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ON THE INVERTIBILITY OF AA+ −A+A IN A HILBERT SPACE

Safa Menkad and Said Guedjiba

Abstract. Let H be a Hilbert space and B(H) the algebra of all bounded linear operators
on H. In this paper, we study the class of operators A ∈ B(H) with closed range such that
AA+ − A+A is invertible, where A+ is the Moore-Penrose inverse of A. Also, we present new
relations between (AA∗ + A∗A)−1 and (A + A∗)−1. The present paper is an extension of results

from [J. Beńitez and V. Rakočević, Appl. Math. Comput. 217 (2010) 3493–3503] to infinite-
dimensional Hilbert space.

1. Introduction

Let H be a Hilbert space and B(H) be the set of all bounded linear operators on
H. Throughout this paper, the range, the null space and the adjoint of A ∈ B(H)
are denoted by N(A), R(A) and A∗, respectively. An operator A ∈ B(H) is said
to be positive if (Ax, x) ≥ 0. An operator P ∈ B(H) is said to be idempotent
if P 2 = P . An orthogonal projection is a self-adjoint idempotent. Clearly, any
orthogonal projection is positive. For A ∈ B(H), if there exists an operator A+ ∈
B(H) satisfying the following four operator equations:

AA+A = A, A+AA+ = A+, AA+ = (AA+)∗, A+A = (A+A)∗,

then A+ is called the Moore-Penrose inverse (for short, MP inverse) of A. It is well
known that A has the MP inverse if and only if R(A) is closed, the MP inverse
of A is unique [5]. It is easy to see that R(A+) = R(A∗), AA+ is the orthogonal
projection of H onto R(A) and that A+A is the orthogonal projection of H onto
R(A∗). A ∈ B(H) is said to be an EP operator, if R(A) is closed and AA+ = A+A
(see [1,7]). If A is an EP operator, then AA+ −A+A is not invertible.

In this paper we study the class of operators A ∈ B(H) with closed range, such
that AA+ − A+A is invertible. Since AA+ and A+A are orthogonal projections,
the question of invertibility of AA+ − A+A is strongly related to the invertibility
of the difference P −Q, where P , Q are orthogonal projections on a Hilbert space.

2010 Math. Subject Classification: 47A05
Keywords and phrases: Moore-Penrose inverse; idempotent; orthogonal projection; positive

operator.

101



102 S. Menkad, S. Guedjiba

Buckholtz [3,4] has proved that the operator P −Q is invertible if and only if H is
the direct sum H = R(P )⊕R(Q) of the ranges of P and Q. In this case there exists
a linear idempotent M with range R(P ), kernel R(Q) and (P−Q)−1 = M +M∗−I
(see [11,12,13] for further references).

Recently, J. Beńitez and V. Rakočević (see [2]) obtained interesting results
concerning the nonsingularity of AA+ −A+A, where A is a square matrix. Notice
that in [2] the finite-dimensional methods are mostly based on the CS decomposition
and on the rank of a complex matrix. In the present paper we extend results
obtained in [2] to infinite-dimensional Hilbert space.

2. Preliminary results

In this section, we present some Lemmas, needed in the sequel.
Lemma 2.1. [9] Let A and B be in B(H). Then the following statements hold:

(i) R(A) is closed if and only if R(A) = R(AA∗),
(ii) R(A) is closed if and only if R(A∗) is closed,

(iii) R(A) = R(AA∗)
1
2 ,

(iv) R(A) + R(B) = R((AA∗ + BB∗)
1
2 ).

Lemma 2.1. [6,8] Let A ∈ B(H) be a positive operator. Then the following
statements hold:

(i) R(A) ⊆ R(A
1
2 ) and R(A) = R(A

1
2 ), where K denotes the closure of K,

(ii) R(A) is closed if and only if R(A) = R(A
1
2 ),

(iii) R(A) = H if and only if A is invertible.

Lemma 2.1. [10] If P ∈ B(H) is an idempotent and ‖P‖ ≤ 1, then P is an
orthogonal projection.

3. Main results

In this section we find several equivalent conditions that ensure the invertibility
of AA+ −A+A, where A ∈ B(H) has the closed range.

Theorem 3.1. If A ∈ B(H) have closed range, then the following statements
are equivalent:
(i) AA+ −A+A is invertible,
(ii) R(A)⊕R(A∗) = H,
(iii) There exists a bounded linear idempotent P with range N(A∗) and kernel

N(A),
(iv) AA+ + A+A is invertible and ‖A(A+)2A‖ < 1,
(v) AA∗ + A∗A is invertible and R(A) ∩R(A∗) = {0},
(vi) AA∗ −A∗A is invertible and R(A) ∩R(A∗) = {0}.
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Proof. Since AA+ and A+A are orthogonal projections onto R(A) and R(A∗)
respectively, then the equivalence of (i), (ii) and (iv) follows from [4].

(ii)⇔(iii). Assume first that R(A)⊕R(A∗) = H. Then, there exists a bounded
linear idempotent M in B(H) such that R(M) = R(A) and N(M) = R(A∗).

Let us define P = I − M∗. Then P is an idempotent with range N(M∗)
and Kernel R(M∗). By using relations N(B∗) = R(B)⊥ and R(B∗) = N(B)⊥,
which are valid for closed range operators B ∈ B(H), we get R(P ) = N(A∗) and
N(P ) = N(A).

Conversely, if P is an idempotent with range N(A∗) and kernel N(A), then
I − P ∗ is idempotent with range R(A) and kernel R(A∗). According to the space
decomposition H = R(I − P ∗)⊕N(I − P ∗), we obtain (ii).

(ii)⇔(v). Using Lemma 2.1, we obtain R((AA∗ + A∗A)
1
2 ) = R(A) + R(A∗).

Since (AA∗+A∗A)
1
2 is a positive operator, it follows from Lemma 2.2, that R(A)+

R(A∗) = H if and only if (AA∗ + A∗A)
1
2 is invertible, so AA∗ + A∗A is invertible.

Hence, (ii)⇔(v).
(v)⇒(vi). Assume that (v) holds. By the equivalence (v)⇔(iii), there exists an

idempotent P such that R(P ) = N(A∗) and N(P ) = N(A). This implies A∗P = 0
and A(I − P ) = 0. Hence, AP = A and P ∗A = 0.

Then we easily obtain (AA∗ + A∗A)(I − 2P ) = (AA∗ −A∗A). Since I − 2P is
invertible (because (I − 2P )2 = I), we get that AA∗ −A∗A is invertible.

(vi)⇒(v). Suppose that (vi) holds. From the invertibility of AA∗ −A∗A, we
deduce H = R(AA∗ − A∗A) = R(A) + R(A∗). According to Lemmas 2.1 and 2.2,
(AA∗ + A∗A)

1
2 is invertible. Hence AA∗ + A∗A is invertible.

Remark 3.2. If P is the idempotent given by Theorem 3.1, then from the
proof of (ii)⇔(iii), we deduce

A+AP = A+A, AA+P = 0, AA+(I − P ∗) = I − P ∗, A+AP ∗ = P ∗.

Using these results, we obtain

(AA+ −A+A)(I − P − P ∗) = I − P ∗ + P ∗ = I.

Taking the adjoint, we get

(I − P − P ∗)(AA+ −A+A) = I.

Hence, (AA+ −A+A)−1 = I − P − P ∗.
From Theorem 3.1, we see that if AA+ −A+A is invertible, then AA∗ + A∗A

is invertible. In the following example we show that the converse is not true.
Example 3.3. Consider the real Hilbert space `2 and let A∈ B(`2) be the left

shift, ie. A(x1, x2, . . . ) = (x2, x3, . . . ), then A∗(x1, x2, . . . ) = (0, x1, x2, . . . ) and
A+ = A∗. In this case AA+ = I and A+A(x1, x2, . . . ) = (0, x2, x3, . . . ). Then,
AA∗ + A∗A is invertible and AA+ − A+A is not injective. Hence AA+ − A+A is
not invertible.
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Theorem 3.4. Let A ∈ B(H) have closed range, then the following statements
are equivalent:

(i) AA+ −A+A is invertible,

(ii) A+A∗ is invertible and there exists an idempotent P ∈ B(H) such that AP = A
and P ∗A = 0,

(iii) A−A∗ is invertible and there exists an idempotent P ∈ B(H) such that AP = A
and P ∗A = 0,

(iv) A + A∗ is invertible, A(A + A∗)−1A = A and A∗(A + A∗)−1A = 0,

(v) A−A∗ is invertible, A(A−A∗)−1A = A and A∗(A−A∗)−1A = 0.

Proof. (i)⇒(ii). Since AA+ −A+A is invertible, by the proof of Theorem
3.1,(v)⇔(vi), there exist an idempotent P ∈ B(H), such that AP = A and P ∗A =
0. Then it is easy to check that

(A + A∗)(I − P − P ∗)(A + A∗) = A∗A−AA∗.

We conclude that R(A∗A−AA∗) ⊂ R(A + A∗) and N(A + A∗) ⊂ N(A∗A−AA∗).
Since, by Theorem 3.1, A∗A−AA∗ is invertible. Hence, A + A∗ is invertible.

(ii) ⇒(i). If A + A∗ is invertible, we easily obtain R(A) + R(A∗) = H. On
the other hand, if P ∈ B(H) is an idempotent, such that AP = A and P ∗A = 0,
then R(A∗) ⊂ R(P ∗) and R(A) ⊂ N(P ∗). Since R(P ∗) ∩N(P ∗) = {0}, we obtain
R(A) ∩ R(A∗) = {0}. Consequently, R(A) ⊕ R(A∗) = H. Thus, by Theorem 3.1,
AA+ −A+A is invertible.

(ii)⇔(iii). Suppose that P ∈ B(H) is idempotent such that AP = A and
P ∗A = 0. then (A+A∗)(2P − I) = A−A∗. Since 2P − I is invertible, then A+A∗

is invertible if and only if A−A∗ is invertible. Hence,(ii) ⇔(iii).

(ii)⇒(iv). From AP = A and P ∗A = 0, we have (A+A∗)P = A. Since A+A∗

is invertible, then P = (A + A∗)−1A. This implies A(A + A∗)−1A = AP = A and
A∗(A + A∗)−1A = A∗P = 0.

(iv)⇒(ii). Let us define P = (A + A∗)−1A. From A(A + A∗)−1A = A and
A∗(A + A∗)−1A = 0, we easily obtain P 2 = P, AP = A and A∗P = 0.

The proof of (iii)⇔(v) works in the same way as in (ii) ⇔(iv).

Remark 3.5. The existence of the idempotent P , such that AP = A and
P ∗A = 0 is necessary for the invertibility of AA+−A+A; for example, let A ∈ B(H)
be self-adjoint invertible, then A + A∗ is invertible, but AA+ −A+A = 0.

Corollary 3.6. Let A ∈ B(H) have closed range. If AA+−A+A is invertible,
then the idempotent P given by Theorem 3.4 is unique and R(P ) = N(A∗) and
N(P ) = N(A).

Proof. Let P be the idempotent given in Theorem 3.4. From the proof of
Theorem 3.4, (ii)⇒(iv), we get P = (A + A∗)−1A. This proves the uniqueness of
the idempotent P and the equality N(P ) = N(A).
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Now, we prove that R(P ) = N(A∗). From A∗P = (P ∗A)∗ = 0, we get the
inclusion R(P ) ⊂ N(A∗). To prove the reverse inclusion we first, observe that

(A + A∗)(I −AA+) = A(I −AA+) + [(I −AA+)A]∗ = A(I −AA+).

Hence, we get

I −AA+ = (A + A∗)−1A(I −AA+) = P (I −AA+).

From I−AA+ = P (I−AA+), we obtain R(I−AA+) ⊂ R(P ). Since R(I−AA+) =
N(AA+) = N(A∗), Then N(A∗) ⊂ R(P ). Consequently, R(P ) = N(A∗).

Corollary 3.7. Let A ∈ B(H) have closed range. If AA+ −A+A is invert-
ible. Then
(i) (AA+ −A+A)−1 = (A + A∗)−1(A∗A−AA∗)(A + A∗)−1,
(ii) (AA+ −A+A)−1 = (A−A∗)−1(AA∗ −A∗A)(A−A∗)−1.

Proof. Let P be the idempotent given by Theorem 2.1.
(i) From the proof of Theorem 3.4, (i)⇒(ii), we get

(A + A∗)(I − P − P ∗)(A + A∗) = A∗A−AA∗.

Using the equality I − P − P ∗ = (AA+ − A+A)−1 and the invertibility of A + A∗

(guaranteed by Theorem 3.4), we deduce the equality (i).
(ii) From AP = A and P ∗A = 0, we get

(A−A∗)(I − P − P ∗)(A−A∗) = AA∗ −A∗A.

The rest of the proof of (ii) is similar to the proof of (i).

Theorem 3.8. Let A ∈ B(H) have closed range, then the following statements
are equivalent:
(i) AA+ −A+A is invertible,
(ii) AA∗ + A∗A is invertible and A∗A(AA∗ + A∗A)−1A∗A = A∗A,
(iii) AA∗ −A∗A is invertible and A∗A(A∗A−AA∗)−1A∗A = A∗A.

Proof. (i)⇒(ii). Assume that (i) holds. Using Theorems 3.1 and 3.4, we
get AA∗ + A∗A is invertible and there exists an idempotent P ∈ B(H), such
that AP = A and P ∗A = 0. Then (AA∗ + A∗A)P = A∗A, which implies P =
(AA∗ + A∗A)−1A∗A. Hence A∗A(AA∗ + A∗A)−1A∗A = A∗A.

(ii)⇒(i). Assume that (ii) holds. Let P = (AA∗ + A∗A)−1A∗A. From hy-
potheses, it is easy to get P 2 = P and N(P ) = N(A∗A). Since N(A∗A) = N(A)
(see Lemma 2.1), then N(P ) = N(A).

On the other hand, we have:

A∗A(AA∗ + A∗A)−1AA∗ = A∗A−A∗A(AA∗ + A∗A)−1A∗A = 0.
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Hence, AA∗P = 0. So R(P ) ⊂ N(A∗). Since R(P ) + N(P ) = H, we get N(A) +
N(A∗) = H. This implies N(A)⊥∩N(A∗)⊥ = {0}. Therefore R(A)∩R(A∗) = {0}.
Using Theorem 3.1 (v), we obtain AA+ −A+A is invertible.

(i)⇔ (iii). This is similar as (i)⇒(ii) and (ii)⇒(i).
From the above proof and Theorem 3.4, we obtain the following corollary.

Corollary 3.9. Let A ∈ B(H) with closed range, such that AA+ − A+A is
invertible. If P is the idempotent given by Theorem 3.1, then
(i) P = (AA∗ + A∗A)−1A∗A = (A∗A − AA∗)−1A∗A = (A + A∗)−1A = (A −

A∗)−1A,
(ii) A(AA∗ + A∗A)−1A∗A = A(A∗A−AA∗)−1A∗A = A,
(iii) A∗(AA∗ + A∗A)−1A∗A = A∗(A∗A−AA∗)−1A∗A = 0.

As we have seen in Theorem 3.1, AA+ −A+A is invertible if and only if R(A)⊕
R(A∗) = H. But what happens if H is the orthogonal direct sum R(A)⊕⊥R(A∗) =
H of the ranges of A and A∗?

In the next result we study the class of operators A with closed range such
that R(A)⊥ = R(A∗).

Theorem 3.10. Let A ∈ B(H) have closed range, then the following state-
ments are equivalent:
(i) R(A)⊕⊥ R(A∗) = H,
(ii) AA+ + A+A = I

(iii) (AA+ −A+A)2 = I,
(iv) A+A∗ is invertible and there exists a unique orthogonal projection P such that

AP = A and PA = 0,
(v) A−A∗ is invertible and there exists a unique orthogonal projection P such that

AP = A and PA = 0.

Proof. (i)⇔(ii). It is well know that R(A) ⊕⊥ R(A∗) = H if and only if
R(A)⊥ = R(A∗). Since AA+ and A+A are orthogonal projections onto R(A) and
R(A∗) respectively, then R(A)⊥ = R(A∗) if and only if A+A = I − AA+. So that
AA+ + A+A = I. Hence, (i)⇔(ii).

(ii)⇔(iii). Let us first define the orthogonal projections P1 = AA+ and P2 =
A+A. If P1 + P2 = I, then P1P2 = P1(I − P1) = 0 and P2P1 = P2(I − P2) = 0.
Hence (P1 − P2)2 = P1 + P2 = I.

Conversely, if (P1 − P2)2 = I, then P1 + P2 − P1P2 − P2P1 = I. Multiply-
ing the previous equality by P1 from the left side, we get P1P2P1 = 0. So that
(P2P1)∗(P2P1) = 0. This is equivalent to P1P2 = P2P1 = 0. Thus P1 + P2 = I.

(iii)⇒(iv). Assume that (iii) holds. Then AA+−A+A is invertible and (AA+−
A+A)−1 = AA+ − A+A. By theorem 3.4, A + A∗ is invertible and there exists
a unique idempotent P ∈ B(H) such that AP = A and P ∗A = 0. It follows
from Remark 3.2, that I − P − P ∗ = AA+ − A+A. Multiplying the previous
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equality by P ∗ from the left side, we get P ∗P = P ∗A+A = (A+AP )∗ = A+A.
Hence, ‖P‖ = (‖P ∗P‖) 1

2 = 1. According to Lemma 2.3, we conclude that P is an
orthogonal projection (P = P ∗), which satisfies AP = A and PA = 0.

(iv)⇒(i). Suppose that (iv) holds. From the invertibility of A+A∗, we deduce
that R(A) + R(A∗) = H.

Now, we prove that R(A) ⊥ R(A∗). From AP = A and PA = 0, we get A2 = 0.
So R(A) ⊂ N(A). Since N(A) = R(A∗)⊥, we conclude that R(A) ⊥ R(A∗).

(iv)⇔(v). This equivalence can be proved in a similar way as (ii)⇔(iii), The-
orem 3.4.

Corollary 3.11. Let A ∈ B(H) have closed range. If any item in Theorem
3.10, is satisfied, then
(i) A+ = (A + A∗)−1A(A + A∗)−1,
(ii) A+ = (A−A∗)−1A(A−A∗)−1,
(iii) A+ + (A+)∗ = (A + A∗)−1,
(iv) A+ − (A+)∗ = (A−A∗)−1,
(v) A+ = 1

2 [(A + A∗)−1 + (A−A∗)−1].

Proof. (i). By the proof of Theorem 3.10, (iv) ⇒(i), we get A2 = 0. Then
(A + A∗)A+A = A.

Since A + A∗ is invertible, then it is easy to check that

A+ = (A+A)+(A + A∗)−1 = A+A(A + A∗)−1

By using A+A = (A + A∗)−1A, we obtain (i).
The proof of (ii) is similar to that of (i).
The proof of the remaining statements follows immediately from (i) and (ii) of

this corollary.
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