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ON A CLASS OF SEQUENCES RELATED TO THE lp SPACE
DEFINED BY A SEQUENCE OF ORLICZ FUNCTIONS

Ayhan Esi

Abstract. In this article we introduce the space m(Ω, φ, q) on generalizing the sequence
space m(φ) using the sequence of Orlicz functions. We study its different properties and obtain
some inclusion results involving the space m(Ω, φ, q).

1. Introduction

Let l∞ be the set of all real or complex sequences x = (xk) with the norm
‖x‖ = supk |xk| < ∞. A linear functional L on l∞ is said to be a Banach limit [1] if
it has the properties: (a) L(x) ≥ 0 if x ≥ 0 (i.e., xk ≥ 0 for all k ∈ N), (b) L(e) = 1,
where e = (1, 1, 1, . . . ), (c) L(Sx) = L(x), where the shift operator S is defined on
l∞ by (Sx)k = xk+1.

Let B be the set of all Banach limits on l∞. A sequence x is said to be almost
convergent to a number l if L(x) = l for all L ∈ B. Lorentz [5] has shown that x is
almost convergent to l if and only if

tmn = tmn(x) =
xn + xn+1 + · · ·+ xn+m

m + 1
→ l as m →∞, uniformly in n.

Throughout the article w(X), l∞(X) and lp(X) denote respectively the spaces of
all, bounded and p-absolutely summable sequences with the elements in X, where
(X, q) is a seminormed space. By θ = (0, 0, . . . ), we denote the zero element in X.

The sequence space m(φ) was introduced by Sargent [10]. He studied some
of its properties and obtained its relationship with the space lp. Later on it was
investigated from sequence space point of view and related with summability the-
ory by Rath and Tripathy [10], Tripathy [13],Tripathy and Sen [11], Tripathy and
Mahanta [12], Esi [4] and others.

An Orlicz function is a function M : (0,∞] → (0,∞] which is continuous,
non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →∞ as
x →∞.
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An Orlicz function is said to satisfy ∆2-condition for all values of u, if there
exists a constant K > 0, such that M(2u) ≤ KM(u), u ≥ 0.

Remark. An Orlicz function satisfies the inequality M(λx) ≤ λM(x) for all
λ with 0 < λ ≤ 1.

2. Definitions and background

Throughout the article Ps denotes the class of subsets of N, the natural num-
bers, those do not contain more than s elements. Further (φs) will denote non-
decreasing sequence of positive real numbers such that nφn+1 ≤ (n + 1)φn for all
n ∈ N. The class of all the sequences (φs) satisfying this property is denoted by Φ.

The sequence space m(φ) introduced and studied by Sargent [10] which is
defined by:

m(φ) =
{

x = (xk) : ‖x‖ = sup
s≥1,σ∈Ps

1
φs

∑
k∈σ

|xk| < ∞
}

.

Lindenstrauss and Tzafriri [6] used the idea of Orlicz function to construct the
sequence space

lM =
{

(xk) :
∑
k

M
( |xk|

ρ

)
< ∞, for some ρ > 0

}
.

The space lM becomes a Banach space with the norm

‖x‖ = inf
{

ρ > 0 :
∑
k

M
( |xk|

ρ

)
≤ 1

}

which is called an Orlicz sequence space. The space lM is closely related to the
space lp which is an Orlicz sequence space with M(x) = xp, 1 ≤ p < ∞.

A generalization of Orlicz sequence space is due to Woo [14]. Let Ω = (Mk)
be a sequence of Orlicz functions. Define the sequence space

l(Mk) =
{

x = (xk) :
∑
k

Mk

( |xk|
ρ

)
< ∞, for some ρ > 0

}

and equip this space with the norm

‖x‖ = inf
{

ρ > 0 :
∑
k

Mk

( |xk|
ρ

)
≤ 1

}
.

The space l(Mk) is a Banach space and is called a modular sequence space. The
space l(Mk) also generalizes the concept of modulared sequence space earlier by
Nakano [7], who considered the space l(Mk) when Mk(x) = xαk , where 1 ≤ αk < ∞
for k ≥ 1.

In the later stage different Orlicz sequence spaces were introduced and studied
by Parashar and Choudhary [8], Esi and Et [3], Esi [2] and many others.

In this article we introduce the following sequence spaces.
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Let Ω = (Mk) be a sequence of Orlicz functions. Then

l̂∞(Ω, q) =
{

x = (xk) : sup
m,n

Mm

(
q
( tmn(x)

ρ

))
< ∞, for some ρ > 0

}
,

m(Ω, φ, q) =
{

x = (xk) : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))
< ∞, for some ρ > 0

}
,

where
tmn(x) =

xn + xn+1 + · · ·+ xn+m

m + 1
.

Let x = (xk) be a sequence, then S(X) denotes the set of all permutations of
the elements of x = (xk) i.e.,

S(X) = {(xπ(k)) : π(k) is a permutation on N }.
A sequence space E is said to be symmetric if S(X) ⊂ E for all x ∈ E.

A sequence space E is said to be solid (or normal) if (αkxk) ∈ E, whenever
x = (xk) ∈ E and for all sequences of scalars (αk) with |αk| ≤ 1 for all k ∈ B.

A sequence space E is said to be monotone, if it contains the canonical pre-
images of its step spaces.

Lemma. A sequence space E is monotone if E is solid.

3. Main results

In this section we prove some results involving the sequence spaces m(Ω, φ, q)
and l̂∞(Ω, q).

Theorem 1. m(Ω, φ, q) and l̂∞(Ω, q) are linear spaces over the complex
field C.

Proof. Let x = (xk), y = (yk) ∈ m(Ω, φ, q) and α, β ∈ C. Then there exist
positive numbers ρ1 and ρ2 such that

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ1

))
< ∞

and

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(y)

ρ

))
< ∞.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since Mk is non-decreasing convex function for all k
and q is a seminorm, we have

∑
m∈σ

Mm

(
q
( tmn(αx + βy)

ρ3

))
≤ ∑

m∈σ
Mm

(
q
( tmn(αx)

ρ3

)
+ q

( tmn(βy)
ρ3

))
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≤ ∑
m∈σ

Mm

(
q
( tmn(x)

ρ1

))
+

∑
m∈σ

Mm

(
q
(

tmn(y)
ρ2

))
.

⇒ sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(αx + βy)

ρ3

))

≤ sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ1

))
+sup

m,n
sup

s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(y)

ρ2

))
.

Hence m(Ω, φ, q) is a linear space.

The proof for the case l̂∞(Ω, q) is a routine work in view of the above proof.

Theorem 2. The space m(Ω, φ, q) is a seminormed space, seminormed by

g(x) = inf
{

ρ > 0 : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))
≤ 1

}
.

Proof. Clearly g(x) ≥ 0 for all x ∈ m(Ω, φ, q) and g(θ) = 0. Let ρ1 > 0 and
ρ2 > 0 be such that

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ1

))
≤ 1

and

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(y)

ρ2

))
≤ 1.

Let ρ = ρ1 + ρ2. Then we have

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x + y)

ρ

))

≤ sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ1
+ tmn(y)

ρ2

))

≤ sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

{ ρ1

ρ1 + ρ2
Mm

(
q
( tmn(x)

ρ1

))
+

ρ2

ρ1 + ρ2
Mm

(
q
(

tmn(y)
ρ2

))}

≤ ρ1

ρ1 + ρ2
sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ1

))
+

+
ρ2

ρ1 + ρ2
sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(y)

ρ2

))
≤ 1.

Since the ρ′s are non-negative, we have

g(x + y) = inf
{

ρ > 0 : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
(

tmn(x+y)
ρ

))
≤ 1

}

≤ inf
{

ρ1 > 0 : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
(

tmn(x)
ρ1

))
≤ 1

}

+ inf
{

ρ2 > 0 : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(y)

ρ2

))
≤ 1

}
.

⇒ g(x + y) ≤ g(x) + g(y).
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Next for λ ∈ C, without loss of generality, let λ 6= 0, then

g(λx) = inf
{

ρ > 0 : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
(

tmn(λx)
ρ

))
≤ 1

}

= inf
{
|λ|r > 0 : sup

m,n
sup

s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
(

tmn(x)
r

))
≤ 1

}
, where r = ρ

|λ|

= |λ| inf
{

r > 0 : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
(

tmn(x)
r

))
≤ 1

}
= |λ|g(x).

This completes the proof.

Proposition 3. The space l̂∞(Ω, q) is a seminormed space, seminormed by

h(x) = inf
{

ρ > 0 : sup
m,n

Mm

(
q
( tmn(x)

ρ

))
≤ 1

}
.

The proof of Proposition 3 is a consequence of the above theorem.

Theorem 4. m(Ω, φ, q) ⊂ m(Ω, ψ, q) if and only if sups≥1
φs

ψs
< ∞.

Proof. Let sups≥1
φs

ψs
< ∞ and x = (xk) ∈ m(Ω, φ, q). Then

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))
< ∞ for some ρ > 0.

⇒ sup
m,n

sup
s≥1,σ∈Ps

1
ψs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))

≤
(
sup
s≥1

φs

ψs

)
sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))
< ∞.

Then x = (xk) ∈ m(Ω, ψ, q). Conversely, suppose that sups≥1
φs

ψs
= ∞. Then

there exists a sequence of natural numbers (si) such that limi→∞
φsi

ψsi
= ∞. Let

x = (xk) ∈ m(Ω, φ, q), then there exists ρ > 0 such that

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))
< ∞.

Now we have

sup
m,n

sup
s≥1,σ∈Ps

1
ψs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))

≥
(
sup
i≥1

φsi

ψsi

)
sup
m,n

sup
i≥1,σ∈Psi

1
φsi

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))
= ∞.

Therefore x = (xk) /∈ m(Ω, ψ, q) which is a contradiction. Hence sups≥1
φs

ψs
< ∞.
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The following result is a consequence of Theorem 4.

Corollary 5. Let Ω = (Mm) be a sequence of Orlicz functions. Then
m(Ω, φ, q) = m(Ω, ψ, q) if and only if sups≥1 ξs < ∞ and sups≥1 ξ−1

s < ∞, where
ξs = φs

ψs
for all s = 1, 2, 3, . . . .

Theorem 6. Let M, M1,M2 ∈ Ω be Orlicz functions satisfying ∆2-condition.
Then
(a) m(M1, φ, q) ⊂ m(MoM1, φ, q),
(b) m(M1, φ, q) ∩m(M2, φ, q) ⊂ m(M1 + M2, φ, q).

Proof. (a) Let x = (xk) ∈ m(M1, φ, q), then there exists ρ > 0 such that

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

M1

(
q
(

tmn(x)
ρ

))
< ∞.

Let 0 < ε < 1 and δ with 0 < δ < 1 such that M(t) < ε for 0 ≤ t ≤ δ. Write
ym,n = M1(q(

tmn(x)
ρ )) and for any σ ∈ Ps, consider

∑
m∈σ

M(ym,n) =
∑
1

M(ym,n) +
∑
2

M(ym,n)

where the first summation is over ym,n ≤ δ and the second is over ym,n > δ. By
the Remark, we have

∑
1

M(ym,n) ≤ M(1)
∑
1

ym,n ≤ M(2)
∑
1

ym,n (3.1)

For ym,n > δ, we have ym,n <
ym,n

δ ≤ 1 + ym,n

δ , since M is non-decreasing and
convex, so

M(ym,n) < M
(
1 +

ym,n

δ

)
<

1
2
M(2) +

1
2
M

(2ym,n

δ

)
.

Since M satisfies ∆2-condition, so

M(ym,n) <
1
2
K

ym,n

δ
M(2) +

1
2
K

ym,n

δ
M(2) = K

ym,n

δ
M(2).

Hence ∑
2

M(ym,n) ≤ max(1,Kδ−1M(2))
∑
2

ym,n (3.2)

By (3.1) and (3.2), we have x = (xk) ∈ m(MoM1, φ, q).
(b) The proof is trivial.
Taking M1(x) = x in Theorem 6 (a), we have the following result.

Corollary 7. Let M ∈ Ω be Orlicz function satisfying ∆2-condition. Then
m(φ, q) ⊂ m(M, φ, q).

From Theorem 4 and Corollary 7, we have:
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Corollary 8. Let M ∈ Ω be Orlicz function satisfying ∆2-condition. Then
m(φ, q) ⊂ m(M, Ψ, q) if and only if sups≥1

φs

Ψs
< ∞.

Theorem 9. Let Ω = (Mm) be a sequence of Orlicz functions. Then the
sequence space m(Ω, φ, q) is solid and symmetric.

Proof. Let x = (xk) ∈ m(Ω, φ, q). Then there exists ρ > 0 such that

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))
< ∞. (3.3)

Let (λm) be a sequence of scalars with |λm| ≤ 1 for all m ∈ N. Then the result
follows from (3.3) and the following inequality

∑
m∈σ

Mm

(
q
( tmn(λx)

ρ

))
≤ ∑

m∈σ
|λm|Mm

(
q
(

tmn(x)
ρ

))
(by Remark)

≤ ∑
m∈σ

Mm

(
q
(

tmn(x)
ρ

))
.

The symmetricity of the space follows from the definition of the space m(Ω, φ, q)
and symmetric sequence space.

The following result follows from Theorem 9 and Lemma.

Corollary 10. Let Ω = (Mm) be a sequence of Orlicz functions. Then the
sequence space m(Ω, φ, q) is monotone.

The proof of the following result is a routine verification.

Proposition 11. Let Ω = (Mm) be a sequence of Orlicz functions. Then the
sequence space l̂∞(Ω, q) is solid and as such is monotone.

Theorem 12. Let Ω = (Mm) be a sequence of Orlicz functions. Then
m(Ω, φ, q) ⊂ l̂∞(Ω, q).

Proof. Let x = (xk) ∈ m(Ω, φ, q). Then there exists ρ > 0 such that

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(x)

ρ

))
< ∞⇒ supm,n

1
φ1

Mm

(
q
(

tmn(x)
ρ

))
< ∞

for some ρ > 0, (on taking cardinality of σ to be 1). This implies that x = (xk) ∈
l̂∞(Ω, q). This completes the proof.

Theorem 13. Let Ω = (Mm) be a sequence of Orlicz functions. Then
m(Ω, φ, q) = l̂∞(Ω, q) if and only if sups≥1

s
φs

< ∞.

Proof. We have m(Ω, ψ, q) = l̂∞(Ω, q) if ψs = s for all s ∈ N. By Theorem 4
and Theorem 9, it follows that m(Ω, φ, q) = l̂∞(Ω, q) if and only if sups≥1

s
φs

< ∞.
This completes the proof.
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Since the proof of the following proposition is not hard, we give it without
proof.

Proposition 14. Let Ω = (Mm) be a sequence of Orlicz functions and q1 and
q2 be seminorms. Then

(a) m(Ω, φ, q1) ∩ m(Ω, φ, q2) ⊂ m(Ω, φ, q1 + q2) and l̂∞(Ω, q1) ∩ l̂∞(Ω, q2) ⊂
l̂∞(Ω, q1 + q2),

(b) If q1 is stronger than q2, then m(Ω, φ, q1) ⊂ m(Ω, φ, q2) and l̂∞(Ω, q1) ⊂
l̂∞(Ω, q2).

Theorem 15. Let Ω = (Mm) be a sequence of Orlicz functions and (X, q) be
complete. Then {m(Ω, φ, q), g} is also complete.

Proof. Let (xi) be a Cauchy sequence in m(Ω, φ, q),where xi = (xi
k) =

(xi
1, x

i
2, x

i
3, . . . ) ∈ m(Ω, φ, q) for i ∈ N. Let r > 0 and x0 > 0 be fixed. Then

for each ε
rx0

> 0, there exists a positive integer n0 such that

g(xi − xj) <
ε

rx0
, for all i, j ≥ n0.

⇒ inf
{

ρ > 0 : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(xi − xj)

ρ

))
≤ 1

}
< ε, (3.4)

for all i, j ≥ n0. We have for all for all i, j ≥ n0

⇒ sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(xi − xj)

g(xi − xj)

))
≤ 1, for some ρ > 0.

⇒ sup
m,n

1
φ1

Mm

(
q
( |tmn(xi − xj)|

g(xi − xj)

))
≤ 1

⇒ Mm

(
q
( tmn(xi − xj)

g(xi − xj)

))
≤ φ1, for all i, j ≥ n0 and m,n ∈ N.

We can find r > 0 such that rx0
2 ηm(x0

2 ) ≥ φ1, where ηm is the kernel associated
with Mm for all m, such that

Mm

(
q
( |tmn(xi − xj)|

g(xi − xj)

))
≤ rx0

2
ηm(

x0

2
)

⇒ q(tmn(xi − xj)) <
rx0

2
.

ε

rx0
=

ε

2
, for each m,n ∈ N.

In particular

q(t0n(xi − xj)) = q(xi
n − xj

n) <
rx0

2
· ε

rx0
=

ε

2
, for each fixed n.

Hence (xi) is a Cauchy sequence in (X, q), which is complete. Therefore for each
n ∈ N, there exists xn ∈ X such that q(xi

n − xj
n) → 0 as i → ∞. Using the
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continuity of Mm for all m and q is a seminorm, so we have

sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(xi − limj→∞ xj)

ρ

))
≤ 1

⇒ sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(xi − x)

ρ

))
≤ 1, for some ρ > 0.

Now taking the infimum of such ρ′s, by (3.4), we get

inf
{

ρ > 0 : sup
m,n

sup
s≥1,σ∈Ps

1
φs

∑
m∈σ

Mm

(
q
( tmn(xi − x)

ρ

))
≤ 1

}
< ε, for all i ≥ n0.

Since m(Ω, φ, q) is linear space and (xi) and (xi−x) are in m(Ω, φ, q), so it follows
that

(x) = (x− xi) + (xi) ∈ m(Ω, φ, q).

Hence m(Ω, φ, q) is complete.
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