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Abstract. A class of linear functional differential systems with continuous and discrete times and
discrete memory is considered. The paper gives an explicit description of a family of uniquely solvable
linear boundary value problems as a neighborhood of a fixed uniquely solvable boundary value problem.
The description is based on an explicit representation of the principal components to the general
solution representation such as the fundamental matrix and the Cauchy operator. In the study of the
problems outside the class under consideration, the systems with discrete memory can be employed
as a model or approximating ones. This can be useful as applied to systems with aftereffect under
studying rough properties that hold under small disturbances of the parameters.
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1 Introduction

Actual applied problems arising in various fields of applications constantly give rise to new types
of mathematical models with ordinary derivatives. Here, we consider a class of systems containing
simultaneously phase variables and equations with both continuous and discrete time; such models and
corresponding systems are often called hybrid. An interest of researchers in various classes of hybrid
models has been steadily increasing over the last 15 years. We just mention here the well-known works
of Russian and foreign authors, see [1,2,6,7,9,14,15].

Here, we continue the study of linear continuous—discrete systems with aftereffect in the frame of
an approach developed in the previous works [8,11,12]. For a class of linear systems with continuous
and discrete times and discrete memory, we consider the general linear boundary value problem and
propose an explicit description of a family of uniquely solvable linear boundary value problems as a
neighborhood of a fixed uniquely solvable boundary value problem. The description is based on an
explicit representation of the principal components to the general solution representation such as the
fundamental matrix and the Cauchy operator. In the study of the problems outside the class under
consideration, the systems with discrete memory can be employed as a model or approximating ones.
This can be useful as applied to systems with aftereffect under studying rough properties that hold
under small disturbances of the parameters.

The system under consideration includes simultaneously two types of variables, namely, the state
variables depending on the continuous time, ¢t € [0,T], and the variables with dependence on the
discrete time, ¢ € {0,%1,...,t,}. A special feature of the systems is that the memory of the system
operators is discrete and located at the points t;, strictly preceding the current instant ¢ (¢; < t).
Some applications of such systems in economic dynamics problems are presented in [16].

The proposed approach uses significantly the ideas and results of the theory of the Abstract
Functional Differential Equation (AFDE) constructed by N. V. Azbelev and L. F. Rakhmatullina
and systematically described in [3,4]. AFDE is the equation Ly = f with the operator £ acting
from the Banach space D isomorphic to the direct product B x R™, where B is a Banach space. The
main idea of the applications of the AFDE theory is the appropriate choice of the D space when
considering specific new problems. This choice allows, while remaining within the framework of the
general theory, to apply standard schemes and statements when considering the tasks that previously
required an individual approach and special design. This approach has demonstrated its effectiveness
in the study of wide classes of actual problems (see [4]).

2 The system description

Let us introduce the Banach spaces where the operators and the equations are considered and describe
the main subject. Fix a segment [0,7] C R. We denote by L™ = L™[0,T] the space of summable

T
functions v : [0,7] — R"™ with the norm ||v||z»n = [ |v(s)|n ds, where | - |, (or | - | for short if the
0

dimension value is clear) stands for the norm in R"; AC™ = AC™[0,T] is the space of absolutely
continuous functions x : [0,7] — R™ with the norm ||z|| acn = |2(0)|, + ||Z||L~. Next, we fix the set
J = {to,t1,...,t,}, 0=ty <t1 < ---<t, =T. Let FD" = FD"{to,t1,...,t,} be the space of
functions z : J — RY under the norm

m
lzllror =D 1= (ti)o-
=0

In the sequel, for any pair of Banach spaces X and Y equipped with the norms || - ||x and || - ||y, we
define the norm in the product X x Y by the equality || - ||xxy = - lx + 1| - llv-
We consider the system

(t) = 'Z A;(t)z(ty) + _Z B;(t)z(t;) + f(t), te[0,T], (2.1)

Z(tl) = ZDijx(tj) + ZHijZ(tj) + g(ti), 1=1,..., 4. (2.2)

j<i j<i
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Here, the columns of (n x n)-matrices A; and (n x v)-matrices B; belong to the space L", f € L™,
(v x n)-matrices D;; and (v x v)-matrices H;; have constant elements, g : J — R”.

System (2.1), (2.2) is a special case of the general continuous-discrete system considered in detail
in [11]. Theorem 1 [11] gives the representation of the general solution in the form

(2)-2(0) ().
where z = col(2(t1),...,2(ty)), g = col(g(t1),...,g(tu)),
7= %)
c= (e &)

is the Cauchy operator. Here, the block components );;, Cij, 4,j = 1,2, are the operators acting as
follows:

is the fundamental matrix,

yn ‘R — AC”, ylg RV — AC", )/21 ‘R — RVM, yQQ RV — Ryﬂ,
Ci1: L" — AC", Cia: R — ACm, Cot : L" — RU#, Coo : R"" — R¥M.

In the sequel, we will use the explicit representation of ) and C obtained in [12] in terms of the
system matrix parameters. To give the representation, we recall the following notation from [12]:

t; tq
A’Lj = /AJ(S)XJ (s) ds, Bij - /BJ <S)XJ (S) ds,
9 0

where x; (s) is the characteristic function of (¢;, T};

450 = [ A3(6h s, By(0)= [ Byls), (9)ds
0 0

Di; =Dy, if j <i, D;; =0 otherwise, H;; = H;; if j <i, H;; =0 otherwise,
AO = (A107-"7~A,u0)/7 BO = (BIOa”wBMO)Ia DO = (Dl()v”'aD,u.O)/a 7-lO = (H107'~~7Hu0)/

(here and below, ()" stands for transposition);

A= (Aij)ij=t1,.p B=Bij)ij=1,..00 D= (Dij)ij=t,..nr H=Hij)ij=1,...0>
H

A= (Aij)ij=1,.n B=Bijlij=1,..u0s D= (Dij)ij=1,..u = (Hij)ij=1,...us
. E+ Ay By
P= ( Dy Ho)
where (nu x n)-matrix € is defined by the equality €& = (E,,..., E,)’;
_(A B _ 1
A(D H)’ Q=(E—-A)"". (2.3)

Let us denote by Y the product QP and employ for Y and Q the following block forms:

(Y11 Yo _ (Qu Q2
Y_<Y21 Ym)7 Q_(Q21 Q22)

with (np x n)-matrix Y11, (np X v)-matrix Y12, (vp x n)-matrix Ya1, (v X v)-matrix Yas.
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The blocks of the fundamental matrices ) are defined by the equalities

o
Yii=E,+ Ao(t) + Z YY) |- ZB Y3, (2.4)
J=1
Via = Bo(t) + ZA ()Y, + ZB ()Y, (2.5)
Vo1 = Y21, Voo = Yzz, (2.6)

where ijl is the j-th group of n-rows to Y1, £ = 1,2, and Y o is the j-th group of v-rows to Yjo,
k = 1,2. For more definiteness, we note that the followmg relationships take place for the solutions
to the homogeneous system (2.1),(2.2) (f =0, g =0):

3(ty) = Y}12(0) +Y552(0), j=1,....p
2(t)) = ¥32(0) + Y52(0), j=1.....
As for the Cauchy operator C, its blocks are defined by the following equalities:
£ M
eun®=[{E+3| / >4 By ) (1 g (9 b5 .
5 k=1L7 j=1

where Q{ is the k-th group of n-columns to @7, Q%lf is the k-th group of n-columns to @3, (the
expression inside of {---} is the Cauchy matrix C11 (¢, s));

t

i) = | { > (>0 + B, )]0 s
0

— j=1

where Q’% 7% is the k-th group of v-columns to @7, %g is the k-th group of v-columns to Q%é (ng are
defined in a perfect analogy with Yw i,0=1,2);

Corf = Qzl(]lf(s) dS,---a7f(5) d5>,7 Cong = Qu(g(t1), .., g(t) -
0 0

It should be noted that all components of Y and C are expressed explicitly in the terms of coefficients
of the system under consideration with the use of the matrix Q = (E — A)~!

3 Formulation of the problem

We consider the general linear boundary value problem (BVP) for system (2.1), (2.2) with the general
linear boundary conditions
x
14 (z) =q, (3.1)

where £ : AC™ x FDY — R" is a linear bounded vector-functional, « € R*"”. Let us recall the
general representation of such a vector-functional

¢ (j) = Wz(0) + /T B(s)i(s) ds + Toz(0) + irjz(tj)

where U is a constant ((n 4 v) x n)-matrix, I';, j =0,..., u, are constant ((n + v) X v)-matrices, the
elements of a ((n 4+ v) x n)-matrix ® are measurable and bounded in essence on [0, 7.
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To formulate the necessary and sufficient condition of the unique solvability to BVP (2.1),(2.2),
(3.1), we introduce the extended fundamental matrix Y:

N Vi Yo
y = 0 EV
Vo1 Va2

Next, define the ((n 4+ v) x (n + v))-matrix
M =0y = (C,..., i),

where 35, k =1,...,n + v, is the k-th column of .
Note that due to (2.4), (2.5) and (2.6), we have the following explicit representation of M:

T

M = (\If + i/@(t) [A; ()Y, + B;(t)Ys,] dt + fjny;l,

i=0; i=0

H T I
> / O()[A;(0)Yiy + By (1)Ysh] di + ) FiY;g) :
j=0;

=0

BVP (2.1),(2.2),(3.1) is uniquely solvable for any f € L™, g € FD" if and only if the matrix M
is invertible [8, Theorem 1].

To give a description to a family of systems of form (2.1),(2.2), we introduce a more convenient
notation. Denote by 711 the operator acting on x in the right-hand side of (2.1) and by 712 the
operator acting on z in the right-hand side of (2.1). For subsystem (2.2), operators 721 and Taz are
introduced in exactly the same way. Further, define the operator £ by the equality

«()-0)-( %))

Thus system (2.1),(2.2) can be written in a short form

«(9-0)
z g

In the sequel, we will write £°, referring to a system with all coefficients provided with the upper
index 0 (AJ(t), Bj(t), and so on) and assume all such parameters to be fixed. As for the parameters to

the operator L, they are considered as arbitrary ones. Everything that has been said about indexing
using the superscript, applies also to the fundamental matrices ), J°, the Cauchy operators C, C°

and to matrices M, M°.
£ (x> N (f>’ €<x) -
z g z

Assume that the BVP
is uniquely solvable, i.e., M? is invertible. Our goal is to give a description of the set of operators £
for which the property of the unique solvability is saved in a neighborhood of £°. Our consideration
is based on the assertion that the inequality

1

-0 < —
|| || H(MO)71H

(3.2)

ensures the invertibility of AY (see, e.g., [10, Theorem 3.6.3]) and, therefore, the unique solvability of

the BVP
e(5)= (1) o) e 09
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4 The main result

To give a description of the neighborhood mentioned above, we introduce some characteristics ex-
pressed in terms of parameters of the problem under consideration:

0 =3 4y, where |4, = / 1A (1) [ e,

3=0
J

912:max{||Bj||,j:O,...,u}, where || B;|| :/HB‘]'(t)HRUA)Rn dt,
tj

H [
921 = Z Z ||D’LJH7 where ||D”|| = ||D1‘7||R”~>RV7
7J=01i=j5+1

n
a0 = max{ Z |Hijll, 7= O,...,,u}7 where ||H;|| = [|Hyjllrv— g,
i=j+1
© = max {611 + 021,612 + 022}

Next, introduce the characteristics for the difference £ — £°. Define

II_Z”A AOH 612_max{||Bj_B?”7j:()v"'uu’}7

n
93122 Z ||Dij_D?j||7 ngzmax{ Z ||Hij_H?j||7j:0a"'aM}7

i=0i=j+1 i=jt+1
d d d d d
@ :max{ell +9217012 +022}.

Now, we get

I£—£°% < e
Next, put
popn T '
=14 303 [A30@0)" + B Q4 at
k=1j=1{
C12 - maX{Z/ HAO jk +BO( ) QQZ)]kH dt? ] = 15 e 7#}7
Boop
= ZZ” Qzl jk”
j=1k=1
n
0227max{2|| Q5 ) |l k=1,. }
j=1
and

C° = max {0(1)1 + 9y, el + 082}.
Finally, let us define the constants A and m by the inequalities
A> e, m > (MO
Theorem 4.1. Let the inequality
1
COAmCO(©° +1) + Am + 1)
be fulfilled. Then any BVP (3.3) is uniquely solvable.

0 <
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Proof. First, we obtain an estimate of | — Y°|| in terms of ||£ — £°]|. Here and in the sequel, we
omit subscripts in the notation of the norms, the choice of spaces is usually clear. For instance, ||)||

means || V|| acnxnxpprxr.
Note that |V — Y°|| = |V — V||, so we operate with J and Y°. By definition, ) is the solution
to the Cauchy problem

where E = F, 1.
Introducing Y = Y — E, we observe that

LU = —LE, U(0) = 0. (4.2)

Note that U —U° = Y—)°. Let A be the narrowing of £ onto ACE x F DY, the subspace of AC™ x FD¥
with zero element values at point 0. Hence (4.2) can be written as the equation

AU = —LE,
and A~! = C. Next, we denote F = —LE, F® = —£°E, and get &/ = CF and 4° = C°F°. Further,
U-U=CF—-CF'=CF —-C°F° +C°F —C°F = (C-COF +C°(F — F").
By virtue of Theorem 3.6.3 from [10], we have

[A — A% - [IcO|
— [[A = A% - ic?|

c-C% <
e -l < <
under the condition

[A =A% - [lc°] < 1.
Now, we have the estimation

[|A — A% - [l
— [[A = A% - e

lor =) < 5 APl IE T+ et - Nl F = FOl

or, taking into account the inequalities
I < [FO + [|F = F°ll, |F = F° < |12 - £°) - ||E],
we get

1A — A% - [l

1E0 - (ILFC| + [|1E = FO) + IcoN - 12 — 2% - ||E|.
—TA = A9] - V] (01 - (ILF° ) + 1l 1)+ 11 - |l - IE]

_ 9 <
ot~ 1) < -

From this it follows that under the condition
IC° - max {[[A = A%, £ - L0} <A <1
the estimate

AQICO - 1]l + IE])
1-A

et — | <

holds, or

AA(ICOL - IFO + ) AA(C?- (0% +1) +1)
1-A - 1-A

Here, the latter inequality follows from the estimates [|C°|| < CY and [|[F?|| <1+ ©°, since

Tl < 611, [Th2ll € 612, |[T21]] £ 021, ||T22]] < 622

for T = (Tik)i k=1,2 we have ||7]| < © and ||£|| <1+ ©. Let us recall the use of the upper index 0 to
refer to a fixed system and its parameters. In doing so, we get

16y — €| <

I£°1 <1+ 67
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where all 69, correspond to the fixed system with the coefficients indexed by 0.
Solving the inequality
A(CY-(BY +1)+1) 1
1-A < Am
with respect to A and taking into account that ©¢ > max{||A —A°[, [|£— L]}, we find that inequality
(4.1) ensures inequality (3.2). O

5 An example
Consider the system

#(t) = 0.52(0) + 0.5sin(t)x,, , (t)=(1) + 0.1exp(—0.1¢)x,, , (t)=(2) + 0-1t2X(3,4] (t)z(3)

+0.3t2(0) +0.2x, , (t)2(1) + 0.1t2x<2y41 (t)2(2) +0.15x, ,,(H)2(3) + f(t), t€[0,4], (5.1)
(i) = 0.42(0) + 0.5x, ,, ()z(1) + 0.4x, ,, (1) (2) + 0.3x, , (V) (3)

+0.2i2(0) + 0.2x, ,; (4)2(1) + 0.3x, ,, ()2(4) + 0.15x , , (1)2(3) + g(i), i=1,...,4, (5.2)

for which the fundamental matrix and the Cauchy operator are constructed in [12]. For the case of
the BVP with the boundary conditions

z(0) = 0.22(4), z(0) =0.2z(4),
by immediate calculations we obtain
A=1 m=20"=63, C°=14.

Thus the condition ©¢ < 0.00034 ensures the unique solvability of the BVP for all systems in the
0.00034-neighborhood of system (5.1), (5.2).
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