ON THE INVERTIBILITY OF $AA^+ - A^+A$ IN A HILBERT SPACE

Safa Menkad and Said Guedjiba

Abstract. Let H be a Hilbert space and B(H) the algebra of all bounded linear operators on H. In this paper, we study the class of operators $A \in B(H)$ with closed range such that $AA^+ - A^+A$ is invertible, where A^+ is the Moore-Penrose inverse of A. Also, we present new relations between $(AA^* + A^*A)^{-1}$ and $(A + A^*)^{-1}$. The present paper is an extension of results from [J. Benítez and V. Rakočević, Appl. Math. Comput. 217 (2010) 3493–3503] to infinitedimensional Hilbert space.

1. Introduction

Let H be a Hilbert space and B(H) be the set of all bounded linear operators on H. Throughout this paper, the range, the null space and the adjoint of $A \in B(H)$ are denoted by N(A), R(A) and A^* , respectively. An operator $A \in B(H)$ is said to be positive if $(Ax, x) \ge 0$. An operator $P \in B(H)$ is said to be idempotent if $P^2 = P$. An orthogonal projection is a self-adjoint idempotent. Clearly, any orthogonal projection is positive. For $A \in B(H)$, if there exists an operator $A^+ \in B(H)$ satisfying the following four operator equations:

$$AA^{+}A = A, \quad A^{+}AA^{+} = A^{+}, \quad AA^{+} = (AA^{+})^{*}, \quad A^{+}A = (A^{+}A)^{*},$$

then A^+ is called the Moore-Penrose inverse (for short, MP inverse) of A. It is well known that A has the MP inverse if and only if R(A) is closed, the MP inverse of A is unique [5]. It is easy to see that $R(A^+) = R(A^*)$, AA^+ is the orthogonal projection of H onto R(A) and that A^+A is the orthogonal projection of H onto $R(A^*)$. $A \in B(H)$ is said to be an EP operator, if R(A) is closed and $AA^+ = A^+A$ (see [1,7]). If A is an EP operator, then $AA^+ - A^+A$ is not invertible.

In this paper we study the class of operators $A \in B(H)$ with closed range, such that $AA^+ - A^+A$ is invertible. Since AA^+ and A^+A are orthogonal projections, the question of invertibility of $AA^+ - A^+A$ is strongly related to the invertibility of the difference P - Q, where P, Q are orthogonal projections on a Hilbert space.

²⁰¹⁰ Math. Subject Classification: 47A05

 $Keywords\ and\ phrases:$ Moore-Penrose inverse; idempotent; orthogonal projection; positive operator.

Buckholtz [3,4] has proved that the operator P - Q is invertible if and only if H is the direct sum $H = R(P) \oplus R(Q)$ of the ranges of P and Q. In this case there exists a linear idempotent M with range R(P), kernel R(Q) and $(P-Q)^{-1} = M + M^* - I$ (see [11,12,13] for further references).

Recently, J. Benítez and V. Rakočević (see [2]) obtained interesting results concerning the nonsingularity of $AA^+ - A^+A$, where A is a square matrix. Notice that in [2] the finite-dimensional methods are mostly based on the CS decomposition and on the rank of a complex matrix. In the present paper we extend results obtained in [2] to infinite-dimensional Hilbert space.

2. Preliminary results

In this section, we present some Lemmas, needed in the sequel.

LEMMA 2.1. [9] Let A and B be in B(H). Then the following statements hold:

- (i) R(A) is closed if and only if $R(A) = R(AA^*)$,
- (ii) R(A) is closed if and only if $R(A^*)$ is closed,
- (iii) $R(A) = R(AA^*)^{\frac{1}{2}}$,
- (iv) $R(A) + R(B) = R((AA^* + BB^*)^{\frac{1}{2}}).$

LEMMA 2.1. [6,8] Let $A \in B(H)$ be a positive operator. Then the following statements hold:

- (i) $R(A) \subseteq R(A^{\frac{1}{2}})$ and $\overline{R(A)} = \overline{R(A^{\frac{1}{2}})}$, where \overline{K} denotes the closure of K,
- (ii) R(A) is closed if and only if $R(A) = R(A^{\frac{1}{2}})$,
- (iii) R(A) = H if and only if A is invertible.

LEMMA 2.1. [10] If $P \in B(H)$ is an idempotent and $||P|| \leq 1$, then P is an orthogonal projection.

3. Main results

In this section we find several equivalent conditions that ensure the invertibility of $AA^+ - A^+A$, where $A \in B(H)$ has the closed range.

THEOREM 3.1. If $A \in B(H)$ have closed range, then the following statements are equivalent:

- (i) $AA^+ A^+A$ is invertible,
- (ii) $R(A) \oplus R(A^*) = H$,
- (iii) There exists a bounded linear idempotent P with range $N(A^*)$ and kernel N(A),
- (iv) $AA^+ + A^+A$ is invertible and $||A(A^+)^2A|| < 1$,
- (v) $AA^* + A^*A$ is invertible and $R(A) \cap R(A^*) = \{0\},\$
- (vi) $AA^* A^*A$ is invertible and $R(A) \cap R(A^*) = \{0\}$.

Proof. Since AA^+ and A^+A are orthogonal projections onto R(A) and $R(A^*)$ respectively, then the equivalence of (i), (ii) and (iv) follows from [4].

(ii) \Leftrightarrow (iii). Assume first that $R(A) \oplus R(A^*) = H$. Then, there exists a bounded linear idempotent M in B(H) such that R(M) = R(A) and $N(M) = R(A^*)$.

Let us define $P = I - M^*$. Then P is an idempotent with range $N(M^*)$ and Kernel $R(M^*)$. By using relations $N(B^*) = R(B)^{\perp}$ and $R(B^*) = N(B)^{\perp}$, which are valid for closed range operators $B \in B(H)$, we get $R(P) = N(A^*)$ and N(P) = N(A).

Conversely, if P is an idempotent with range $N(A^*)$ and kernel N(A), then $I - P^*$ is idempotent with range R(A) and kernel $R(A^*)$. According to the space decomposition $H = R(I - P^*) \oplus N(I - P^*)$, we obtain (ii).

(ii) \Leftrightarrow (v). Using Lemma 2.1, we obtain $R((AA^* + A^*A)^{\frac{1}{2}}) = R(A) + R(A^*)$. Since $(AA^* + A^*A)^{\frac{1}{2}}$ is a positive operator, it follows from Lemma 2.2, that $R(A) + R(A^*) = H$ if and only if $(AA^* + A^*A)^{\frac{1}{2}}$ is invertible, so $AA^* + A^*A$ is invertible. Hence, (ii) \Leftrightarrow (v).

 $(v) \Rightarrow (vi)$. Assume that (v) holds. By the equivalence $(v) \Leftrightarrow (iii)$, there exists an idempotent P such that $R(P) = N(A^*)$ and N(P) = N(A). This implies $A^*P = 0$ and A(I - P) = 0. Hence, AP = A and $P^*A = 0$.

Then we easily obtain $(AA^* + A^*A)(I - 2P) = (AA^* - A^*A)$. Since I - 2P is invertible (because $(I - 2P)^2 = I$), we get that $AA^* - A^*A$ is invertible.

 $(vi) \Rightarrow (v)$. Suppose that (vi) holds. From the invertibility of $AA^* - A^*A$, we deduce $H = R(AA^* - A^*A) = R(A) + R(A^*)$. According to Lemmas 2.1 and 2.2, $(AA^* + A^*A)^{\frac{1}{2}}$ is invertible. Hence $AA^* + A^*A$ is invertible.

REMARK 3.2. If P is the idempotent given by Theorem 3.1, then from the proof of (ii) \Leftrightarrow (iii), we deduce

 $A^{+}AP = A^{+}A, \quad AA^{+}P = 0, \quad AA^{+}(I - P^{*}) = I - P^{*}, \quad A^{+}AP^{*} = P^{*}.$

Using these results, we obtain

$$(AA^{+} - A^{+}A)(I - P - P^{*}) = I - P^{*} + P^{*} = I.$$

Taking the adjoint, we get

$$(I - P - P^*)(AA^+ - A^+A) = I.$$

Hence, $(AA^+ - A^+A)^{-1} = I - P - P^*$.

From Theorem 3.1, we see that if $AA^+ - A^+A$ is invertible, then $AA^* + A^*A$ is invertible. In the following example we show that the converse is not true.

EXAMPLE 3.3. Consider the real Hilbert space ℓ_2 and let $A \in B(\ell_2)$ be the left shift, i.e. $A(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$, then $A^*(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$ and $A^+ = A^*$. In this case $AA^+ = I$ and $A^+A(x_1, x_2, \ldots) = (0, x_2, x_3, \ldots)$. Then, $AA^* + A^*A$ is invertible and $AA^+ - A^+A$ is not injective. Hence $AA^+ - A^+A$ is not invertible.

THEOREM 3.4. Let $A \in B(H)$ have closed range, then the following statements are equivalent:

- (i) $AA^+ A^+A$ is invertible,
- (ii) $A+A^*$ is invertible and there exists an idempotent $P \in B(H)$ such that AP = Aand $P^*A = 0$,
- (iii) $A-A^*$ is invertible and there exists an idempotent $P \in B(H)$ such that AP = Aand $P^*A = 0$,
- (iv) $A + A^*$ is invertible, $A(A + A^*)^{-1}A = A$ and $A^*(A + A^*)^{-1}A = 0$,
- (v) $A A^*$ is invertible, $A(A A^*)^{-1}A = A$ and $A^*(A A^*)^{-1}A = 0$.

Proof. (i) \Rightarrow (ii). Since $AA^+ - A^+A$ is invertible, by the proof of Theorem 3.1,(v) \Leftrightarrow (vi), there exist an idempotent $P \in B(H)$, such that AP = A and $P^*A = 0$. Then it is easy to check that

$$(A + A^*)(I - P - P^*)(A + A^*) = A^*A - AA^*.$$

We conclude that $R(A^*A - AA^*) \subset R(A + A^*)$ and $N(A + A^*) \subset N(A^*A - AA^*)$. Since, by Theorem 3.1, $A^*A - AA^*$ is invertible. Hence, $A + A^*$ is invertible.

(ii) \Rightarrow (i). If $A + A^*$ is invertible, we easily obtain $R(A) + R(A^*) = H$. On the other hand, if $P \in B(H)$ is an idempotent, such that AP = A and $P^*A = 0$, then $R(A^*) \subset R(P^*)$ and $R(A) \subset N(P^*)$. Since $R(P^*) \cap N(P^*) = \{0\}$, we obtain $R(A) \cap R(A^*) = \{0\}$. Consequently, $R(A) \oplus R(A^*) = H$. Thus, by Theorem 3.1, $AA^+ - A^+A$ is invertible.

(ii) \Leftrightarrow (iii). Suppose that $P \in B(H)$ is idempotent such that AP = A and $P^*A = 0$. then $(A + A^*)(2P - I) = A - A^*$. Since 2P - I is invertible, then $A + A^*$ is invertible if and only if $A - A^*$ is invertible. Hence,(ii) \Leftrightarrow (iii).

(ii) \Rightarrow (iv). From AP = A and $P^*A = 0$, we have $(A + A^*)P = A$. Since $A + A^*$ is invertible, then $P = (A + A^*)^{-1}A$. This implies $A(A + A^*)^{-1}A = AP = A$ and $A^*(A + A^*)^{-1}A = A^*P = 0$.

(iv) \Rightarrow (ii). Let us define $P = (A + A^*)^{-1}A$. From $A(A + A^*)^{-1}A = A$ and $A^*(A + A^*)^{-1}A = 0$, we easily obtain $P^2 = P$, AP = A and $A^*P = 0$.

The proof of $(iii) \Leftrightarrow (v)$ works in the same way as in $(ii) \Leftrightarrow (iv)$.

REMARK 3.5. The existence of the idempotent P, such that AP = A and $P^*A = 0$ is necessary for the invertibility of $AA^+ - A^+A$; for example, let $A \in B(H)$ be self-adjoint invertible, then $A + A^*$ is invertible, but $AA^+ - A^+A = 0$.

COROLLARY 3.6. Let $A \in B(H)$ have closed range. If $AA^+ - A^+A$ is invertible, then the idempotent P given by Theorem 3.4 is unique and $R(P) = N(A^*)$ and N(P) = N(A).

Proof. Let P be the idempotent given in Theorem 3.4. From the proof of Theorem 3.4, (ii) \Rightarrow (iv), we get $P = (A + A^*)^{-1}A$. This proves the uniqueness of the idempotent P and the equality N(P) = N(A).

104

Now, we prove that $R(P) = N(A^*)$. From $A^*P = (P^*A)^* = 0$, we get the inclusion $R(P) \subset N(A^*)$. To prove the reverse inclusion we first, observe that

$$(A + A^*)(I - AA^+) = A(I - AA^+) + [(I - AA^+)A]^* = A(I - AA^+)A$$

Hence, we get

$$I - AA^{+} = (A + A^{*})^{-1}A(I - AA^{+}) = P(I - AA^{+}).$$

From $I - AA^+ = P(I - AA^+)$, we obtain $R(I - AA^+) \subset R(P)$. Since $R(I - AA^+) = N(AA^+) = N(A^*)$, Then $N(A^*) \subset R(P)$. Consequently, $R(P) = N(A^*)$.

COROLLARY 3.7. Let $A \in B(H)$ have closed range. If $AA^+ - A^+A$ is invertible. Then

- (i) $(AA^+ A^+A)^{-1} = (A + A^*)^{-1}(A^*A AA^*)(A + A^*)^{-1},$
- (ii) $(AA^+ A^+A)^{-1} = (A A^*)^{-1}(AA^* A^*A)(A A^*)^{-1}.$

Proof. Let P be the idempotent given by Theorem 2.1.

(i) From the proof of Theorem 3.4, (i) \Rightarrow (ii), we get

$$(A + A^*)(I - P - P^*)(A + A^*) = A^*A - AA^*.$$

Using the equality $I - P - P^* = (AA^+ - A^+A)^{-1}$ and the invertibility of $A + A^*$ (guaranteed by Theorem 3.4), we deduce the equality (i).

(ii) From AP = A and $P^*A = 0$, we get

$$(A - A^*)(I - P - P^*)(A - A^*) = AA^* - A^*A.$$

The rest of the proof of (ii) is similar to the proof of (i). ■

THEOREM 3.8. Let $A \in B(H)$ have closed range, then the following statements are equivalent:

(i) $AA^+ - A^+A$ is invertible,

(ii) $AA^* + A^*A$ is invertible and $A^*A(AA^* + A^*A)^{-1}A^*A = A^*A$,

(iii) $AA^* - A^*A$ is invertible and $A^*A(A^*A - AA^*)^{-1}A^*A = A^*A$.

Proof. (i) \Rightarrow (ii). Assume that (i) holds. Using Theorems 3.1 and 3.4, we get $AA^* + A^*A$ is invertible and there exists an idempotent $P \in B(H)$, such that AP = A and $P^*A = 0$. Then $(AA^* + A^*A)P = A^*A$, which implies $P = (AA^* + A^*A)^{-1}A^*A$. Hence $A^*A(AA^* + A^*A)^{-1}A^*A = A^*A$.

(ii) \Rightarrow (i). Assume that (ii) holds. Let $P = (AA^* + A^*A)^{-1}A^*A$. From hypotheses, it is easy to get $P^2 = P$ and $N(P) = N(A^*A)$. Since $N(A^*A) = N(A)$ (see Lemma 2.1), then N(P) = N(A).

On the other hand, we have:

$$A^*A(AA^* + A^*A)^{-1}AA^* = A^*A - A^*A(AA^* + A^*A)^{-1}A^*A = 0$$

Hence, $AA^*P = 0$. So $R(P) \subset N(A^*)$. Since R(P) + N(P) = H, we get $N(A) + N(A^*) = H$. This implies $N(A)^{\perp} \cap N(A^*)^{\perp} = \{0\}$. Therefore $R(A) \cap R(A^*) = \{0\}$. Using Theorem 3.1 (v), we obtain $AA^+ - A^+A$ is invertible.

(i)⇔ (iii). This is similar as (i)⇒(ii) and (ii)⇒(i). ■

From the above proof and Theorem 3.4, we obtain the following corollary.

COROLLARY 3.9. Let $A \in B(H)$ with closed range, such that $AA^+ - A^+A$ is invertible. If P is the idempotent given by Theorem 3.1, then

- (i) $P = (AA^* + A^*A)^{-1}A^*A = (A^*A AA^*)^{-1}A^*A = (A + A^*)^{-1}A = (A A^*)^{-1}A,$
- (ii) $A(AA^* + A^*A)^{-1}A^*A = A(A^*A AA^*)^{-1}A^*A = A$,
- (iii) $A^*(AA^* + A^*A)^{-1}A^*A = A^*(A^*A AA^*)^{-1}A^*A = 0.$

As we have seen in Theorem 3.1, $AA^+ - A^+A$ is invertible if and only if $R(A) \oplus R(A^*) = H$. But what happens if H is the orthogonal direct sum $R(A) \oplus^{\perp} R(A^*) = H$ of the ranges of A and A^* ?

In the next result we study the class of operators A with closed range such that $R(A)^{\perp} = R(A^*)$.

THEOREM 3.10. Let $A \in B(H)$ have closed range, then the following statements are equivalent:

- (i) $R(A) \oplus^{\perp} R(A^*) = H$,
- (ii) $AA^+ + A^+A = I$
- (iii) $(AA^+ A^+A)^2 = I$,
- (iv) $A + A^*$ is invertible and there exists a unique orthogonal projection P such that AP = A and PA = 0,
- (v) $A A^*$ is invertible and there exists a unique orthogonal projection P such that AP = A and PA = 0.

Proof. (i) \Leftrightarrow (ii). It is well know that $R(A) \oplus^{\perp} R(A^*) = H$ if and only if $R(A)^{\perp} = R(A^*)$. Since AA^+ and A^+A are orthogonal projections onto R(A) and $R(A^*)$ respectively, then $R(A)^{\perp} = R(A^*)$ if and only if $A^+A = I - AA^+$. So that $AA^+ + A^+A = I$. Hence, (i) \Leftrightarrow (ii).

(ii) \Leftrightarrow (iii). Let us first define the orthogonal projections $P_1 = AA^+$ and $P_2 = A^+A$. If $P_1 + P_2 = I$, then $P_1P_2 = P_1(I - P_1) = 0$ and $P_2P_1 = P_2(I - P_2) = 0$. Hence $(P_1 - P_2)^2 = P_1 + P_2 = I$.

Conversely, if $(P_1 - P_2)^2 = I$, then $P_1 + P_2 - P_1P_2 - P_2P_1 = I$. Multiplying the previous equality by P_1 from the left side, we get $P_1P_2P_1 = 0$. So that $(P_2P_1)^*(P_2P_1) = 0$. This is equivalent to $P_1P_2 = P_2P_1 = 0$. Thus $P_1 + P_2 = I$.

(iii) \Rightarrow (iv). Assume that (iii) holds. Then $AA^+ - A^+A$ is invertible and $(AA^+ - A^+A)^{-1} = AA^+ - A^+A$. By theorem 3.4, $A + A^*$ is invertible and there exists a unique idempotent $P \in B(H)$ such that AP = A and $P^*A = 0$. It follows from Remark 3.2, that $I - P - P^* = AA^+ - A^+A$. Multiplying the previous

106

equality by P^* from the left side, we get $P^*P = P^*A^+A = (A^+AP)^* = A^+A$. Hence, $||P|| = (||P^*P||)^{\frac{1}{2}} = 1$. According to Lemma 2.3, we conclude that P is an orthogonal projection $(P = P^*)$, which satisfies AP = A and PA = 0.

(iv) \Rightarrow (i). Suppose that (iv) holds. From the invertibility of $A + A^*$, we deduce that $R(A) + R(A^*) = H$.

Now, we prove that $R(A) \perp R(A^*)$. From AP = A and PA = 0, we get $A^2 = 0$. So $R(A) \subset N(A)$. Since $N(A) = R(A^*)^{\perp}$, we conclude that $R(A) \perp R(A^*)$.

(iv) ⇔(v). This equivalence can be proved in a similar way as (ii) ⇔(iii), Theorem 3.4. \blacksquare

COROLLARY 3.11. Let $A \in B(H)$ have closed range. If any item in Theorem 3.10, is satisfied, then

- (i) $A^+ = (A + A^*)^{-1}A(A + A^*)^{-1}$,
- (ii) $A^+ = (A A^*)^{-1}A(A A^*)^{-1}$,
- (iii) $A^+ + (A^+)^* = (A + A^*)^{-1}$,
- (iv) $A^+ (A^+)^* = (A A^*)^{-1}$,
- (v) $A^+ = \frac{1}{2}[(A + A^*)^{-1} + (A A^*)^{-1}].$

Proof. (i). By the proof of Theorem 3.10, (iv) \Rightarrow (i), we get $A^2 = 0$. Then $(A + A^*)A^+A = A$.

Since $A + A^*$ is invertible, then it is easy to check that

$$A^{+} = (A^{+}A)^{+}(A + A^{*})^{-1} = A^{+}A(A + A^{*})^{-1}$$

By using $A^+A = (A + A^*)^{-1}A$, we obtain (i).

The proof of (ii) is similar to that of (i).

The proof of the remaining statements follows immediately from (i) and (ii) of this corollary. \blacksquare

ACKNOWLEDGEMENT. We are grateful to the referees for helpful comments concerning the paper.

REFERENCES

- A. Ben-Israel, T.N.E. Greville, Generalized Inverses, Theory and Applications, second ed., Springer, 2003.
- [2] J. Benítez and V. Rakočević, Matrices A suth that AA⁺ A⁺A are nonsingular, Appl. Math. Comput. 217 (2010) 3493–3503.
- [3] D. Buckholtz, Inverting the difference of Hilbert space projection, Amer. Math. Monthly 104 (1997) 60–61.
- [4] D. Buckholtz, Hilbert space idempotents and involutions, Proc. Am. Math. Soc. 128 (2000) 1415–1418.
- [5] S. R. Caradus, Generalised Inverse and operator Theory, Queen's Paper in Pure and Appl. Math, vol. 50, Quenn's Univ., Kingston, ON, 1978.
- [6] C.Y. Deng, H.K. Du, Common complements of two subspaces and an answer of Gros question, Acta Math. Sinica 49 (2006) 1099–1112.

S. Menkad, S. Guedjiba

- [7] D.S. Djordjević, Characterizations of normal, hyponormal and EP operators, J. Math. Appl. 329 (2007) 1118–1190.
- [8] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413–416.
- [9] P.A. Fillmore, J.P. Williams, On operator ranges, Adv. Math. 7, 254-281.
- [10] T. Furuta and R. Nakamoto, Some theorems on certain contraction operators, Proc. Japan Acad. 45 (1969), 565–567.
- [11] J.J. Koliha and V. Rakočević, Invertibility of difference of idempotents, Linear Multilinear Algebra 51 (2003) 97–110.
- [12] J.J. Koliha and V. Rakočević, Fredholm properties of the difference of orthogonal projections in a Hilbert space, Integr. Equ. Oper. Theory 52 (2005) 125–134.
- [13] I. Vidav, On idempotent operators in Hilbert a space, Publ. Inst. Math.(Beograd) 4 (1964) 157–136.

(received 14.04.2012; in revised form 30.10.2012; available online 01.03.2013)

Department of Mathematics, Faculty of Science, University of Batna, 05000, Batna, Algeria *E-mail*: menkad_safa@yahoo.fr

108