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EXPONENTIAL DICHOTOMY AND STRONGLY STABLE VECTORS
OF HILBERT SPACE CONTRACTION SEMIGROUPS

Nhan Levan and Carlos S. Kubrusly

Abstract. The paper deals with exponential dichotomy and its relationship with strongly
stable vectors associated with Hilbert space semigroups. Contraction semigroups are decomposed
by using the strongly stability operator associated with the semigroup. Necessary and sufficient
conditions for exponential stability and non-exponential stability are investigated in terms of norm
inequalities—instead of a Lyapunov operator equation.

1. Introduction

In this paper H stands for a complex Hilbert space. Inner product and norm
in H will be denoted by 〈· ; ·〉 and ‖ ·‖. By a subspace of H we mean a closed linear
manifold of H. If S is any subspace of H, then H admits the orthogonal decompo-
sition H = S ⊕ S⊥, where ⊕ stand for orthogonal direct sum and S⊥ = Hª S is
the orthogonal complement of S. Let the Banach algebra of all operators (bounded
linear transformations) of H into itself be denoted by B[H]; and let the identity
operator and the null operator in B[H] be denoted by I and O. The norm in B[H]
is also denoted by ‖ · ‖. Throughout the paper [T (t)] = {T (t) ; t ≥ 0} will stand
for a strongly continuous semigroup (C0-semigroup) of operators T (t) in B[H].

A semigroup [T (t)] is exponentially stable (e-stable) if there exist real constants
M ≥ 1 and α > 0 such that

‖T (t)x‖ ≤ Me−αt ‖x‖ for every t ≥ 0 and every x ∈ H
(equivalently, ‖T (t)‖ ≤ Me−αt for every t ≥ 0). It is uniformly stable (u-stable) if

‖T (t)‖ → 0 as t →∞
(i.e., T (t) → O as t →∞ in B[H]). Recall that [T (t)] is uniformly stable if and
only if it is exponentially stable [3]. A semigroup [T (t)] strongly stable (s-stable) if

‖T (t)x‖ → 0 as t →∞ for every x ∈ H.
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We assume that H is infinite-dimensional; otherwise all the above stability con-
cepts coincide. Since uniform stability (which is equivalent to exponential stabili-
ty) clearly implies strong stability, it follows that there are two types of s-stability,
namely, s-stability-via-e-stability (or simply e-stability; that is s-stability because
of e-stability), and s-stability-non-e-stability (or simply s-stability for non-e-stable
semigroups).

An exponential dichotomy of a semigroup [T (t)] on H is an orthogonal decom-
position of it, say H = R⊕R⊥, where R is a subspace of H that reduces T (t) for
every t ≥ 0 on which [T (t)] is exponentially stable, while it is non-exponentially
stable on the orthogonal complement R⊥ of R (if R⊥ 6= {0}). It is plain that if
[T (t)] is exponentially stable, then the trivial exponential dichotomy of [T (t)] is
H itself, in the sense that H is naturally identified with H⊕ {0} (which is not
dichotomic after all). For nondegenerate exponential dichotomy the trivial cases
(either R = {0} or R⊥ = {0}) must be excluded.

We consider exponential dichotomy of Hilbert space contraction semigroups
using various decompositions of contraction semigroups [1, 6], as well as norm
inequalities for exponential stability of semigroups [7].

Exponential dichotomy involves an orthogonal projection (often called expo-
nential dichotomic projection [10], which is such that the semigroup is exponentially
stable on its range and non-exponentially stable on its kernel in the sense that all
nonzero vectors in it are non-exponentially stable as in the forthcoming Definition
1(c). This exponential dichotomic projection is the orthogonal projection onto the
exponential stability subspace, and it is dominated by the orthogonal projection
onto the strong stability subspace.

Exponential dichotomy for Hilbert space C0-semigroups is defined in Section 2.
It is shown that if a semigroup is exponentially dichotomic (i.e., if it has an expo-
nential dichotomy), then the reducing subspace on which it is exponentially stable
is maximal (in the sense that no exponential stability subspace includes it). This
subspace clearly is included in the subspace of strong stability associated with the
semigroup. If this inclusion is proper, then we consider the characterization of the
two types of s-stable vectors associated with the semigroup. The contraction case
is investigated in Section 3. We close the paper in Section 4 with a detour towards
strong dichotomy of Hilbert space semigroups.

2. Exponential dichotomy and strongly stable vectors

Recall that we will be dealing with C0-semigroups [T (t)] on a complex Hilbert
space H. We begin by making the following definitions.

Definition 1. Let [T (t)] be a semigroup on H. Take a vector x ∈ H.
(a) x is s-stable if

‖T (t)x‖ → 0 as t →∞.

(b) x is e-stable if there exist real numbers M(x) ≥ 1 and α(x) > 0 such that

‖T (t)x‖ ≤ M(x) e−α(x)t‖x‖ for every t ≥ 0.
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Since e-stability obviously implies s-stability, every e-stable vector is s-stable,
and so an e-stable vector is also referred to as an s-stable-via-e-stable vector. In
other words, x is e-stable if and only if x is s-stable-via-e-stable.

(c) x is non-s-stable if it is not s-stable; that is, if

‖T (t)x‖ 6→ 0 as t →∞.

(d) x is non-e-stable if it is not e-stable; that is, if for every M ≥ 1 and α > 0,

Me−αt‖x‖ < ‖T (t)x‖ for some t ≥ 0.

(e) x is s-stable-non-e-stable if it is not e-stable but is s-stable. That is, x is
s-stable-non-e-stable if limt→∞ ‖T (t)x‖ = 0 and, for every M ≥ 1 and α > 0, there
exists t = t(M,α, x) ≥ 0 such that Me−αt‖x‖ < ‖T (t)x‖.

A subset (in particular, a subspace) of H consisting entirely of s-stable, or
e-stable vectors will be referred to as an s-stable, or e-stable subset (subspace). A
subset (subspace) of H for which all nonzero vectors are s-stable-non-e-stable, or
non-s-stable or non-e-stable, will be referred to as an s-stable-non-e-stable, or non-
s-stable, or non-e-stable subset (subspace), respectively. Observe that an s-stable
subset is one that may contains both e-stable (i.e., s-stable-via-e-stable) as well as
s-stable-non-e-stable vectors. Also note that if a subspace has a property Π, and
if it is maximal (in the sense that it is not included in any subset of H that has
property Π), then its orthogonal complement does not have property Π.

If a subspace R of H is [T (t)]-invariant, then we say that the semigroup [T (t)]
is e-stable on the subspace R if its restriction [T (t)|R] is e-stable, which means that
there exist real constants M ≥ 1 and α > 0 such that

‖T (t)u‖ ≤ Me−αt ‖u‖ for every t ≥ 0 and every u ∈ R.

This means that R is a homogeneously e-stable subspace in the sense that each
vector u in R is e-stable where M(u) and α(u) of Definition 1(b) do not depend
on u in R (i.e., they are constants not only over t ≥ 0 but also over all u ∈ R). On
the other hand, if a nonzero subspace N of H is [T (t)]-invariant, then we say that
a semigroup [T (t)] is non-e-stable on the subspace N if its restriction [T (t)|N ] is
not only not e-stable but, more that, if every nonzero vector of N is non-e-stable
in the sense of Definition 1(d). That is, for every 0 6= v ∈ N , M ≥ 1, and α > 0,

e−αt‖v‖ < 1
M ‖T (t)v‖ for some t ≥ 0.

For definitions of e-dichotomic projection and e-dichotomy for C0-semigroups
[T (t)] on a complex Hilbert space H see, for instance, [10, 11] and the references
therein. It is worth noticing that there are different versions of e-dichotomy; we
follow here the one considered in [11].

Definition 2. Let [T (t)] be a semigroup on H. Take an orthogonal projection
P ∈ B[H] so that R = range(P ) = P (H) and N = kernel(P ) = P−1({0}) are
complementary orthogonal subspaces of H; that is, H = R⊕N with R⊥ = N . If

(a) P commutes with each T (t) (i.e., T (t)P = P T (t) for every t ≥ 0 or, equiv-
alently, R and N are reducing subspaces for [T (t)]), and
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(b) [T (t)] is e-stable on R and non-e-stable on N (in the sense that all nonzero
vectors in N are non-e-stable),
then we say that P is an e-dichotomic projection for [T (t)] and the semigroup is
said to be e-dichotomic (or P -dichotomic).

The generator of a C0-semigroup [T (t)] on H will be denoted by A, which is a
linear (not necessarily bounded) transformation of a dense linear manifold D of H,
the domain of A, into H.

Remark 1. Consider the setup of Definition 2. Let E ∈ B[H] be the
complementary projection of P (i.e., E = I − P is the orthogonal projection
with kernel(E) = range(P ) and range(E) = kernel(P )). Since the subspaces
R = range(P ) and N = kernel(P ) reduce each T (t), it follows that [T (t)|R] and
[T (t)|N ] also are C0-semigroups acting on R and on N (i.e., T (t)|R u = T (t)Px
and T (t)|N v = T (t)Ex for every x = (u, v) in H = R⊕N with u ∈ R and v ∈ N ).
The generators of [T (t)|R] and [T (t)|N ] are the restrictions, A|R and A|N , of the
generator A of [T (t)] to their respective domains DR = D ∩R and DN = D ∩N
(i.e., A|R u = Au for every u ∈ D ∩R and A|N v = Ax for every v ∈ D ∩N ).

Remark 2. Consider again the setup of Definition 2. Observe that N \ {0}
may be empty. Indeed, there are semigroups (contractive C0-continuous on infinite-
dimensional spaces) for which e-dichotomy degenerates in the following sense: there
may be no nonzero e-stable vector (i.e., R = {0}) or there may be no nonzero non-e-
stable vector (i.e., N = {0}). Actually, we noticed in Section 1 that e-stability may
be thought of as (degenerate) e-dichotomy on the whole space H (i.e., R = H which
means P = I — also see [10]). In the same way, non-e-stability is (degenerate) e-
dichotomy on the zero space (i.e., N = H which means P = O) in the sense
that all nonzero vectors are non-e-stable. However, the extra assumption that
P is nontrivial (i.e., O 6= P 6= I) or, equivalently, that the subspaces R and N
are nontrivial (i.e., {0} 6= N 6= H and {0} 6= R 6= H) ensures that e-dichotomy
does not degenerate. If e-dichotomy degenerates to R = H (i.e., to N = {0}),
then the semigroup surely has no s-table-non-e-stable vectors; if it degenerates to
N = H (i.e., to R = {0}), then we may still have semigroups with no s-table-non-
e-stable. Samples: T (t) = e−

1
2 tI or T (t) = I. Moreover, even if e-dichotomy does

not degenerate we may have semigroups with no s-stable-non-e-stable vectors (for
instance T (t) = e−

1
2 tI ⊕ I has no s-stable-non-e-stable vectors).

We will characterize s-stable vectors associated with a semigroup [T (t)] on H
by using exponential dichotomy.

Let [T (t)] be a semigroup on complex Hilbert space H. Set
M =

{
x ∈ H: lim

t→∞
‖T (t)x‖ → 0

}
.

It is readily verified that M a subspace of H, which is referred to as the s-stable
subspace of [T (t)]. Thus consider the decomposition

H = M⊕M⊥.

It is clear that M is [T (t)]-invariant (so that M⊥ is [T ∗(t)]-invariant, where T ∗(t)
denotes the adjoint of T (t)). Moreover, if the invariant subspace M is reducing,
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then the restriction of each T (t) to M⊥ makes the semigroup [T (t)|M⊥ ] non-s-
stable in the sense that all nonzero vectors in it are non-s-stable. Note that M is
maximal in the sense that every set of s-stable vectors for [T (t)] is included in M.

Recall that a projection onto a subspace means a projection whose range is
precisely that subspace.

Theorem 1. Let [T (t)] be a semigroup on H and consider its s-stable subspace
M. Let Q be the orthogonal projection onto the s-stable subspace M. Suppose
[T (t)] is e-dichotomic and consider the e-dichotomic (orthogonal) projection P of
Definition 2 with range R and kernel N . Then the following assertions hold true.
(a) R ⊆M. Equivalently, P ≤ Q (i.e., P is dominated by Q).
(b) M = R⊕ (M∩N ).
(c) N = M⊥ ⊕ (M∩N ).
(d) The decomposition of Definition 2 is refined to H = R⊕ (M∩N )⊕M⊥.
(e) The subspace R is maximal (in the sense that there is no subspace of H on

which [T (t)] is e-stable).
(f) R ⊂M if and only if M∩N 6= {0}. In this case [T (t)] is s-stable-non-e-

stable on the nonzero subspace M∩N .
Proof. Suppose that [T (t)] is e-dichotomic according to Definition 2. Then

there is an orthogonal projection P ∈ B[H] such that R = range(P ) is [T (t)]-
reducing and, for some M ≥ 1 and some α > 0,

‖T (t)x‖ ≤ Me−αt‖x‖ for every t ≥ 0 and every x ∈ R,

which implies that ‖T (t)x‖ → 0 as t →∞ for every x ∈ R, and therefore R ⊆M,
where M is the s-stable subspace of [T (t)]. In other words, R is e-stable (for [T (t)])
and, as it happens with every e-stable subspace, R is tautologically s-stable-via-
e-stable. But the above inclusion is equivalent to following inequality, P ≤ Q,
where Q is the orthogonal projection onto M (i.e., range(Q) = Q(H) = M and
kernel(Q) = Q−1({0}) = M⊥). Moreover, R ⊆M yields the decomposition

M = R⊕ (M∩N ),

where the subspace M∩N is [T (t)]-invariant since M and N are [T (t)]-invariant
(in fact N and R are both reducing). Since N = R⊥, another consequence of the
inclusion R ⊆M is M⊥ ⊆ N , and therefore N can be decomposed as

N = M⊥ ⊕ (M∩N ),

and so the decomposition of Definition 2 is refined to

H = R⊕ (M∩N )⊕M⊥.

If R is not maximal, then there exists a (homogeneously) e-stable subspace R′ for
[T (t)] such that R ⊂ R′. Then R′ ∩N 6= {0}. Take 0 6= v ∈ R′ ∩N . Since v ∈ N ,
for every M ≥ 1 and every α > 0 there exists a t = t(α,M) such that

Me−αt‖v‖ < ‖T (t)v‖.
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But this contradicts the fact that the vector v is e-stable (which happens because
v ∈ R′). Therefore, R is maximal. Finally observe that

R ⊂M
if and only if M∩N 6= {0} (reason: R = M if and only if M∩N = {0} since
N = R⊥). Thus the proper inclusion R ⊂M implies that [T (t)] is s-stable-non-e-
stable on M∩N because M∩N 6= {0}, M is s-stable, and N is non-e-stable (in
the sense that all nonzero vectors in N are non-e-stable).

Remark 3. Theorem 1(f) says that, even though N is a non-e-stable subspace
(in the sense that all nonzero vectors in N are non-e-stable) it can still contain s-
stable (thus s-stable-non-e-stable) vectors whenever the inclusion R ⊂M is proper.
(Note that the proper inclusion clearly implies that the reducing e-stable subspace
R is not the whole space; but it may be zero, and M may be the whole space).
Conversely, if there exist s-stable-non-e-stable vectors, then the inclusion R ⊂M
is proper (since, in this case, the e-stable R does not contain the s-stable-non-e-
stable vectors of M). However, as we have seen in Remark 2, there are semigroups
(contractive C0-continuous e-dichotomic on infinite-dimensional spaces) with no
s-stable-non-e-stable vectors for which the inclusion R ⊆M becomes an identity.
Examples: T (t) = I is e-dichotomic with P = O and R = M = {0}, and T (t) =
e−

1
2 tI is e-dichotomic with P = I and R = M = H. Actually, even if [T (t)] is e-

dichotomic with a nontrivial projection P we may still have R = M. For instance,
T (t) = e−

1
2 tI ⊕ I on H = R⊕N is e-dichotomic with a nontrivial projection P

(since R 6= {0} and N 6= {0}) such that R = M.

Corollary 1. Take a semigroup [T (t)] on H. Let P ∈ B[H] be the e-
dichotomic projection of [T (t)] (with range R and kernel N ) and let Q ∈ [B[H]
be the orthogonal projection onto the s-stable subspace M of [T (t)]. The following
assertions are pairwise equivalent
(a) P = Q.
(b) M∩N = {0}.
(c) M = R.
(d) M⊆ R.

Proof. The definitions of P and Q ensure that (a) ⇐⇒ (c) (since the orthogonal
projection onto a subspace is unique). Theorem 1(b) ensures that (c) ⇐⇒ (b).
Theorem 1(a) ensures that (c) ⇐⇒ (b)

Observe that assertion (c) in Corollary 1 (and so any of the above equivalent
assertions) implies that M reduces [T (t)] because R reduces [T (t)] by Definition
2. Moreover, (d) means that the s-stable subspace M consists only of e-stable
vectors (and so M is an s-stable-via-e-stable subspace if any of the above equivalent
assertions holds true).

Also note from Theorem 1(b) that s-stable-via-e-stable vectors (i.e., R) and s-
stable-non-e-stable vectors (i.e., M∩N ) are complementary orthogonal subspaces
of the s-stable space M once the semigroup is e-dichotomic. The s-stable subspace
M plays a central role in e-dichotomy contraction semigroups of the next section.
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3. The contraction case

A semigroup [T (t)] is contractive, or a contraction semigroup, if

‖T (t)x‖ ≤ ‖x‖ for every x ∈ H and all t ≥ 0

or, equivalently, if ‖T (t)‖ ≤ 1 for all t ≥ 0. If [T (t)] is a contraction semigroup onH,
then limt→∞ ‖T (t)x‖ exist in R for every x ∈ H (see e.g., [12, Proposition III.9.1]).
Since {T ∗(t)T (t)} is a bounded monotone family of self-adjoint operators (indeed
a nonincreasing family of nonnegative contractions: ‖T ∗(t)T (t)‖ = ‖T (t)‖2 ≤ 1
and T ∗(t + s)T (t + s) ≤ T ∗(t)T (t) for every s, t ≥ 0), it follows that it converges
strongly as t →∞. Thus, associated with a contractive semigroup [T (t)] there is
an operator C ∈ B[H] which is defined by

Cx = lim
t→∞

T ∗(t)T (t)x for every x ∈ H,

whose kernel coincides with the s-stable space M for [T (t)], that is,

kernel(C) = M
(since ‖Cx‖ = limt→∞ ‖T (t)x‖2 for every x ∈ H). The operator C is referred to as
the s-stability operator (although it not s-stable itself) associated with the contrac-
tion semigroup [T (t)]. Moreover,

kernel(C − C2) = kernel(C)⊕ kernel(I − C).

(see e.g., [6, Proposition 3.3]). We now connect e-dichotomy with the s-stability
operator C of a contraction semigroup [T (t)].

Theorem 2. Let C be the s-stability operator of a contraction semigroup
[T (t)] on H. Then H admits the decomposition

H = kernel(C)⊕ kernel(I − C)⊕ kernel(C − C2)⊥.

The subspaces kernel(C), kernel(I − C), and kernel(C − C2) are [T (t)]-invariant,
[T (t)|kernel(C)] is s-stable, [T (t)|kernel(I−C)] is isometric, and ‖x‖ 6= ‖T (t)x‖ 6→ 0 as
t →∞ for every nonzero x ∈ kernel(C − C2)⊥.

Proof. The decomposition of H is an immediate consequence of the preceding
identities since H = kernel(C − C2)⊕ kernel(C − C2)⊥, and so is the s-stability of
[T (t)|kernel(C)] on the invariant subspace kernel(C). It is well known that the sub-
spaces kernel(I − C) and kernel(C − C2) are [T (t)]-invariant, and T (t)|kernel(I−C)

is an isometry for each t ≥ 0 (see e.g., [1], [6, Chapter 3]). The remaining results
are straightforward by the above properties.

Remark 4. Note that if the invariant subspace kernel(C − C2) reduces [T (t)]
(so that kernel(C − C2)⊥ is also [T (t)]-invariant), then the property ‖x‖ 6= ‖T (t)x‖
6→ 0 as t →∞ for every nonzero x ∈ kernel(C − C2)⊥, is equivalent to saying that
the semigroup [T (t)|kernel(C−C2)⊥ ] is non-s-stable and completely non-isometric. As
we will see in Theorem 3 below, the above decomposition can be further refined
if C is a projection. In this case [T (t)] can be decomposed into the direct sum
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of an s-stable contraction semigroup, a unilateral shift semigroup and a unitary
semigroup. Decompositions for the special case where C is a projection, involving
both C and C∗, the s-stability operator associated [T ∗(t)], see e.g., [9] or [6, Section
5.3].

Corollary 2. If [T (t)] is contraction semigroup on H, with an s-stability
operator C, and is e-dichotomic with respect to an e-dichotomic projection P , then

H = range(P )⊕ (kernel(C) ∩ kernel(P ))⊕ kernel(I − C)⊕ kernel(C − C2)⊥.

[T (t)] is e-stable on the reducing subspace range(P ), [T (t)] is s-stable-non-e-stable
on the invariant subspace kernel(C)∩kernel(P ), [T (t)] is isometric (and so non-s-
stable) on the invariant subspace kernel(I−C), and ‖x‖ 6= ‖T (t)x‖ 6→ 0 as t →∞
for every nonzero x ∈ kernel(C − C2)⊥.

Proof. Since M=kernel(C), where M is the s-stable subspace of [T (t)], the
claimed results follow from Theorems 1(d) and 2.

The next theorem applies to the class of contraction semigroups whose s-
stability operator C is a projection (cf. Remark 4 above).

Theorem 3. Let C be the s-stability operator of a contraction semigroup
[T (t)] on H. If C is a projection, then H admits the orthogonal decomposition

H = range(P )⊕ (kernel(C) ∩ kernel(P )⊕ kernel(I − C))

consisting entirely of reducing subspaces for [T (t)]. Moreover, for each t ≥ 0,

T (t) = T |range(P ) ⊕ T (t)|kernel(C)∩kernel(P ) ⊕ T (t)|kernel(I−C),

where [T |range(P )] is e-stable, [T (t)|kernel(C)∩kernel(P )] is s-stable-non-e-stable, and
[T (t)|kernel(I−C)] = [T (t)|range(C)] is isometric (and so non-s-stable).

Proof. If C = C2, then kernel(C − C2)⊥ = {0}. Thus the decomposition in
Theorem 2 can be identified with

H = kernel(C)⊕ kernel(I − C),

and that in Corollary 2 with

H = range(P )⊕ (kernel(C) ∩ kernel(P ))⊕ kernel(I − C).

In general, M = kernel(C) and kernel(I − C) are just [T (t)]-invariant and
the subspace kernel(C − C2)⊥ is not necessarily [T (t)]-invariant. However, since
R = range(P ) and N = kernel(P ) reduce [T (t)] (Definition 2), if the above decom-
positions hold true, then the remaining subspaces in those decompositions are all
orthogonal complements of reducing subspaces, thus reducing themselves. More-
over, the action of the restrictions of [T (t)] on those reducing subspaces follow from
Theorem 2 and Corollary 2. Finally, [T (t)|kernel(I−C)] = [T (t)|range(C)] because
kernel(I − C) = range(C) if C = C2.

It is well known that e-stability of Hilbert space semigroups is characterized by
a Lyapunov operator equation [2]. This is also the case of e-dichotomy—see [10, 11]
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and the references therein. However e-stability as well as non-e-stability of Hilbert
space contraction semigroups can also be characterized by norm inequalities, as we
will see in the next lemma. These will be applied in the forthcoming Theorem 3 to
characterize e-dichotomy.

If [T (t)] is a contraction semigroup, then its generator A is dissipative; that is,

Re〈Ax ;x〉 ≤ 0 for every x ∈ D,

where D denotes the domain of A (which is a dense linear manifold of H), and A
is maximal dissipative in the sense that there is no dissipative extension of it on H
[4, 5, 12]. The generator A is called strictly dissipative if

Re〈Ax ; x〉 < 0 for every 0 6= x ∈ D.

If A is strictly dissipative, then (−Re〈Ax ; x〉) 1
2 defines a norm on D, which is

referred to as the dissipative norm on D. If [T (t)] is a contraction semigroup, then
we say that it is plain-e-stable if it is e-stable with M = 1; that is, if there exists a
constant α > 0 such that

‖T (t)x‖ ≤ e−αt ‖x‖ for every t ≥ 0 and every x ∈ H
(equivalently, ‖T (t)‖ ≤ e−αt for every t ≥ 0). A contraction semigroup [T (t)] is
called a proper contraction semigroup if

‖T (t)x‖ < ‖x‖ for every 0 6= x ∈ H and all t > 0,

and it is called a strict contraction semigroup if

‖T (t)‖ < 1 for all t > 0.

Definition 3. Let [T (t)] be a contraction semigroup on H. Take an orthog-
onal projection P ∈ B[H] so that R = range(P ) = P (H) and N = kernel(P ) =
P−1({0}) are complementary orthogonal subspaces of H; that is,

H = R⊕N
with R⊥ = N . If
(a) P commutes with each T (t) (i.e., T (t)P = P T (t) for every t ≥ 0 or, equiva-

lently, R and N are reducing subspaces for [T (t)]), and
(b) [T (t)] is plain-e-stable on R and non-plain-e-stable on N (in the sense that

all nonzero vectors v in N are such that for every α > 0, there exists t =
t(v, α) ≥ 0 for which e−αt‖v‖ < ‖T (t)v‖),

then we say that P is a plain-e-dichotomic projection for [T (t)] and the contraction
semigroup is said to be plain-e-dichotomic (or plain-P -dichotomic).

Lemma 1. Let [T (t)] contraction semigroup with a strictly dissipative genera-
tor A.
(a) [T (t)] is plain-e-stable if and only if there exists a constant α > 0 such that,

α ‖x‖2 ≤ −Re〈Ax ; x〉 for every x ∈ D.
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(b) [T (t)] is non-plain-e-stable if and only if for each β > 0 there exists a vector
xβ ∈ D such that

−Re〈Axβ ; xβ〉 < β ‖xβ‖2.
(d) [T (t)] is s-stable if and only if

−
∫ ∞

0

Re〈Ax ; x〉 dt = ‖x‖2 for every x ∈ D.

(e) [T (t)] is s-stable-non-plain-e-stable if and only if

‖x‖2 = −
∫ ∞

0

Re〈Ax ; x〉 dt for every x ∈ D,

and for every β > 0 there is an xβ ∈ D such that

− 1
β Re〈Axβ ; xβ〉 < ‖xβ‖2 = −

∫ ∞

0

Re〈Axβ ; xβ〉 dt.

Proof. [8, Theorem 2], [7, Remark 1(b), Theorem 2, and Corollary 4].
Definition 3 and Lemma 1 lead to the following characterization of e-dichotomy

for contraction semigroups.

Theorem 4. Let [T (t)] be a contraction semigroup on H with a strictly dis-
sipative generator A. An orthogonal projection P ∈ B[H] is a plain-e-dichotomic
projection for the semigroup [T (t)] if and only if there exists a constant α > 0 such
that,

α ‖x‖2 ≤ −Re〈Ax ; x〉 for every x ∈ D ∩R
with R = range(P ), and for each β > 0 there is an xβ ∈ D ∩N such that

−Re〈Axβ ;xβ〉 < β ‖xβ‖2

with N = kernel(P ).

Proof. Definition 3 says that [T (t)] is plain-e-dichotomic if and only if there ex-
ists an orthogonal projection P ∈ B[H] such thatR = range(P ) andN = kernel(P )
reduce [T (t)] and [T (t)] is plain-e-stable on R and non-plain-e-stable on N . Since
H = R⊕N , Lemma 1 ensures the claimed result on the decomposition of D into
the complementary orthogonal linear manifolds D ∩R and D ∩N .

Corollary 3. Let [T (t)] be a contraction semigroup with a strictly dissipative
generator A. Let C be the s-stability operator, and let M be the s-stable subspace,
associated with [T (t)]. Suppose C is a projection. Then [T (t)] is plain-e-dichotomic
with respect to the orthogonal projection P = I − C if and only if there exists a
constant α > 0 such that

α ‖x‖2 ≤ −Re〈Ax ; x〉 for every x ∈ D ∩M,

and for each β > 0 there is an xβ ∈ D ∩ C(H) such that

−Re〈Axβ ; xβ〉 < β ‖xβ‖2.
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Proof. If C = C2 then the projection C is orthogonal (see e.g., [6, p. 51]). Thus
consider the complementary orthogonal projection P = I − C with range(P ) =
kernel(C) = M (the s-stable subspace of [T (t)]) and kernel(P ) = range(C) =
C(H). Applying Theorem 4 we get the claimed necessary and sufficient condition
that P is plain-e-dichotomic for [T (t)].

Under the assumption of Corollary 3 (i.e., if C is a projection and if I − C is
plain-e-dichotomic for [T (t)]), the s-stable M and e-stable R subspaces for [T (t)]
coincide (i.e., M = R as expected). Also note that it may happen that D ∩M or
D ∩ C(H) may be zero (even though D is dense in H, and even under the additional
assumption that the projection C is nontrivial—so that M and C(H) are nontrivial
subspaces of H).

4. Concluding remark

Suppose a semigroup [T (t)] is e-dichotomic and consider the e-stable subspace
R of the e-dichotomic projection P of Definition 2,

range(P ) = R.

Since the orthogonal projection onto a subspace is unique, since P commutes with
each T (t) if and only if range(P ) and kernel(P ) are reducing subspaces for each
T (t) (and so [T (t)] is e-stable on R = range(P ) and non-s-stable on kernel(P )),
and since R is maximal, we may restate Definition 2 as follows.

LetR be a maximal e-stable subspace for [T (t)]. Consider the orthog-
onal projection P onto R so that [T (t)] is e-stable on R and non-s-stable
on kernel(P ). If P commutes with each T (t), then P is an e-dichotomic
projection for [T (t)], which is said to be e-dichotomic.
If we replace exponential stability with strong stability in Definition 2 we come

across with s-dichotomic semigroups. Precisely, if [T (t)] is a semigroup on H, and
if there exists an orthogonal projection in B[H] that commutes with each T (t) such
that [T (t)] is s-table on its range and non-s-stable on its kernel, then we say that
the projection is s-dichotomic for [T (t)] and the semigroup is s-dichotomic.

Definition 4. Let [T (t)] be a semigroup on H. Take an orthogonal projection
Q ∈ B[H] so that range(Q) = Q(H) and kernel(Q) = Q−1({0}) are complementary
orthogonal subspaces of H; that is,

H = range(Q)⊕ kernel(Q)

with range(Q)⊥ = kernel(Q). If
(a) Q commutes with each T (t) (i.e., T (t)Q = QT (t) for every t ≥ 0 or, equiva-

lently, range(Q) and kernel(Q) are reducing subspaces for [T (t)]), and
(b) [T (t)] is s-stable on range(Q) and non-s-stable on kernel(Q) (in the sense that

all nonzero vectors in kernel(Q) are non-s-stable).
then we say that Q is an s-dichotomic projection for [T (t)] and the semigroup is
said to be s-dichotomic.



Exponential dichotomy 177

Consider the s-stable subspace M = {x ∈ H: limt→∞ ‖T (t)x‖ → 0} of [T (t)].
It is clear that range(Q) ⊆M. On the other hand, suppose there exists a vector x =
(u, v) ∈ H, with u ∈ range(Q) and v ∈ kernel(Q), such that x lies in M\ range(Q).
Then limt→∞ T (t)x = (T (t)u, T (t)v) = (0, 0) since x ∈M, and so limt→∞ T (t)v =
0, which implies that v = 0. But x = (u, 0) lies in range(Q), which is a contradic-
tion. Therefore, M⊆ range(Q) and so

range(Q) = M.

Thus, by uniqueness of the orthogonal projection onto a subspace, Q is in fact the
orthogonal projection onto the s-stable subspaceM of [T (t)], which means that this
actually is the same orthogonal projection Q of Theorem 1. Since Q commutes with
each T (t) if and only if range(Q) and kernel(Q) are reducing subspaces for [T (t)]
(which implies that [T (t)] must be s-stable on M = range(Q) and non-s-stable on
kernel(Q)), and since M is maximal, we may restate Definition 2 as follows.

Consider the orthogonal projection Q ontoM so that [T (t)] is e-stable
on M and non-s-stable on kernel(Q). If Q commutes with each T (t), then
Q is an s-dichotomic projection for [T (t)], which is said to be s-dichotomic.
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[12] B.Sz.-Nagy, C. Foiaş, H. Bercovici, L. Kérchy, Harmonic Analysis of Operators on Hilbert
Space, Springer, New York, 2010; enlarged 2nd edn. of B. Sz.-Nagy and C. Foiaş, North-
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