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ON A CLASS OF SEQUENCES RELATED TO THE [P SPACE
DEFINED BY A SEQUENCE OF ORLICZ FUNCTIONS

Ayhan Esi

Abstract. In this article we introduce the space m({, ¢,q) on generalizing the sequence
space m(¢) using the sequence of Orlicz functions. We study its different properties and obtain
some inclusion results involving the space m(£, ¢, q).

1. Introduction

Let I be the set of all real or complex sequences z = (zj) with the norm
||| = supy, |zx| < co. A linear functional L on I, is said to be a Banach limit [1] if
it has the properties: (a) L(z) > 0if > 0 (i.e., 2 > 0 for all k € N), (b) L(e) = 1,
where e = (1,1,1,...), (¢) L(Sx) = L(x), where the shift operator S is defined on
loo by (S:]C)k = Tk+1-

Let B be the set of all Banach limits on [,. A sequence x is said to be almost
convergent to a number [ if L(x) = for all L € B. Lorentz [5] has shown that x is
almost convergent to [ if and only if

$n+$n+1 ++xn+m

tmn = tmn () = eara — 1 as m — oo, uniformly in n.

Throughout the article w(X), l(X) and {?(X) denote respectively the spaces of
all, bounded and p-absolutely summable sequences with the elements in X, where
(X, q) is a seminormed space. By 6 = (0,0, ...), we denote the zero element in X.

The sequence space m(¢) was introduced by Sargent [10]. He studied some
of its properties and obtained its relationship with the space [P. Later on it was
investigated from sequence space point of view and related with summability the-
ory by Rath and Tripathy [10], Tripathy [13],Tripathy and Sen [11], Tripathy and
Mahanta [12], Esi [4] and others.

An Orlicz function is a function M (0,00] — (0, 00] which is continuous,
non-decreasing and convex with M (0) =0, M (z) > 0 for 2 > 0 and M(z) — oo as
T — 00.
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An Orlicz function is said to satisfy As-condition for all values of w, if there
exists a constant K > 0, such that M (2u) < KM (u),u > 0.

REMARK. An Orlicz function satisfies the inequality M (Ax) < MM (x) for all
Awith 0 < A< 1.

2. Definitions and background

Throughout the article P; denotes the class of subsets of N, the natural num-
bers, those do not contain more than s elements. Further (¢s) will denote non-
decreasing sequence of positive real numbers such that ng,+1 < (n+ 1)¢, for all
n € N. The class of all the sequences (¢) satisfying this property is denoted by ®.

The sequence space m(¢) introduced and studied by Sargent [10] which is
defined by:

1
(@)= o= (@) ol = _swp =55 ol < oo .

Lindenstrauss and Tzafriri [6] used the idea of Orlicz function to construct the
sequence space

Iy = {(xk) : ZM(?') < o0, for some p > O}.
k
The space l;; becomes a Banach space with the norm
. . ||
lz]| = mf{p >0: ZM(—) < 1}
k p
which is called an Orlicz sequence space. The space [, is closely related to the

space [, which is an Orlicz sequence space with M (x) = 2P, 1 < p < c0.

A generalization of Orlicz sequence space is due to Woo [14]. Let Q = (M)
be a sequence of Orlicz functions. Define the sequence space

(M) = {x = (ap) : %:Mk(mﬂ) < oo, for some p > O}

and equip this space with the norm
|| = inf{p >0 sz(@) <1 }
k P

The space [(My,) is a Banach space and is called a modular sequence space. The
space [(M}) also generalizes the concept of modulared sequence space earlier by
Nakano [7], who considered the space I[(M},) when My (z) = x®, where 1 < oy, < 00
for k > 1.

In the later stage different Orlicz sequence spaces were introduced and studied
by Parashar and Choudhary (8], Esi and Et [3], Esi [2] and many others.

In this article we introduce the following sequence spaces.
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Let Q = (M) be a sequence of Orlicz functions. Then

tmn ()

lAOO(Q,q) = {1: = (zk) : sup M, (q(

m(Q,¢,q) =

{x:(azk):sup sup i > Mm(Q(

m,n s>1,0€Ps ¥s meo

)) < o0, for somep>0},

tnn ()

)) < o0, for somep>0},

where
In+zn+1+"'+xn+m

m—+1

tmn(z) =

Let « = (x1) be a sequence, then S(X) denotes the set of all permutations of
the elements of x = (xi) i.e.,

S(X) = {(wr)) : m(k) is a permutation on N }.

A sequence space F is said to be symmetric if S(X) C F for all x € E.

A sequence space FE is said to be solid (or normal) if (axzy) € E, whenever
x = (zg) € E and for all sequences of scalars (ay) with |ayg| <1 for all k € B.

A sequence space F is said to be monotone, if it contains the canonical pre-
images of its step spaces.

LEMMA. A sequence space E is monotone if E is solid.

3. Main results

In this section we prove some results involving the sequence spaces m(£2, ¢, q)
and (9, q).

THEOREM 1. m(Q,¢,q) and leo(Q,q) are linear spaces over the complex
field C.

Proof. Let x = (z1),y = (yx) € m(Q,¢,q) and a, 3 € C. Then there exist
positive numbers p; and ps such that

sup sup L > Mm(q<tmn(x))) < oo

m,n s>1,0€P;s Ps meo P1

and

sup sup L > Mm(q(tm:l;y))) < o0

m,n s>1,0€Ps Ps meo

Let ps = max(2|a|p1, 2|0]p2). Since My, is non-decreasing convex function for all k
and ¢ is a seminorm, we have

> Mm(q(w)) > Mm@(w)ﬂ(w))

meo P3 meo P3 P3
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< 5 a(==)) 5 o)
)

meo 1 meo

)
)

<sup sup - > Mm<q<tm;(z)))+sup sup  — Z Mm<q(tm”(y)>)

m,n s>1,0€P; Ps meo 1 m,n s>1,0€P; ¥s meo P2

= sup sup —ZM ((mna;v—i—ﬁy

m,n s>1,0€P; ¥s meco

Hence m(€, ¢, q) is a linear space.

The proof for the case TOO (€, ) is a routine work in view of the above proof. m

THEOREM 2. The space m(Q, ¢, q) is a seminormed space, seminormed by

g(x) = inf{p >0:sup sup L > Mm<q<tm"p(m))) <1 }

m,n s>1,0€P; Ps meo

Proof. Clearly g(z) > 0 for all z € m(Q,¢,q) and g(f) = 0. Let p; > 0 and
p2 > 0 be such that

sup sup — >, M, ( <&)>§1
m,n s>1,0€Pg (bs meo P1
and ) .
sup sup — Mm(q(L(y))) < 1.
m,n s>1,0€Pg ¢s meao P2
Let p = p1 + p2. Then we have
1 tmn
sup  sup  — 3. Mm<Q<L)
p
1

m,n s>1,0€Ps Ps meEo

y) )

t

<sup sup — M,, (q( mn (2) + t’”;;y)))
m,n s>1,0€P; Cbs meao P1

1 P1 tmn(x) P2 tomn (Y)
<sw swp o 5 Mm(( )+ 5 M (a2 )}
m55>1 aIéP b5 mZGU p1+ p2 1 p1 p1+ p2 A

P e s Z Mm<q<tm"(z))>+

p1 + P2 mn s>1,0€P, Ps meo P1
t
P2 sup sup — Y. Mm(q( mn(y))) <1.
P1+ P2 mns>1,0eP, Ps meo P2

Since the p's are non-negative, we have

1
g(x+y):inf{p>0:sup sup 72Mm(q(@) <1

m,n s>1,0€P; ¥s meo

)<1}
§inf{p1 >0:sup sup  — S My, ( (tm""”))) gl}
)<t}

m,n Szl,UEPS s mé€Eo

t
—I—inf{pg >0:sup sup — . Mm(q< m;(?ﬁ)

m,n s>1,0€Ps Ps meo
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Next for A € C, without loss of generality, let A # 0, then

g(Ax) :inf{p>0:sup sup 1z > Mm(q(W)) < 1}

m,n s>1,0€P; ¥s meco

1
:inf{|)\|r>0: sup sup — Y Mm(Q(%)) 31}7 where = 15

m,n s>1,0€P; s meo

= |)\|inf{r >(0:sup sup L > MM(Q(M» <1 } = [Alg(z).

m,n s>1,0€P; ¥s meo

This completes the proof. m

ProposiTION 3. The space ZAOO(Qq) is a seminormed space, seminormed by

h(z) = inf{p >0: supMm<q(tmnp(x)>> <1 }

m,n

The proof of Proposition 3 is a consequence of the above theorem.

THEOREM 4. m(, ¢,q) C m(2,¢,q) if and only if sup,>, $* < oo.

Proof. Let sup,sq % < oo and z = (zx) € m(Q, ¢, q). Then

1 t
sup sup — > Mm<q(M)) < oo for some p > 0.
m,n s>1,0€Pg ¢s meo P

= sup sup x > Mm(q(tmr;(x)))

m,n s>1,0€P; Vs meo

<)o s, L o2 <o

m,n s>1,0€P; s meo P

Then x = (73) € m(,9,q). Conversely, suppose that sup,; % = oo. Then

sq

= oo. Let

there exists a sequence of natural numbers (s;) such that lim;_, v =

x = (x) € m(Q, d, q), then there exists p > 0 such that
1 t
sup sup — Y. Mm(q(M)) < 00.
mn s>1,0€Ps Ps meo P
Now we have

a2 i o)

m,n s>1,0€P; ¥s meco

> (sup Pss ) sup  sup 1 > My, (q(tm"(x))) = 0.

i1 Vs;/ mmiz1,0epP,, Ps; meo p

Therefore x = (z) ¢ m(2,v, q) which is a contradiction. Hence sup,~, % <0o.m
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The following result is a consequence of Theorem 4.

COROLLARY 5. Let Q = (M,,) be a sequence of Orlicz functions. Then
m(Q, ¢,q) = m(,9,q) if and only if supys, & < 00 and supgs, &1 < oo, where
& = i— foralls=1,23,....

THEOREM 6. Let M, My, Ms € Q be Orlicz functions satisfying As-condition.
Then
(a‘) m(M17 ¢’ Q) - m(MOMhQqu);

(b) m(M17 ¢a Q) N m(M27 ¢7 Q) - m(Ml + M27 ¢7 q)

Proof. (a) Let x = (z1) € m(]\/[l, ®,q), then there exists p > 0 such that

sup sup — Z M( (’”“(z))) < 0.

m,n s>1,0€P; Ps meo

Let 0 < € < 1 and § with 0 < § < 1 such that M(t) < € for 0 < ¢t < §. Write
Ymn = Ml(q(t"Lp(g”))) and for any o € Ps, consider

meo

where the first summation is over y,, , < d and the second is over y,, , > 6. By
the Remark, we have

Z;M(ym,n) < M(1) ;ym,n < M(2) ;ym,n (3.1)

For ymn > 6, we have ym, < 3 < 1+ 222 since M is non-decreasing and
convex, so

Mo <1+ 52) < -+ o (2],

Since M satisfies Ag-condition, so

]- ym,n 1 ym,n . ym,n
M(ymn) < GEZ22M(2) + SK =M (2) = K22 M (2).

Hence
%:M(ym,n) < maX(LK&’lM(?))Ez)ym,n (3.2)

By (3.1) and (3.2), we have x = (x) € m(MobMy, ¢, q).
(b) The proof is trivial. m
Taking M;(x) = x in Theorem 6 (a), we have the following result.

COROLLARY 7. Let M € Q be Orlicz function satisfying As-condition. Then
m(é,q) € m(M, $,q).

From Theorem 4 and Corollary 7, we have:
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COROLLARY 8. Let M € Q be Orlicz function satisfying As-condition. Then
m(¢,q) Cm(M,¥,q) if and only if sup s, \% < 0.

THEOREM 9. Let Q = (M,,) be a sequence of Orlicz functions. Then the
sequence space m(§2, ¢, q) is solid and symmetric.

Proof. Let x = (z1) € m(9, ¢, q). Then there exists p > 0 such that

sup sup 1z > Mm<q<tm7;(m))) < 0. (3.3)

m,n s>1,0€P; ¥s meco

Let () be a sequence of scalars with |A;;,| < 1 for all m € N. Then the result
follows from (3.3) and the following inequality

> My (q(tm";’\x) )) < % PnlM @(%)) (by Remark)
- 5 b))

meo

The symmetricity of the space follows from the definition of the space m(€2, ¢, q)
and symmetric sequence space. ®

The following result follows from Theorem 9 and Lemma.

COROLLARY 10. Let Q = (M,,) be a sequence of Orlicz functions. Then the
sequence space m(€), ¢, q) is monotone.

The proof of the following result is a routine verification.

PROPOSITION 11. Let Q = (M,,) be a sequence of Orlicz functions. Then the
sequence space lo (2, q) is solid and as such is monotone.

THEOREM 12. Let Q = (M,,) be a sequence of Orlicz functions. Then
m(§2, ¢,q) C loo(£2,9).
Proof. Let x = (z) € m(£2, ¢,q). Then there exists p > 0 such that
1 tmn @
sup sup — > Mm(q(ﬁ)) < 00 = sup,, , (%Mm(q<w)) < o0
m,n s>1,0€P; s meo P ’ ! P

for some p > 0, (on taking cardinality of o to be 1). This implies that x = (xy) €
150 (€2, ). This completes the proof. m

THEOREM 13. Let Q = (M,,) be a sequence of Orlicz functions. Then
M, 6,q) = Ioo(@, ) if and only if P,y 2 < 0.

Proof. We have m(Q,4,q) = lAOO(Q, q) if ¥s = s for all s € N. By Theorem 4
and Theorem 9, it follows that m(£, ¢, q) = loo(£2, ¢) if and only if sup >, o < oo
This completes the proof. m
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Since the proof of the following proposition is not hard, we give it without
proof.

PROPOSITION 14. Let Q = (M,,) be a sequence of Orlicz functions and ¢1 and
q2 be seminorms. Then

(a) m(Qv¢a Q1) N m(Qa¢7q2) C m(Qa¢7ql + CI2) and Too(chh) N /l\oo(Qaq2) -

Too(Qa q1 + Q2);
(b) If q1 is stronger than g2, then m(Q,é,q1) C m(, ¢, q2) and Z\OO(Q,ql) C

Too(Qa QQ)

THEOREM 15. Let Q = (M,,) be a sequence of Orlicz functions and (X, q) be
complete. Then {m(§2, ¢,q), g} is also complete.

Proof. Let (z') be a Cauchy sequence in m(fQ,®,q),where z* = (z%) =
(i, 28,25, ...) € m(Q,¢,q) for i € N. Let r > 0 and 29 > 0 be fixed. Then

for each T;O > 0, there exists a positive integer ng such that

; ; €
g’ —a7) < . for all 7,5 > ng.

éinf{p>0: sup sup L > Mm(q(w))§1}<s, (3.4)

m,n s>1,0€P; ¥s meo P

for all 7, j > ng. We have for all for all 7,7 > ng

1 ton (2t — 29)
=sup sup — M ( (m"i>> <1, for some p > 0.
mE SZI,U%PS (bs mge:a m\1 9(961 - ZUJ) p
1 [tmn (2t — 27)]
 sup g (g lmn =2y
m,g o1 1 g(at — x9)
tmn Ll .o
= Mm(q(M)) < ¢1, for all i,5 > ng and m,n € N.
gzt — a9)

We can find » > 0 such that “52n,,(%) > ¢1, where 7, is the kernel associated
with M, for all m, such that

i (o)) < Ty 2

g(at — a9) 2 2
= q(tmn (2t — 27)) < %.% = g, for each m,n € N.
In particular
q(ton(x' — 27)) = q(2!, —29) < % . % = %, for each fixed n.

Hence () is a Cauchy sequence in (X, q), which is complete. Therefore for each
n € N, there exists z,, € X such that q(zf, — 2) — 0 as i — oo. Using the
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continuity of M, for all m and ¢ is a seminorm, so we have

T j
sup sup S > Mm<q(tmn(x limj— 00 & ))) <1

m,n s>1,0€P; ¥s meo P

1 tmn ‘-
=sup sup — Y. Mm<q(M)) <1, for some p > 0.
p

m,n s>1,0€P; ¥s meco

Now taking the infimum of such p’s, by (3.4), we get

1 tn (28 — ,
inf{p>0:sup sup — Y. Mm(q((xpx))) < 1} < e, for all i > ng.

m,n s>1,0€P; Ps meo

Since m(£2, ¢, q) is linear space and (z°) and (2 — x) are in m(€, ¢, q), so it follows
that A ‘
(@) = (z —2") + (¢") € m(Q,9,9).

Hence m(€, ¢, q) is complete. m
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