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SOME HOMOLOGICAL PROPERTIES OF AMALGAMATION

Elham Tavasoli

Abstract. Let R and S be commutative rings, let J be an ideal of S and let f : R →
S be a ring homomorphism. In this paper, we investigate some homological properties of the
amalgamation of R with S along J with respect to f (denoted by R ./f J), introduced by
D’Anna and Fontana in 2007. In addition, we deal with the strongly cotorsion properties of local
cohomology module of R ./f J , when R ./f J is a local Noetherian ring.

1. Introduction

Throughout this paper all rings are considered commutative with identity el-
ement, and all ring homomorphisms are unital. In [7], D’Anna and Fontana con-
sidered a construction obtained involving a ring R and an ideal I ⊂ R that was
denoted by R ./ I, called amalgamated duplication, and it was defined as the
following subring of R×R:

R ./ I = {(r, r + i) | r ∈ R, i ∈ I}.
This construction was studied from different points of view in [1, 3, 7, 10, 11, 13].
In [4], a systematic study of a new ring construction is initiated, called the “amalga-
mation of R with S along J with respect to f”, for a given homomorphism of rings
f : R → S and ideal J of S. This construction finds its roots in a paper by J.L.
Dorroh appeared in [8] and provides a general frame for studying the amalgamated
duplication of a ring along an ideal. The amalgamation of R with S along J with
respect to f is a subring of R× S which is defined as follows:

R ./f J = {(r, f(r) + j) | r ∈ R, j ∈ J}.
This construction is a generalization of the amalgamated duplication of a ring
along an ideal and other classical constructions, such as the Nagata’s idealization
are strictly related to it [4, Example 2.7 and Remark 2.8]. One of the key tools
for studying R ./f J is based on the fact that the amalgamation can be studied
in the frame of pullback constructions [4]. This point of view allows to deepen the
study initiated in [4] and continued in [5] and to provide an ample description of
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various properties of R ./f J , in connection with the properties of R, J and f .
In [4], necessary and sufficient conditions are provided for R ./f J to inherit the
properties of Noetherian ring, integral domain, and reduced ring and characterized
pullbacks that can be expressed as amalgamations. In [5], they provided a complete
description of the prime spectrum of R ./f J and gave bounds for its dimension. In
[6], the authors studied in details its prime spectrum and, when R ./f J is a local
Noetherian ring, some of its invariants (like the embedding dimension) and relevant
properties (like Cohen-Macaulayness and Gorensteinness). Indeed, in [6, Proposi-
tion 5.7], they stated necessary and sufficient conditions for the self-injectivity of
the ring R ./f J . As a nice generalization of injectivity for modules, Enochs in
[9] introduced the notion of cotorsion modules and as an special case of cotorsion
modules Xu in [12] introduced the terminology of strongly cotorsion modules. In
Theorem 2.2, we investigate the strongly cotorsion properties of Hdim R

m./f J (R ./f J) in
connection with the strongly cotorsion properties of Hdim R

m (R) and Hdim R
m (J), when

R ./f J is a local Noetherian ring. In addition, we investigate some homological
properties of the amalgamation.

2. Main results

Let R and S be commutative rings with unity, let J ba an ideal of S and let
f : R → S be a ring homomorphism. In the following theorem we summarize some
properties of R ./f J from [4] and [6].

Theorem 2.1. Let R and S be commutative rings, let J ba an ideal of S and
let f : R → S be a ring homomorphism. The following statements hold.
(i) There exists the natural ring homomorphism ϕ : R → R ./f J defined by

ϕ(r) := (r, f(r)), for all r ∈ R. The map ϕ is an embedding, making R ./f J
a ring extension of R. Furthermore, R has (R ./f J)-module structure by the
natural projection pR : R ./f J → R.

(ii) R ./f J is isomorphic as an R-module to R⊕ J .
(iii) R ./f J is a local ring if and only if R is a local ring and J ⊆ J(S), where J(S)

is the Jacobson radical of S. In particular, if m is the unique maximal ideal
of R, then m ./f J = {(m, f(m) + j) | m ∈ m, j ∈ J} is the unique maximal
ideal of R ./f J .

(iv) Let (R, m) be a local ring and let J ⊆ J(S) be finitely generated as an R-module.
Then dim R = dim(R ./f J) = dimR(R ./f J)

(v) Let (R, m) be a local ring and let J ⊆ J(S) be finitely generated as an R-module.
Then R ./f J is a Cohen-Macaulay ring if and only if it is a Cohen-Macaulay
R-module if and only if J is a maximal Cohen-Macaulay module.

(vi) Let R ./f J be a local ring, where R is a Cohen-Macaulay ring. Assume that
f(R) + J satisfies Serre’s condition (S1) such that dim(f(R) + J) = dim R,
and suppose that J 6= 0 such that f−1(J) is a regular ideal of R. Then the
following conditions are equivalent:
(a) R ./f J is Gorenstein.
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(b) f(R)+J is a Cohen-Macaulay ring, J is a canonical module of f(R)+J
and f−1(J) is a canonical module of R.

Note that Theorem 2.1(vi) provides the necessary and sufficient conditions of
self-injectivity of the ring R ./f J . As a nice generalization of injectivity for mod-
ules, Enochs in [9] introduced the notion of cotorsion modules. An R-module M is
called a cotorsion module if Ext1R(F, M) = 0 for all flat R-modules F . Furthermore,
as an special case of cotorsion modules Xu in [12] introduced the terminology of
strongly cotorsion modules. An R-module M is called a strongly cotorsion module
if Ext1R(F, M) = 0 for all R-modules F with finite flat dimension. One can easily
show that if M is a strongly cotorsion R-module, then Exti

R(F,M) = 0 for all
i ≥ 1 and all R-modules F with finite flat dimension. In the following theorem we
investigate the strongly cotorsion properties of Hdim R

m./f J(R ./f J) in connection with
the strongly cotorsion properties of Hdim R

m (R) and Hdim R
m (J), when R ./f J is a

local Noetherian ring.

Theorem 2.2. We preserve the assumptions of Theorem 2.1, and moreover we
assume that (R, m) is a Noetherian local ring with dimension d and 0 6= J ⊆ J(S)
is an ideal such that J is a finitely generated R-module. Then Hd

m./f J (R ./f J) is a
strongly cotorsion R-module if and only if Hd

m(R) and Hd
m(J) are strongly cotorsion

R-modules.

Proof. By Theorem 2.1(iv), R and R ./f J have the same dimension d and
R ./f J is a local ring with maximal ideal m0 = m ./f J . Then we have the
following R-isomorphisms:

Hd
m0

(R ./f J) ∼= Hd
m(R ./f J) ∼= Hd

m(R⊕ J) ∼= Hd
m(R)⊕Hd

m(J).

The first isomorphism follows from [2, Theorem 4.2.1] and the second one follows
from Theorem 2.1(ii). Now assume that Hd

m0
(R ./f J) is a strongly cotorsion

R-module. Therefore, for any R-module F with finite flat dimension we have

0 = Ext1R(F, Hd
m0

(R ./f J)) ∼= Ext1R(F, Hd
m(R))⊕ Ext1R(F, Hd

m(J)).

Hence, Ext1R(F, Hd
m(J)) = Ext1R(F, Hd

m(R)) = 0 for any R-module F with finite
flat dimension and this implies that Hd

m(R) and Hd
m(J) are strongly cotorsion R-

modules. The converse can be proven in a similar way.

Let R be a ring and let I be an ideal of R. The amalgamated duplication
of R along I, denoted by R ./ I, is the special case of R ./f I where f : R → R
is an identity homomorphism, see [7]. Note that if (R, m) is a Noetherian local
ring of dimension d, then R ./ I is a Noetherian local ring with maximal ideal
m ./ I = {(m,m + i) | m ∈ m, i ∈ I} of dimension d, see [7, Corollary 3.3 and
Theorem 3.5]. Therefore we have the following result.

Corollary 2.3. Let (R, m) be a Noetherian local ring of dimension d and let
0 6= I be an ideal of R. Then Hd

m./I(R ./ I) is a strongly cotorsion R-module if and
only if Hd

m(R) and Hd
m(I) are strongly cotorsion R-modules.
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In the sequel we investigate some homological properties of the amalgamation.

Proposition 2.4. Let f : R → S be a ring homomorphism and let J be a
non-zero ideal of S which is a flat R-module. Then the following statements hold
for any R-module M .
(i) fdR(M) = fdR./f J(M ⊗R (R ./f J)).

(ii) pdR(M) = pdR./f J (M ⊗R (R ./f J)).

Proof. By Theorem 2.1(ii), the R-module R ./f J is faithfully flat since J is
flat as an R-module. First, suppose that fdR(M) ≤ n (resp. pdR(M) ≤ n) and pick
an n-step flat (resp. projective) resolution of M over R as follows:

(∗) : 0 −→ Fn −→ Fn−1 −→ · · · −→ F0 −→ M −→ 0.

Applying the functor − ⊗R (R ./f J) to (∗), we obtain the exact sequence of
(R ./f J)-modules:

0 → Fn ⊗R (R ./f J) → · · · → F0 ⊗R (R ./f J) → M ⊗R (R ./f J) → 0.

Thus, fdR./f J (M ⊗R (R ./f J)) ≤ n (resp. pdR./f J(M ⊗R (R ./f J)) ≤ n).
Conversely, suppose that fdR./f J(M⊗R (R ./f J)) ≤ n (resp. pdR./f J (M⊗R (R ./f

J)) ≤ n). Since R ./f J is a flat R-module, we conclude that for any R-module N
and each i ≥ 1 we have:

(1) : TorR
i (M, N ⊗R (R ./f J)) ∼= TorR./f J

i (M ⊗R (R ./f J), N ⊗R (R ./f J))

(2) : Exti
R(M, N ⊗R (R ./f J)) ∼= Exti

R./f J(M ⊗R (R ./f J), N ⊗R (R ./f J))

Furthermore, TorR
i (M, N) and Exti

R(M, N) are direct summands of TorR
i (M, N⊗R

(R ./f J)) and Exti
R(M,N ⊗R (R ./f J)) respectively. Then, we conclude that

fdR(M) ≤ n (resp. pdR(M) ≤ n).

Proposition 2.5. Let f : R → S be a ring homomorphism and let J be a
non-zero ideal of S which is a flat R-module. Then the following statements hold
for every R-module M .
(i) idR(M) = idR(M ⊗R (R ./f J))

(ii) fdR(M) = fdR(M ⊗R (R ./f J))

Proof. Note that R ./f J is a faithfully flat R-module. (i) follows from [13,
Corollary 2.9] and (ii) follows from [13, Corollary 2.11].

Corollary 2.6. We preserve the assumptions of Proposition 2.5. For every
R-module M , we have

fdR(M) = fdR./f J(M ⊗R (R ./f J)) = fdR(M ⊗R (R ./f J)).

Proof. By Proposition 2.4, we have fdR(M) = fdR./f J(M ⊗R (R ./f J)), and
by Proposition 2.5, fdR(M) = fdR(M ⊗R (R ./f J)).

Proposition 2.7. Let f : R → S be a ring homomorphism and let J be a
non-zero ideal of S. Then the following statements hold.
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(i) If M is a (faithfully) injective R-module, then HomR(R ./f J,M) is a (faith-
fully) injective (R ./f J)-module.

(ii) Every injective (R ./f J)-module is a direct summand of the R-module
HomR(R ./f J,M), where M is an injective R-module.

Proof. (i) The following sequence of (R ./f J)-isomorphisms makes clear that
if M is a (faithfully) injective R-module, then HomR(R ./f J,M) is a (faithfully)
injective (R ./f J)-module.

HomR./f J(−, HomR(R ./f J,M)) ∼= HomR((R ./f J)⊗R./f J −,M)
∼= HomR(−,M).

Note that in the above sequence, the first isomorphism follows from Hom-tensor
adjointness, and the second isomorphism is induced by tensor cancellation.

(ii) Let E be an injective (R ./f J)-module. It is enough to show that E is
embeded into an R-module of the form HomR(R ./f J,M) where M is an injective
R-module. Consider E as an R-module and embed it into an injective R-module
M . Then use isomorphisms in part (i), to convert the monomorphism of R-modules
E ↪→ M to a monomorphism of (R ./f J)-modules E ↪→ HomR(R ./f J,M).
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