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Abstract. This paper is devoted to the problem of asymptotic equivalence of n-th order differen-
tial equations with exponentially equivalent right-hand sides. With the help of the obtained result
asymptotic behavior of solutions to perturbed differential equations is described.
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1 Introduction

We study the problem of asymptotic equivalence of the equations

y ™ (z) + i aj(2)y (@) + p(a)ly ()" sgny(x) = f(x) (1.1)
§=0

and

+Z% +pla)|=(2)|" sgn 2(x) = 0 (12)

withn > 2, k > 1, and continuous functions p(z), f(z) and a;(z). Equation (1.2) is a so-called Emden—
Fowler type differential equation. It was considered from different points of view (see, e.g., [3,12] and
the references there). In particular, the asymptotic behavior of its solutions vanishing at infinity is
described (see also [2,4,13]). So, if an asymptotic equivalence of equations (1.1) and (1.2) exists, it
is possible to describe the asymptotic behavior of vanishing at infinity solutions to equation (1.1),
too. Previous results are formulated in [1,5-7,11]. The asymptotic equivalence of ordinary differential
equations and their systems can be useful to investigate some problems for partial differential equations

(see, e.g., [10]). Note that the notion of asymptotic equivalence can be used in different senses
(ct. [8,9,14-19]).
Hereafter we denote |y|* sgny by [y]]jE

2 Asymptotic equivalence of nonlinear perturbed
differential equations

Theorem 2.1. Let ag,...,a,_1, p, f, and g be continuous functions defined in a neighborhood of co.
Suppose p(z), f(x) and g(x) are bounded while ag, . ..,an,—1 satisfy the inequalities

/ac"*jfl\aj(m)\dx<oo7 je{0,...,n—1}. (2.1)
zo

If y is a solution to the equation
)+ Z a;(2)y? (@) + p() [y(2)]L = f(x)e (2.2)

withn > 2, k>1,v >0 and y(z) — 0 as x — +oo, then there exists a unique solution z to the

equation
n—1

XM (@) + Y aj(@)29) (@) + pl) [2(2))h = g(x) e " (2.3)

Jj=0
such that |z(z) — y(x)] = O(e™ ") as © — +o0.
Lemma 2.1. Any linear differential operator

n—1
Ly y™+ Z ajy(j) (2.4)
§=0

with all continuous functions a;(x) satisfying (2.1) can be represented in a neighbourhood of +00 as
the composition operator
L=Dy=5byBio---0B,,

where b = (bg,by,...,by), all B;, j = 1,...,n, are the first-order operators u — (bju) and each b;,
§=0,...,n, 35 a C7 function satisfying at infinity the following conditions:
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(i) bj(z) =1,

(i) 20 (x) 0 for alli e {1,...,5 1},

o0 .
(iii) f $i71|b§»z)(x)| dx < oo foralli e {1,...,7} and some xy € R.
Zo

Now, for b = (bg, b1, ...,b,) and j € {0,...,n}, put
b—j=(bj,...,bn).
Note that if a tuple b satisfies the conditions from Lemma 2.1, then so does the tuple b — j.

Lemma 2.2. Let b= (bg,b1,...,by,) satisfy the conditions from Lemma 2.1. If a function y satisfies
at infinity both y — 0 and Dy(y) — 0, then the same is true for all functions Dy_;(y), 0 < j < n.

Proof. Suppose the contrary, i.e., that for some j € {1,...,n—1}, the function Dy_;(y) does not tend
to zero. Consider the greatest of those j.

Since b; — 1 as x — oo for all j € {0,...,n}, we can assume the inequality 3 < b; < 57! to hold
for all those j and for some common g € (0;1). Without loss of generality, we can also assume that
for some ¢ > 0 there exists a sequence of points x; — oo such that Dy_;(y)(z;) > €. Let 2 be the
closest point to the right of z; such that Dy_;(y)(z}) = Se. Such a point exists. Indeed, otherwise
Dy—j(y) = bj(Dy—¢j+1)(y)) > Be on [;;00), whence

Dy—(j+1) ()(x) = Di—(j+1) () (1) +/W

> Dy_(j41)(y) (i) + B%e(x — x;) = 00 as T — o0,

i Dy_(j41)(y)(s) ds
(o)

— 00,
z;

Dy (n-1)(y)(s) ds
bn_l(S)

— 00,

!
%

which contradicts the assumption of Lemma 2.2 that y — 0. So, Dy—;(y) > e on [z;; 2
the proof we need the following

]. To complete

Lemma 2.3. Suppose a tuple b = (bo,b1,...,b,) satisfies the conditions from Lemma 2.1 and a
function y satisfies, on a segment I of length A, the inequality |Dy—;(y)| > W with some j €
{1,...,n} and a constant W > 0. Then there exists a segment I' C I of length 4="A such that
ly| > (297" )" LIW AT on I'.

Proof. Still assuming 8 < b; < 87! to hold for all j € {0,...,n} and for some common 3 € (0;1), we
prove the lemma by reverse induction on j. For j = n, the statement is trivial since if |Dp_, (y)| =
|bry| > W, then |y| > SW.

Suppose it is proved for some j > 1 and on a segment I of length A the inequality |Dy_;_1)(y)| >
W > 0 holds.

Since the derivative of the function Dy_;(y) equals Dy_(;_1)(y)/bj—1 and hence does not vanish
on I, the function itself is monotone there and therefore can vanish at most at a single point.

If both Dy_;(y) and Dy_(;_1)(y) are non-negative at the middle point c of the segment I, then on
the last quarter of I we have

S BWA

Dy—j(y)(z) 2 Dy—j(y)(c) + BW - (z — ¢) 2 —— > 0.
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For other sign combinations of Dy_;(y)(c) and Dy_(;_1)(y)(c) we can prove by the same way the
inequality
BWA
D)) = W' = P2 50
to hold on either the first or last quarter I’ C I of length A" = A/4. _
Now, according to the induction hypothesis, there exists a segment I"" C I’ of length 47" A’ =

40-1=7 A where the function y satisfies
BW A=
— ﬁ(gj*n*Q ﬁ)nJrl*j ARG = (2(]’*1)*” l@)"+1*(j*1)WA"*(j*1).

‘y| > (2j7n B)n#»l*jW/(A/)nfj _ (2j7n B)nJrl*j .

So, the statement for (j — 1) and Lemma 2.3 are proved. O

Now we continue proving Lemma 2.2.

We have a sequence of segments [z;;x}] such that Dy_;(y) > Be on each of them as well as
Dy_;j(y)(x;) > € and Dy_;(y)(z}) = Be on their ends.

By Lemma 2.3, there exist the segments [z};z}’] C [z;; 2}] with the inequality

[yl > (277" B)" 1 Be(a — i)"Y

holding on each of them.

Since by assumption y — 0, the length of the segments [z;;z}] must also tend to zero. Now we
can choose a sequence of points ¢; € [z;; x}] with

Dy () (7)) = Do—j(y)(w:) | €= Pe

Tk — x5 Tl -y

| Dy—j—1) () (ci)| = bj—1(cq) — 0.

This contradicts the choice of j as the smallest of those with Dj_;(y) non-tending to zero. So,
Lemma 2.2 is proved. O

Corollary 2.1. Under the conditions of Theorem 2.1, a function y is a solution to equation (2.2)
tending to zero as x — +oo if and only if

_ k
by = (Ja-r 00 o) [e 7 f () = p() [y(@)]} |, (2.5)
where the operators J; take each sufficiently rapidly decreasing continuous function ¢ to the vanishing
at infinity primitive function of ¢/b;:

oo

Hla) = - | 5 (é)) d.

x

Proof. Under the conditions of Theorem 2.1, equation (2.2) can be written, in a neighborhood of
+00, as

Dy(y)(2) = 7" f(2) = pla) [y(@))} - (26)
So, if a solution y to (2.6) tends to 0 as & — oo, then so does Dy(y). By Lemma 2.2, the same is true
for all functions Dy—;(y), 0 < j < n, which ensures that we can obtain (2.5) from (2.6) by successively
(for j =0,...,n — 1) applying the formula

Dy (j+1)(y) = Jj[Dv—;(y)], (2.7)

which is true whenever its left-hand side tends to zero at infinity.

For the converse statement, first, note that any function satisfying (2.5) tends to 0 due to the
definition of the operators J;. To prove that such a function satisfies (2.6), we also successively (for
j=mn-—1,...,0) apply the same formula (2.7) to equation (2.5) with its left-hand side treated as
Dy, (y), whereafter take into account that functions having equal images under J; must be equal to
each other. O
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Proof of Theorem 2.1. Suppose that y is a vanishing at infinity solution to equation (2.2). Let M > 0
be a common upper bound for |f|, |g|, and |p| on their domains and

3M
H = ﬂnJrl ,yn .
Consider the space H of all continuous functions 7 : [z, +00) — [—H; H], where x, is a sufficiently

large positive constant such that all the functions y(z), f(z), g(z), and p(x) are defined on [z, +00)
and, moreover, the values e 7%+ and Y = sup{|y(z)| : = > .} are sufficiently small to ensure

(2.8)

k(Y + He 7o)k < g=1, (2.9)

Now we define an operator R : H — C[z.; 00) by the formula

R(m)(@) = p(a) (@))% = [y(@) + n(@)e 1L ) + e (g(w) = f(a).
Taking into account the inequality
[fal’s = b} | < kmax {Jal, o]} [a — b]
as well as (2.8) and (2.9), we obtain, for € H, that
|R(n)(x)| < ME(Y + He "™ )*"1He ™™ 4 2Me ™" < MH 'He ™ * 4 2Me™ " = 3Me ",
This allows us to define an operator F : H — C[z,;00) by

O (1 00 Jy o R)i)(x)
by (2)

and to note that |F(n)(z)| < e’®y "B " 13Me™7® = H for all n € H, i.e., F(H) C H. Similar
estimates show that F' is a contraction. Indeed, suppose 11,72 € H and

F(n)(z) = (2.10)

§ = sup {|m () —na(2)] : = >a.}.

Then s
e
|R(m)(z) — R(p)(2)| < ME(Y + He 7®)F 15777 < %

for all x > x,, and therefore

NG §
[Em) @) = F ) (@)| < i = 3

So, F' is a contraction and there exists a unique n € H such that F(n) = n. Taking into account
(2.10), this can be written as

¢ (Jnmr 00 Jy o R)n)(x) = bu(2) n(x)

or, taking into account the definition of R and putting z =y + ne~ 7", as

(Ju_10---0.Jp) [p' (W —[21E) + e (g - f)] =bn(z —y).

Since y is a vanishing at infinity solution to equation (2.2), we can use Corollary 2.1 to remove in the
last equality all terms with y and f:

(Jn—10---0do)[e g —p [z]i] =b,z.

Now the same Corollary 2.1 ensures z to be a solution to equation (2.3). By definition, z also satisfies
|z(z) — y(z)| = O(e™7™) as * — oo. Suppose there exist two functions z;(z) and z3(z) defined on
some half-line [¢; 00), ¢ > z., and satisfying the statement of Theorem 2.1.



On Asymptotic Equivalence of n-th Order Nonlinear Differential Equations 23

Then D = sup{ e7*|z1(x) — z2(x)| : = > ¢} < co. Moreover, both z1 () and z2(z) tend to zero as
x — +00 and therefore satisfy

buzj = (Ja—ro---0Jo)[e g —plzli], j=1.2
So, putting
Z, = sup { max {|z1 ()|, |z2(z)|} : = > c},
we obtain - -
MkZF= De=7* MkZ5=
e |z1(x) — zo(z)| < 7 - Bh%e € , whence D < ——<—.

Bn+1fyn Bn+1,-yn
Now, choosing c large enough, we can make Z,. to become sufficiently small so that the last inequality
holds only if D = 0. So, the uniqueness is proved. O

Corollary 2.2. Suppose that the function f(x) in equation (1.1) is continuous and satisfies the
condition
lf(z)] <Ce™™*, C >0, v>0, (2.11)

p(x) is a bounded continuous function, and ag,...,a,—1 are continuous functions satisfying (2.1).
Then for any solution y(x) to equation (1.1) tending to zero as x — oo, there exists a solution
z(x) to equation (1.2) such that

ly(z) — z(z)| = O(e™7), x— oc. (2.12)

Similarly, for any solution z(x) to equation (1.2) tending to zero as x — o0, there exists a solution
y(x) to equation (1.1) satisfying (2.12).
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