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UNIQUENESS AND SYMMETRY IN PROBLEMS OF
OPTIMALLY DENSE PACKINGS

LEWIS BOWEN, CHARLES HOLTON, CHARLES RADIN, AND LORENZO
SADUN

Abstract. Part of Hilbert’s eighteenth problem is to classify the
symmetries of the densest packings of bodies in Euclidean and hy-
perbolic spaces, for instance the densest packings of balls or sim-
plices. We prove that when such a packing problem has a unique
solution up to congruence then the solution must have cocompact
symmetry group, and we prove that the densest packing of unit
disks in the Euclidean plane is unique up to congruence. We also
analyze some densest packings of polygons in the hyperbolic plane.

I. Introduction

The objects of our study are the densest packings, particularly of
balls and polyhedra, in a space of infinite volume; for a survey see the
classic texts [Feje] and [Roge], and the review [FeKu]. Most interest
has centered on densest packings in the Euclidean spaces En, notably
when the dimension n is 2 or 3, but we will see that packing prob-
lems in hyperbolic spaces Hn can clarify some issues for problems set
in Euclidean spaces so we consider the more general problem in the n
dimensional spaces Xn, where Xn will stand for either En or Hn. (It
would be reasonable to generalize our considerations further, to sym-
metric spaces, and even to include infinite graphs, but as we have no
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noteworthy results in that generality we felt it would be misleading
to couch our considerations in that setting.) We will give results of
two types. We prove (Theorem 2) that when a packing problem in
Xn has a solution which is unique up to congruence then that solution
must have symmetry group cocompact in the isometry group of Xn;
and we prove (Theorem 1) that the densest packing of unit disks in E2

is unique up to congruence. In Section IV we analyze the symmetries
of some densest packings of polygons in the hyperbolic plane. This
will suggest a modified form of uniqueness for the solution of a densest
packing problem.

We now introduce some notation and basic features of density. We
will be concerned with “packings” of “bodies” in Xn. By a body we
mean a connected compact set in Xn with dense interior and boundary
of volume 0. Assume given some finite collection B of bodies in Xn, for
instance a single ball. By a packing of bodies we then mean a collection
P of bodies, each congruent under the isometry group of Xn to some
body in B, such that the interiors of bodies in P do not intersect.
Denoting by Br(p) the closed ball in Xn of radius r and center p, we
define the “density relative to Br(p)” of a packing P as:

(1) DBr(p)(P ) ≡
∑

β∈P mXn [β ∩Br(p)]

mXn [Br(p)]
,

wheremXn is the usual measure on Xn. Then, assuming the limit exists,
we define the “density” of P as:

(2) D(P ) ≡ lim
r→∞

∑

β∈P mXn [β ∩Br(p)]

mXn [Br(p)]
.

It is not hard to construct packings P for which the limiting den-
sity D(P ) does not exist, for instance by the adroit choice of arbitrarily
large empty regions so that the relative density oscillates with r instead
of having a limit. (In hyperbolic space the limit could exist but depend
on p, which we also consider unacceptable.) The possible nonexistence
of the limit of (2) is an essential feature of analyzing density in spaces
of infinite volume; density is inherently a global quantity, and funda-
mentally requires a formula somewhat like (2) for its definition [Feje],
[FeKu]. We discuss this further below.

The most important examples for which we know the densest pack-
ings are those for balls of fixed radius in En for n = 2 and 3. (For
a recent survey of this problem in higher dimensions see [CoGS]). It
will be useful in discussing these problems to make use of the notion of
“Voronoi cell”, defined for each body β in a packing P as the closure
of the set of those points in Xn closer to β than to any other body
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Figure 1. The densest packing of equal disks in the
Euclidean plane

in P . A noteworthy feature of the n = 2 example is, then, that in
the optimal packing (see Figure 1) the Voronoi cell of every disk (the
smallest regular hexagon that could contain the disk) has the prop-
erty that the fraction of the area of this cell taken up by the disk is
strictly larger than for any other Voronoi cell in any packing by such
disks. (Intuitively, the optimal configuration is simultaneously optimal
in all local regions.) As for n = 3, it is generally felt that the dens-
est lattice packing (i.e., the face centered cubic) achieves the optimum
density among all possible packings, along with all the other packings
made by layering hexagonally packed planar configurations, such as
the hexagonal close packed structure; see [Roge]. There are claims in
the literature by Hsiang [Hsia] and by Hales [Hale] for proofs of this,
and there is hope that the problem will soon be generally accepted as
solved.

Less well known but perhaps next in significance as examples of op-
timal density (see [Miln]) are the various “aperiodic tilings”, especially
the “Penrose kite & dart tilings”, the tilings of E2 by congruent copies
of the two polygons of Figure 2. (A portion of a kite & dart tiling
is shown in Figure 3.) A key feature of these bodies is that the only
way to tile the plane with them is with a tiling whose symmetry group
does not have a fundamental domain of finite volume; this situation
is the defining characteristic of “aperiodicity”, and has led to renewed
study of the symmetry of tilings (and thus packings); see [Radi]. There
are other significant symmetry features of this example which will be
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Figure 2. The Penrose kite & dart tiles of the Eu-
clidean plane

Figure 3. A Penrose kite & dart tiling of the Euclidean plane

discussed in Section V, where they will help to develop an appropriate
notion of equivalence among optimally dense packings.

In practice it is almost impossible to actually determine optimally
dense packings – for instance, there is nothing yet proven qualitatively
of the densest packings in E2 by regular pentagons of fixed size (see
however [KuKu]) – and we follow the lead of Hilbert [Hilb] and others
in concentrating on general features of optima, such as their geometric
symmetries. (It is because of their qualitative symmetry features that
we attributed high significance to the aperiodic tilings.) We will dis-
cuss in Sections III and IV some optimization results for packings in
hyperbolic spaces, by balls in Hn, and by a certain polygon in H2.
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We note that, for optimization in a Euclidean space, there is no
difficulty proving existence of an optimum density, even though, since
the limit of (2) does not exist for some packings, we are not able to make
a comparison among all packings. One way to understand this is to
use the fact that the relative densities DBr(p)(P ) of any packing P can
be well approximated by packings P ′ that have compact fundamental
domains; intuitively, the supremum of the densities of such symmetric
packings P ′ is the desired optimum density, and can be shown to be
achieved, in the sense of (2), by some packing which is a limit of such
symmetric packings. (See [BoR2] for a complete argument.)

The situation for hyperbolic space packings is much more compli-
cated, due to the fact that the volume of a ball of radius R grows
exponentially in R ([Bear], [Kato]). This has the consequence that a
significant fraction of the volume is near the surface of the ball, so it
is by no means clear that one could make a useful approximation us-
ing a packing with cofinite symmetry group. Once one is prevented
from reducing the problem to such symmetric packings, one is con-
fronted with the difficulty of showing the existence of a limit such as
(2) for a purported optimal packing; see [BoR2] for a history of this
difficulty. In summary, lack of proof of the existence of appropriate
limiting densities was an impediment to progress in the study of op-
timal density (and, a fortiori, optimally dense packings) in hyperbolic
spaces for many years [BoR2]. This led to a search for alternatives to
the notion of optimal density. The best known of these are that of
“solid” packings, and “completely saturated” packings [FeKu]. Both
notions are defined through local properties of packings. The quest for
a local approach/alternative to optimal density is perhaps reasonable
given that the only practical way yet devised to prove that a packing
is optimal is to prove that it is locally optimal in all local regions (as
noted above for disk packing in E2, and as the basis for the methods for
ball packings in E3 [Laga]). However, no local alternative has proven
satisfactory [FeKu], [Bowe].

So far we have concentrated on the question of existence of solutions
(i.e., optimally dense packings) for our general optimization problem,
especially the difficulties for packings in a hyperbolic space. This ex-
istence problem was solved recently ([BoR1], [BoR2]), the existence of
limiting densities proven in an ergodic theory formalism outlined in the
next section. One goal of this paper is analysis of the uniqueness of
solutions for our optimization problems. Currently, there are difficul-
ties even for Euclidean problems. For instance, even though it would
be intuitively satisfying to declare that the problem of optimally dense
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packings of E2 by disks of fixed radius has the “unique” solution dis-
cussed above (Figure 1), there has been no satisfactory way to exclude
some other packings of the same density, for instance those obtained
by deleting a finite number of disks from this packing [CoGS]. This
has been a serious obstacle to treatment of optimal density as one
treats other optimization problems [Kupe], and will be a useful guide
for our approach to a general understanding of the qualitative features
of optimally dense packings.

The situation is significantly more complicated, and interesting, for
the optimal packings (tilings) by kites & darts in E2 (Figure 2) than it
is for equal disks. It can be proven that there are uncountably many
pairwise noncongruent such tilings, but that every finite region in any
one tiling appears in every other such tiling, so they are, in some sense,
“locally indistinguishable” [Gard]. It is natural to want to declare that
this optimization problem also has a “unique” solution, and this has,
in effect, been the practice of those studying aperiodicity, a practice
we will follow.

The notion of uniqueness must differentiate between the situations
for densest packings of equal balls in E3 and that of E2; for the for-
mer the expected solution is intuitively far from unique, containing for
instance the face centered cubic and also the hexagonal close packed
structures, which must be considered different if the notion is used
at all. However at a deeper level it must also give a useful criterion
for when two such optimal structures are “the same”, that is, it must
give some useful notion of the geometric symmetry of optimally dense
packings, for instance of the kite & dart tilings. In Section V we will
discuss the connection between our approach and the use, by Connes
and others, of noncommutative topology to understand the symmetry
of structures such as the kite & dart tilings; see the expository works
[Conn], [KePu] and references they contain.

As we hope to demonstrate, study of the uniqueness problem for
packings of hyperbolic space will be useful even for understanding pack-
ings in Euclidean space. Much of this paper consists of the analysis of a
specific family of examples of optimal density in a hyperbolic space, the
first aperiodic examples in hyperbolic space for which explicit optimally
dense packings have been determined. (See [BoR2] for an analysis of
other examples of tilings in H2, such as those in [MaMo], [Moze] and
[Good]). These examples exhibit features not seen in Euclidean exam-
ples, and will help us draw some conclusions about the general features
of optimum density problems.

Optimal density problems have a long tradition but have never been
treated as have other classes of optimization problems – for instance
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by analysis of conditions for existence and uniqueness of solutions. In
this paper we consider the question of uniqueness, guided by symme-
try properties of solutions. We analyze such problems as dynamical
systems, with the group of isometries of the ambient space (En or Hn)
acting on the (compact, metrizable) space of all possible packings. We
are led to classify such systems up to topological conjugacy, and use
geometric features as invariants.

More specifically, Theorems 1 and 2 will lead us to partition the class
of optimal density problems with unique solution into two classes: the
periodic and the aperiodic. The study of periodic optimization prob-
lems in En, for which the solutions have cofinite symmetry group, led,
many years ago, to classification of the discrete subgroups of the isom-
etry group of Euclidean space in low dimensions. Aperiodic tilings
have led to related work; among problems set in E3, the study of the
quaquaversal aperiodic tilings [CoRa] led to new results on classifica-
tion of certain (dense) subgroups of SO(3) [RaS1], [RaS2], [CoRS].
Similarly, the classification results in Section IV of our optimization
problems in H2 naturally lead to noncofinite subgroups of PSL(2R),
such as the symmetry groups of fixed-sum tilings (Theorem 6), as well
as questions about Hecke groups.

In summary, classifying aperiodic optimization problems amounts to
studying the “symmetries” of the packing solutions in senses related to,
but different from, the manner appropriate for the well studied periodic
structures. The mathematics that is generated by such analysis, a
mixture of dynamics, operator algebras and Lie groups, is perhaps the
main significance of the study of optimal density problems.

II. The Ergodic Theory Formalism for Optimal Packing

One concern of this paper is with the uniqueness of solutions to opti-
mal density packing problems. While proving existence of solutions for
problems set in Euclidean spaces did not require giving the problems a
formal structure, the question of existence of solutions for problems set
in hyperbolic space definitely did require introducing a formal struc-
ture, and we will see that this same structure is useful for handling
questions of uniqueness, even in Euclidean space. We follow [BoR1],
[BoR2] in introducing an ergodic theory structure into our optimization
problems, in order to control the existence of limits such as (2).

Using the notation of section I, consider the space PB of all possible
packings of Xn by bodies from B, and put a metric on PB such that
convergence of a sequence of packings corresponds to uniform conver-
gence on compact subsets of Xn. Such a metric makes PB compact, and
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makes continuous the natural action on PB of the (connected) group
Gn of rigid motions of Xn [RaWo].

We next consider Borel probability measures on PB which are invari-
ant under Gn. (To see that such measures exist, consider any packing
P for which the symmetry group has fundamental domain of finite vol-
ume, and identify the orbit O(P ) of P under Gn as the quotient of Gn
by that symmetry group. One can then project Haar measure from Gn
to an invariant probability measure on O(P ) and then extend it to all
of PB so that the complement of O(P ) has measure zero.)

We define the “density of the (invariant) measure µ” on PB, D(µ),
by D(µ) ≡ µ(A), where A is the following set of packings:

(3) A ≡ {P ∈ PB | the origin O of Xn is in a body in P}.
(It is easy to see from the invariance of µ that µ(A) is independent
of the choice of origin.) We may now introduce the notion of optimal
density.

Definition 1. A probability measure µ̄ on the space PB of packings, er-
godic under rigid motions, is “optimally dense” if D(µ̄) = supµD(µ) =
supµ µ(A); the number supµ µ(A) is the “optimal density” for packing
bodies from B.
In [BoR1] the existence of such optimal measures is proven for any
given B.

Finally, the use of optimally dense measures in our optimum density
problem is justified as follows. First we rewrite the right hand side of
(1) as:

(4) lim
r→∞

1

ν[Gn(r, p)]

∫

Gn(r,p)

χ
A[g(P )] dν(g),

where χA is the indicator function for A, ν is Haar measure on Gn and

(5) Gn(r, p) = {g ∈ Gn | dXn[g(p), p] < r},
where dXn is the distance function on Xn. It follows from G.D. Birkhoff’s
pointwise ergodic theorem [Walt] that for Xn = En and any ergodic µ
there is a set of P ’s, of full µ-measure and invariant under Gn, for
which the limit in (4) exists. This has been extended to Xn = Hn

by Nevo et al.: [Nevo], [NeSt] (with the invariance of the set of P ’s
proven in [BoR2]). We may conclude then that “most” of the packings
in the support of a fixed ergodic measure have the same well defined
density in the sense of (2); so as one varies the measure one sees PB
decomposed into packings of various densities, with those of optimal
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density being the ones in which we are interested. Formally we define
optimally dense packings (slightly more stringently than in [BoR2]) as
follows.

Definition 2. A packing P is “optimally dense” if it is “generic” for
some optimally dense µ. That is, it is in the support of µ and:

(6)

∫

PB

f(Q) dµ(Q) = lim
r→∞

1

ν[Gn(r, p)]

∫

Gn(r,p)

f [g(P )] dν(g),

for every p ∈ Xn and every continuous f on PB. The set of all optimally
dense packings for bodies in B will be denoted Po

B.

We note that the set of packings generic for the invariant measure
µ is of full measure with respect to µ; this follows from the ergodic
theorem and the fact that the space of continuous functions on PB is
separable in the uniform norm.

Lemma 1. If P is generic for the ergodic measure µ (which is not
necessarily optimally dense) then:

lim
r→∞

1

ν[Gn(r, p)]

∫

Gn(r,p)

χ
A[g(P )] dν(g) =

∫

PB

χ
A(Q) dµ(Q)

= D(µ)

(7)

for every p ∈ Xn.

Proof. Let

(8) A′ ≡ {P ∈ PB | O is in the interior of a body in P}.

Define continuous fk on PB by:

(9) fk(P ) =











1, on A

0, on {P ∈ Ac | dXn(O, ∂P ) ≥ 1
k
}

1− kc, on {P ∈ Ac | dXn(O, ∂P ) = c < 1
k
},

where ∂P denotes the union of the boundaries of the bodies in P . Note
that the fk decrease pointwise to χA. Similarly define continuous gk on
PB by:

(10) gk(P ) =











0, on A′c

1, on {P ∈ A′ | dXn(O, ∂P ) ≥ 1
k
}

kc, on {P ∈ A′ | dXn(O, ∂P ) = c < 1
k
}.
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Note that the gk increase pointwise to χA′. Now, given ε > 0, choose
K > 0 such that

0 <

∫

fK dµ−
∫

χ
A dµ < ε/2 and

0 <

∫

χ
A′ dµ−

∫

gK dµ < ε/2.

(11)

Define, for R > 0, the measure ν(R,P ) on PB by

(12)

∫

f dν(R,P ) ≡ 1

ν[Gn(R,O)]

∫

Gn(R,O)

f [g(P )] dν(g),

for continuous f , where as before ν is Haar measure on Gn. Then
choose R̃ > 0 such that

∣

∣

∣

∫

fK dν(R,P )−
∫

fK dµ
∣

∣

∣
< ε/2 and

∣

∣

∣

∫

gK dν(R,P )−
∫

gK dµ
∣

∣

∣
< ε/2

(13)

for all R > R̃. We then have:
∫

χ
A′ dµ− ε <

∫

gK dν(R,P ) <

∫

χ
A′ dν(R,P )

≤
∫

χ
A dν(R,P ) <

∫

fK dν(R,P ) <

∫

χ
A dµ+ ε.

(14)

However, from the ergodic theorem
∫

χ
A−χA′ dµ =

∫

χ
A/A′ dµ = 0, so

∫

χ
A′ dν(R,P ) and

∫

χ
A dν(R,P ) both converge to

∫

χ
A dµ = D(µ) as

R→∞. ¤

Next we note a useful tool for computing optimal densities. For those
P ∈ PB such that the point p ∈ Sn is contained in the interior of a
Voronoi cell (which cell we denote by Vp(P )), we define Fp(P ) to be
the relative volume of Vp(P ) occupied by the bodies of P . (We note
that Fp is defined µ-almost everywhere for any invariant µ.)

Definition 3. For invariant measures µ we define the “average Voronoi
density for µ”, DV (µ), as

∫

PB
Fp(P ) dµ(P ). (Note that DV (µ) does not

depend on p because of the invariance of µ.)

The notion of average Voronoi density is useful, as it has been shown
[BoR1, BoR2] that, for any invariant measure µ, the average Voronoi
density DV (µ) equals the average density D(µ).

Summarizing the above, we have sketched a formalism through which
one proves existence of solutions to the general problem of densest
packings of Xn by congruent copies of bodies from B. Our next goal



SYMMETRY OF DENSE PACKINGS 11

is to consider uniqueness, but we will first need to discuss symmetry
further (section III), and a new family of examples (section IV).

III. Symmetry in the Problem of Optimally Dense
Packings

We will use the following common terms: a packing is called “peri-
odic” (resp. “nonperiodic”) if it has (resp. does not have) a symmetry
group with fundamental domain of finite volume, and we say an opti-
mal packing problem is “aperiodic” if all its optimally dense packings
are nonperiodic.

We now use the formalism of section II to solve the old problem of
making sense of uniqueness for the problem for disks of fixed radius in
E2.

Theorem 1. There is only one optimally dense packing in E2 for disks
of fixed radius, up to rigid motion.

Proof. Assume µ is any optimally dense measure for this problem. Us-
ing the fact that the hexagonal Voronoi cells of P o (the hexagonal
packing of Figure 1) are, up to rigid motion, the unique cells of opti-
mal density (see [Feje]), and using the basic result on average Voronoi
cells [BoR1], we see that for µ-almost every packing P , the cell con-
taining a particular point p must be this regular hexagon. Repeating
this argument for a countable dense set of p’s, we see that for µ-almost
every packing P every Voronoi cell is, up to rigid motion, this regular
hexagon, i.e., µ-almost every packing P is P o, up to rigid motion. It is
shown in [BoR1] that there is a unique invariant measure with support
in the (closed) orbit of any periodic packing, and therefore the orbit of
P o consists of all the optimal packings. ¤

The ergodic theory formalism automatically makes sense of the unique-
ness of this optimization problem, by its subjugation of packings to
invariant measures on packings. Aperiodic problems, such as the kites
& darts, are more subtle. Our next result is a connection between
aperiodicity and the uniqueness of packing problems.

Theorem 2. If there is only one optimally dense packing of Xn, up to
congruence, by copies of bodies from some fixed, finite collection B, then
that packing must have a symmetry group with compact fundamental
domain.

Proof. By assumption there exists a probability measure µ, invariant
under Gn, for which the orbit O(P ) of some packing P has measure one.
Since O(P ) can be identified with the quotient of Gn by the symmetry
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group ΓP of P , it follows from the uniqueness of Haar measure on Gn
that ΓP is cofinite.

Since the volume of Xn/ΓP is finite, only a finite number of bodies
can appear in any fundamental domain, and in particular the bodies lie
in a compact region of Xn/ΓP . If ΓP were cofinite but not cocompact
(something possible only if Xn is hyperbolic), then the preimage in
Xn of the ends of Xn/ΓP would not contain any bodies. However, the
preimage of a hyperbolic end contains arbitrarily large balls, so there
is room in our packing P to add additional bodies.

This contradicts the fact that optimally dense packings must be “sat-
urated”, meaning that one cannot add another body to the uncovered
regions. In fact it was proven in [Bowe] that the set of completely sat-
urated packings have full measure with respect to any optimally dense
measure. (A “completely saturated packing” is one in which it is im-
possible to remove any finite number of bodies and replace them with
bodies of larger total volume.) ¤

One thing we can conclude from these two theorems is that the prob-
lems of optimal density decompose naturally into two classes: those
allowing periodic optima (such as with balls of fixed size in E2 or E3),
and the class of aperiodic problems. The former no longer pose any dif-
ficulty as to classifying their uniqueness, leaving us now to understand
the more interesting class of aperiodic problems.

Aperiodicity is not an unnatural circumstance – it may even be
generic in some sense; see [MiRa] for a related problem. In Euclidean
space aperiodicity has only been discovered so far in packings of com-
plicated polyhedra, whereas in hyperbolic space it already appears in
packings of balls.

Theorem 3. [BoR1]. For all but countably many fixed radii R the ball
packing problem in Hn has only aperiodic solutions.

For packings/tilings in Euclidean space there has not yet been a
significant attempt to understand the uniqueness problem. We will
postpone our attempt at a formal definition until after considering the
following new examples, the first aperiodic problem in hyperbolic space
for which we can determine explicit solutions.

IV. A New Example: the Modified Binary Tile in H2

Using the upper half plane model of H2, consider the “binary tile”
τ of Figure 4 (introduced by Roger Penrose in 1978 [Penr]). We define
as the “core” γ of τ that shape with four edges – two segments of
geodesics, and two segments of horocycles (one twice the length of
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Figure 4. The simple binary tile in the upper half plane
model of the hyperbolic plane

Figure 5. The binary tiling of the upper half plane

the other) – obtained by omitting the bumps and dents of τ . More
specifically we could take the coordinates of the vertices of γ to be
i, i + 2, 2i, and 2i + 2. Congruent copies of τ can only tile H2 as in
Figure 5. In fact it is useful to classify these tilings as follows. Once the
location of one tile is known, the bumps on the geodesic edges of (the
core of) τ force the positions of tiles filling out the region between two
concentric horocycles (the ones containing the horocyclic edges of the
(core of the) tile). Consider now the possible tiles abutting the ones in
this “horocyclic strip”. There is only one way to fill an abutting strip
which is “further” from the common point at infinity of the horocycles,
and two ways to fill the strip which is “closer”. This fully classifies the
possible tilings of H2 by τ .

We now construct a new tile τ̄ based on the same core γ, which will
permit some new tilings. On the geodesic edges of γ we add the same
bumps and dents as before, but we enlarge each of the other original
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Figure 6. A packing of the upper half plane by horoballs

bumps and dents as follows. Consider a (densest [Boro]) packing of
the hyperbolic plane by horoballs, as illustrated in Figure 6, and con-
sider three abutting horoballs. Divide the (white) region between the
horoballs into 3 congruent regions by means of three geodesics, each
drawn from the center of three-fold symmetry of the region to the point
where a pair of horoballs touch. The new tile τ̄ is illustrated in Fig-
ure 7. From the construction we see that, as with τ , in any tiling of the
plane by τ̄ , once we know the location of a specific tile we can uniquely
fill in a horocyclic strip, and then have two choices for filling, consec-
utively, each of those strips which are closer to their point at infinity,
thus filling in a horoball. However, there is now a second way to fill the
abutting strip which is further from the point at infinity, in which the
bumps from three tiles abut to fill in a white region in Figure 6. If this
latter method is used, the only way to complete a tiling of the plane
is to fill in each of the horoballs defined by the two new tiles, then use
the same method to extend beyond these horoballs to more horoballs,
etc. Intuitively, these new tilings are obtained from a densest horoball
packing by tiling each horoball with copies of the tile τ̄ .
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Figure 7. The modified binary tile in the upper half plane

Let T (τ̄ ) be the set of all tilings of the plane by τ̄ . We call such a
tiling “degenerate” if the cores of the tiles themselves tile the hyperbolic
plane, and “non-degenerate” if the union of the cores corresponds to
a (densest) packing P̄ of H2 by horoballs. (Such a horoball packing
has symmetry group conjugate to PSL(2,Z), which is cofinite but not
cocompact.) We know from [BoR1] that the set Tdeg of degenerate
tilings has measure 0 with respect to any invariant probability measure
on T (τ̄ ). As a result, degenerate tilings do not qualify as optimally
dense packings of τ̄ in the sense of Definition 2. However, invariant
measures on T (τ̄) do exist.

To construct such a measure we consider the internal structures of the
different horoballs. This structure is related to a choice of the two lower
bumps on the tile τ̄ , henceforth called “prongs”. For each horoball H
and each triangle that touches the horoball, the internal structure of
H is associated to a dyadic integer, that is a formal sum

∑∞

i=0 ai2
i,

with ai ∈ {0, 1}, where two dyadic integers are considered close if their
first N terms agree, with N large. The first digit tells whether the
left or right prong of a tile from H sticks into the triangle, the next
digit tells whether that tile emerges from the left or right prong of its
“parent”, and so on. (We will eventually use the algebraic structure of
these quantities.) We let each digit be an independent random variable,
with equal probability of being 0 or 1. Let the internal structures of
distinct horoballs be independent, and be independent of the location
of the horoballs, which is given by Lebesgue measure on H2/PSL(2,Z).
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From the existence of an invariant measure, it follows [BoR1] that
there are tilings in T (τ̄ ) which are optimally dense packings of τ̄ in the
sense of Definition 2. It follows that all optimally dense packings of τ̄
are tilings [BoR1]. We now see that the optimal density problem for
the modified binary τ̄ is aperiodic: the presence of the horoballs imme-
diately implies that the symmetry group of an optimal packing/tiling
is at most cofinite, not cocompact, and, as argued in the proof of Theo-
rem 2, a tiling by compact bodies cannot have a symmetry group which
is cofinite but not cocompact.

The presence of the closed invariant set Tdeg is a new feature in
optimal density problems. Since it is a subset of the orbit closure of
every tiling, it is in the support of every invariant measure on T (τ̄),
even the ergodic ones. However, there is no invariant measure on Tdeg.
This is not possible for problems set in a Euclidean space, since if the
Euclidean group acts on a compact metric space a standard fixed point
argument ([Radi]) guarantees the existence of an invariant probability
measure on that set. We will discuss this feature of Tdeg further below,
when we consider various types of conjugacy for the dynamical systems
in which we are couching our optimization problems.

We now turn to the construction of uniquely ergodic invariant subsets
of T (τ̄), and the measures they support. Let w be a dyadic integer.
For each w, let Tw be the closure of the class of tilings for which the
sum of the three dyadics at each triangle is w.

Theorem 4. Tw is uniquely ergodic under the action of G2 =PSL(2,R).

Proof. For T ∈ Tw − Tdeg, there is naturally associated to T a horoball
packing h(T ). For N > 0 and T ∈ Tw − Tdeg, we let ΘN(T ) be the
packing obtained from T by removing all but the N horocyclic rows of
tiles closest to the boundary of any horoball in h(T ). If T ∈ Tdeg, we
let ΘN(T ) be the empty packing, ∅. Note that ΘN defines a continu-
ous map from Tw onto a compact space PN of packings and that ΘN

commutes with the action of G2.
From Lemma 2 below it follows that PN admits only two ergodic

measures; one concentrated on ∅ and the other being derived from Haar
measure on the space Gn/H where H is the symmetry group of ΘN(T )
for any T ∈ Tw − Tdeg ([BoR2]). Since Tdeg has µ-measure zero with
respect to any invariant measure µ on Tw ([BoR2]), the empty packing
is measure zero with respect to the pushforward of µ. Therefore there
is only one possibility for the pushforward of µ.

These pushforwards uniquely determine the measure µ. Let AN be
the set of tilings T for which one of the tiles of ΘN(T ) contains the
origin, and let S ⊂ Tw be any cylinder set, consisting of tilings in
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which the tiles in some finite neighborhood of the origin appear in a
given pattern. Since µ(Tdeg) = 0, and since Tw − Tdeg = ∪∞N=1AN ,
we have µ(S) = µ(S ∩ (Tw − Tdeg)) = limN→∞ µ(S ∩ AN ). However,
µ(S ∩AN) is determined by the pushforward of µ by some ΘN ′ , where
N ′ depends on N and S. Since the cylinder sets generate the Borel
σ-algebra of Tw, it follows that Tw is uniquely ergodic. It remains only
to prove the following lemma.

Lemma 2. For any T, T ′ ∈ Tw − Tdeg, ΘN(T ) has cofinite symmetry
group, ΘN(T ) is in the orbit of ΘN(T

′) and PN is equal to this orbit
union the empty packing.

Proof. The symmetry group of the horoball packing h(T ) for T ∈
Tw − Tdeg is conjugate to PSL(2,Z). The packing h(T ) naturally cor-
responds to an infinite trivalent tree with the triangles of the packing
corresponding to the vertices of the tree. We can navigate around the
tree with two fundamental operations.

If a “state” is a vertex together with a choice of one of the three
edges leading out from that vertex, then the two operations on states
are

C = Rotate counterclockwise by 120 degrees(15)

L = Go forwards to the next vertex and bear left.(16)

C and L obviously generate the entire symmetry group of the tree. In
terms of PSL(2,Z), C is the elliptic element

(17) C =

(

0 1
−1 1

)

or z 7→ 1/(1− z), and L is the parabolic element

(18) L =

(

1 1
0 1

)

or z 7→ z + 1, and together they generate all of PSL(2,Z).
Now we consider filling the horoballs with tiles τ̄ , so that to each

triangle we can associate three dyadic integers, one for each of the
horoballs that meet at the triangle. Different triangles that touch the
same horoball will not have the same dyadic integer; rather, moving
along the edge of the horoball counterclockwise (as seen from inside
the horoball) will increase the dyadic number by one each step.

If we apply the condition that the three numbers at each triangle
must add up to w (a fixed dyadic integer), then two dyadic numbers
at a triangle determine all the rest. If you know that a given vertex
has numbers a and b then the third number must be c = w − a − b.
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One neighboring vertex has numbers b−1 and a+1, so its third vertex
must be c. Each vertex determines its neighbors, and so determines the
entire tree. Thus a tiling in standard position (that is, with a choice
of preferred vertex and preferred edge directed out from the preferred
vertex) can be associated to a pair (a, b) of dyadic numbers, where a
is the index of the horoball to the left of the preferred outgoing edge,
and b is the index of the horoball to the right.

The action of L and C is easy to compute, namely:

L : (a, b) 7→ (a+ 1, c)(19)

C : (a, b) 7→ (c, a),(20)

where c = w − a− b. It is not hard to check the following elements:

L2 : (a, b) 7→ (a+ 2, b− 1)(21)

CL2C2 : (a, b) 7→ (a− 1, b + 2)(22)

L4CL2C2 : (a, b) 7→ (a+ 3, b)(23)

L2CL4C2 : (a, b) 7→ (a, b + 3).(24)

Now consider the effect of PSL(2,Z) on pairs (a, b) as above but
taken modulo 2N . Since 3 and 2N are relatively prime, some power
of L4CL2C2 sends (a, b) to (a + 1, b) (mod 2N), and some power of
L2CL4C2 sends (a, b) to (a, b + 1) (mod 2N). Thus PSL(2,Z) acts
transitively on the space of pairs (a, b) (mod 2N).

Therefore, for all T, T ′ ∈ Tw − Tdeg, ΘN(T ) is congruent to ΘN(T
′).

Also, the subgroup that preserves the pair (a, b) (mod 2N) (and hence
the first N rows of each horoball in the tiling) is an index 22N subgroup
of PSL(2,Z), and hence is a cofinite subgroup of PSL(2,R). Finally,
PN is the union of this orbit and the image of Tdeg, which is the empty
packing. ¤

We next give another property of these “fixed-sum” classes of tilings,
in terms of dynamical conjugacy. For convenience we recall some com-
mon terms. A topological group G acts continuously on a compact
metric space X if there is a map φ : (g, x) ∈ G × X 7→ g(x) ∈ X
which is continuous and satisfies h[g(x)] = [hg](x) for all g, h ∈ G
and x ∈ X. Assuming G acts continuously on X and Y , the ac-
tions are called “topologically conjugate” if there is a homeomorphism
α : x ∈ X 7→ α[x] ∈ Y such that α[g(x)] = g(α[x]). Assume further the
existence on X and Y of Borel probability measures µX and µY which
are invariant under the corresponding actions of G. These two actions
are said “measurably (or metrically) conjugate” if there are invariant
subsets X0 ⊂ X and Y0 ⊂ Y , each of measure zero, and an invertible



SYMMETRY OF DENSE PACKINGS 19

map α′ : x ∈ X/X0 7→ α′[x] ∈ Y/Y0 such that α′[g(x)] = g(α′[x])
which, together with its inverse, is measure preserving. Finally we
introduce an intermediate form of conjugacy (related to “almost topo-
logical conjugacy” [AdMa]) as follows. The actions of G on X and Y
will be called “almost conjugate” if there are invariant subsets X0 ⊂ X
and Y0 ⊂ Y , each of measure zero with respect to all invariant mea-
sures, and a homeomorphism α′ : x ∈ X/X0 7→ α′[x] ∈ Y/Y0 such that
α′[g(x)] = g(α′[x]).

Theorem 5. Tw and Tw′ are topologically conjugate if and only if w−
w′ ∈ 3Z. Tw and Tw′ are almost conjugate for any w,w′.

Proof. If w′ − w = 3e, where e ∈ Z, then we construct a conjugacy
by leaving the location of all the horoballs fixed, and simply adding e
to the dyadic index of each horoball. In the N -th layer of a horoball
the conjugacy essentially acts by translation by e/2N , so points deep
within a horoball are moved only slightly. In the case of degenerate
tilings, the conjugacy leaves the entire tiling fixed.

If w − w′ is not 3 times a rational integer, then (w − w′)/3 is still a
dyadic integer, since 3 is a unit in the ring of dyadic integers. Adding
(w − w′)/3 to the index of each horoball is a continuous map on the
complement of Tdeg, but is not uniformly continuous and does not ex-
tend to all of Tw. This shows that Tw and Tw′ are almost conjugate for
any w,w′.

The proof that w−w′ ∈ 3Z is necessary for topological conjugacy is
harder, and will consist of four lemmas.

Lemma 3. Any topological conjugacy φ between Tw and Tw′ must pre-
serve the points on the sphere at infinity that are tangent to horoballs.
Furthermore, the “radii” of the horoballs can only change by a finite
amount. That is, there exists a constant R (depending only on φ) such
that, if T ∈ Tw is a tiling and H is a horoball in h(T ), and H ′ is
the corresponding horoball in h[φ(T )] (that is, with the same tangent
point), then H is contained in an R-neighborhood of H ′ and vice-versa.

Lemma 4. The R of the previous lemma is actually zero; topological
conjugacies preserve the locations of horoballs exactly.

Lemma 5. Let H be any horoball in h(T ) for any T ∈ Tw, and let a
be its dyadic index (measured from a particular triangle). Let a′ be the
dyadic index of H ′ ⊂ h[φ(T )] measured from the same triangle. Then
the set of differences a′ − a (for all such horoballs H in all such tilings
T ) is a bounded subset of Z.
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Lemma 6. There is a triangle in T , with indices a, b and c, such that
a′ − a = b′ − b = c′ − c = (w′ − w)/3.

Proof of Lemma 3. A topological conjugacy is uniformly continuous,
so if φ : Tw 7→ Tw′ is a topological conjugacy, then for every r′ > 0
and ε > 0 there is a radius r such that, if the neighborhoods of two
points agree to radius r, then from uniform continuity and conjugacy
their images agree out to radius r′, up to an “ε wiggle”. More precisely,
for any two tilings T1, T2 ∈ Tw and points p1, p2 ∈ H2, if there is an
isometry of H2 that sends a ball of radius r of p1 in T1 exactly onto
a ball of radius r of p2 in T2, then the same isometry sends a ball of
radius r′ of p1 in φ(T1) to an ε-small distortion of a ball of radius r
of p2 in φ(T2), where an “ε-small distortion” means an isometry that
moves each point in the neighborhood a distance ε or less.

Now take r′ to be greater than the diameter of a triangle and ε to
be much less than the diameter of a triangle. Take any tiling T for
which φ(T ) has a triangle centered at p2. We claim that T contains a
triangle centered at a point p1 at distance at most r+1 from p2. For if
not, then the r-neighborhood of p2 (call it U) lies completely within a
horoball of h(T ). But then there is a constant, r̃, say such that every
ball of size r̃ contains an r-ball such that T restricted to that r-ball is
isometrically conjugate to T restricted to U . (Here T is thought of as
the function from the plane to the tile τ̄ that is induced by the tiling
T ). This implies that every ball of size r̃ + ε contains a triangle of
φ(T ). But this contradicts the fact that there are points, deep within
a horoball of h(φ(T )) that are at least a distance r̃ + ε away from any
triangle in the complement of h(φ(T )). But this contradicts the fact
that φ(T ) is made up of horoballs, some points of which are arbitrarily
far from triangles.

Now let H be any horoball in h(T ). Since all points in H that
are farther than r + 1 from the boundary of H are mapped into a
horoball in h[φ(T )] (i.e., not into a triangle), and since this set of points
is connected, H lies within an r-neighborhood of a specific horoball
H ′ ⊂ h[φ(T )]. This implies that H and H ′ have the same tangent
point on the sphere at infinity.

To obtain the fixed bound R, just repeat the argument for φ−1 and
take R to be the larger of the two constants r + 1. ¤

Proof of Lemma 4. Let R be as before. We know that φ preserves the
location of each horoball, and changes its radius by at most R. The
question is which horoballs grow and which shrink, and by how much.
Consider a triangle in T , with center point p, where horoballs H1, H2

and H3 meet. It is impossible for two of these horoballs to grow, or one
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to grow while a second does not change, lest they overlap. If two stay
fixed, then the entire pattern is fixed. Thus, if there are any changes
anywhere, then at each triangle either one horoball grows (or stays
fixed) and the other two shrink, or all three shrink and one or more
other horoballs H4, H5, . . . grow to fill up the space. There are only a
finite number of horoballs within distance R of the triangle, so only a
finite number of possible directions where the tile containing p in φ(T )
can be pointing. By continuity there is a number N such that knowing
all tiles within the Nth collar of the triangle determines which of H1,
H2 and H3 grow and which shrink. In particular, knowing the first N
digits of the dyadic labels for H1,2,3 determines which grow and shrink.
In essence, all our labels should be counted mod 2N .

There are 22N possible triples (a, b, c) of numbers (mod 2N) that
add up to w (mod 2N). These correspond to labels for horoballs that
meet at a triangle, counting clockwise. For each one, either all triangles
with this label have the “a” tile shrink, or none do. Let Sa be the set
of labels for which the “a” tile shrinks, let Sb be the set for which the
“b” tile shrinks, and let Sc be the set for which the “c” tile shrinks.
We will show all three sets are the whole set of triples, so all horoballs
shrink, which is a contradiction.

Each horoball actually meets an infinite number of triangles. By
comparing adjacent triangles with the same horoball we see that (a, b, c) ∈
Sa if and only if (a+ 1, c− 1, b) ∈ Sa. Continuing this process, we get
that either the entire orbit {(a+ 2n, b− n, c− n)} ∪ {(a+ 2m+ 1, c−
m− 1, b−m)}, is in Sa or the entire orbit is out. Note that 3 is a unit
in Z2N , so we can take n = (b+ 1− a)/3 and m = (b− a− 2)/3. This
means that both

(25)

(

a + 2b+ 2

3
,
a+ 2b− 1

3
,
c + a− b− 1

3

)

and

(26)

(

a + 2b− 1

3
,
c+ a− b− 1

3
,
a+ 2b + 2

3

)

are in the same orbit as (a, b, c). If (a, b, c) 6∈ Sa, then in any triangle
with indices (a+ 2b+ 2)/3, (a+ 2b− 1)/3, and (c+ a− b− 1)/3, in
clockwise cyclic order, the horoballs with indices (a+ 2b+ 2)/3 and
(a+ 2b− 1)/3 must both grow (or stay the same size), which is impos-
sible taking into account the first paragraph. Thus (a, b, c) ∈ Sa. But
the triple (a, b, c) was arbitrary, so every triple is in Sa, and likewise in
Sb and Sc. ¤
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Proof of Lemma 5. First we show that for each horoball a′ − a must
be an integer. For each dyadic integer x let πm(x) be the fractional
part of 2−mx, and let σm(x) be the integer part. The effect of adding
a′ − a on the mth layer of the horoball is to translate the locations of
the tiles by πm(a

′− a) and to change the pattern of “ancestor” tiles by
σm(a

′−a). If a′−a is not an integer, then πm(a
′−a) does not converge,

so different layers deep in the horoball get shifted by different amounts,
which contradicts uniform continuity, insofar as each piece of each layer
looks like a piece of every other layer.

Thus for each horoball, the difference a′ − a is an integer. If these
differences are not bounded, we can pick a sequence of horoballs Hm

(with indices am, and possibly in different tilings) such that πm(a
′
m−am)

does not converge. Since with radius m log(2) every patch centered on
the mth layer of Hm is replicated in the Mth layer of HM , for every
M > m, this lack of convergence of πm(a

′
m − am) contradicts uniform

continuity. ¤

Proof of Lemma 6. Since the differences (a′− a) take values in a finite
set, the values of (a′ − a) can be determined by knowing the first N
digits of (a, b, c). But at some triangles, it happens that a = b = c
(mod 2N) (since all allowable triples mod 2N do occur, and since 3
is a unit when working mod 2N). At such triangles, we must have
a′ − a = b′ − b = c′ − c = (w′ − w)/3 by symmetry. By Lemma 5 this
common difference must be a (rational) integer, so w′−w ∈ 3Z, which
completes the proof of this lemma, and the theorem. ¤

A consequence of Lemma 6, together with the fact that two adjacent
horoballs determine the entire tiling, is:

Proposition 1. There is a unique topological conjugacy from Tw to Tw′

when w−w′ ∈ 3Z. Equivalently, there are no nontrivial automorphisms
of Tw.

Although the tilings in T (τ̄) – in particular those in any Tw – cannot
have a cofinite symmetry group, those in any Tw in fact do have a
nontrivial symmetry group, as we see next.

Let T0 ∈ Tw − Tdeg and consider the set h−1[h(T0)] of nondegenerate
tilings having the same associated horoball packing as T0. We shall de-
scribe the symmetry group of h−1[h(T0)], i.e., the subgroup of PSL(2,R)
consisting of those elements which fix every tiling in h−1[h(T0)]. Up to
conjugacy, this group is independent of w and T0.

The symmetry group of the horoball packing h(T0) is conjugate in
PSL(2,R) to PSL(2,Z); choosing a particular conjugacy is the same
as choosing a triangle and a distinguished vertex in h(T0), i.e., a state
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in the trivalent tree. Fix a conjugacy and identify the symmetries
of h−1[h(T0)] with the elements of PSL(2,Z) which fix every pair of
dyadic numbers. We recall some terminology from Lemma 2 concerning
particular elements of PSL(2,Z).

Theorem 6. The elements L2 and R2 ≡ C2LC2L freely generate a
subgroup E of PSL(2,Z) of index 6. The symmetry group of h−1[h(T0)]
is the kernel of the abelianization 〈L2, R2〉 7→ Z⊕ Z.

Proof. The actions of L2 and R2 on pairs of dyadics are given by

(27) R2 : (a, b) 7→ (a+ 1, b− 2) and L2 : (a, b) 7→ (a+ 2, b− 1).

One readily checks that the operations L2, R2, L−2, R−2, R2L−2 and
L2R−2 are precisely the ones which move from a vertex in the triva-
lent tree to a vertex two edges away and induce maps of the form
(a, b) 7→ (a + k, b + `), k, ` ∈ Z on pairs of dyadic numbers. It follows
that the index of E in PSL(2,Z) is 6.

Freeness follows from the fact that distance from the starting point
does not decrease as we follow some sequence of the basic operations
L±2, R±2 unless one of the operations is followed immediately by its
inverse.

Since the vectors (1,−2) and (2,−1) are linearly independent, the
symmetry group of h−1[h(T0)] consists of those words in L±2, R±2 for
which the sums of the powers of R and L are both zero, i.e., the kernel
of the abelianization of E . ¤

We now note that our use of the densest packing by horoballs, Fig-
ure 6 (or, using the Poincaré disk, Figure 8), was not critical in the
above method. An infinite family of generalizations can be made from
other such horoball packings, as we now argue.

To generalize our “triangular” tilings, based on Figure 8, we consider
tilings of H2 constructed as follows. First pack H2 by horoballs such
that five horoballs meet along regular “pentagons” (rather than trian-
gles), as in Figure 9. The symmetry group of such a packing, the Hecke
group G5, is a cofinite subgroup of PSL(2,R) generated by z 7→ −1/z
and z 7→ z + λ, where λ = (1 +

√
5)/2 is the golden mean.

We tile each horoball with (differently) modified binary tiles, where
now we need an appropriate width so we can arrange that the prongs
sticking out of such a tile each fill up a fifth of a pentagon; see Figure 10.
Relative to such a pentagon, the tiling of a horoball with modified bi-
nary tiles is associated to a dyadic integer. The first digit tells whether
we are on the left or right prong of the tile, the next digit tells whether
that tile emerges from the left or right prong of its parent, and so on.
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Figure 8. A packing of the Poincaré disk by horoballs

Figure 9. Another packing of the Poincaré disk by horoballs

Pick a rational integer k, once and for all. Let the dyadic integers
around a pentagon, counting clockwise, be a, b, c, d and e. The “a”
and “b” horoballs also meet at another pentagon, and we assume that
the five dyadic integers representing these horoballs, counting counter-
clockwise, are a + 1, b − 1, c − k, d and e + k. This rule for relating
patterns around adjacent pentagons is a generalization of the “fixed
sum” rule for triangular tilings. Notice also that the sum around the
pentagons is fixed, and we let Tk,w be the closure of the class of tilings
that follow the “k-rule” and for which the sum of the five dyadics at
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Figure 10. A “pentagonal” binary tile

each pentagon add up to w. Again we denote by Tdeg the degenerate
tilings.

Theorem 7. Tk,w is uniquely ergodic under the action of G2 =PSL(2,R).

Proof. This proof is nearly identical to the proof of Theorem 4. As be-
fore, we approximate tilings in Tk,w by packings in which each horoball
has only N layers, and show that such packings have cofinite symmetry
groups.

As before let ΘN(T ) be the packing obtained from T by removing
all but the N horocyclic rows of tiles closest to the boundary of any
horoball in h(T ), and let PN be the range of ΘN(T ).

In place of Lemma 2, we need to prove:

Lemma 7. For any T T ′ ∈ Tk,w − Tdeg, ΘN(T ) has cofinite symmetry
group, ΘN(T ) is in the orbit of ΘN(T

′) and PN is equal to this orbit
union the empty packing.

Proof of Lemma 7. A “pentagonal” horoball packing of H2 corresponds
to an infinite 5-valent tree, with the pentagons of the packing corre-
sponding to the vertices of the tree. We can navigate around the tree
with two fundamental operations. If a “state” is a vertex together with
a choice of one of the five edges leading out from that vertex, then the
two operations are

P = Rotate counterclockwise by 72 degrees(28)

L = Go forwards to the next vertex and bear hard left.(29)
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Together these generate G5. In terms of PSL(2,R), P is the elliptic
element z 7→ 1/(λ− z) while L is the parabolic element z 7→ z + λ.

We list the horoballs around a vertex in counterclockwise order,
starting with the one to the right of the chosen edge. We need only list
the first four of the five horoballs, since if their dyadic integers are a,
b, c, and d, then the last one must be e = w − a− b− c− d.

The actions of L and P are easy to compute, namely:

L : (a, b, c, d) 7→ (a+ 1, e+ k, d, c− k)(30)

P : (a, b, c, d) 7→ (e, a, b, c).(31)

It is not hard to check the following elements of G5:

L2 : (a, b, c, d) 7→ (a+ 2, b− 1 + k, c− k, d− k)(32)

PL2P 4 : (a, b, c, d) 7→ (a + k − 1, b + 2, c− 1 + k, d− k)(33)

P 2L2P 3 : (a, b, c, d) 7→ (a− k, b+ k − 1, c+ 2, d+ k − 1)(34)

P 3L2P 2 : (a, b, c, d) 7→ (a− k, b− k, c+ k − 1, d+ 2).(35)

Thus the possible values of (a, b, c, d) differ by (among others) the el-
ements of the sub-lattice of Z4 generated by (2, k − 1,−k,−k), (k −
1, 2, k − 1,−k), (−k, k − 1, 2, k − 1) and (−k,−k, k − 1, 2).

Since

(36) det









2 k − 1 −k −k
k − 1 2 k − 1 −k
−k k − 1 2 k − 1
−k −k k − 1 2









= 5[(k−2)(k−1)k(k+1)+1]

is odd, G5 acts transitively on the space of quadruples (a, b, c, d)
(mod 2N), and the subgroup that preserves a given quadruple (and
hence the first N rows of each horoball in the tiling), is an index 24N

subgroup of G5, and hence is a cofinite subgroup of PSL(2, R). The
remainder of the lemma, and the theorem, follow as in triangular case:
Lemma 2 and Theorem 4. ¤

Next we consider the question of conjugacy for these systems. Again,
we just modify the argument that worked for triangle tilings.

Theorem 8. Tk,w and Tk,w′ are topologically conjugate if and only if
w − w′ ∈ 5Z. Tw and Tw′ are almost conjugate for any w,w′.

Proof. The proof is essentially the same as the proof of Theorem 5, in
particular that of almost conjugacy, which we do not discuss further.
If w − w′ ∈ 5Z, the conjugacy is simply adding (w − w′)/5 to each
dyadic index. The converse follows from the analogues of Lemmas 33–
6. The proofs of Lemmas 3, 5, and 6 carry over almost word-for-word.
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Lemma 4 was algebraic, and used specific properties of the fixed-sum
rule for triangles. In its place we have the following two lemmas that
are specific to pentagonal horoball packings and the Hecke group G5.

Lemma 8. The only elements of Q[
√
2] that appear as elements of

matrices in G5 are −1, 0 and 1.

Proof. Viewed as matrices, the pentagonal Hecke group is generated
by ( 1 λ

0 1 ) and ( 0 1
−1 0 ). The matrix elements are manifestly elements of

Z[λ], and Z[λ] ∩Q[
√
2] = Z. We will show that the only integers that

actually appear as matrix elements are 0 and ±1.
Rosen [Rose] showed that an element of Z[λ] is an element of a matrix

in the group if and only if it is (up to sign) the denominator of a finite
approximant of the continued fraction

(37) r0λ+
ε1

r1λ+ ε2
r2λ+···

,

where εi = ±1 and each ri is a positive integer (except possibly r0,
which may be zero). The continued fraction expansion of a real number
is not unique, but can always be expressed in a unique “reduced form”,
one of whose requirements is that if rn = 1, then εn+1rn+1 6= −1.
The denominators Qn of the successive approximants to the (possibly
infinite) continued fraction satisfy the recursion:

(38) Qn = rnλQn−1 + εnQn−2,

and we may take Q−1 = 0 and Q0 = 1. Writing Qn = anλ + bn, the
recursion becomes:

an = rn(an−1 + bn−1) + εnan−2(39)

bn = rnan−1 + εnbn−2(40)

We claim that the coefficients satisfy three properties: α) an ≥ an−1,
β) bn ≥ 0 and γ) an ≥ bn−1. These are easily checked for n = 1, 2, 3.
We prove these hold for all n by induction. Suppose they hold for n
up to k. We have ak+1 = rk+1(ak + bk) + εk+1ak−1. If εk+1 = 1 this is
manifestly at least ak. If rk+1 > 1 and εk+1 = −1 then ak+1 − ak =
rk+1bk+(rk+1− 1)ak−ak−1, which is non-negative since ak−ak−1 ≥ 0.
Finally, if rk+1 = 1 and εk+1 = −1, then rk ≥ 2, and by property γ we
have

ak+1 = ak + bk − ak−1 = ak + (rk − 1)ak−1 + εkbk−2

≥ ak + ak−1 − bk−2 ≥ ak,
(41)

which is the needed induction for α. Next, bk+1 = rk+1ak + εk+1bk−1 ≥
ak − bk−1 ≥ 0, which is the needed induction for β. For γ we note
ak+1 ≥ ak + bk − ak−1 ≥ bk, which completes the induction. Finally,



28 L. BOWEN, C. HOLTON, C. RADIN, AND L. SADUN

since the sequence ak is nondecreasing and since a1 is positive ak is
never zero and Qk is never rational for k ≥ 1. ¤

Lemma 9. A conjugacy between Tk,w and Tk,w′ must preserve the lo-
cations of horoballs exactly.

Proof. We have already shown that the points on the sphere at infinity
where the horoballs touch are not changed, that their radii change by
a bounded amount, and that there are only a finite number of possible
values for that change in radius. This implies that knowing the first N
digits of all five indices at a pentagon will determine which horoballs
grow and shrink, and by how much. Note also that the deep interiors
of all horoballs are identical, so the change in radius is the same for all
horoballs, modulo log(2).

Now consider a tiling whose associated horoball packing is as follows:
One horoball is the set {x + iy | y ≥ 1}, and the others are its images
under the Hecke group G5. For each matrix

(

α β
γ δ

)

in the group there is

a horoball tangent to the x-axis at α/γ with Euclidean diameter 1/γ2.
Note that the dyadic indices of the tiling modulo 2N are unchanged

by the transformation z 7→ z + 2N+1λ, so that φ of this tiling corre-
sponds to a packing that is invariant under z 7→ z + 2N+1λ. However,
if the packing contains the horoball {x+ iy | y ≥ ν}, then it is invariant
only under addition of multiples of νλ. Thus ν must divide 2N+1, and
in particular must be rational.

Now consider a horoball that meets the horoball at infinity in the
new packing (but did not meet the horoball at infinity in the origi-
nal packing). Since its (hyperbolic) radius has changed by − log(ν)
(mod log(2)), and since ν is rational, its Euclidean radius must have
been a power of 2 times the square of a rational to begin with. How-
ever, this implies that there is an element of the Hecke group with γ of
the form of a product of a rational and a power of

√
2, and not equal

to 0 or ±1. By Lemma 8 no such element exists. ¤

Next we consider some differences between optimization problems
with other variations on our basic tile. So far we have considered pack-
ings of H2 by horoballs which meet either in “triangles” (the densest
packing of horoballs) or in “pentagons”, and modified our basic tile to
have 2 prongs, each of which is either a third of a triangle (Figure 7) or
a fifth of a pentagon (Figure 10). One can easily allow horoball pack-
ings defined by other regular n-gons, and also consider tiles to have
more prongs, one for each neighboring n-gon; for n = 3 and m = 3 see
Figure 11.
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Figure 11. A triangular tile with 3 prongs

Let T (n,m) denote the space of all tilings by m-pronged tiles, each
prong congruent to one of the n isosceles triangles dividing an n-gon
as defined above. Let X be a closed, PSL(2,R)-invariant subset of
T (n,m) and let Y be a closed, PSL(2,R)-invariant subset of T (n′, m′).
We want to show that, under various assumptions, X and Y cannot be
topologically conjugate.

Lemma 10. If φ : X 7→ Y is a topological conjugacy, φ maps degener-
ate tilings to degenerate tilings and nondegenerate tilings to nondegen-
erate tilings. Moreover, for nondegenerate tilings the points of tangency
of the horoballs at the sphere at infinity are not changed by φ.

Proof. The proof is essentially that of Lemma 3. The fact that we were
dealing with fixed-sum tilings (with n = n′ = 3 and m = m′ = 2) was
never used.

Theorem 9. Let n = 3 and n′ = 5. Suppose X ⊆ T (n,m) contains
nondegenerate tilings, is invariant under Gn and closed, and suppose
Y ⊆ T (n′, m′) is invariant under Gn and closed. Then the actions of
Gn on X and Y are not topologically conjugate.

Proof. For a nondegenerate tiling in T (3, m), the “cusp point set”, the
set of points at infinity that meet horoballs, is conjugate, by some
fixed element of PSL(2,R) to Q ∪ {∞}. The cusp point set for the
corresponding (nondegenerate) tiling in T (5, m′) is conjugate to Q[λ]∪
∞, where λ is the golden mean. This contradicts Lemma 10. ¤
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Theorem 10. Suppose X ⊆ T (n,m) is invariant under Gn and closed,
and Y ⊆ T (n′, m′) is invariant under Gn and closed. If m 6= m′ then
the actions of Gn on X and Y are not topologically conjugate.

Proof. Assume without loss of generality that m < m′. X necessarily
contains all the degenerate tilings, and in particular contains a tiling
invariant under the map z 7→ mz. By Lemma 10, any conjugacy would
have to take this to a degenerate tiling in T (n′, m′) that is also invariant
under z 7→ mz. However, under this symmetry, points along the y-axis
are only moved a distance ln(m), while any symmetry of a degenerate
tiling in T (n′, m′) must move points at least a distance ln(m′). ¤

Note that Theorem 9 requires that X contain nondegenerate tilings;
if X consists only of degenerate tilings, then n is irrelevant. Theo-
rem 10, however, only depends on the existence of degenerate tilings.
These arise automatically since they are in the orbit closure of every
nondegenerate tiling. Generalizing Theorem 9 would require knowing
more than we do about cusp point sets for Hecke groups.

V. Isomorphism and Uniqueness in Problems of Optimally
Dense Packings

Optimally dense packings, especially tilings of E2 and E3, have been
important for many years in classifying certain geometric properties of
patterns; we refer here to the classification through symmetry groups,
the so-called crystallographic symmetries.

At heart the formalism consists of treating the structures of interest
as subsets of Xn, with the action on them of Gn – that is, one uses the
structure of dynamical systems. Consider for instance two ball pack-
ings in E3, P fcc, the face centered cubic, and P hcp, the hexagonal close
packed. When we choose to distinguish P fcc from P hcp on symmetry
grounds what we are saying is that the subgroup of G3 (the connected
Euclidean group) which acts trivially on every element of one orbit is
different from the symmetry group of the elements of the other orbit.
This implies the systems are not conjugate: there is no bijection, be-
tween the two orbits under G3, which intertwines the action of G3. So
in this simple situation we see that conjugacy can detect differences in
symmetry.

The case of the kite & dart tilings (Figure 3) is instructive. As we
noted in section III, it is natural to want to think of all these tilings
as equivalent. This is true even though the tilings can actually have
different symmetry groups; for instance there are two noncongruent
kite & dart tilings with a point of 5-fold rotational symmetry, which
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the other kite & dart tilings do not have [Gard]. Furthermore, the
symmetry of the two special tilings actually do not play an essential
role, for two reasons. First, the 5-fold rotational symmetry appears in
regions of arbitrarily large size in every tiling, and this could replace
the exact symmetry of the special tilings. Furthermore the Penrose
tilings have a statistical form of 10-fold rotational symmetry, which
is expressed by the 10-fold rotational symmetry of all the translation
invariant measures on the space of Penrose tilings [Radi]. We also note
an analogy between the different “symmetry” of elements of tilings with
different fixed-sums, as evidenced by nonconjugacy, and the different
(5-fold rotational) symmetry that appears among kite & dart tilings.

So we are led to relax the strict form of equivalence whereby two
packings are equivalent if they are in the same orbit under Gn. From
the example of the kite & dart tilings one might be led to replace this
by having optimally dense packings equivalent if they are generic for
the same measure. But from the various examples of section IV we will
go one step further.

Definition 4. We say that two optimally dense packings p, p′ are
“weakly equivalent” if the optimal measures µp, µp′ for which they
are generic have the following property: the set M(p) of all optimal
measures the support of which intersects the support of µp coincides
with the set M(p′). An optimal density problem will be said to have
a “unique solution” if there is only one weak equivalence class of opti-
mally dense packings.

As we saw in section III, there are simple examples of optimally
dense packing problems, in particular that for disks of fixed radius in
E2, for which the solution is unique in the sense of consisting of a single
orbit of Gn, or, put another way, in the sense that the quotient P o

B/Gn
consists of a single point. Because of the aperiodicity of the kite & dart
tilings, and the modified binary tilings, we have been led to divide P o

B

by a cruder equivalence relation.
This paper is a continuation of a long tradition of classifying a pat-

tern through the dynamical system associated with it by the action
of the isometry group of the ambient space of the pattern. A com-
mon step taken when following the dynamics approach is to settle on a
form of conjugacy, typically either measurable conjugacy or topological
conjugacy – and in effect declare two optimization (or tiling) problems
equivalent if their dynamical systems are conjugate in the chosen sense.
Prominent in this vein is the analysis by Connes, Putnam, Kellendonk
et al. noted above, in which invariants of aperiodic tilings are sought
through operator algebras associated with their dynamical systems.
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Definition 5. We declare two optimal density problems, associated
with finite sets B and B′ of bodies in some fixed Xn, to be “equivalent”
if there is a topological conjugacy between their dynamical systems,
(P̄ o
B,Gn) and (P̄ o

B,Gn), where P̄ o
B denotes the closure in PB of P o

B.

In terms of this notion of equivalence the proofs of Theorems 9 and
10 show how the optimization problems, for different variations of our
modified binary tile, can be distinguished by geometric features.

The operator algebra approach noted above is a powerful way to
obtain the desired invariants for topological conjugacy. Associated to a
dynamical system (X,G) is the crossed-product C∗-algebra C(X)×αG,
where C(X) is the C∗-algebra of continuous complex-valued functions
on X and α is the action of G on C(X). (The crossed-product is
the completion of the algebraic tensor product in a certain norm; for
this and other terms in operator algebras we refer to [Blac].) The
K-theoretic invariants of the crossed-product algebra are topological
conjugacy invariants for the dynamical system.

A common way to compute invariants is to associate an AF algebra
with the dynamical system, “large” in an algebra Morita equivalent to
the crossed-product of interest. (Morita equivalence preserves the K-
theoretic invariants.) We do not see how to do that here. Alternatively
one could try to computeK0 using tools such as the Pimsner-Voiculescu
6-term exact sequence; this has been a practical route at least when
the dynamical group is R or R2, but this seems to be harder for groups
such as PSL(2,R).

In short, the operator algebra methods used to produce dynamical
invariants for aperiodic systems in Euclidean space seem to need ex-
tension for this more general aperiodic setting.

Acknowledgments. We are grateful for useful discussions with Alan
Reid, in particular for pointing us to reference [Rose].
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