = Ω0 ∪ {tm+1}, m = m0 + 1, tm < tm+1, I = I0 ∪ Im+1, Im+1 = (tm, tm+1]. (2.19)

There are two alternatives.
A1. The function h is a-computable over Ω and I,

A2. The function h is not a-computable over Ω and I.
Let alternative A1 be true. Define

Ω̃ = {τ1 < · · · < τm̃}, tm < τ1, τm̃ < tm+1, τr are real numbers,

Ĩ =

m̃+1⋃
r=1

Ĩr, Ĩr = (τr−1, τr], r = 1, . . . , m̃+ 1

(m̃ is a positive integer).
Lemma 2.3. The function h is a-computable over Ω and I, where

Ω = Ω ∪ Ω̃, I =

m⋃
q=1

Iq ∪
m̃+1⋃
r=1

Ĩr.

Proof. By construction, there exists an interval Iq0 such that h(t) ∈ Iq0 as t ∈ Im+1. Also, we find
that if t ∈ Ĩr, then h(t) ∈ Iq0 , since Ĩr ⊂ Im+1, r = 1, . . . , m̃+ 1.

Let alternative A2 be true. In this case, there are m̃ elements t0r ∈ Ω, m̃ ≥ 1 such that

tq0 < t0r < tq1 , r = 1, . . . , m̃, tq0 = h(tm), tq1 = h(tm+1).

Let τr = h−1(t0r), r = 1, . . . , m̃, tm < τr < tm+1, r = 1, . . . , m̃. Define the sets Ω̃ and Ĩ as follows:

Ω̃ = Ω ∪ {τr}m̃r=1, Ĩ =

m⋃
q=1

Iq ∪
m̃+1⋃
r=1

Ĩr,

Ĩr = [τr−1, τr), τ0 = tm, τm̃+1 = tm+1.

Obviously,
h(t) ∈ Iq0+1, t ∈ Ĩ1,

...
...

h(t) ∈ Iq1 , t ∈ Ĩm̃+1.

So, h is a-computable over Ω̃ and Ĩ. Let

τr−1 < σ1
r < · · · < σm̃r

r < τr, r = 1, . . . , m̃+ 1

(m̃ is a positive integer). Define the sets Ω and I as follows:

Ω = Ω ∪ {τr}m̃r=1 ∪
m̃+1⋃
r=1

{σν
r }

m̃r
ν=1, I =

m⋃
q=1

Iq ∪
m̃+1⋃
r=1

m̃r+1⋃
ν=1

Ĩνr ,

Ĩνr = [σν−1
r , σν

r ), σ0
r = τr−1, σm̃r+1

r = τr.

(2.20)
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Lemma 2.4. The function h is a-computable over Ω and I from (2.20).

Proof. By construction, h(t) ∈ Ĩr as t ∈ Ĩνr , ν = 1, . . . , m̃r + 1, r = 1, . . . , m̃+ 1.

Let hi be an admissible function, Ωi be the corresponding set of form (2.13), (2.15) or (2.17),
i = 1, . . . , n. Define the set Ω̃ by the equality

Ω̃ =

n⋃
i=1

Ωi. (2.21)

We assume that Ω̃ = {0 = t̃0 < t̃1 < · · · < t̃m̃ < t̃m̃+1 = T} and Ωi∩Ωj = {0, T}, i ̸= j, i, j = 1, . . . , n.
Theorem 2.2. There exist the sets Ω (1.2) and I (1.3) such that all functions hi, i = 1, . . . , n, are
a-computable over Ω and I.
Proof. The proof is carried out by constructing the desired sets Ω and I as follows.
Step 1. Let q = 1, m = 1, Ω = {0 = t0, t1 = t̃1}, I0 = (−∞, 0), I1 = [t0, t1). Obviously, all functions

hi are a-computable on Ω and I = I0 ∪ I1, since hi(t) ∈ I1 as t ∈ I1, i = 1, . . . , n.

Step 2. q = q + 1, m = m+ 1. If q = m̃+ 1, we complete the proof, otherwise we continue. Add t̃q
to Ω : Ω = Ω ∪ {t̃q}, and add the interval Im = (tm−1, tm] to the set I : I = I ∪ Im.

Step 2.1. Consider each function hi, i = 1, . . . , n. There are two cases:
• there exists ji such that hi(t) ∈ Iji as t ∈ Im, that is, hi is a-computable over Ω and

I; let Ωq
i = ∅;

• hi is not a-computable over Ω and I, that is, there are m̃q
i elements triq ∈ Ω, m̃q

i ≥ 1
such that

tq0 < triq < tq1 , r = 1, . . . , m̃q
i , tq0 = hi(tm−1), tq1 = h(tm).

Let τ riq = hi
−1(triq ), r = 1, . . . , m̃q

i . Define the sets Ω̃q
i and Ĩqi as

Ω̃q
i = Ω ∪ {τ riq}

m̃q
i

r=1, Ĩqi =

m−1⋃
q=1

Iq ∪
m̃q

i+1⋃
r=1

Ĩriq ,

Ĩriq = [τ r−1
iq

, τ riq ), τ0iq = tm−1, τm̃q
i+1 = tm.

It is clear that hi is a-computable over Ω̃q
i and Ĩqi . Let Ωq

i = {τ riq}
m̃q

i
r=1.

Step 2.2. Main conclusion. Define Ωq =
n⋃

i=1

Ωq
i . There are two cases:

1. Ωq = ∅, all functions hi are a-computable over Ω and I;
2. Ωq ̸= ∅, let Ωq = {τ1q < · · · < τ

m̃q
q } and let Irq = [τ r−1

q , τ rq ), r = 1, . . . , m̃q + 1,
τ0q = tm−1, τ m̃q+1

q = tm; redefine the sets Ω and I as follows:

Ω = Ω ∪ Ωq, I =

m−1⋃
j=1

Ij ∪
m̃q+1⋃
r=1

Irq; (2.22)

thus for each function hi, i = 1, . . . , n, we have
• if the set Ωq

i is empty, then hi is a-computable over Ω and I (2.11) according to
Lemma 2.3,

• if the set Ωq
i isn’t empty, then hi is a-computable over Ω and I (2.11) according to

Lemma 2.4.
Remark 2.2. Obviously, m̃q ≤ m× n.

Step 2.3. Get back to Step 2.
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3 Computable operators
In this section, we propose one way to construct computable operators.

3.1 Approximation of delay functions hk
ij

To simplify the text below, we omit the indices in the function notation hk
ij from (1.4). Let h be a

linear admissible function from Section 2.1. There are the following cases:

(i) The function h is linear one passing through the points (γ1, 0), (T, γ2),

h(t) = c0 + c1t, c1 =
γ2

T − γ1
, c0 =

γ1 γ2
T − γ1

, t ∈ [0, T ], (3.1)

where the real numbers γ1, γ2 are from (2.1). We approximate γ1, γ2 by rational numbers aγ1,
aγ2, respectively, such that

τ∗ < aγ1 < T, aγ1 ≤ γ1 ≤ aγ1 + ε, T > aγ2 > ε, aγ2 ≥ γ2 ≥ aγ2 − ε, (3.2)

where ε ≥ 0 is a given rational error bound. Denote by ah the linear function passing through
the points (aγ1, 0), (T, aγ2) given by

ah(t) = ac0 +
ac1t,

ac1 =
aγ2

T − aγ1
, ac0 =

aγ1
aγ2

T − aγ1
, t ∈ [0, T ]. (3.3)

Note that under the construction, ah(t) ≥ h(t), t ∈ [0, T ]. Define the intervals Cr such that

cr ∈ Cr, Cr = [C r, Cr], C r = acr − vcr, Cr = acr +
vcr,

where vcr ≥ |cr − acr|, r = 0, 1. The intervals Cr, r = 0, 1, can be found as a solution of the
following system of interval equations [5]:

C0 + C1[
aγ1,

aγ1 + ε] = 0, C0 + C1T = [aγ2 − ε, aγ2].

Thus we obtain the rational estimates

|cr − acr| ≤ max
{
|acr − C r|, |acr − Cr|

} def
= vcr, r = 0, 1.

Finally, we have
|h(t)− ah(t)| ≤ T vc1 +

vc0
def
= vh, t ∈ [0, T ]. (3.4)

Remark 3.1. It is obvious that the function ah is computable over the sets Ω and I defined as
follows:

Ω = {tq}m+1
q=1 , I = {Iq}m+1

q=0 ,

I0 = (−∞, 0), Iq = [tq−1, tq), q = 1, . . . ,m, Im+1 = [tm, T ],

t0 = 0, t1 = aγ1, tq = ah−1(tq−1), q = 2, . . . ,m,

(3.5)

where m is such that both conditions tm < T and ah−1(tm) ≥ T are fulfilled.

(ii) The function h is defined by the equality

h(t) =

{
c0 + c1t, t ∈ [0, γ3),

0, t ∈ [γ3, T ],
t ∈ [0, T ],

c1 =
γ4

γ3 − γ1
, c0 = − γ1γ4

γ3 − γ1
,

(3.6)
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where γ1, γ3 and γ4 are from (2.3). The numbers γ1, γ3 and γ4 are approximated by rational
numbers aγ1, aγ3 and aγ4, respectively, as follows:

τ∗ < aγ1 < T, aγ1 ≤ γ1 ≤ aγ1 + ε,

T > aγ3 > aγ1 + ε, aγ3 ≥ γ3 ≥ aγ3 − ε,
aγ3 > aγ4 > ε, aγ4 ≥ γ4 ≥ aγ4 − ε.

(3.7)

Define the approximation function ah:

ah(t) =

{
ac0 +

ac1t, t ∈ [0, aγ3),

0, t ∈ [aγ3, T ],
, t ∈ [0, T ],

ac1 =
aγ4

aγ3 − aγ1
, ac0 = −

aγ1
aγ4

aγ3 − aγ1
.

(3.8)

From the above, we get the rational estimates

|h(t)− ah(t)| ≤ aγ3
vc1 +

vc0
def
= vh, t ∈ [0, T ], (3.9)

here,
|cr − acr| ≤ max

{
|acr − C r|, |acr − Cr|

} def
= vcr, r = 0, 1,

the intervals Cr = [C r, Cr] are the solutions of the system

C0 + C1[
aγ1,

aγ1 + ε] = 0,

C0 + C1[
aγ3 − ε, aγ3] = [aγ4 − ε, aγ4].

Remark 3.2. We observe that the function ah is computable over the sets Ω and I defined as
follows:

Ω = {tq}m+1
q=1 , I = {Iq}m+1

q=0 ,

I0 = (−∞, 0), Iq = [tq−1, tq), q = 1, . . . ,m, Im+1 = [tm, T ],

t0 = 0, t1 = aγ1, tq = ah−1(tq−1), q = 2, . . . ,m− 1, tm = aγ4,

(3.10)

here, m is such that both conditions tm−1 < γ4 and ah−1(tm−1) ≥ aγ4 are fulfilled.

(iii) The function h is given by the equality

h(t) =

{
c0 + c1t, t ∈ [γ1, γ3),

0, t /∈ [γ1, γ3),
t ∈ [0, T ],

c1 =
γ4 − γ2
γ3 − γ1

, c0 =
γ2γ3 − γ1γ4
γ3 − γ1

,

(3.11)

where γ1, γ3 and γ4 are from (2.3). The numbers γ1, γ3 and γ4 are approximated by rational
numbers aγ1, aγ3 and aγ4, respectively, as follows:

τ∗ < aγ1 < T, aγ1 ≤ γ1 ≤ aγ1 + ε,
aγ1 > aγ2 > ε, aγ2 ≥ γ2 ≥ aγ2 − ε,

T > aγ3 > aγ1 + ε, aγ3 ≥ γ3 ≥ aγ3 − ε,
aγ3 > aγ4 > aγ2,

aγ4 ≥ γ4 ≥ aγ4 − ε.

(3.12)

Define the approximation function ah as

ah(t) =

{
ac0 +

ac1t, t ∈ [0, aγ3),

0, t ∈ [aγ3, T ],
, t ∈ [0, T ],

ac1 =
aγ4

aγ3 − aγ1
, ac0 =

aγ1
aγ4

aγ3 − aγ1
.

(3.13)
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Similarly to the previous, we obtain

|h(t)− ah(t)| ≤ aγ3
vc1 +

vc0
def
= vh, t ∈ [0, T ],

|cr − acr| ≤ max
{
|acr − C r|, |acr − Cr|

} def
= vcr, r = 0, 1,

(3.14)

the intervals Cr = [C r, Cr] are the solutions of the interval system

C0 + C1 [
aγ1,

aγ1 + ε] = [aγ2 − ε, aγ2],

C0 + C1[
aγ3 − ε, aγ3] = [aγ4 − ε, aγ4].

Remark 3.3. It can easily be checked that the function ah is computable over the sets Ω and
I defined similarly to (3.10).

Next, consider the approximation of the function h from Section 2.2. We have the following cases:

• The function h is defined as follows:

h(t) =

{
0, t ∈ [0, γ3),

c0 + c1t, t ∈ [γ3, T ],
t ∈ [0, T ],

c1 =
γ4

γ3 − γ1
, c0 = − γ1γ4

γ3 − γ1
,

(3.15)

where γ1, γ3 and γ4 are from (2.12). The numbers γ1, γ3 and γ4 are approximated by rational
numbers aγ1, aγ3 and aγ4, respectively, such that

τ∗ < aγ3 < T, aγ3 − ε ≤ γ3 ≤ aγ3,

T > aγ1 > aγ3 + ε, aγ1 ≥ γ1 ≥ aγ1 − ε,
aγ3 > aγ4 > ε, aγ4 ≥ γ4 ≥ aγ4 − ε.

(3.16)

Denote by ah the approximation function

ah(t) =

{
0, t ∈ [0, aγ3),

c0 + c1t, t ∈ [aγ3, T ],
t ∈ [0, T ],

c1 =
aγ3

aγ3 − aγ1
, c0 = −

aγ1
aγ4

aγ3 − aγ1
.

(3.17)

We have
|h(t)− ah(t)| ≤ aγ1

vc1 +
vc0

def
= vh, t ∈ [0, T ],

|cr − acr| ≤ max
{
|acr − C r|, |acr − Cr|

} def
= vcr, r = 0, 1,

(3.18)

the intervals Cr = [C r, Cr] are the solutions of the interval system

C0 + C1[
aγ3 − ε, aγ3] = [aγ4 − ε, aγ4],

C0 + C1[
aγ3 − ε, aγ3] = 0.

Remark 3.4. The function ah is computable over the sets Ω and I defined as

Ω = {0, t1, t2, T}, I = {Iq}3q=1,

I0 = (−∞, 0), I1 = [0, t1], I2 = (t1, t2], I3 = (t2, T ],
(3.19)

where t1 = aγ3, t2 = aγ1.

• The function h is expressed as

h(t) =

{
0, t ∈ [0, γ3),

c0 + c1t, t ∈ [γ3, T ],
t ∈ [0, T ],

c1 =
γ2 − γ4

T − γ3
, c0 =

T γ4 − γ2γ3
T − γ3

,

(3.20)
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where γ2, γ3 and γ4 are from (2.14). The numbers γ2, γ3 and γ4 are approximated by the
rational numbers aγ2, aγ3 and aγ4 as follows:

τ∗ < aγ3 < T, aγ3 − ε ≤ γ3 ≤ aγ3,
aγ4 − ε > aγ2 > ε, aγ2 ≥ γ2 ≥ aγ2 − ε,

aγ3 > aγ4 > ε, aγ4 ≥ γ4 ≥ aγ4 − ε.

(3.21)

Denote by ah the approximation function

ah(t) =

{
0, t ∈ [0, aγ3),

c0 + c1t, t ∈ [aγ3, T ],
t ∈ [0, T ],

ac1 =
aγ2 −a γ4
T − aγ3

, ac0 =
T aγ4 − aγ2

aγ3
T − aγ3

.

(3.22)

Next, we obtain

|h(t)− ah(t)| ≤ aγ1
vc1 +

vc0
def
= vh, t ∈ [0, T ],

|cr − acr| ≤ max
{
|acr − C r|, |acr − Cr|

} def
= vcr, r = 0, 1,

(3.23)

the intervals Cr = [C r, Cr] are the solutions of the interval system

C0 + C1[
aγ3 − ε, aγ3] = [aγ4 − ε, aγ4],

C0 + C1T = [aγ2 − ε, aγ2].

Remark 3.5. The function ah is computable over the sets Ω and I given by

Ω = {0, aγ3, T}, I = {I0, I1, I2},
I0 = (−∞, 0), I1 = [0, aγ3], I2 = (aγ3, T ].

(3.24)

• The function h is defined by the equality

h(t) =


0, t ∈ [0, γ3),

c0 + c1t, t ∈ [γ3, γ1),

0, t ∈ [0, γ1, T ],

t ∈ [0, T ],

c1 =
γ2 − γ4

γ1 − γ3
, c0 =

γ1 γ4 − γ2γ3
γ1 − γ3

,

(3.25)

where γ1, γ2, γ3 and γ4 are from (2.16). The numbers γ1, γ2, γ3 and γ4 are approximated by
the rational numbers aγ1, aγ2, aγ3 and aγ4, respectively, as follows:

τ∗ < aγ3 < T, aγ3 − ε ≤ γ3 ≤ aγ3,

T > aγ1 > aγ3 + ε, aγ1 ≥ γ1 ≥ aγ1 − ε,
aγ4 − ε > aγ2 > ε, aγ2 ≥ γ2 ≥ aγ2 − ε,

aγ3 > aγ4 > ε, aγ4 ≥ γ4 ≥ aγ4 − ε.

(3.26)

Define the approximation function ah as

ah(t) =


0, t ∈ [0, aγ3),

c0 + c1t, t ∈ [aγ3,
aγ1),

0, t ∈ [0, aγ1, T ],

t ∈ [0, T ],

ac1 =
aγ2 −a γ4
aγ1 − aγ3

, ac0 =
aγ1

aγ4 − aγ2
aγ3

aγ1 − aγ3
.

(3.27)
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Thus we obtain

|h(t)− ah(t)| ≤ aγ1
vc1 +

vc0
def
= vh, t ∈ [0, T ],

|cr − acr| ≤ max
{
|acr − C r|, |acr − Cr|

} def
= vcr, r = 0, 1,

(3.28)

the intervals Cr = [C r, Cr] are the solutions of the interval system

C0 + C1[
aγ3 − ε, aγ3] = [aγ4 − ε, aγ4],

C0 + C1[
aγ1 − ε, aγ1] = [aγ2 − ε, aγ2].

Remark 3.6. The function ah is computable over the sets Ω and I given by

Ω = {0, t1, t2, T}, I = {Iq}3q=1,

I0 = (−∞, 0), I1 = [0, t1], I2 = (t1, t2], I3 = (t2, T ],
(3.29)

where t1 = aγ3, t2 = aγ1.

3.2 Construction of computable operators
Let L = col{L1, . . . ,Ln} : ACn → Ln be the linear operator given by the equality

(Lix)(t) = ẋi(t) +

n∑
j=1

nij∑
k=1

pkij(t)xj [h
k
ij(t)], t ∈ [0, T ],

xi(ξ) = 0, ξ < 0,

(3.30)

where pkij ∈ L1, hk
ij are from (3.1), (3.6) and (3.11), i = 1, . . . , n. Construct the corresponding

approximating operator aL = col{aL1, . . . ,
aLn} : ACn → Ln as follows:

(aLix)(t) ≡ ẋi(t) +

n∑
j=1

nij∑
k=1

apkij(t)xj [
ahk

ij(t)], t ∈ [0, T ],

xi(ξ) = 0, ξ < 0,

(3.31)

here, the functions apkij are from (1.6), hk
ij are from (3.3), (3.8) and (3.13), i = 1, . . . , n. Due to

Theorem 2.1, there exist a set Ω (2.2) with rational elements and a set I (2.3) such that all functions
ahk

ij are computable over Ω and I. This implies that the operator aL is computable over Ω and I, too.
Define the operator L = col{L1, . . . ,Ln} : ACn → Ln as follows:

(Lix)(t) ≡ ẋi(t) +

n∑
j=1

nij∑
k=1

pkij(t)xj [h
k
ij(t)], t ∈ [0, T ],

xi(ξ) = 0, ξ < 0,

(3.32)

where pkij ∈ L1, hk
ij are from (3.15), (3.20) and (3.25), i = 1, . . . , n. The corresponding approximating

operator aL = col{aL1, . . . ,
aLn} : ACn → Ln has the form

(aLix)(t) ≡ ẋi(t) +

n∑
j=1

nij∑
k=1

apkij(t)xj [
ahk

ij(t)], t ∈ [0, T ],

xi(ξ) = 0, ξ < 0,

(3.33)

here, the functions apkij are from (1.6), hk
ij are from (3.17), (3.22) and (3.27), i = 1, . . . , n. By virtue

of Theorem 2.2, there exist the sets Ω (2.2) and I (2.3) such that all functions ahk
ij are computable

over Ω and I. This implies that the operator aL is computable over Ω and I.
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3.3 Illustrative example
Let us give an example of application of the proposed way of constructing a computable operator for
the study of the solvability of one boundary value problem for delay differential equations. Consider
the following equation:

ẍ(t) +

4∑
i=1

api(t)x[
ahi(t)] = f(t), t ∈ [0, 1],

x(ξ) = 0, ξ < 0,

(3.34)

where f ∈ L1,
ap1(t) = −3t+

11

4
, ah1(t) = t− 1

4
,

ap2(t) = 3t2 − 33

8
t+

109

32
, ah2(t) =

3

4
t− 3

8
,

ap3(t) =
5

3
t, ah3(t) = t− 3

4
,

ap4(t) = −5t+
3

2
, ah4(t) =

7

2
t− 21

8
,

(3.35)

and the set of boundary conditions

x(0) = α, x(1) = β, x(τ1) = α, x(τ2) = β,

x(0) = α, ẋ(1) = β, x(τ1) = α, ẋ(τ2) = β,

ẋ(0) = α, x(1) = β, ẋ(τ1) = α, x(τ2) = β,

ẋ(0) = α, ẋ(1) = β, ẋ(τ1) = α, ẋ(τ2) = β,

(3.36)

here, α, β ∈ R, τ1 = 2
10 , τ2 = 7

10 . By means of a reliable computing experiment, it is proved that all
boundary value problems (3.35), (3.36) are uniquely solvable. In addition, for the equation

ẍ(t) +

4∑
i=1

pi(t)x[hi(t)] = f(t), t ∈ [0, 1],

x(ξ) = 0, ξ < 0,

(3.37)

where pi ∈ L1, hi has form (3.1), it is proved that all boundary value problems (3.37), (3.36) are
likewise uniquely solvable if the following inequalities are fulfilled:

∥pi − api∥L1 ≤ 10−10, |hi(t)− ahi(t)| ≤ 10−10, t ∈ [0, 1]. (3.38)
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