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Abstract. It was constructed examples of even-dimensional differential systems having, in a some
sense, contrary stability and instability properties of different types: Lyapunov, Perron and upper-
limit. Namely, all nonzero solutions of these systems tend to zero at infinity but nevertheless move
away at the fixed distance from the origin at least once. In addition, these systems have a zero first
approximation along the zero solution.
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რეზიუმე. აგებულია ლუწგანზომილებიანი დიფერენციალური სისტემების მაგალითები, რომ-
ლებსაც, გარკვეული გაგებით, სხვადასხვა ტიპის (ლიაპუნოვის, პერონისა და ზედა ზღვრის
აზრით) სტაბილურობისა და არასტაბილურობის საპირისპირო თვისებები აქვს. კერძოდ, ამ
სისტემების ყველა არანულოვანი ამონახსნი უსასრულობაში ნულისკენ მიისწრაფვის, მაგრამ
ერთხელ მაინც შორდება სათავეს ფიქსირებულ მანძილზე. გარდა ამისა, ამ სისტემებს აქვს
ნულოვანი პირველი მიახლოება ნულოვანი ამონახსნის გასწვრივ.
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1 Introduction
The present paper deals with the study of such notions of qualitative theory to differential equations
as Lyapunov stability and recently introduced Perron [4] and upper-limit [7] stability. This paper is a
logical continuation of the papers [1–3] by the present author, where examples of differential systems
are constructed that, on the one hand, give some possible relationships and connections between
various types of stability and instability and, on the other hand, show that such relationships can be
realized in systems with certain special properties.

In [5], I. N. Sergeev constructed an example of a system to differential equations that is completely
unstable in the sense of Lyapunov and Perron and has a nonzero solution tending to zero at infinity.
The first approximation of the system constructed in [5] along the zero solution is unbounded on the
time semi-axis R+.

• The paper [1] provides an example of a system whose solutions have the same asymptotic
properties as in [5], but the first approximation at zero is bounded on R+.

• This result was strengthened in [2], where it was shown that such a system may have an identi-
cally zero first approximation along the zero solution.

• In [3], the result of [2] was strengthened by the construction of a two-dimensional differential
system having both Perron and upper-limit: on the one hand, complete instability (therefore
and Lyapunov global instability) and, on the other hand, even massive partial stability.

The following reinforcement of the above results consists in asserting the existence of systems
defined in even-dimensional spaces Rn of arbitrarily high dimension that simultaneously possess the
following properties:

– Lyapunov global instability (which was also presented in examples from [1–3]);
– Perron and upper-limit global stability (unlike all the examples given above).

2 Definitions
For a number n ∈ N and a domain G in the Euclidean space Rn (with the norm | · |) containing the
origin, consider a system

ẋ = f(t, x), t ∈ R+ ≡ [0,+∞), x ∈ G, (2.1)

with a right-hand side f : R+ ×G → Rn satisfying the conditions

f, f ′
x ∈ C(R+ ×G), f(t, 0) = 0, t ∈ R+,

so that the system has a zero solution. We denote the set of all nonextendable nonzero solutions of
system (2.1) by S∗(f) and the subset of solutions x with initial condition satisfying |x(0)| < δ by
Sδ(f) ⊂ S∗(f).

Definition 2.1. We say that system (2.1) (more precisely, its zero solution, which we do not mention
in the sequel for brevity) has the Perron or, respectively, the upper-limit

(1) stability if for each ε > 0 there exists a δ > 0 such that any solution x ∈ Sδ(f) satisfies the
condition

lim
t→+∞

|x(t)| < ε or, respectively, lim
t→+∞

|x(t)| < ε; (2.2)

(2) instability if there is no stability, namely, if there exists an ε > 0 such that for any δ > 0 some
solution x ∈ Sδ(f) does not satisfy condition (2.2);

(3) global instability if for some ε > 0 no solution x ∈ S∗(f) satisfies condition (2.2);

(4) global stability if any solution x ∈ S∗(f) satisfies the condition

lim
t→+∞

|x(t)| = 0 or, respectively, lim
t→+∞

|x(t)| = 0. (2.3)
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Definition 2.2. Let us compare to each property introduced in Definition 1, its Lyapunov analogue,
namely:

(1) stability, instability and global instability are obtained by repeating, respectively, the descriptions
from steps (1)–(3) of Definition 2.1 with replacement in them condition (2.2) by the condition

sup
t∈R+

|x(t)| < ε; (2.4)

(2) global stability takes place if system (2.1) has the Lyapunov stability and any solution x ∈ S∗(f)
satisfies the second condition of (2.3).

We point out that in these Definitions, conditions (2.2)–(2.4) are considered not satisfied, in
particular, even for the case where a solution x is not defined on the entire semi-axis R+, i.e., if the
phase curve corresponding to this solution reaches the boundary of the phase domain G in a finite
time (for the theorem on the extension of solutions, see, e.g., [6, Theorem 23]).

Here, we have not mentioned some varieties of Perron and upper-limit properties (as well as their
Lyapunov analogue) — no less interesting [7, 9], but not studied in this paper – such as asymptotic
stability or instability, partial stability, massive partial stability, complete instability, particular insta-
bility, and also have not indicated which of them are massive directly by definition and which ones
are dotty, but allow the reinforcement to be massive.

3 Lemmas and theorem
The main result of this paper is that we prove the existence of even-dimensional differential systems
in higher-dimensional Euclidean spaces such that, first, all nonzero solutions to these systems tend to
zero in the norm as t → +∞, so that these systems have both Perron and upper-limit global stability;
second, all nonzero solutions move away at the fixed distance from the origin at least once, so that
these systems, nevertheless, have global Lyapunov instability.

The systems the existence of which is asserted in the following theorem are non-autonomous and
non-one-dimensional, and not accidentally:

– autonomous systems with such properties do not exist [8], since the Lyapunov global instability
in the autonomous case entails both Perron and upper-limit global instability;

– such one-dimensional systems do not exist [7], because in the one-dimensional case the upper-
limit global stability entails Lyapunov global stability, as well.

Theorem. For any number n = 2, 4, 6, . . . and G = Rn, there exists system (2.1) with a right-hand
side satisfying the condition

f ′
x(t, 0) = 0, t ∈ R+,

that possesses the following two properties:

(1) for each solution x of system (2.1), the following equality holds:

lim
t→+∞

|x(t)| = 0;

(2) for each nonzero solution x of system (2.1), the following inequality holds:

sup
t∈R+

|x(t)| > 1.

Remark. The existence of systems with all the properties of the theorem in spaces of arbitrary odd
dimensions is currently an open question.

To the proof of the theorem, we preface it with two technical lemmas.
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Lemma 3.1. The function θ1 : (0,+∞)× R → R given by the conditions

θ1(ρ, φ) =



φ, 0 < ρ ⩽ 1;

φ+
π

2

( ρ∫
1

χ
1
(τ) dτ

)( 2∫
1

χ
1
(τ) dτ

)−1

, 1 < ρ < 2;

φ+
π

2
, ρ ⩾ 2,

(3.1)

where

χ1(v) =

{
0, v ⩽ 1 or v ⩾ 2;

e
1

(v−1)(v−2) , 1 < v < 2,

has the following properties:

(1) for each fixed value of the variable ρ ∈ (0,+∞), the function θ1(ρ, · ) is a bijection from the line
R into itself and satisfies the inequality

∂θ1
∂φ

(ρ, φ) > 0, φ ∈ R;

(2) it is an infinitely differentiable function in a set of variables.

Lemma 3.2. The function θ2 : R+ × R → R given by the conditions

θ2(t, u) =



u, u ⩽ 1

3 + t
;

u−
u∫

1
3+t

χ
2
(t, τ) dτ,

1

3 + t
< u <

1

2 + t
;

1

1 + t
u+

1

2 + t

(
1− 1

1 + t

)
− Σ(t), u ⩾ 1

2 + t
,

(3.2)

where

χ
2
(t, v) =



0, v ⩽ 1

3 + t
;

σ(t)

v∫
1

3+t

e
1

(τ− 1
3+t

)(τ− 1
2+t

) dτ,
1

3 + t
< v <

1

2 + t
;

t

1 + t
, v ⩾ 1

2 + t
,

(3.3)

σ(t) =
t

1 + t

( 1
2+t∫
1

3+t

e
1

(τ− 1
3+t

)(τ− 1
2+t

) dτ

)−1

, Σ(t) =

1
2+t∫
1

3+t

χ
2
(t, τ) dτ, t ∈ R+, (3.4)

has the following properties:

(1) for each fixed value of moment t ∈ R+, the function θ2(t, · ) is a bijection from the line R into
itself and satisfies the inequality

∂θ2
∂u

(t, u) > 0, u ∈ R;

(2) it is an infinitely differentiable function in a set of variables.
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4 Proofs
4.1 Lemma 3.1
Let us first show that the function θ1( · , φ) is a C∞-smooth function of its argument at each fixed
value of the variable φ ∈ R. To do this, first note that there is a constant (and hence a smooth
function) on the intervals (0, 1) and (2,+∞). Inside the interval (1, 2), there is also a smoothness by
the construction, so it remains to check it at two points: 1 and 2.

• The validity of the equalities

θ1(1 + 0, φ) = φ+
π

2

( 1+0∫
1

χ1(τ) dτ

)( 2∫
1

χ1(τ) dτ

)−1

= φ = θ1(1− 0, φ)

and

θ1(2− 0, φ) = φ+
π

2

( 2∫
1

χ
1
(τ) dτ

)( 2∫
1

χ
1
(τ) dτ

)−1

= φ+
π

2
= θ1(2 + 0, φ)

proves a continuity at the points 1 and 2, respectively.

• Further, the validity of the equalities

θ1
′
ρ(1 + 0, φ) =

π

2
χ1(1 + 0)

( 2∫
1

χ1(τ) dτ

)−1

= 0 = θ1
′
ρ(1− 0, φ)

and

θ1
′
ρ(2 + 0, φ) = 0 =

π

2
χ

1
(2− 0)

( 2∫
1

χ
1
(τ) dτ

)−1

= θ1
′
ρ(2− 0, φ)

proves a continuous differentiability at the points 1 and 2, respectively.

Now, let us note that the equalities

χ(m)
1

(1) = χ(m)
1

(2) = 0, m = 0, 1, 2, . . . ,

hold, due to which and equalities (3.1), as well as a smoothness of the function χ
1
∈ C∞(R), the

function θ1( · , φ) is an infinitely differentiable function for each fixed value of variable φ ∈ R. It
follows from this and from equalities (3.1) that the function θ1 has continuous in the set of variables
(ρ, φ) derivatives of all orders on ρ and φ everywhere on the Cartesian product (0,+∞) × R, so the
property (2) of this lemma is valid.

Finally, we note that for every fixed value of the variable ρ ∈ (0,+∞), the function θ1(ρ, · ) is
linear everywhere on the line R, and therefore it is a monotonic (increasing) and one-to-one function
from the line R into itself. The property (1) follows from the above reasoning.

4.2 Lemma 3.2
Let us first show that the function θ2(t, · ) is a C∞-smooth function of its argument at every fixed
value of a moment t ∈ R+. Indeed, this is a linear (and hence smooth) function everywhere on the rays
(−∞, 1

3+t ] and [ 1
2+t ,+∞). In the interval ( 1

3+t ,
1

2+t ), there is also a smoothness by the construction,
so it remains to check it at the two points: 1

3+t and 1
2+t .

• The validity of the equalities

θ2

(
t,

1

3 + t
+ 0

)
=

1

3 + t
−

1
3+t+0∫
1

3+t

χ
2
(t, τ) dτ =

1

3 + t
= θ2

(
t,

1

3 + t
− 0

)
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and

θ2

(
t,

1

2 + t
− 0

)
=

1

2 + t
−

1
2+t∫
1

3+t

χ
2
(t, τ) dτ =

1

2 + t
− Σ(t) = θ2

(
t,

1

2 + t
+ 0

)
proves a continuity at the points 1

3+t and 1
2+t , respectively.

• In the same way, the validity of the equalities

θ2
′
u

(
t,

1

3 + t
+ 0

)
= 1− χ

2
(t, τ)

∣∣∣
τ= 1

3+t+0
= 1 = θ2

′
u

(
t,

1

3 + t
− 0

)
and

θ2
′
u

(
t,

1

2 + t
− 0

)
= 1− χ2(t, τ)

∣∣∣
τ= 1

2+t−0

= 1− σ(t)

( 1
2+t∫
1

3+t

e
1

(τ− 1
3+t

)(τ− 1
2+t

) dτ

)
= 1− t

1 + t
=

1

1 + t
= θ2

′
u

(
t,

1

2 + t
+ 0

)

proves a continuous differentiability at the points 1
3+t and 1

2+t , respectively.

Now, note that due to an infinite differentiability of the function χ
2

(which follows from the
equalities (3.3) and (3.4)), as well as the following equalities

∂mχ2

∂vm

(
t,

1

3 + t

)
=

∂mχ2

∂vm

(
t,

1

2 + t

)
= 0, t ∈ R+, m = 1, 2, 3, . . . ,

the function θ2(t, · ) is an infinitely differentiable function of its argument for each fixed moment
t ∈ R+. Let us also show that it is strictly monotone (increasing) and one-to-one function from the
line R into itself.

Indeed, due to the validity for the non-negative function χ
2

of the estimate

χ2(t, u) = σ(t)

( u∫
1

3+t

e
1

(τ− 1
3+t

)(τ− 1
2+t

) dτ

)
⩽ t

1 + t
= 1− 1

1 + t
< 1, t ∈ R+, u ∈

( 1

3 + t
,

1

2 + t

)
,

for the derivative

θ2
′
u(t, u) =


1, u ⩽ 1

3 + t
;

1− χ2(t, u),
1

3 + t
< u <

1

2 + t
;

1

1 + t
, u ⩾ 1

2 + t
,

the inequality
θ2
′
u(t, u) > 0, t ∈ R+, u ∈ R,

holds. It follows from this fact that the function θ2(t, · ) is monotonous and injective.
Further, note that for a fixed value of a moment t ∈ R+, the relations

lim
u→−∞

θ2(t, u) = −∞ and lim
u→+∞

θ2(t, u) = +∞

are satisfied, by virtue of which and a continuity of the function θ2(t, · ) ∈ C∞(R) we obtain that
θ2(t, · ) takes all intermediate values from −∞ up to +∞, i.e., it is a surjective mapping from the line
R into itself. Hence property (1) of lemma is valid.

It remains to note that, due to the previously proved smoothness of the function θ2(t, · ) ∈ C∞(R),
as well as equalities (3.2)–(3.4), the function θ2 has continuous in the set of variables (t, u) derivatives
of all orders for t and u everywhere on the Cartesian product R+ × R, whence the property (2)
follows.
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4.3 Theorem
Let us construct a system described in the theorem in four steps.

I. On a plane with coordinates x1, x2, we introduce the polar coordinates ρ, φ (ρ ⩾ 0, φ ∈ R):

x1 = ρ cosφ, x2 = ρ sinφ, (4.1)

and consider the autonomous two-dimensional system(
ρ̇
φ̇

)
= ρ2

(
2− ρ

sin2 φ+ χ(φ)

)
, ρ2 ≡ x2

1 + x2
2, x ≡ (x1, x2)

T ∈ R2, (4.2)

where

χ(φ) =

{
cos2 φ, cosφ < 0;

0, cosφ ⩾ 0.

Equality (4.2) determines a vector field in the area (0,+∞) × R of the variables (ρ, φ), which
can be transferred to the punctured plane R2 \ {0} of the variables (x1, x2) with the help of the
local diffeomorphism given by equalities (4.1). The resulting field can be continuously extended to
the origin by zero, and the extended field is continuously differentiable at the origin and has a zero
linear approximation due to a presence of the multiplier ρ2 in a right-hand side of the system. The
above-mentioned implies that system (4.2) admits a zero solution. This means that it is a system of
the form (2.1).

The first equation of system (4.2) determines a dynamical system on a line (more exactly, on the
half-line R+, since ρ ⩾ 0) having two fixed points 0 and 2. It is obvious that if ρ(0) is not equal to 0
and 2, then ρ(t) → 2 as t → +∞.
A. Let us first consider all nonzero solutions of this system satisfying the condition ρ(0) < 2. There
are two types of such solutions.
Type 1. For solutions x satisfying the initial condition φ(0) = 0, the relations

φ(t) = 0, t ∈ R+, ρ(t) → 2 as t → +∞ (4.3)

are valid.
Type 2. Let us consider the solutions satisfying the condition φ(0) ̸= 0. We note that the angular
coordinate φ(t) of each such solution x to system (4.2) increases as t → +∞, so at some moment
t > 0, it necessarily enters the area (4th quarter inside the circle of radius 2)

V •
4;2 ≡

{
x ∈ R2 | x2

1 + x2
2 < 4, x1 > 0, x2 < 0

}
,

in which the function χ is zero everywhere. In this area, system (4.2) takes the following form:(
ρ̇
φ̇

)
= ρ2

(
2− ρ
sin2 φ

)
, (4.4)

consequently, for the solutions under consideration the following relations are satisfied:

φ(t) → 2π, ρ(t) → 2 as t → +∞. (4.5)

B. Let us consider the solutions satisfying the condition ρ(0) > 2. There are two types of such solutions
to system (4.2).
Type 3. For solutions x satisfying the initial condition φ(0) = 0, relations (4.3) are valid.
Type 4. Let us consider the solutions satisfying the condition φ(0) ̸= 0. We note that the angular
coordinate φ(t) of each such solution x to system (4.2) increases as t → +∞, so at some moment
t > 0, it necessarily enters the area (4th quarter outside the circle of radius 2)

V ◦
4;2 ≡

{
x ∈ R2 | x2

1 + x2
2 > 4, x1 > 0, x2 < 0

}
,



An Example of Contrasting Combination to Stability and Instability Properties in Even-Dimensional Spaces 33

in which the function χ is zero everywhere. In this area, system (4.2) takes form (4.4), therefore, for
solutions under consideration relations, (4.5) are satisfied.
C. Let us now consider the solutions satisfying the initial condition ρ(0) = 2. Such solutions may also
be of two types.
Type 5. The point e1 = (2, 0)T is singular for system under consideration (4.2) and, as is shown in
items A and B, represents the interior and exterior attraction point of a circle of radius 2.
Type 6. Let us consider the solutions x satisfying the condition φ(0) ̸= 0. The angular coordinate
φ(t) of each solution to this type satisfies the relation φ(t) → 2π as t → +∞, so such solutions, like
all other nonzero solutions of system (4.2), are asymptotically attracted to the singular point e1 as
t → +∞.

II. Let us make in system (4.2) an autonomous replacement of the coordinates given by the equalities{
ϱ = ρ,

ϕ = θ1(ρ, φ),
(4.6)

where the function θ1 is given by equalities (3.1).
It follows from Lemma 3.1 that for every fixed value of the variable ρ ∈ (0,+∞) there exists an

inverse function to the function θ1(ρ, · ), which, if we consider it as a function of two arguments ρ and
ϕ, is infinitely differentiable on the Cartesian product (0,+∞) × R. It also should be noted that for
0 < ρ ⩽ 1, we have

θ1(ρ, φ) = φ, (4.7)
therefore, the vector field obtained by replacing (4.6) with a local diffeomorphism given by the equal-
ities (

y1
y2

)
=

(
ϱ cosϕ
ϱ sinϕ

)
, ϱ ≡ y21 + y22 , (4.8)

is transferred to the punctured plane R2 \ {0} of the coordinates (y1, y2), is predetermined in a
continuously differentiable way to the origin by zero, and the system thus obtained, determining this
field, also has a zero linear approximation along the zero solution due to the fact that the same
property, as proven earlier, system (4.2) has.

So, an autonomous differential system with zero solution is constructed as

ẏ = f1(y), y ≡ (y1, y2)
T ∈ R2, (4.9)

with a right-hand side f1 : R2 → R2 satisfying the conditions

f1, f1
′
y ∈ C(R2), f1(0) = 0, f1

′
y(0) = 0,

a qualitative behaviour of whose solutions in a circular 1-circle of the origin is exactly the same as
those of system (4.2) has. Let us show now that for all nonzero solutions y of the constructed system
(4.9), the relations

lim
t→+∞

y1(t) = 0 and lim
t→+∞

y2(t) = 2 (4.10)

are valid.
Indeed, according to the above proof, the singular point e1 is an attraction point of the whole

punctured plane R2 \{0} in the variables (x1, x2) for system (4.2). Therefore, by virtue of the equality
θ1(2, 0) = π

2 and equalities (4.6), (4.8), which determine the diffeomorphism, the point e2 = (0, 2)T

is an attraction point of the punctured plane R2 \ {0} in the variables (y1, y2) for system (4.9). This
fact shows the validity of equality (4.10).

III. In system (4.9), let us substitute the variables by the given equalities{
z1 = y1,

z2 = θ2(t, y2),
(4.11)
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where the function θ2 ∈ C∞(R+ × R) is given by (3.2). It follows from Lemma 3.2 that for each
fixed value of a moment t ∈ R+ to the function θ2(t, · ), there exists an inverse function, which,
if we consider it as a function of two arguments t and z2, is infinitely differentiable everywhere on
the Cartesian product R+ × R. Let us show that the constructed non-autonomous two-dimensional
differential system

ż = f2(t, z), t ∈ R+, z ≡ (z1, z2)
T ∈ R2, (4.12)

with a right-hand side f2 : R+ × R2 → R2 satisfying the condition

f2, f2
′
z ∈ C(R+ × R2),

possesses all the properties specified in the formulation of this theorem.
To do this, let us first note that in the stripe

U(t) ≡
{
y ∈ R2 | |y2| <

1

3 + t

}
replacement (4.11) takes the form

z = y, (4.13)

therefore, system (4.12) constructed at this stage admits a zero solution and possesses a zero linear
approximation along the zero solution, since system (4.9) has the same property.

Further, in the unit semicircle

V •
3,4;1 ≡

{
z ∈ R2 | z21 + z22 ⩽ 1, z2 < 0

}
,

in which all nonzero solutions z to system (4.12) satisfying the initial condition |z(0)| ⩽ 1, enter at
least once, replacement (4.11) also takes form (4.13) and hence the form z = x, what follows from
equalities (4.6) and (4.7). Hence, just as the previously studied qualitative behaviour of solutions to
system (4.2), it follows that system (4.12) possesses the property (2) of this theorem.

It remains to note that for the non-negative function Σ( · ) determined by equality (3.4), the
following estimates are valid:

Σ(t) =

1
2+t∫
1

3+t

χ
2
(t, τ) dτ

⩽
( 1

2 + t
− 1

3 + t

)
max

τ∈[ 1
3+t ,

1
2+t ]

χ
2
(t, τ) ⩽

( 1

2 + t
− 1

3 + t

) t

1 + t
→ 0, t → +∞,

and therefore, uniformly in y2 ∈ [1, 3], we have

θ2(t, y2) =
1

1 + t
y2 +

1

2 + t

(
1− 1

1 + t

)
− Σ(t) ⩽ 3

1 + t
+

1

2 + t
− Σ(t) → 0, t → +∞,

whence it follows that system (4.12) possesses the property (1) of this theorem.

IV. Let us now consider the n-dimensional (the number n is even) differential system

u̇i=gi(t, u
i), ui ≡ (u2i−1, u2i)

T∈R2, gi≡f2, i=1, 2, . . . ,
n

2
, t∈R+, u≡(u1, . . . , u

n
2 )T, (4.14)

and show that it possesses all the properties specified in the statement of this theorem.
For this purpose, let us first note that this is a system of form (2.1) and it has a zero linear

approximation along the zero solution, since, by virtue of the above, the functions gi : R+ ×R2 → R2

satisfy the conditions

gi, gi
′
ui ∈ C(R+ × R2), gi(t, 0) = 0, gi

′
ui(t, 0) = 0, t ∈ R+, i = 1, 2, . . . ,

n

2
,
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and hence the function g ≡ (g1, . . . , gn
2
)T : R+ × Rn → Rn satisfies the conditions

g, g′u ∈ C(R+ × Rn), g(t, 0) = 0, g′u(t, 0) = 0, t ∈ R+.

Let us now consider an arbitrary nonzero solution u = (u1, . . . , u
n
2 )T of system (4.14).

Each of its components ui satisfies the system

u̇i = f2(t, u
i), t ∈ R+, ui ∈ R2,

hence the equality lim
t→+∞

|ui(t)| = 0 is valid for it, since all nonzero solutions of system (4.12) have
the same property, according to what was proved above. Therefore, lim

t→+∞
|u(t)| = 0, so system (4.14)

under consideration possesses the property (1) of this theorem.
This solution is u ∈ S∗(g), so at least one of its components, say uk, satisfies the condition

uk(0) ̸= 0. Thus it follows that
sup
t∈R+

|u(t)| ⩾ sup
t∈R+

|uk(t)| > 1,

since system (4.12) also has the same property by virtue of what was proved above. Consequently,
system (4.14) also has the property (2) of this theorem.
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